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Abstract

We use a panel of historical patent data covering the last hundred years and a large

range of countries to study the evolution of innovation across time and space and its effect

on productivity. We document a substantial rise of international knowledge spillovers as

measured by patent citations since the 1990s. This rise is mostly accounted for by an

increase in citations to the US and Japanese patents in fields of knowledge related to

computation, information processing, and medicine. We estimate the effect of innovation

induced by international spillovers on TFP in a panel of countries-sectors from 2000 to

2014. We develop a shift-share instrument that leverages pre-existing citation linkages

across countries and fields of knowledge, and heterogeneous countries’ exposure to tech-

nology waves. On average, an increase of one standard deviation in log-patenting activity

increases TFP growth by 3.8%. We also document an effect of a similar magnitude on

long-run income per capita growth for the post-war period.
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1 Introduction

Productivity is a key driver of economic growth within and across countries. Clark and Feenstra

(2003) and Klenow and Rodŕıguez-Clare (1997) document that the majority of the divergence

in income per capita over the twentieth century can be attributed to cross-country differences

in total factor productivity (TFP) growth. The endogenous growth literature, starting with the

seminal contributions of Romer (1990) and Aghion and Howitt (1992), has emphasized the role

of innovation and idea generation as a central driver of technology and, ultimately, productivity

growth. However, from an empirical point of view, direct measures of innovation that cover a

large number of technologies, countries, and time periods are scant.1

In this paper, we use historical patent data spanning the last hundred years and a vast range

of countries to study the evolution of innovation across time and space. The use of patent data

allows us to exploit a widely validated quantitative measure for the generation of new ideas

and knowledge spillovers (i.e., how innovation builds on previous knowledge). We document a

substantial rise of international knowledge spillovers since the 1990s mostly driven by the US

and Japan and the rise of innovation related to computation, information and communication

technologies (ICTs), and medicine. We also leverage the rich structure of linkages across time,

space, and fields of knowledge to propose a novel identification strategy to quantify the effect

of innovation induced by knowledge spillovers on productivity and economic growth across

countries and industries.

Our innovation measures come from the European Patent Office Worldwide Patent Statis-

tical Database (PATSTAT). PATSTAT contains bibliographical and legal status information

on more than 110 million patents from the main patent offices in the world, covering leading

industrialized countries, as well as developing countries over the period 1782-2018. To avoid

some of the arbitrariness of using broad patent technology classes (Keller, 2002), we classify

patents into “fields of knowledge” that we obtain with a machine-learning approach. Based on

the premise that knowledge is embedded in inventors, the algorithm bundles together patent

classes based on the probability that the same inventor patents in these classes to distill the

proximity of the classes in the knowledge space.2

Armed with our newly defined technology classes, we show that their significance – as

measured by the share of filed patents that goes to each field of knowledge – has importantly

1Comin and Hobijn (2004, 2010) and Comin and Mestieri (2018) have analyzed the diffusion of major
technologies since the Industrial Revolution. Comin and Mestieri (2018) show that the productivity transitional
dynamics implied by the observed diffusion patterns match well the evolution of the distribution of cross-country
income per capita in the last two centuries. However, their analysis is circumscribed to 25 major technologies
since 1780.

2As a robustness check, we also perform a clustering analysis where the strength of the linkages between
different patent classes is based on citations and/or co-appearance of these classes on the same grant.
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evolved over time. The data reveal substantial technological waves in the last one hundred

years. Mechanical engineering accrued the largest share of innovations at the beginning of the

twentieth century. Fields of knowledge related to chemistry and physics (e.g., macromolecular

compounds) were the most prominent fields in the mid-century, while inventions related to

medicine and the digital economy appear to be the most prevalent in the past decades. We

also show that, while advanced economies account for the bulk of patenting activity, there is

substantial variation in terms of countries’ specialization across fields of knowledge. Moreover,

these patterns of specialization are heterogeneous over time.3

Next, we turn our attention to knowledge spillovers. We measure knowledge spillovers

through citations across fields of knowledge and countries. For this exercise, we focus on the

post 1970 sample for which we have data for virtually all countries in the world. We show

that, for the average patent, citations tend to be biased towards domestic, as opposed to

international, inventions and towards the same field of knowledge. We also document that,

across all these categories, there is an upward trend over time in citations. That is, new

patents tend to cite more other patents. A striking fact has emerged since the 1990s. Except

for the US and Japan, international citations have grown faster than domestic citations. After

the year 2000, excluding the US and Japan, international citations are more than twice more

frequent than domestic citations. This finding suggests that the reliance on knowledge produced

elsewhere – and particularly in the US and Japan – has increased over this period of time. Even

for technology leaders like Germany or Great Britain, foreign citations now account for most

of the citations. This fact may be interpreted as a decline in the prominence of European

innovations relative to their US and Japanese counterparts. We also find that most of this

increase is driven by a handful of fields of knowledge that are related to ICTs and medicine.

After having laid out these facts, we investigate the effect of innovation (as measured by

patenting) on productivity and income. Our baseline exercise studies the effect of innovation

induced by international spillovers on productivity in the latest part of the sample (2000-2014)

for which we have high quality data on cross-country sectoral TFP, while using patent data

starting in 1970 to construct our instrument for this exercise. We then extend our analysis back

in time and study directly the effect of innovation on long-run income growth (1980-2016 and

1960-2016), for which we use the full extent of our patent data to construct our instrument.

Simply correlating innovation and productivity (or income) is problematic due to mea-

surement error (which would generate attenuation bias), potential reverse causality, and the

presence of unobserved factors affecting simultaneously patenting and the dependent variables.

Examples of such factors include financial or external shocks that affect both the output of a

3We also show that specialization in fields of knowledge tends to be clustered in space. Moreover, we
document that inequality in patenting activity across countries has increased since the 2000s.
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country and the amount of innovation produced. In this paper, we address these endogeneity

concerns by constructing a shift-share instrument that leverages pre-existing knowledge link-

ages across countries and technologies and combines it with lagged foreign innovative output in

other fields of knowledge and countries, in the spirit of Acemoglu et al. (2016) and Berkes and

Gaetani (2018a). More precisely, our instrument is constructed in two steps – which we discuss

now in the context of our baseline exercise studying productivity from year 2000 to 2014 as

dependent variable. First, we estimate the strength of the linkages across countries and fields

of knowledge (measured by patent citations) between 1970-1990. These linkages constitute our

pre-determined shares. The shifts of our instrument for country and field of knowledge, co and

ko, are given by the patents filed in all other countries cd 6= co and fields of knowledge kd 6= ko

over the years 1990-2000. We are thus implicitly assuming that the probability that patents

in (cd, kd) generate a patent in (co, ko) can be inferred from the network of patent citations.4

Applying this procedure recursively, we obtain a predicted number of patents for each country

and field of knowledge.

In our main regression, the dependent variable is TFP by country and sector (measured

from the World Input Output Database) over the 2000-2014 period. The regression model

includes controls that vary at the country-sector-time (e.g., sectoral capital and labor), as well

as country-time and sector-time fixed effects to control for differential country and sectoral

trends (e.g., overall patenting activity has been steadily growing over time). We find a robust

effect of innovation on TFP growth. One standard deviation increase in patenting activity

leads to a 0.052 standard deviation increase in TFP growth, or equivalently, to an increase of

3.8% in TFP growth. We conduct a number of robustness checks to address concerns regarding

the validity of the instrument such as the existence of demand-pull anticipatory effects that

might be correlated with the contemporaneous state of the local economy. To do this, among

the other things, we “reverse” the network of citations that we used to measure knowledge

spillovers and calculate the amount of innovation we would have expected to observe in the

past if the patenting activity was driven only by future demand. Reassuringly, we find no

evidence supporting this alternative hypothesis.

We conclude the paper by doing two additional exercises. First, we extend our framework

to study the effect of innovation on long-run growth. We reconstruct our shift-share instrument

using patent data pre-1980 and estimate the effect of innovation on income per capita over the

1980-2016 period. We find a positive, significant coefficient that is very similar in magnitude to

the elasticity of patents to TFP that we find for the period 2000-2014. In terms of magnitude,

an increase in one standard deviation in patenting activity increases income per capita by 0.14

4In fact, we refine this procedure and extend this logic to higher-order linkages to create our main instrument
(see Section 5).
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standard deviations. Second, we illustrate how this shift-share approach can be used in other

settings, and we show how it can be used to compute the elasticity of trade flows to sectoral

TFP.

Related Literature This paper relates to the vast and rich literature studying the link be-

tween innovation and productivity since the seminal work of Griliches (1979, 1986). Our paper

focuses on knowledge spillovers and diffusion of technology. Knowledge spillovers have been

extensively documented (e.g., Jaffe et al., 1993 and Murata et al., 2014). However, most of this

literature has focused on domestic spillovers, based on the premise that they are very localized.

In this paper, we especially focus on international spillovers which have also been documented

to be quantitatively important (e.g., Eaton and Kortum, 1999; Keller, 2002; Keller and Yeaple,

2013; Keller, 2004 provides an excellent survey). We contribute to this latter literature by doc-

umenting an increase of international spillovers since the 1990s and by leveraging international

linkages to build our shift-share design and quantify the effect of innovation on productivity.

Our paper also relates to the recent strand of literature that have used historical patent

data, e.g., Nicholas (2010), Packalen and Bhattacharya (2015), Petralia et al. (2016) and Akcigit

et al. (2017) to shed light on various linkages between innovation and long-run outcomes. One

difference with most of this literature is that we extend our analysis beyond one country and

aim to provide a global view. In this respect, our work is closest to Bottazzi and Peri (2003) who

use R&D and patent data for European Regions in the 1977-1995 period to estimate research

externalities.

Our shift-share instrumental approach is related to a number of papers that have used

the network structure of citations to construct shift-share instruments. Our approach is most

similar to Berkes and Gaetani (2018b), who construct a similar shift-share instrument across

US cities and Acemoglu et al. (2016) who use a citation network to percolate innovations

downstream and illustrate how technological progress builds upon itself. Both papers use only

within country (US) variation.5

2 Data

2.1 Data Sources

In this paper, we measure new ideas through patents data and productivity through TFP and

value added data. Patent data are collected from the European Patent Office worldwide Patent

5A large number of papers have used more standard shift-share instruments in the innovation and produc-
tivity literature. For example, Moretti et al. (2019) estimate the effects of R&D subsidies and Hornbeck and
Moretti (2019) estimate the effect of TFP growth in manufacturing across US cities.
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Statistical Database (PATSTAT, Autumn 2018 version). PATSTAT contains bibliographical

and legal status information on more than 110 million patents from the main patent offices

around the world, covering leading industrialized countries, as well as developing countries

over the period 1782-2018.6 From PATSTAT, we collect information on patent filing years,

inventor and assignee locations, citations, patent families, and technological classes. While

PATSTAT provides the most comprehensive coverage of patenting activities worldwide, it also

has some limitations (Kang and Tarasconi, 2016). The main limitation for our purposes is data

availability in the earlier years. In fact, data along one or more dimensions are often missing

for some countries in the years preceding 1970. We therefore split our sample into two groups

of countries, that we use at different stages of our analysis. The first group is composed of

six major technological leaders (the United States, Great Britain, France, Germany, the Soviet

Union, and Switzerland)7 for which all the patents’ characteristics required by our analysis are

available since 1920. The second group includes all the countries covered by PATSTAT and

starts in 1970.8 Appendix A provides more information about the composition of the samples

and summary statistics.

We assign each patent to a geographical unit according to the country of residence of

its inventor(s). If this information is not available, then the country of the assignee(s) or

publication authority is used, instead. When a given patent is associated with multiple inventors

or applicants from different countries or territories, we assign weights to these patents. The

weights are computed assuming that each inventor or applicant contributed equally to the

development of the invention.9 To avoid double-counting patents that are filed in more than

one patent office, we restrict most of our analysis to patents that are the first in their (DOCDB)

family. We further collect the full distribution of technology classes associated with each patent

based on the International Patent Classification (IPC). For our analysis, we first consider all the

fields at the subclass level (e.g., A01B) – for a total of 650 classes – and we then cluster them

6PATSTAT is increasingly popular in economics as it provides rich information on patents. Most of its use
has focused on particular sectors, countries or time periods. See, among others, Coelli et al. (2016); Aghion
et al. (2016); Akcigit et al. (2018); Philippe Aghion and Melitz (2018); Bloom et al. (2020); Dechezleprêtre et al.
(2020).

7Note that to compare consistent geographical units over time, when appropriate, we aggregate the patents
filed in the German Democratic Republic and the Federal Republic of Germany. Similarly, for the Soviet
Union, we consider all the patents produced by Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan,
Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan.

8For our empirical analysis, we exclude China from our sample due to a substantial rise in the number
of Chinese patents since the 3rd revision of Patent law in China in 2008. While we see a sharp increase in
total number of Chinese patents after the implementation of the new law, the same pattern is not observed in
the number of Triadic patents which include patents filed jointly in the largest patent offices (i.e., the United
States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the Japan Patent Office
(JPO)). For more details see Appendix A.1.

9For example, if a given patent has four inventors, one from the US and three from the UK, then the patent
will be split between the US and the UK with weights of 0.25 and 0.75, respectively.
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into consistent groups following the procedure outlined in Section 2.2. Finally, to capture when

an idea was completed and abstract from potential bureaucratic delays that are orthogonal to

innovative activities, in our analysis we use the patent filing years instead of the years in which

patents were granted.10

We supplement the patent data with the World Input Output Database (WIOD). This

database provides data on prices and quantities of inputs, outputs, and trade flows covering 43

countries and the Rest of the World for the period 2000-2014. The data are classified according

to the International Standard Classification revision 4 (ISIC) for a total of 56 sectors. Using the

World Input-Output Tables (WIOT) for each set of countries, sectors, and years, we construct

trade flows, gross output, intermediate purchases, and value added expressed in US dollars.

Additionally, from the Socio-Economic Accounts (SEA) in the WIOD, we collect industry-level

data on employment, capital stocks, gross output, and value added at current and constant

prices. These data allow us to compute country-sector TFP paths and also to compute trade

in intermediate and final goods across country-sector pairs.11

2.2 Construction of Fields of Knowledge

Innovation is the process of creating new knowledge building on existing knowledge across differ-

ent fields. To operationalize our goal of measuring innovation waves across time and space, we

build on the vast existing literature that measures innovative activities through patent data.

We propose grouping finely-defined patent classes into broader “fields of knowledge,” which

taken together constitute what we refer to as the technology space of the world. This con-

ceptualization also provides a mapping between our patent data and the analytical framework

developed in Section 4.12 We employ a novel approach to grouping patent technology classes

based on inventors’ information. Our procedure is based on the likelihood that the same in-

ventor produces inventions associated with different patent subclasses. The idea is that, since

knowledge is embedded in people, it is possible to cluster fields of knowledge based on the IPC

subclasses in which the same inventors tend to patent.13 More precisely, we build a probability

matrix T642×642,14 where each element (i, j) is the probability that an inventor patents in IPC

10We discuss in more detail our data construction procedure in the Appendix A.1
11See details in the Appendix A.2. In the Appendix we also discuss the additional database we use (UNIDO

INDSTAT2) for historical data on sectoral manufacturing output by country and the Penn World Data Tables.
12See Kay et al. (2014), Leydesdorff et al. (2014) and Nakamura et al. (2015) for alternative definitions of

technology space based on patent technology classes.
13Note that we do not distinguish whether IPC subclasses were assigned to different patents or to the same

patent conditional on being from the same inventor.
14Eight IPC subclasses whose second level is 99 (i.e., “Subject Matter not otherwise Provided for in this

Section”), were excluded from the analysis since they are assigned to patents with no clear identified technology.
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subclass i conditional on also having a patent assigned to subclass j.15 For example, a me-

chanical engineer specialized in brakes will most likely patent in IPCs B60T ”Vehicle Brakes or

parts thereof” and F16D ”Clutches, Brakes”, which our algorithm correctly bundles together.16

To obtain a symmetric matrix for the cluster analysis, we apply the following transformation:

Dij = 1− (Tij + Tji) = Dji

where each element in the dissimilarity matrix D is interpreted as a measure of distance between

subclass i and subclass j. We use this matrix together with a k-medoids clustering algorithm to

group the IPC subclasses into clusters. A k-medoids algorithm minimizes the distance within

clusters by comparing all possible permutations of subclasses, conditional on a specific number

of clusters, k. Each resulting cluster represents a separate field of knowledge. To determine the

optimal number of clusters, we first compute the optimal clustering for each possible k and we

then ”score” (using the silhouette coefficient) each result. The score takes into consideration

the distance between elements within a cluster as well as the distance across clusters, while

also penalizing the existence of singletons.17 The optimal number of clusters implied by the

silhouette coefficient is k = 164. Table E in the Appendix reports the subclasses assigned to

each cluster.18

3 Some Stylized Facts on World Innovation

We start our empirical analysis by presenting some stylized facts about the evolution of inno-

vation and knowledge spillovers across time and space. Throughout the rest of the paper, we

15The diagonal elements of the matrix, i = j, are set to be equal to one. Note that the so-obtained matrix
does not need to be symmetric. For example, according to the matrix manufacture of dairy products (A01J)
is closest to dairy product treatment (A23C), while dairy product treatment is closest to foods, foodstuffs, or
non-alcoholic beverages (A23L)

16Other procedures for bundling patent classes have been proposed in the literature. One strand of the
measures uses patent citation information (e.g., Zitt et al., 2000; von Wartburg et al., 2005; Leydesdorff and
Vaughan, 2006; Leydesdorff et al., 2014). We also conduct such grouping as a robustness check and find
substantial overlap. Another strand of measures uses the ”co-classification” information of patents (Jaffe, 1986;
Engelsman and van Raan, 1994; Breschi et al., 2003; Leydesdorff, 2008; Kogler et al., 2013; Altuntas et al.,
2015). Others used likelihood of diversification as measures of distance (Hidalgo et al., 2007) and analysis of
patent texts (Fu et al., 2012; Nakamura et al., 2015)

17More details on the procedure used to construct fields of knowledge can be found in Appendix A.4.
18As a robustness check, we also construct the proximity matrix based on the citation linkages, instead, and

apply the same procedure. The results are similar to the ones obtained with our proximity matrix: (i) the
percentage of pairwise IPC subclasses that are in the same cluster is 50.6 (excluding singleton clusters, which
accounts for 22.6 percent of all clusters); (ii) the percentage of pairwise IPC subclasses that are in the same
cluster weighted by importance, measured by the number of patents in the respective subclass relative to all
patents, in the sample is 51.9 (excluding singletons); (iii) the percentage of clusters’ centers that are the same
is 67.1.
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will use the fields of knowledge created in Section 2.2 as our main unit of analysis.

3.1 Evolution of Fields of Knowledge across Space and Time

We first document the evolution of the major fields of knowledge for the last hundred years

and highlight how different countries contributed to their growth at different points of time. To

measure the importance of each field of knowledge at any point in time, we compute the share

of patents belonging to that field of knowledge. Each patent is weighted by the total number of

forward citations.19 We split our dataset into nineteen 5-years periods from 1920 to 2015, plus

a period prior to 1920 where we lump together all the patents filed before that year. For each

time period, we rank every field of knowledge based on its relative contribution to the overall

patent activity.

Figure 1 shows the evolution of the fields that were ever present in the top five fields at any

point in time according to our measure. Two trends are readily noticeable. First, we observe a

substantial increase in the concentration of innovation around the 1990s – approximately 10%

of the fields of knowledge account for 60% percent of all patent activity in the 2000s compared

to 30% in the first half of the 20th century. Second, there is substantial heterogeneity in the

evolution of the fields of knowledge over time. At the beginning of the twentieth century, fields

of knowledge belonging to Mechanical Engineering and Transportation (packaging & containers;

geothermal systems) are the most prominent fields. Starting in the 1950s, we observe a shift

towards chemistry and physics (e.g., macromolecular compounds). Around the 1980s there

was substantial increase in medical and veterinary science (e.g., diagnosis and surgery; medical

preparation). Finally, and as expected, around the mid 1990s the fields of knowledge related

to computing and communication techniques started playing the leading role in the innovation

landscape.

We also perform the same exercise using alternative measures of importance that address

possible concerns related to, for example, heterogeneous patenting practices across countries or

strategic patenting behavior that gained more prominence in the past few decades. To do this,

we build importance measures that take into consideration country fixed effects, or measures

that are only based on patents that were cited at least once. Table B.2 shows that these

measures are highly correlated to our baseline.

Next, we turn to the spatial heterogeneity of innovation activities by studying the contri-

bution of different countries to the growth of top fields of knowledge. We divide the sample

into four periods: 1920-1945, 1945-1970, 1970-1995, and 1995-2015. We take seven fields of

knowledge that took the leading role based on the number of patents throughout the entire

19As a reminder, we are using only the first patent of the family. If a patent belongs to multiple fields, we
add a fraction of the patent to each field proportional to the number of IPC subclasses reported on the patents.
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Figure 1: Evolution of Top Fields of Knowledge

Notes: This figure represents the share of each field of knowledge, measured by the number of first in the family
patents weighted by received citations, in total patent activity across all fields in a given period of time. The
width of the line reflects the share of knowledge field. Exact values for shares can be found in Table B.1.

period of study. Similarly to what we did in Figure 1, we assess the contribution of each country

by computing its share in a certain field of knowledge.20

For the period 1920-1970, our sample is limited to six countries: the US, Great Britain,

Germany, Switzerland, France, and the USSR. Figure B.1 shows that during this time period,

the leading innovating role in major fields of knowledge was split between the US and Germany,

followed by the UK and France. In fact, Germany overtook the US in every leading field in the

period between the end of WWII and 1970.

In Figure 2, we consider the whole sample in the years after 1970. Between 1970 and 1995,

there are three clear technological leaders: Japan, the US, and Germany. The preponderant

role played by Japan in the major fields of knowledge is remarkable. After 1995 other Asian

countries, such as Korea, start rising to the forefront of the technological frontier. In this

period, France experience a decrease of importance in the innovation landscape. Asian countries

dominate in the fields related to computing, engineering, and digital information, while their

role in chemistry and medicine is less pronounced.

We can also extend our analysis beyond the chosen fields of knowledge and compute an

20In this part of the analysis, we use the total number of patents without weighting by the number of citations
for better comparability across countries. Different countries may use different procedures to assign citations,
which would bias our results.
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Figure 2: Countries Shares in Top Fields, 1970-2015

overall ranking by averaging the country ranking across all fields of knowledge. This exercise

paints a picture similar to the one in Figure 2. Japan and the US are the technological leaders

from 1970 until 1995, with Japan falling behind after the 2000s. The Soviet Union has an

average ranking very similar to the US in 1970 but it falls behind subsequently, while Asian

countries such as Taiwan gain prominence after the 2000s.21

3.2 Using Citations to Measure Spillovers across Time and Space

So far, we have shown that there is substantial time variation in terms of composition of

the technological output and in terms of geographical contribution to worldwide innovation.

We now turn our attention to knowledge spillovers. We measure spillovers through patent

citations across fields of knowledge and countries. There is an abundant literature studying

within country spillovers using patent citations (e.g., Jaffe et al., 1993, Murata et al., 2014

for the United States), but the evidence on cross-country knowledge spillovers is more scarce.

Despite being an imperfect measure of knowledge spillovers, patent citations provide a useful

21See Section B in the Appendix for further discussion. In the Appendix, we report two additional results that
shed more light on the spatial heterogeneity of innovative activities over time. First, we decompose inequality
in innovation within and between countries, and find that the inequality in patenting across countries has
increased since the 2000s, while the within component has remained mostly stable. Second, we use a gravity-
type regression to estimate the relationship between GDP per capita, geographical distance, and production of
technologies. We find that changes in patenting shares across fields of knowledge are correlated across countries
that are geographically and linguistically close to each other.
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Figure 3: Citation Dynamics, 1970-2015

quantifiable benchmark that can be easily measured and used in our empirical analysis.

To illustrate this fact, we focus on the post 1970 sample, for which we have data for virtually

all countries in the world. We compute backward citations given to patents filed after 1900.

Panel (a) in Figure 3 shows the evolution of the average number of citations given by patents

filed after 1970. The average number of citations experiences an important increase starting

around the 1980s. Domestic citations keep increasing up until 2002 and they then show a

marked decline, whereas international citations plateau at about 4 international citations per

patent in the late 1990s. A closer look at panel (a) further reveals that domestic citations tend

to be more prominent than citations given to international patents: domestic patents are cited

at a rate that is roughly double the one for international patents. Panel (b) breaks down these

trend by additionally looking at citations within and outside the field of knowledge (FoK) of

the citing patent.22 The plot shows that citations are concentrated not only geographically but

also technologically. Moreover, this gap has widened over the past decades.

As discussed in the previous section, an important pattern is that most knowledge (as

22The sum of the four lines in panel (b) is not equal to the total number of backward citations since there
is some double-counting due to the fact that cited patents belong to multiple fields of knowledge and (more
rarely) to multiple countries.
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(b) Non-US and Non-Japan

Figure 4: Share of citations going to the US and Japanese patents by FoK, 1970-2015. Each line in the plots
represents the share of citations going to the US and Japan patents that belong to a given field of knowledge.
Panel (a) depicts domestic citations given by American and Japanese patents, and panel (b) depicts international
citation to the patents filed in the US and Japan given by other countries.

measured by patent filings) is produced by a handful of countries, what we refer to as the

“technological leaders.” Specifically, for the period 1970-2015 two countries – Japan and the

United States – are responsible for the largest share of patents produced worldwide. Panels (c)

and (d) of Figure 3 separately depicts citation dynamics for Japan and the US and the rest of

the world. While we observe an increase in the average number of citations per patent, there

are two important differences between the two panels. First, the United States and Japan, on

average, give more citations per patent than the rest of the world. Second, most of the citations

in the US and Japan are given to domestic patents, while the rest of world mostly relies on

knowledge produced in other countries.23

Figure 3 depicts a rapid increase in the overall average number of citations per patent. To

better understand what lies behind this increase, we concentrate our attention to the citations

received by five fields of knowledge that have become the leading technology fields over the

past decades. Figure 4 shows that the substantial increase in the number of citations observed

in Figure 3 is mainly driven by two fields of knowledge: “Computing, Calculating, Counting”

and “Transmission of Digital Information.” What is perhaps even more striking is the fact that

most citations to this field of knowledge are given to US and Japanese patents.

Taken together, the evidence presented in this section shows that knowledge spillovers are

an important component of the innovation process. Although spillovers that originate from

the same country and field of knowledge are still the most relevant, international knowledge

spillovers have been steadily gaining importance over the last decades. This increase is visible

when considering spillovers coming both from the same field of knowledge and from other fields

23Decomposition of citations for other countries, namely Germany, France and Great Britain, are reported in
Figure B.2.
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of knowledge, and is mainly driven by a dramatic increase in the citations received by American

and Japanese patents, especially in the fields of knowledge related to computing, information

processing and medicine.

4 Conceptual Framework

In this section, we present a framework that incorporates the elements of our data analysis in the

previous sections and that serves as a guide for empirical exercises. Our framework builds on the

canonical growth literature. The fundamental element of our analysis is the production function

of ideas and its link to patenting activity. We choose our formulation of the idea production

function to remain relatively parsimonious so that it encompasses alternative formulations of

endogenous growth theory (see, e.g., Jones, 1999 for a discussion).24

Consider a world economy with C countries, S sectors and K fields of knowledge, where

we index countries by c, sectors by s, fields of knowledge by k, and time by t. There is a

representative firm in each country-sector that produces sectoral output combining physical

inputs (labor, capital, etc.) according to the best production methods used in that country-

sector at time t, which are summarized by sectoral TFP, TFPsct. Following the endogenous

growth literature, we refer to these best production methods as best ideas—thus assuming that

the role of ideas is to increase firms’ productivity by developing and improving methods of

production (see, e.g., Acemoglu, 2009a).

We denote by Ncskt the stock of ideas available in country c, sector s, field of knowledge k,

and time t. The state of world ideas at time t is thus summarized by the vector Nt ≡ (N111t,

. . . , Ncskt, . . . , NCSKt). There is a production function for new ideas, I(·), that establishes the

relationship between the flow of new ideas in a given field of knowledge and production sector,

∆Ncskt, the current stock of knowledge, Nt, and inputs devoted to generate new ideas, Rcskt,

∆Ncskt = I (Scsk(Nt), Rcskt) , (1)

where ∆ denotes the time difference operator between t + 1 and t. The spillover function

Scsk(Nt) captures how the current world stock of knowledge Nt helps generate new ideas in

country c in field of knowledge k for sector s. We take the spillover function to be

Scsk(Nt) =
∑
c′∈C

∑
s′∈S

∑
k′∈K

αc′s′k′tNc′s′k′t, (2)

24Our formulation builds on previous studies that have been applied to the study of the patent network of
citations (Acemoglu et al., 2016). Relative to Acemoglu et al. (2016), we present additional model elements to
relate our results to TFP and output per capita and also extend the model to a multi-country setting.
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where αc′s′k′t captures the reliance of the production function of ideas in csk on ideas from

c′s′k′ at time t. Note that we purposefully state Equation (1) generically so that it subsumes

the first generation of endogenous growth models as in Romer (1990) or Aghion and Howitt

(1992), semi-endogenous growth as in Jones (1995), Kortum (1997) or Segerstrom (1998), or

second generation as Aghion and Howitt (1998), Young (1998) or Peretto (1998).25

Since ideas are to a large extent non-rival (Romer, 1990), the vast majority of these theories

resort to intellectual protection in the form of patents to ensure that investments in new ideas

can be recovered with future profits.26 This observation motivates our empirical strategy to

proxy the generation of new ideas through patent filings. Patents provide a quantifiable measure

over time and space that is arguably very hard (or impossible!) to replicate with other measures

of ideas or innovation. Moreover, through citations, patents also provide an empirical measure

of reliance on existing ideas across space and fields of knowledge. We rely on these spillover

measures in our empirical analysis and, in particular, in our instrumental variables strategy.

In practice, however, not all ideas are patented, and not all ideas a patent builds on are

cited. We thus think of patents as a proxy for new ideas, ∆Ncskt and citations as a proxy

for spillovers. We discuss in the next section how our empirical specification addresses these

potential discrepancies between idea generation and patenting.

Regardless of their vintage, endogenous growth theories argue that there is a positive, mono-

tonic relationship between the ideas produced and sectoral TFP growth – TFPcst+1/TFPcst.

However, they differ on the implied effect of the current stock of ideas on the generation of new

ideas: first-generation theories emphasize the standing on the shoulders of giants effect, while

semi-endogenous theories allow for fishing-out effects. To build a connection with our empirical

specification, we assume a flexible, iso-elastic relationship between ideas and TFP growth

log TFPcst+1 = φ0 + φA log TFPcst + φN log(1 + ∆Ncst), (3)

with φ0, φA, φN ≥ 0 and ∆Ncst =
∑K

k=1 ∆Ncskt denoting the total number of ideas generated

in country c sector s at time t across all fields of knowledge.

Equation (3) nests a number of cases often considered in the literature and constitutes the

basis of our empirical specification in the next section. For example φ0 = 0 and φA = φN = 1

generates building-on-the-shoulders-of-giants dynamics, whereby the growth rate of TFPcst is

directly controlled by the number of ideas produced at time t. In this case, if no ideas are

produced at time t, ∆Ncst = 0, there is no TFP growth. Letting φA < 1 introduces the fishing-

25For example, one specification extensively used in the literature (e.g., Romer, 1990; Jones, 1995) ignores
cross-country spillovers, and corresponds to having S = K = 1 and Sc(Nt) = Nct and postulates a log-linear

relationship, I = Nφ
ctRct with φ ≤ 1.

26See, among others, Aghion and Howitt (1998), Acemoglu (2009b) and the references therein.
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out-of-the-same-pond effect in the sense that more ideas become necessary over time to sustain

constant TFP growth.

Finally, we extend our framework to output per worker–which we also study as an indirect

proxy for productivity. Suppose that output per worker, ycst, is given by a Cobb-Douglas

production function, log ycst = log TFPcst + α log kcst, where ksct denotes capital per worker

and 0 < α < 1. Under the assumption of competitive markets, firm optimization implies that

the ratio of sectoral output per worker between two sectors, s and s′, is proportional to their

TFPs,

log ysct − log ys′ct = log TFPsct − log TFPs′ct. (4)

Equation (4) implies that the differential growth rate in output per worker across sectors

coincides with the differential growth rate in sectoral TFPs.27 We use this result as a robustness

check when TFP data are available and, more importantly, for instances when only GDP per

capita data are available. For this latter case, the case in point is the study for long-run growth

trajectories (1980-2016).28

The empirical specification we use when considering output per worker builds on the stan-

dard growth regression specification obtained by log-linearizing around the steady-state a Solow

model,29

log ycst+1 = log ycst + ∆ log TFPcst + β (log yct − log TFPcst) + θ log(1 + ∆Ncst) + δcs

= βN log(1 + ∆Ncst) + βY log ycst + βK log kcst + δcs, (5)

where δcs is a country-sector specific intercept that absorbs the steady-state output per worker of

the sector. We have used Equation (3) to go from the first to the second line. The noteworthy

feature of Equation (5) relative to Equation (3) is that the level of output per worker also

appears on the right-hand-side. This term controls for convergence effects and its analysis has

been the focus of empirical growth theories in the last decades. By contrast, however, the focus

of our analysis will be on the elasticity of patenting on output growth, βN , rather than the

convergence term βY .

27If we allow α to be sector specific, we have that the difference in output per worker growth rates has an
additional term that depends on factor prices weighted by factor share differences which can be absorbed using
a country-time fixed effect. Letting Rct denote the price of capital, we would have the term (αs − αs′) logRct
appearing in addition to log TFPsct − log TFPs′ct in Equation (4).

28For this exercise, we omit sectoral considerations and focus on an aggregate production function, since
sectoral output data is not consistently available.

29See Barro (1991); Barro and Sala-i Martin (1992); Barro et al. (2004); Acemoglu (2009a); Durlauf et al.
(2005) for a detailed derivation and further discussion.
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5 Empirical Analysis

This section presents the main empirical exercises of the paper to study the effect of innovation

on productivity. We begin analyzing the effect of innovation on sectoral TFP using cross-

country panel data. We present our identification strategy in Section 5.1 and report our baseline

results in Section 5.2. We finalize the section presenting two extensions. First, in Section 5.3, we

extend our baseline estimation to longer time horizons where the dependent variable is output

per capita starting in 1980 (thus loosing sectoral variation). Second, we illustrate how our IV

strategy may be useful in other contexts and show how to apply it to estimate the elasticity of

trade flows to differences in productivity in Section 5.4.

5.1 Estimating Equations and Identification Strategy

Our empirical model is based on Equation (3) from our analytical framework. The specification

of our baseline regression model is the following:

ln(TFP cst+n) = φA ln (TFPcst) + φN ln (1 + patcst) + φ0Xcst + δct + δst + εcst, (6)

where ln(TFP cst+n) is the average of future TFP spanning n consecutive years (from t + 1 to

t + n), Xcst denotes a set of controls for country c and sector s, δct and δst denote country-

time and sector-time fixed effects and εcst denotes the error term. Thus, relative to the model

presented in the analytical framework, there are two departures. First, rather than looking

one period ahead, we look at an average over a window of n years (we take n = 3 as our

baseline, and show that the results are robust to n ∈ {1, ..., 5}). We do this, as it is common

in the growth literature (e.g., Arcand et al., 2015), to smooth out short-term fluctuations in

TFP and concentrate on long-run trends. Second, we unpack the constant φ0 in our analytical

framework to allow for controls that are country-sector-time specific (e.g., capital, employment),

and country×time and sector×time to allow flexible differential trends across countries and

sectors.

Our main results use the TFP measures derived from the World Input Output Database.

The data used in our baseline analysis span from year 2000 through 2014, covers 36 countries

and considers 20 sectors. As we discuss below in more detail, we use the 1970-2000 patent

data to construct our instrument. Figure 5 shows the binscatter plot of the raw correlation

between patent activity ln (1 + patcst) and productivity ln(TFP cst+n) over our sample period.

In the cross-section of countries and sectors, a one percent increase in the number of patents is

associated with a 0.16 percent increase in future TFP averaged over the next three years. The

coefficient is statistically significant (we cluster the standard errors at a country level).
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Figure 5: Unconditional Correlation between TFP and Number of Patents
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Equation (6) is our baseline model to study the effects of innovation on productivity. The

coefficient of interest is φA. It relates changes in number of patents at the country-sector level

in a given year to changes in TFP in the following years. The inclusion of sector-year dummies

accounts for the fact that different industries rely differently on innovations, and that this

relationship can vary over time. In addition, sector-year dummies allow us to control for the

presence of technological waves and other sectoral shocks that are common across all countries.

The inclusion of country-year fixed effects accounts, first, for the fact that different countries

have different propensities to innovate, and, second, for any business cycles fluctuations at a

country level, e.g., a financial crisis.

To evaluate the strength of the causal relationship between innovation and productivity, we

need to identify variation in patent activity that is orthogonal to unobserved factors that might

affect both innovation activity and productivity at the same time. There is a wide range of

such possible factors and the direction of the bias is ex-ante ambiguous. An example of such

factors is technological obsolescence of some industries. Reverse causality is also a concern, with

higher productivity being the cause, rather than consequence, of higher innovation activity in

a given sector. Finally, estimates might be suffering from attenuation bias, due to presence of

measurement error since patents are an imperfect measure of ideas and innovation.

5.1.1 Instrument Construction

To deal with these threats to identification, we build an instrumental variable for the number

of patents. Our instrument is based on a shift-share design that leverages pre-existing cross-

country, cross-sector variation to predict the current level of patenting. More specifically, we

exploit the pre-determined network of patent citations during the period 1970-90 to identify
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knowledge links to construct the “shares” part of our instrument. We then construct the

“shifts” for the period 1990-2014 using a mix of observed and predicted number of patents in

other countries and sectors starting from the year 1980 on a rolling basis.30 Interacting the

shares with the shifts and adding those up, we obtain the “predicted” number of patents in the

period 2000-2014 as our shift-share instrument. Importantly, we only use “predicted” patents

as shifts to generate the instrument for our baseline sample. Thus, our instrument predicts

patenting activity in the current period based on the knowledge spillovers from other countries

and sectors. In this sense, our shift-share design can be interpreted as a particular application

of the linear knowledge spillover function presented in Equation (2) in Section 4.

Before delving into the details of the instrument, it is worth emphasizing that our proposed

shift-share design differs from a more standard “Bartik” design. The reason is that we exploit

the directed network of citations to construct linkages across country-sector pairs and then use

shift terms that also vary at the country-sector level. In contrast, a standard “Bartik” only

uses as sources of variation the own country-sector exposure (shares) and the world patenting

activity in a sector (shift). For our purposes, the standard Bartik design is unappealing since

it may confound innovation shocks with world industry or technological trends that also affect

TFP.31

To compute the “share” terms of our instrument, we gather patent information on the

country of origin, technological field, backward and forward citations, and the sequence of the

patent within its family (as described in Section 2) for all patents filed from T share
0 = 1970 to

T share
1 = 1990. We use a correspondence from technological fields to industry codes to assign

each patent to one or multiple sectors, with their respective weights in the latter case.32 The

underlying idea is to measure knowledge flows across countries and sectors through the share

of citations that each patent produced in the country and sector of origin o gives to patents

in the destination country and sector d. In particular, for each patent of sector so belonging

to country co at time t, we calculate the share of citations given to patents produced in sector

sd, country cd at time t − ∆ for some citation lag ∆ > 0. We repeat this procedure for each

time period t between T share
0 and T share

1 and sum these shares to obtain the total number of

citations over the T share
1 to T share

0 period. Importantly, to control for size effects due to the fact

that some locations and/or sectors tend to patent more for idiosyncratic reasons, we normalize

30We start by computing “predicted” number of patents in year 1990 by using actual number of patents filed
during the period 1980-1989 as shifts. For the year 1991, we use the actual number of patents filed during
the period 1981-1989 and the predicted number of patents in 1990 computed in the previous step as shifts to
generate the predicted number of patents. Starting from the year 2000, only the predicted number of patents
are used as shifts to generate the instrument.

31Consider, for example, a world where a few countries leaders determine in which sectors most of innovation
activity is going to happen. In this case, the shift components that we would use in the construction of the
instrument would not be orthogonal neither to patent activity nor to productivity.

32We use Eurostat correspondence tables, Van Looy et al. (2014).
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this measure by the total number of patents produced in the country-sector of the destination

country, d.

Formally, the adjacency matrix of the knowledge network for a citation lag ∆ is given by:

mco,cd,so,sd,∆ =

T share
1∑

t=T share
0

∑
p∈P(co,so,t)

sp→(cd,sd,t−∆)

T share
1∑

t=T share
0

|P (cd, sd, t−∆) |

, (7)

where sp→(cd,sd,t−∆) denotes the share of citations that patent p gives to patents of sector sd

produced in country cd filed at time t − ∆, P (so, co, t) denotes the set of patents in so, co at

time t, and |P(·)| denotes the total number of patents in the set (i.e., set cardinality). As the

numerator shows, we add the citations of all patents originating in country-sector (co, so) at

time t over the time period from T share
0 through T share

1 going to patents filed in country-sector

(cd, sd) at time t −∆, and normalize by the patent count in the destination country-sector at

time t−∆. As we explain below, we use resulting object mco,cd,so,sd,∆ to construct the “shares”

in our shift-share instrument.33 Note that the “share” terms mco,cd,so,sd,∆ do not add up to one,

since their levels capture the number of citations that are typically received by patents filed in

(cd, sd) from (co, so) with a lag ∆.

Our network analysis also takes into account that the speed at which ideas diffuse might

differ across locations and sectors. We formally capture this effect by allowing the weights in

our network to be time specific. We compute the citation shares at different time horizons,

with citations lags ∆ ∈ {1, · · · , 10}. In other words, we allow for the strength of the links to

depend on how many years have passed between the time cited and citing patents were filed.

Thus, our share terms are allowed to vary by country-sector citing-cited pairs, and by time lag

between cited and citing patents.

Finally, we describe our “shift” terms and the construction of our instrument. Our shift-

share design is based on the idea of predicting the number of patents in a country and sector

of interest based on predicted knowledge spillovers, i.e. as if only the pre-existing knowledge

network mattered for generating knowledge. Intuitively, this approach mirrors the one of an

input-output model except that recognizes the non-rival nature of ideas (an idea in one country-

33Let us reiterate here that, as we have done in Section 2, we restrict our sample to patents that are the first
in their family to avoid double-counting of the same idea and capture only knowledge creation originated in a
particular country-sector. However, for cited patents, we count all cited patents irrespective of whether they
are the first or not in their family to capture all innovations on which any given patent builds on. We also note
that Berkes and Gaetani (2018b) show that the network of patents in the United Stated is stable in the time
frame they consider, which roughly coincides with ours.
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sector can potentially spillover to multiply country-sector pairs). To this end, we then use as

shift terms patents filed ∆ years before the period of interest t in other countries and sectors

(or predicted patents as we explain below), and use the strength of the linkages to predict the

number of patents in the country-sector of interest. In particular, we assume that the strength

of knowledge spillovers between country-sector dyads is mediated through how ideas in other

country-sectors (as measured by our shift terms) diffuse through the knowledge network (as

measured by the linkages mco,cd,so,sd,∆). By interacting the shift and share terms and summing

across countries, sectors and diffusion lags, we then obtain a predicted number of patents

p̂atco,so,t in country co, sector s0 and time t.

Formally, our baseline shift-share design is constructed iteratively as follows. For 1990, we

obtain predicted patents as

p̂atco,so,1990 = a1990

∑
sd∈S\so

∑
cd∈N\co

10∑
∆=1

mco,cd,so,sd,∆ · patcd,sd,1990−∆,

where at is a re-scaling term that ensures that predicted number of patents is equal to the

actual number of patents in period t worldwide and patcd,sd,1990−∆ is the actual number of

patents filed in cd, sd, 1990−∆.34 Between 1991 and 1999 we construct the predicted number

of patents using previously computed predicted number of patents for years since 1990 and

observed patenting activity prior to 1990. That is, for t ∈ (1990, 2000) we have that

p̂atco,so,t = at
∑

sd∈S\so

∑
cd∈N\co

(
t−1990∑
∆=1

mco,cd,so,sd,∆ · p̂atcd,sd,t−∆ +
10∑

∆=t−1990

mco,cd,so,sd,∆ · patcd,sd,t−∆

)
,

where p̂atco,so,t denotes predicted patenting. Finally, starting in year 2000 we construct pre-

dicted patenting off the predicted patenting computed in the decade of the 1990s:

p̂atco,so,t = at
∑

sd∈S\so

∑
cd∈N\co

10∑
∆=1

mco,cd,so,sd,∆ · p̂atcd,sd,t−∆

Note that, to mitigate endogeneity concerns, the proposed shift-share design avoids using

contemporaneous shares and shifts. First, to construct the share terms, we use the pre-sample

period 1970-1990 to construct the knowledge network off patent citations which. Second, when

constructing the shift terms, we diffuse the observed patents filed pre-1990 over the period

1990-1999 to predict the patenting activity in the 1990s. We then use this predicted patenting

activity to predict patenting activity over the sample period (2000-2014). Third, we discard

34Figure C.1 in the appendix represents a simple example of described procedure
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Figure 6: Unconditional Correlation between Actual and Predicted Patents

0 2 4 6 8
ln(1+ patcst)

2

3

4

5

6

7

8

9

ln
(1

+
pa

t c
st
,I
V
)

R2=0.50
β=0.77

citations coming from the same country and from the same sector when we construct predicted

patents. This is as if when constructing the knowledge network mco,cd,so,sd,∆ in Equation (7),

we eliminated the own-country and own-sector terms

mco,cd,so,sd,∆ =

0 co = cd

0 so = sd

We do this to avoid endogeneity concerns arising from the fact that edges that link the same

country or sector might be correlated with future shocks (despite being at least 10 years apart).

Figure 6 visually compares the actual and predicted number of patents by providing a

binscatter plot. The two variables are strongly but not perfectly correlated: the coefficient of

the regression is 0.77 and R2 = 0.50. The Cragg-Donald Wald F statistics in the benchmark

regression is 2,070, which rules out weak instrument concerns.

Our proposed instrument belongs to the family of shift-share instruments: weighted aver-

ages of a common set of shocks, with weights reflecting heterogeneous shock exposure. The

key difference of our shift-share design relative to standard “Bartik” type designs is that our

shares leverage the entire information of the citation network structure rather than only using

information on the country-sector of interest. Despite this, the analysis of the validity of our

instrument still falls within the shift-share instrumental variable framework and it must rely

on some assumptions about the exogeneity of the shift terms, exposure shares, or both (see

Borusyak et al. (2018) and Goldsmith-Pinkham et al. (2020) for a technical discussion of those

assumptions).

To provide evidence in support of our instrument, we test for a number of assumptions
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underlying the identification restrictions of shift-share designs, along the lines of Tabellini

(2020). First, the validity of the shift-share instrument rests on the assumption that countries

and sectors giving more citations (to other sectors and countries) in the period between 1970

and 1990 are not on different trajectories for the evolution of TFP in the period of analysis

(2000-2014). We test this assumptions in two ways: i) regressing productivity in 1990 against

average patent activity in the period of 2000-14 predicted by the instrument, ii) we check that

results are unchanged when controlling separately for an average level of patent activity in the

period 1970-90 and productivity in 1990.35

Second, we rule out the possibility that the links of knowledge diffusion used to construct

the instrument capture a demand pull factors from the destination country and sector, rather

than a supply push from the origin country and sector. We do so by directly controlling by

shift-share variable constructed analogously to our instrument but with the timing reversed,

so that it predicts the number of patents that should have been produced in the past in other

countries and sectors to generate the current level of patenting given lagged citation patterns.

More precisely, we start by constructing the pre-determined network of citations, but now using

forward citations instead of backward. Then, using the patenting activity across country-sector

pairs during our sample period (2000-2014) and the forward citation network generated in the

previous step, we infer the number of patents in the period 1970-1990 that would be necessary

to rationalize the 2000-2014 period. Then, we include this predicted number of patents in our

baseline regression as an additional control. In other words, these predicted patents are patents

that should have been filed in the period of 1970-1990 to generate patent activity in the period

2000-2014 that we observe in the data.

5.2 Innovation and Productivity

Our identification strategy relies on the pre-determined network knowledge linkages that allows

us to capture country and sector specific shocks to innovation activity, measured by a number

of patents, due to knowledge created in other geographical and sectoral areas. In this section,

we explore the effects of these shocks on productivity.

Table 1 shows our benchmark estimates of the relationship between TFP and innovation

instrumented with predicted innovation.36 As we have discussed, we use a three year average

35Since we do not have data on TFP for the period before 2000, we use value added per employment obtained
from UNIDO data as a measure of productivity.

36Our baseline results use TFP estimated using the dual approach, Hsieh (1999) and Hsieh (2002). Results are
robust to using productivity measured by TFP using a primal approach, as well as value added per employment.
To retain zero-valued observations, we use in our baseline specification ln (1 + pat), but the results are robust
to the inverse hyperbolic sine transformation used instead. Results for alternative measures of TFP and log
transformation of patents are reported in Table C.2 in the Appendix.
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Table 1: 2SLS Estimates: 2000-2014

ln(TFPc,s,t+n)

(1) (2) (3) (4) (5) (6)

ln(patentc,s,t) 0.008 0.017 0.007 0.016 0.007 0.016

(0.005) (0.006) (0.006) (0.007) (0.005) (0.007)

ln(tfpc,s,t) 0.952 0.949 0.967 0.967 0.972 0.972

(0.011) (0.011) (0.015) (0.015) (0.018) (0.018)

ln(capitalc,s,t) -0.026 -0.027 -0.031 -0.031

(0.007) (0.007) (0.010) (0.010)

ln(employmentc,s,t) 0.025 0.023 0.021 0.019

(0.004) (0.005) (0.007) (0.007)

ln(importsc,s,t) 0.008 0.008

(0.008) (0.008)

Country-Year FE Y Y Y Y Y Y

Sector-Year FE Y Y Y Y Y Y

# obs. 8,169 8,169 8,169 8,169 8,169 8,169

# countries 36 36 36 36 36 36

First-stage estimates

Predicted 0.478 0.471 0.471

ln(1 + patentt) (0.068) (0.081) (0.081)

CD Wald F 2,070 2,141 2,142

Notes: Period of the analysis is 2000-14 using pre-determined matrix based on the data from 1970-90. First-
stage estimates include all the controls. Standard errors are clustered at a country level in parentheses. Columns
(1), (3), and (5) report the results using OLS, and Columns (2), (4), and (6) report the results obtained with
2SLS.

of TFP to smooth out business cycle fluctuations. Also, our benchmark regression used data

from years 1970-90 to compute pre-determined network linkages, and the period of our analysis

is 2000-2014. The first two columns report the estimated results when we only include country-

year and sector-year fixed effects. We also include in our regressions capital, employment and

intermediate imports on a country-sector level as controls. The third to sixth columns report

the regression when these controls are included. The third and fourth columns report the OLS

and 2SLS results when we add as controls the country-sector measures of capital stock and

employment. In the fifth and sixth columns, we exploit the trade linkages given by the world

input-output structure and add as controls the value of intermediates imported by country-

sector pairs to explore the role of trade linkages.

The coefficient on innovation activity is positive, and statistically significant across the
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board.37 The coefficient obtained using instrumental variable approach is almost two times

larger than the one using OLS. The magnitude of the two-stage least squares regressions is also

stable across specifications and it suggests that a 1% increase in patenting between 2000 and

2014 leads to 0.016% increase in TFP. This estimated elasticity implies that 1 standard devia-

tion increase in log patents generates an increase in log TFP of 3.8% (i.e., 3.8% TFP growth,

or a 0.052 standard deviation increase in logarithm TFP). One standard deviation increase

corresponds to an increase in innovation activity in the pharmaceutical sector from the level of

innovation observed in Canada to the level observed in the US in 2000. This also approximately

corresponds to an increase in innovation activity in computer and electronic products sector

from the level of innovation observed in Australia or France to the level observed in the US in

2000. Similarly, an interquartile shift in log of number of patents implies 0.067 interquartile

shifts in logarithm TFP. Looking at countries at the bottom quartile of the patenting distri-

bution in our sample, our estimated elasticity implies that, ceteris paribus, if Mexico in 2000

innovated in computer and electronic products and pharmaceuticals at the level of the US,

TFP in these sectors would have been higher by 11.4% and 10.7%, respectively.

Given the presence of fixed effects in our regression, it is important to interpret the coefficient

as a change in TFP caused by the growth rate of innovation activity that is beyond the average

growth rate of innovations across the world in a given sector and beyond the average growth

rate of innovation across all sectors in given country in a given period of time.38

The estimated 2SLS coefficients are larger than the ones obtained in the OLS regression.

This increase is consistent with the likely scenario in which our OLS estimates suffer from

attenuation bias because patents are an imperfect measure of innovation activity. Another

possible explanation for the bias could be an increase in market concentration – a trend observed

in most advanced countries since 2000. Higher market concentration leads to slowdown in

productivity, while stimulates innovation activity due to the fact that leader(s) don’t want to

give up their leading role (Akcigit and Ates, 2021).

First-Stage Estimates and Knowledge Spillovers Before turning to the analysis of our

robustness checks, we discuss the first-stage results reported in Table 1. We find positive

and significant coefficients across the board of predicted patents constructed using our shift-

share design on actual patenting. These estimates inform us directly on the average knowledge

37Results remain significant at 5% if we compute two-way clustered standard errors at the country-sector
level or if we cluster at the sector level.

38Bringing those numbers to actual data means that 1 standard deviation in increase in log annual number of
patents after partialing out all controls column (4), i.e, country-year and sector-year fixed effects, TFP, capital
and employment, leads to 0.1 standard deviations increase in log TFP after partialling out the same controls
which, in turn, imply an increase in log TFP (growth rate) of 1.1%. The implied magnitude is thus similar to
the magnitudes without partialling out the controls.

25



spillovers from other country-sector pairs on a given country-sector pair. The estimated coef-

ficient implies an elasticity of 0.47 between the predicted patents from our shift-share design

and the actual patenting activity. In terms of magnitude, a 1 standard deviation increase in

predicted patents outside country-sector (c, s) implies a 0.43 increase in actual patenting in

country sector (c, s). in a sample period.3940

5.2.1 Robustness Checks

The key identifying assumption behind the instrument can be violated if the characteristics of

countries and sectors that give more citations to particular sectors and countries in the period

1970-90 had persistent effects on patent activity as well as on changes in the outcomes of interest

(beyond our regression controls). We test this assumption in a variety of ways. First, we test

for pre-trends, by showing that the pre-period productivity is uncorrelated with subsequent

patent activity predicted by the instrument. Table 2 presents the results of regressing average

value of productivity during the pre-sample period against average annual number of patent

in period 2000-14.41 The coefficients of this regression, reported in Columns (3) and (4), are

not statistically significant. Importantly, they are quantitatively different from the estimates

obtained for the period used in main exercises, reported in Columns (1) and (2).

Second, in Columns (2) and (3) of Table 3, we check that results do hold when we also

control for an average level of patent activity in the period 1970-90 and level of productivity

in 1990, measured by value added per employment. In the case, when we add separately

historical level of productivity, the results are unchanged. However, when we add average level

of historical patent activity, the coefficient of interest becomes twice as large (in absolute value).

Yet, statistically we can not distinguish it from the baseline level.

Next, we rule out the possibility that the links of knowledge diffusion used to construct the

instrument capture a demand pull factors from the destination country and sector, rather than

39An analogous exercise when we use residualized variables with all controls implies 0.46 standard deviation
increase.

40It is also possible to further investigate knowledge spillovers across countries and sectors by relaxing the
restriction we impose in our baseline exercise of only including country sector pairs outside from the country-
sector pair of interest. Of course, this is at the expense of endogeneity concerns. However, since we include
country-time and sector-time fixed effects, a large array of potential concerns is taken care of by these. We find
that if we include the own sector (but exclude own country) in the shift-share design to create predicted patents,
the estimated coefficient is 0.45 and 1 std. dev. increase in predicted number of patents implies 0.44 std. dev.
increase in actual patents (0.48 resid). Conversely, if we include the own country sectors but still exclude the
own sector we find first stage coefficient to be equal to 0.35 and 1 std. dev. increase in predicted number of
patents implies 0.34 std. dev. increase in actual patents (0.4 resid). Finally, including both own country and
sector yields to the coefficient of 0.3, and 1 std. dev. increase in predicted number of patents implies 0.3 std.
dev. increase in actual patents (0.39 resid).

41As a measure of productivity we use value added per employment data as data on TFP for historical periods
is not available. We also averaged all the variables in order to suppress the time dimension as the left-hand side
and right-hand side of our regression belong to different time periods.

26



Table 2: Checking for Pre-trends

ln(va empt)

(1) (2) (3) (4)

ln(patent2000−14) 0.080 0.102 0.032 0.014

(0.036) (0.053) (0.056) (0.047)

Controls X X X X

Country FE Y Y Y Y

Sector FE Y Y Y Y

# obs. 641 433 433 424

CD Wald F 211.6 159.4 130.0 118.9

Notes: Columns (1) and (2) use average value added per employment in the period 2000-14 as a dependent
variable computed with WIOD and UNIDO data, respectively. The latter one is included for better compatibility
with results in columns (3) and (4), where dependent variable is average value added per employment computed
with UNIDO data for the periods 1981-90 and 1971-90, respectively. All regressions include average (log) values
for capital, employment and intermediate imports in period 2000-14. Standard errors are clustered at a country
level in parentheses.

a supply push from the origin. To do that, we include in our baseline regression number of

patents that should have been filed in pre-sample period to explain actual number of patents

observed in the sample in the period of study given citations linkages in pre-sample.42 Results

presented in Column (4) of Table 3 are very stable and the coefficient remains statistically

significant and quantitatively close to the baseline.

We repeat all these robustness checks using two other measures of productivity and obtain

similar results. These results are reported in Table C.3 in the Appendix. Finally, to check

for outliers driving our results, we show that our results remain unchanged if we exclude one

country or sector at a time.43

5.3 Innovation and Long-term Development

We extend now our analysis to longer-time periods. One challenge of looking at long-term

outcomes is that high quality TFP panel data spanning a large number of countries and sectors

is not available. To circumvent this problem, we adapt our empirical strategy to study the

42We describe procedure used to compute predicted number of patents in pre-sample period driven by demand
pull factors in previous section. To deal with time dimension of data, we include in the regression predicted
number of patents that should have been filed 30 years in past. The results hold for other choices of lag.

43The largest change in magintude that we obtain in φA is when we exclude the sector ”Manufacture of wood
and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials.”
In this case, it increases from 0.016 to 0.021.
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Table 3: 2SLS Estimates: Robustness

ln(TFPt+n)

(1) (2) (3) (4)

ln(patentt) 0.016 0.018 0.028 0.029

(0.007) (0.009) (0.013) (0.010)

ln(va em1990) 0.019

(0.010)

ln(patent1970−90) -0.009

(0.009)

ln(p̂atentt−30) -0.010

(0.007)

Controls X X X X

Country-Year FE Y Y Y Y

Sector-Year FE Y Y Y Y

# obs. 8,169 6,222 8,169 8,169

First-stage estimates

Predicted 0.514 0.520 0.273 0.397

ln(patentt) (0.086) (0.086) (0.054) (0.060)

CD Wald F 1,867 1,902 503 803

Notes: Column (1) shows the results of our baseline regression, Column (2) and (3) include separately to
baseline regression historical levels of productivity and average patent activity, respectively. Column (4) includes
predicted number of patents driven by demand pull factors to the baseline regression. All regressions include
(log) values for TFP, capital, employment, and intermediate imports as controls. Standard errors are clustered
at a country level in parentheses.

relationship between innovation activity and real GDP per capita at the aggregate country

level since 1980.44 That is, we depart in two dimensions relative to our baseline exercise. First,

we abstract from sectoral variation both when we construct instrument, and when we conduct

regression analysis. Second, we use real GDP per capita rather than TFP as our outcome

variable. In this sense, the exercise is analogous to what we have done in the robustness section

of the previous section (there we find a similar magnitude of the effect of patents when we use

sectoral value added per worker as an outcome variable rather than TFP).

The choice of the time period for our analysis is the result of a balancing act. On the one

hand, since we are interested in long-run growth, we would like to study a long time period. On

the other hand, given that comprehensive data for the period prior 1970 are available mostly for

44Data for real GDP per capita is from Maddison Project Database (Inklaar et al., 2018)
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advanced countries, and that for the most developing countries we observe almost no innovation

activity measured by patents, our shift-share design may miss a part of the variation we are

interested to capture. For these reasons, we choose as our baseline time period of analysis of

growth rates the 1980-2016, while we use the pre-1980 data to construct our instrument (so

that we include the 1970s which have a substantial number of patenting by middle-income

economies). Finally, we choose as our baseline set of countries High and Upper Middle Income

countries based on the World Bank classification,45 for which we have substantial variation in

patenting activity.46

To obtain our shift-share instrument in this cross-country setup, we use only country-time

variation in citations to generate the pre-determined matrix of linkages. Each element of the

matrix is computed as

mco,cd,∆ =

T share
1∑

t=T share
0

∑
p∈P(co,t)

sp→(cd,t−∆)

T share
1∑

t=T share
0

|P (cd, t−∆) |

,

and abstract from sectoral variation.47 We use the citation data observed in the period prior

1980 to construct the pre-existing linkages across countries, and countries’ patenting activity

during the period starting in 1970 as shifts to construct our instrument for the period 1980-

2016.48

The empirical specification we run corresponds to Equation (5) in our motivating framework.

As a reminder, it is obtained from a combination of a log-linearization of output dynamics

around the steady state (as in the standard growth regressions) and our law of motion for TFP.

45https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-

lending-groups
46We have extensively check the robustness of our findings. For example, we find similar results if we construct

our shift-share instrument with data pre-1970 or pre-1960 or include all countries in our sample.
47As a robustness check, we have also computed our shift-share instrument using cross country and sector

variation and then aggregating up the sectoral variation. That is, we compute the linkages at the country-sector
level as in our baseline regression and then create our shift-share instrument at the country-sector level first.
Then, we aggregate the predicted number of patents across sectors within a country (and year) to construct
the instrument. We find very similar results with this alternative procedure.

48Similar to our baseline instrument, we use a mix of actual patents filed and predicted patents as shifts.
We also do not take into account domestic spillovers when construct the instrument, i.e. mco,cd = 0, when
o = d . However, we no longer have the intermediate 10 years period between the pre-determined matrix and
instrument in our baseline to ensure sufficient sample size of growth rates and inclusion of the 1970s to construct
our shift-share. We also perform robustness check analysis where we use all citations available prior 1960/70
to construct the pre-determined matrix of citation linkages, and 1970/80-2016 as a period for the regression
analysis. Our main results are robust to alternative samples and can be found in the Table C.4 in the Appendix.
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Table 4: 2SLS Estimates: Innovation and Long-term Development: 1980-2016

Dependent Variable is: ln(gdp capc,t+n)

(1) (2) (3) (4)

ln(patentc,t) 0.013 0.086 0.005 0.034

(0.005) (0.020) (0.003) (0.012)

ln(gdp capc,t) 0.906 0.735 0.852 0.804

(0.026) (0.052) (0.025) (0.028)

Country FE Y Y Y Y

Year FE N N Y Y

# obs. 1,951 1,951 1,951 1,951

# countries 59 59 59 59

First-stage estimates

Predicted 0.787 1.915

ln(patent) (0.200) (0.695)

CD Wald F 203.6 130.0

Notes: Period of the analysis is 1980-2016 using pre-determined matrix based on the data for the period pre
1980. Standard errors are clustered at a country level in parentheses. Columns (1) and (3) present the results
for OLS, and columns (2) and (4) presents the results obtained with 2SLS. In regressions (1) and (2) only
country fixed effects are used. To account for a trend in a number of patents regressions in columns (3) and (4)
also include year fixed effects.

The following specification is used in the analysis

ln(gdp capct+n) = φA ln(gdp capct) + φN ln(1 + total patct) + δt + δc + εct

where on the left-hand side we use the average level of GDP per capita over n = 3 years after

t to smooth out variation driven by business cycles and other idiosyncratic shocks.

Table 4 shows the results estimated using citation and patent data for the period prior 1980

to generate the knowledge network, and the period of the analysis for the regression analysis

is 1980-2016. As in the previous section, the 2SLS estimates reported in columns (2) and (4)

imply a higher elasticity of patenting on income than the OLS estimates in columns (1) and

(3). In our preferred specification, which includes country and year fixed effects, we find a

positive, significant coefficient that is similar in magnitude to the elasticity of patents to TFP

that we find for the period 2000-2014. The elasticity of patenting to income per capita is

0.034. Quantitatively, this elasticity implies that one standard deviation increase in logarithm

of annual number of patents leads to 0.16 standard deviations increase in logarithm of annual

GDP per capita.
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5.4 Innovation and the Trade Elasticity to TFP

The shift-share instrument we propose in the paper can be applied in a variety of other settings.

In this section, we illustrate this point by using our instrument to estimate the elasticity of

cross-country, cross-sector TFP differences on trade flows. That is, we quantify the importance

of Ricardian comparative advantage following the estimating equation derived in Costinot et al.

(2012). The only difference relative to Costinot et al. is that we extend the analysis to a panel

setting (in addition to use our shift-share instrument, rather their instrument which is R&D

expenditures in a given year). As in Costinot et al., the dependent variable is the log of bilateral

“corrected exports” disaggregated by sectors and adjusted for openness of a country and a sector

(this dependent variable follows from computing trade flows in a standard Ricardian model).

The estimating equation is the following specification

ln x̃kijt = θ ln zkit + δijt + δkjt + εkijt

where x̃kijt denotes corrected exports (as discussed above), x̃kijt = xkijt/x
k
iit, z

k
it is exporter TFP,

δijt and δkjt importer-exporter-time fixed effects and importer-time-industry fixed effects, re-

spectively. Table 5 documents the results using average corrected exports in the three years

period on the right hand side, and TFP measures in the analogous period instrumented by the

lagged level of predicted patents on the left hand side.49 As in Costinot et al. we find that the

OLS estimation is downward bias. After instrumenting, the elasticity parameter is around 2.6.

This value is somewhat lower than what they find and in the lower range of trade elasticities

(but within a plausible range).50

6 Conclusion

This paper uses a panel of historical patent data spanning the last hundred years and a large

range of countries to study the evolution of innovation across time and space and its effect on

productivity. First, we have proposed a clustering algorithm to classify finely-defined patent

classes based on inventors’ patent activity to distill different fields of knowledge. Second,

we have documented broad technological waves over the twentieth century and heterogeneous

contribution of countries to these. Third, we have documented a substantial rise of international

knowledge spillovers as measured by patent citations since the 1990s. This rise is mostly

49The results reported in Table 5 are for TFP estimated with dual approach, the results for TFP estimated
with primal approach are analogous and reported in Table C.5.

50As pointed out by Boehm et al. (2020), the estimation of trade elasticities in panel data with the inclusion
of time dummies interacted with importer-sector fixed effects and importer-exporter tends to lead to lower trade
elasticities.
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Table 5: 2SLS Estimates: 2000-2014

Dependent Variable is: Adjusted exportscExcImst+n

OLS IV

ln(TFP )cExst+n 0.106 2.554

(0.211) (1.144)

CountryEx-CountryIm-Year FE Y Y

CountryIm-Sector-Year FE Y Y

# obs. 307,382 307,382

# countriesIm 39 39

# countriesEx 36 36

First-stage estimates

Predicted 0.074

ln(patentcExst+n) (0.035)

CD Wald F 3,989

Notes: Period of the analysis is 2000-2014 using pre-determined matrix based on the data from 1970-90.
Standard errors are clustered at a country of imports, country of exports and sector level in parentheses.

accounted for rising citations to the US and Japanese patents in fields of knowledge related to

computation, information processing, and medicine.

After having documenting these facts, we propose a shift-share identification that leverages

the knowledge spillovers across fields of knowledge and countries (to construct a the shift) and

the heterogeneity in exposure of countries to technological waves (to construct the share). We

then estimate the effect of innovation on TFP in a panel of countries-sectors for the period

2000-2014 using historical patent data spanning 1970 through 2000. On average, an increase of

one standard deviation in patents imply around 3% of TFP growth. We also estimate the effect

of innovation on income per capita since 1980 and illustrate the applicability of the instrument

in other contexts by estimating a trade elasticity parameter.
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