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Abstract 

We use county panel data to study the dynamic responses of local economies after natural 

disasters in the U.S. Specifically, we estimate disaster impulse response functions for 

personal income per capita and a broad range of other economic outcomes, using a panel 

version of the local projections estimator. In contrast to some recent cross-country studies, 

we find that disasters increase total and per capita personal income over the longer run (as of 

8 years out). The effect is driven initially largely by a temporary employment boost and in 

the longer run by an increase in average weekly wages. We then assess the heterogeneity of 

disaster impacts across several dimensions. We find that the longer-run increase in income 

per capita rises with disaster severity, as measured by monetary damages. Hurricanes and 

tornados yield longer run increases in income, while floods do not. The longer run increase in 

income—which has on average become smaller over time—tends to rise with recent disaster 

experience and is absent for counties with no recent experience. Finally, state-level analyses 

and estimates of spatial spillovers across counties suggest that, while over the short- to 

medium-run, the regional and local impacts of disasters on personal income are similar, over 

the longer run the net regional effect may be negative, in contrast to the positive local effect.  
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I. Introduction 

Natural disasters have become more frequent and costly in recent decades. Figure 1a 

shows the number of counties in the U.S. with a Federal Emergency Management Agency 

(FEMA)-declared disasters and the associated inflation-adjusted disaster damages for each 

year from 1980 to 2017.1 Both counts and damages have trended up over the past four decades, 

as has government aid spending on recovery.2,3 While increased development and population 

growth in disaster-prone areas has played a role (Rappaport and Sachs 2003), climate change is 

often cited as an important driver of these trends (USGCRP 2017), and consensus climate change 

projections indicate that the frequency and severity of disasters like floods and fires are likely to 

rise even further in the decades ahead.4  

Given these trends, understanding the impact that natural disasters have on affected local 

economies is critically important. Economic policymakers need to estimate and forecast the 

impacts of disasters, differentiating disaster-driven economic fluctuations from other sources. 

Changes in local employment, earnings, population, and property values after a disaster directly 

impact local tax revenues.5 Furthermore, natural disaster impulse responses can serve as an 

important input for macroeconomic climate change model calibrations. 

Despite the importance for policymakers, there is little consensus among researchers on what 

the dynamic impacts of natural disasters are for local economic outcomes. In addition to having 

devastating effects on mortality and well-being—important impacts that are outside the scope of 

 
1 These counts exclude disasters without reported damages in the SHELDUS data as described in Section 4.  
2 These trends are not unique to FEMA and/or SHELDUS data on disasters. For instance, similar trends based 

on other measures of disasters have been noted in the recent Fourth National Climate Assessment (NCA4) as part of 
the U.S. Global Change Research Program (USGCRP 2017) and by the U.S. National Climatic Data Center (see 
https://www.ncdc.noaa.gov/billions/time-series). 

3 As can be seen in Appendix Figure A1, the upward trend in damages is driven by hurricanes and floods, which 
together account for 75% of county disaster observations. For fires, the frequency and costs show no clear trend, 
though it should be noted that these data do not yet include the extremely costly and record-breaking wildfires that 
have occurred in the western U.S. since 2017. For tornados, costs have trended up slightly, but the annual count of 
counties hit by tornado disasters appears to have fallen over time. This could be due to changes in categorization, if 
tornadoes are increasingly lumped together with other disaster types and categorized, for example, as floods or 
severe storms in our framework. 

4 For instance, the recent Climate Science Special Report (Fourth National Climate Assessment: Volume 1) 
from the Congressionally-mandated U.S. Global Change Research Program (USGCRP 2017) concludes that “the 
frequency and intensity of extreme high temperature events are virtually certain to increase in the future as global 
temperature increases (high confidence). Extreme precipitation events will very likely continue to increase in 
frequency and intensity throughout most of the world (high confidence).” The report goes on to note that these trends 
will result in increased frequency and severity of disaster types such as droughts, fires, and floods that are associated 
with high temperatures and swings in precipitation. 

5 See, for example, “Harvey-struck Texas counties face blow to property tax revenues” (Reuters 2017). 

https://www.ncdc.noaa.gov/billions/time-series
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this paper—natural disasters can cause destruction to local wealth and capital stocks.6 That 

destruction could lead to business closures and the relocation of firms and businesses to other 

places, resulting in long-run declines in local income. Alternatively, the inflow of aid and 

insurance payouts to an affected area has the potential to finance reconstruction and other 

investments that could boost local income in the longer run.  Given the potential for either of 

these scenarios to play out, as Botzen, Deschenes, and Sanders (2019) put it in a recent review of 

the literature, “more research is needed on long-term impacts (e.g., beyond 5 years) of natural 

disasters.” An important recent paper by Hsiang and Jina (2014) presents in a schematic (which 

we reproduce in Figure 2) four commonly posited hypotheses on how economic activity might 

evolve following natural disasters.  Using cross-country panel data they find that the impulse 

response function (IRF) of national GDP per capita with regard to cyclones/hurricanes is 

consistent with the “no recovery” hypothesis.  More generally, in reviewing studies examining 

responses of GDP to disasters in a variety of contexts one can find estimates consistent with each 

of the four paths depicted in the schematic (see von Peter, von Dahlen and Saxena (2012), 

Cavallo, Galiani, Noy, and Pantano (2013), Lackner (2019), and Sawada and Sachs (2019).) 

Hence, the true dynamic response is very much an open question and likely varies by 

context. 

In this paper, we use U.S. county data to study the dynamic response of local economies 

following disasters. We focus on personal income, which is very highly correlated with GDP 

and, unlike GDP, is available at the county level back to 1980.7  To better understand the 

mechanisms by which disasters affect local income, we consider a broad range of other 

economic outcomes using a common methodology and data sample. We then examine 

heterogeneity, adaptation, and spatial spillover effects.  

We start by asking what is the average response of local income to natural disasters? In 

contrast to the Hsiang and Jina (2014) cross-country findings discussed above of long-lasting 

 
6 See Bakkensen and Barrage (2020) for an analysis of the welfare effects of cyclones. 
7 There are three main conceptual differences between GDP and personal income at the county level as defined 

by the U.S. Bureau of Economic Analysis: (1) personal income includes government transfers, while GDP does not, 
(2) GDP includes corporate income while personal income does not (though it does include corporate income 
distributed to shareholders via dividends and interest), and (3) GDP is based on place of work, while personal 
income is based on place of residence. One implication is that our results on personal income generally will not 
reflect any post-disaster losses (or gains) to corporate profits. For example, Kruttli, et al (2020) have found that 
firms affected by hurricanes experience significant uncertainty, with significant outperformance and 
underperformance in returns for affected firms several months after landfall. 
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declines in national income per capita following disasters, we find robust evidence of long-

lasting increases in local personal income per capita following natural disasters within the 

U.S. Indeed, of the four hypotheses depicted in Figure 2, though none perfectly characterizes 

our estimate of the impulse response function, “build back better” comes closest. 

Specifically, our results point to an initial decline, followed by a recovery to a level of 

income per capita that is 0.6% above the baseline trend eight years after the disaster.  

We then ask what drives the longer-run increase in income per capita? We find that the 

recovery in personal income is initially explained by a temporary boost in employment, 

especially in construction, as well as government support programs, including both direct 

disaster aid as well as automatic stabilizers like unemployment insurance and income 

maintenance programs. However, over the longer run, the increase in personal income can be 

largely traced to higher earnings per worker. We also find a long-lasting increase in local house 

prices, measured by a repeat-sales house price index. This increase could reflect quality 

improvements – rebuilds and repairs – to the housing stock as well as rebuilt and improved local 

public infrastructure and amenities. Higher house prices may also contribute to higher personal 

income to local homeowners via rental income.  

Next, we consider the extent to which the average post-disaster response of local income 

applies across different contexts. We uncover considerable heterogeneity in this response along 

several key dimensions. First, given projections that some disasters will become more severe 

with climate change and concerns that our average results may not apply to the most severe 

disasters, we examine heterogeneity by disaster severity.  We find that the longer-run rise in 

income per capita actually increases with disaster severity as measured by per capita damages. 

Second, we examine whether our average findings apply across disaster types, an important 

question as many research papers focus only on one type of disaster like floods, cyclones, or 

fires.  We find that while hurricanes and tornados result in longer-run increases in income per 

capita, the effects of floods, severe storms, extreme winter weather, and fires are small or 

statistically insignificant. Third, given the findings of heterogeneity by income in the cross-

country literature as well as anedoctal reports that lower income households have less access to 

aid, we segment counties by initial income. We find that while the income boost in the first few 

years after a disaster appears to be concentrated in the richest quartile of counties, by the end of 

eight years, per capita income generally is higher regardless of initial income.  
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We next turn to the issue of adaptation. Economic agents – households, firms, and 

policymakers – may make adaptive investments and behavior changes if they anticipate an 

increase in disaster frequency going forward. Agents’ Agents’ beliefs regarding future 

disaster risk in their local area are likely driven, at least in part, by the recent frequency of 

disasters in their local area. That is, agents in places with many recent disasters may be more 

likely to anticipate future disasters than are agents in places with few or no recent disasters. 

However, the occurrence of multiple recent disasters can also overwhelm disaster response 

and recovery capacity, making it more difficult to rebuild quickly and effectively. We take 

two approaches to examine the extent of adaptation.  First, consistent with local adaptation, 

we find that counties with more historical experience with disasters see larger increases in 

personal income over the longer run. Second, we test whether the average dynamic response 

of income per capita to disasters has changed over time. While the short-run response 

appears stable over time, we find the longer-run increase has fallen roughly in half over the 

course of our sample period.  

Finally, we use two methods to examine spatial spillovers to see how disaster effects 

propagate to other counties of varying distances away. Migration and recovery efforts could 

potentially boost nearby economies or strain them if there is competition over finite local 

resources. First, using a spatial lag estimation methodology, we show that nearby counties 

(up to 199 miles away from disaster-hit county) experience a medium-run boost to personal 

income but are largely unaffected over the longer-run, consistent with residents of nearby 

counties participating in recovery efforts. Counties that are 200-399 miles away, on the other 

hand, see a decline in personal income over all horizons, which could be explained by 

resources being redirected to counties directly affected by disasters. Aggregating the own-

county effects with the spatial lag effects, we find that the longer-run income effect for a 

region – i.e., all counties within 600 miles of a disaster’s epicenter – is modestly negative. In 

our second analysis of spatial propagation, we examine state level outcomes using a 

continuous treatment measure that aggregates county disaster indicators. While the dynamic 

pattern is qualitatively similar to our baseline per capita income result at the county level, the 

state level impacts are small and statistically insignificant.  These results may help explain 

the negative longer-run effects of disasters found in some prior studies based on country-

level data. 
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Our findings have several important policy implications. For local policymakers, the finding 

that employment and personal income fall sharply immediately after a disaster, before eventually 

recovering, suggests they may need to plan ahead—for example, with larger rainy-day funds—in 

order to better deal with post-disaster declines in tax bases, which can be recouped after the 

recovery period. For national policymakers, these results highlight that different forms of disaster 

aid can have very different impacts on the local economy, and they relate to debates regarding 

place-based vs. people-based policies. Finally, the heterogeneity in outcomes suggests that we 

must exercise caution in extrapolating from results based on specific events, contexts, or time 

frames, which is how much of the literature studying natural disaster effects has been focused 

thus far. 

The remainder of this paper is organized as follows. In the next section, we discuss key 

findings from prior research. In section III, we discuss the economic channels by which disasters 

could impact local economies. Then in section IV, we describe the data we use both for disasters 

and to measure economic activity. We follow this with a discussion of our methodology in 

section V. In section VI, we present our baseline results. Section VII examines the heterogeneity 

of disaster effects across the dimensions discussed above, adaptation, and spatial spillovers and 

net regional effects. Finally, we conclude with a discussion of implications and suggestions for 

future work. 

 

II. Literature 

Previous research on the disasters’ dynamic economic effects generally has focused on 

national aggregate outcomes, on quite specific outcomes, or on case studies of particular 

disasters.8 As mentioned above, Hsiang and Jina (2014) uses cross-country panel data on 

cyclones to study their dynamic impact on national GDP per capita, finding a permanent (or at 

least long-lasting) decline.9 Lackner (2019) shows that eight years after impact, earthquakes 

reduce per capita GDP for low- and middle-income countries, but may boost it for high-income 

countries. Similarly, von Peter, von Dahlen and Saxena (2012), also using cross-county panel 

 
 

8 See Botzen, Deschenes, and Sanders (2019) for a recent literature review. 
9 See also Noy (2009), who shows that natural disasters contemporaneously reduce national GDP on average 

and more so in countries that are poorer, less open, or less educated. 
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data, find that while the average response of national GDP per capita to  natural disasters is 

negative, the response to well-insured disasters (which are predominately in high-income 

countries) “can be inconsequential or positive for growth over the medium term as insurance 

payouts help fund reconstruction efforts.” In another cross-country analysis, Cavallo, Galiani, 

Noy, and Pantano (2013) find that when they include controls for political revolutions that 

occurred after natural disasters, even the most severe disasters appear to have no significant 

effect on economic growth. Another recent cross-country study, Sawada and Sachs (2019), 

found that natural disasters and wars had positive long-run effects on per capita GDP growth. 

There have also been a number of studies of disasters’ impacts on local economies in the 

U.S., though these studies generally do not explore the full dynamics of the impacts. Strobl 

(2011) focuses on coastal U.S. counties and finds that annual per capita income growth falls 

significantly in the year of the hurricane but returns to the pre-hurricane growth rate in the 

following year. In terms of the level of per capita income, which we look at (among other 

outcomes) below, this result implies that income in the long run grows at the same rate as 

before the disaster but the contemporaneous income loss is never recovered. This is 

consistent with the “no recovery” scenario depicted in Figure 2 and found across countries by 

Hsiang and Jina (2014). By contrast, we find in this paper that after an initial drop following 

a disaster, personal income per capita more than recovers and is higher than it would have 

been absent the disaster at the end of our 8 year horizon. For very severe disasters, the 

positive effect begins immediately and is fairly large. For instance, we estimate that personal 

income per capita is about 3% higher 8 years after a disaster with damages per capita at the 

99th percentile. This result is consistent with some case-study evidence of severe disasters in 

the U.S. In particular, Groen, Kutzbach, and Polivka  (2020) perform a careful longitudinal 

study of workers affected by Hurricanes Katrina and Rita in 2005, finding substantial long-

term gains in earnings, driven largely by higher wages. 

Another within-U.S. study that is closely related to ours is Boustan, et al. (2020). Using 

county-by-decade panel data from 1940 to 2010, they estimate the contemporaneous (i.e., 

within same decade) effects of severe disasters on several economic outcomes. They find that 

counties affected by the most severe disasters experience higher net out-migration, higher 

poverty rates, and lower house prices. In this paper, we similarly find significant medium- to 

longer-run (up to 8 years out) increases in net out-migration and declines in population and 
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house prices after very severe disasters. We also uncover two related results. First, there is 

actually a strong positive response of house prices after severe disasters in the shorter-run, 

lasting about 2-3 years.10 This temporary boost in prices could be due to a temporary drop in 

housing supply caused by disaster destruction, combined with stable or increasing demand for 

workers in the area for recovery efforts, and lasting as long as it takes for the local area to 

rebuild. Second, we find a different pattern for less severe disasters – i.e., such as those with 

damages per capita below the 90th percentile for all disasters. For these disasters, the longer-run 

response of both population and house prices is slightly positive, yielding an average home price 

response that is positive in our 8-year horizon.  

Our results regarding the role of government transfers is related to Deryugina (2017), which 

studies the impact of hurricanes in the coastal areas of the U.S. on government transfers. 

Consistent with our findings, she finds that both disaster and non-disaster government transfers 

rise in affected counties in the first few years after a hurricane. This part of our analysis also 

relates to the body of work on the role of insurance in disaster recovery that is described in 

Kousky (2019).  

There is a broad literature examining effects of specific types of natural disasters or even 

specific events on particular sets of outcomes, to which our paper relates. For example, 

examining the first three years thereafter, McCoy and Walsh (2017) find that wildfires in 

Colorado yield short-lived declines in house prices, while Bin and Landry (2013) find that 

hurricane flooding caused temporary declines in house prices in affected areas. Separately, there 

are a fairly large number of detailed case studies of specific disasters. Prominent examples 

include Vigdor (2008), Hornbeck (2012), Gallagher and Hartley (2017), and Deryugina, 

Kawano, and Levitt (2018). 

 

III. Economic Channels 

The net impact of natural disasters on local economic outcomes is far from clear a priori 

because natural disasters combine, to various degrees, many types of economic shocks and affect 

outcomes through many separate channels. First, most disasters represent a negative shock to the 

 
10 This result is consistent with Graff Zivin et al (2020)’s finding that home prices are elevated for up to 3 years 

after hurricanes in Florida, though they do not look beyond 3 years. 



 

9 
 

productive capital stock and to household wealth, similar to war destruction. Second, 

disasters, especially severe disasters, can be a shock to the spatial equilibrium of population 

and economic activity (as modeled for example in Davis and Weinstein (2002) and Hornbeck 

(2012)). Third, they typically are at least temporary shocks to total factor productivity and 

production by disrupting electricity supply, materials supply, and other business operations. 

Fourth, they can temporarily reduce demand for local nontradables, such as leisure and 

hospitality services, discretionary retail spending, and entertainment. Fifth, disasters can 

reduce labor supply by hampering workers’ abilities to commute and/or their willingness to 

leave behind damaged homes and families for work in the short run or through out-migration 

in the longer run. Moreover, these shocks to local product demand and labor supply translate 

into local income shocks with potential local multiplier effects. 

In addition, natural disasters can trigger substantial insurance payouts as well as disaster 

and non-disaster government transfers and loans. In terms of individual aid, in the U.S. 

FEMA provides grants to individuals for temporary housing and other needs through its 

Individual Assistance programs, which the Individual and Household Program (IHP) is a 

component of. The Small Business Administration (SBA) makes loans to qualified 

individuals, households, and businesses to help cover uninsured or underinsured property 

losses. However, these individual transfer and loan programs are relatively modest in dollar 

amounts, averaging about $370 million per year from 2006-2016.11 FEMA’s Public 

Assistance (PA) program, which issues grants to state and local governments to repair or 

rebuild public infrastructure,12 averaged over $3.3 billion a year in grants over the same 

period,13 while NFIP payouts averaged $2.2 billion a year.14 

Disasters may also trigger significant transfer payments from non-disaster safety-net 

programs such as Unemployment Insurance, Temporary Assistance for Needy Families, 

Medicaid, and the Earned Income Tax Credit. Transfers from these programs increase after a 

disaster as more households in the affected area qualify, as found in Deryugina (2017) for 

hurricanes. 

 
11 See March2017_OpenFEMAEdits_IADataset_IHPFloods_31317.xlsx, downloaded from FEMA at 

https://www.fema.gov/media-library/assets/documents/130225, downloaded on February 4, 2020. 
12 Though much smaller (in dollars), the Federal Highway Administration also provides funds for repair of 

federal-aid roads through its Emergency Relief Program.  
13 See https://www.fema.gov/data-visualization-summary-disaster-declarations-and-grants. 
14 See https://www.fema.gov/loss-dollars-paid-calendar-year.  

https://www.fema.gov/media-library/assets/documents/130225%20on%20February%204
https://www.fema.gov/data-visualization-summary-disaster-declarations-and-grants
https://www.fema.gov/loss-dollars-paid-calendar-year
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All of this direct and indirect aid could have positive or negative net effects on local 

economic activity. On the one hand, aid may spur economic activity through a government 

spending multiplier. While estimates of the size of the government spending multiplier vary 

widely, the literature generally has found large multipliers on employment and income in 

local areas from federal spending that is not financed by local taxation (i.e., local windfall 

spending). See, for example, Shoag (2013), Wilson (2012), and Chodorow-Reich, Feiveson, 

Liscow, and Woolston (2012) for state-level evidence and Suarez, Serrato, and Wingender 

(2016) for county-level evidence. On the other hand, aid received by households displaced from 

their housing—especially aid that is not required to be used for rebuilding—may facilitate 

household relocation away from affected areas. In particular, while SBA disaster loans need to 

be repaid and rely on the homes that the funds are intended to repair as collateral, monies 

received by households from FEMA Individual Assistance aid and NFIP payouts have fewer 

strings attached. 

The relative importance of these various economic channels likely evolves over time for any 

given disaster. In particular, the disruptions to production and labor supply and resulting negative 

income shocks may be short-lived, lasting just as long as it takes for local electricity and major 

transportation routes to be restored. Subsequently, to the extent that location fundamentals and 

agglomeration economies are important, the transition back to spatial equilibrium can lead to 

increased labor demand and resulting local multiplier effects (e.g., higher income and 

consumption; see Moretti 2010). Davis and Weinstein (2002), for example, studied the 

destruction of capital in Japanese cities due to Allied bombing in World War II and found 

complete transitions in affected areas back to the original spatial equilibrium. The transitional 

periods entail high levels of investment, construction, and employment in order to return the 

capital stock to steady state levels. 

Yet, while war destruction seems not to permanently change spatial equilibria, natural 

disasters may be different. Natural disasters may be more geographically isolated, leaving many 

other areas as attractive alternatives for living, working, and producing, thereby leading to 

permanent shifts in economic activity away from the disaster area. Moreover, a natural disaster 

may increase the probability of future disasters as perceived by local producers and residents, 



 

11 
 

reducing the attractiveness (location fundamentals) of the area.15 If such factors negatively 

impact location fundamentals, natural disasters will lead to (a) permanently lower economic 

activity in the area and (b) a more rapid transition (e.g., investment, employment, and 

construction) to the new lower steady state. 

Due to the presence of these multiple economic channels, each of which varies in their 

relative importance over time, we are agnostic a priori as to which channel dominates at any 

given horizon after a disaster. We empirically trace out the dynamic effect of disasters on 

local economic activity—that is, the net effect from all of these various channels—over time. 

We study a broad range of economic outcomes that should capture the effects of the shocks 

to local labor demand and supply and to household income. 

 

IV. Data 

We use data on disasters and a variety of economic indicators, which we describe below. 

Table 1 summarizes the sources and treatment of the dependent variables, while summary 

statistics are shown in Table 2. 

A. Natural Disasters 

We use FEMA’s real-time administrative Disaster Declarations Summary dataset in 

combination with the Spatial Hazard Events and Losses Database for the United States 

(SHELDUS) to measure U.S. county natural disasters. Although FEMA disaster declarations 

go back to 1953, due to the availability of our outcome data, we only estimate IRFs for 

disasters that occurred between 1980 and 2017. We focus on natural disasters that received a 

“Major Disaster” Presidential declaration according to the FEMA data and showed positive 

damages in the SHELDUS data.16,17 We exclude FEMA-declared disasters with zero 

damages because we observe in the data many instances of FEMA declarations covering all 

counties in an affected state even when it is clear that only a portion of counties were 

 
15 Changes to perceived risk of natural disasters may be more persistent than risk of military destruction, which 

can drop off when a conflict or war is resolved. 
16 We consider disasters where SHELDUS shows positive damages for the month of the incident begin date 

according to FEMA or the month thereafter if FEMA shows the incident end date in a month after the incident begin 
date. 

17 Given our focus on natural disasters, we exclude declarations due to terrorism or toxic substances. 
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physically affected.18 Potential types of assistance include (1) Public Assistance (PA) for 

infrastructure repair; (2) Hazard Mitigation Grant Program (HMGP) grants to lessen the 

effects of future disaster incidents; and (3) Individual Assistance (IA) for aid to individuals 

and households.  

FEMA disaster declarations are generally initiated when state governments issue requests 

to FEMA. FEMA sends a team to the disaster area to perform a Preliminary Damage 

Assessment, using drone, satellite, and civil air imagery as well as site visits to determine, for 

each affected county, whether the damage is extensive enough to warrant a major disaster 

designation and, if so, for what types of assistance the county is eligible.19 FEMA disaster 

declarations cover much of the country, with 95 percent of counties experiencing at least one 

FEMA disaster declaration with positive damages between 1980 and 2017. Figure 1b maps the 

frequency of disaster declarations by county from 1980 to 2017. The modal county experienced 

eight disasters during that period.  

In addition to examining the effects of disasters in general, we use the SHELDUS data to 

examine how disasters’ effects vary with severity as measured by monetary damages caused by 

the disaster. This database is based on data from the NOAA Storm Database, which in turn are 

based on reports from insurance companies, media, and other sources. SHELDUS separately 

reports county-level crop and property damages for a wide range of event types, such as floods, 

tornadoes, thunderstorms for years 1990 onward. We aggregate damages within the county over 

all events occurring during a month to estimate total disaster damages by county and month. We 

then use census population data to estimate per capita damages in 2017 dollars.  

To our knowledge, SHELDUS is the most comprehensive source of monetary damages for 

natural disasters in the U.S., covering all types of natural disasters and the entire country at the 

county level. SHELDUS likely contains significant measurement error. A primary source of 

measurement error appears to stem from the fact that, when only total damages are known for a 

given disaster, SHELDUS allocates the total to all disaster-declared counties equally. Given that 

more populous counties are likely to have more property at risk of damage, we redistribute 

county damages to equate the per capita damages across affected counties.   

 
18 As detailed in Lindsay and Reese (2018) from the Congressional Research Service, “[e]ach presidential major 

disaster declaration includes a ‘designation’ listing the counties eligible for assistance as well as the types of 
assistance FEMA is to provide under the declaration. 

19 Source: author conversations with FEMA staff. 
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In addition to analyzing effects by disaster severity, we also examine heterogeneity of 

outcomes by disaster type. We designate as a hurricane any FEMA disaster declaration that is 

classified as hurricane type by FEMA or contains “hurricane” in the declaration title. To avoid 

overlap so that a disaster can only be counted as a flood or a hurricane, we have designated as a 

flood any remaining disaster that is classified as a flood or contains “flood” in its title.20 It 

should be noted that the distribution of per capital damages varies significantly across 

disaster types (see Appendix Figure A3). In particular, hurricanes tend to have the highest 

damages. 

An alternative approach to measuring damages would be either to model damages as a 

function of physical disaster characteristics or to simply use physical characteristics as a 

reduced-form measure of damages.21 We use disaster declaration and pecuniary damage data 

for our treatment measure for several key reasons.  First, data on physical characteristics is 

not readily available at the U.S. county level for a broad set of disaster types. Second, even 

when this data is available, it is not easily comparable across disaster types. Finally, we are 

inherently interested in natural hazards that result in disastrous outcomes, which are a 

function of the built environment that those hazards occur in. The monetary damages caused 

by a disaster – i.e., the magnitude of the “treatment” represented by the disaster shock – of a 

given physical strength can vary greatly from place to place depending on the quantity and 

market value of local property as well as construction quality, building codes, and other 

differences in local resilience.  For example, Bakkensen and Mendelsohn (2016) show that 

hurricane damages tend to be higher in the U.S. than in other OECD countries when 

examining responses to physical storm characteristics. By contrast, our approach amounts to 

estimating the response of various economic outcomes to a disaster of a given level of 

monetary damages (per capita). In our baseline analyses, we consider both the mean level of 

damages (for our baseline results) as well as different percentiles of the damages distribution.  

 
20 The geographic exposure to disasters varies significantly by disaster type (see Appendix Figure A2). 
21 For example, Deryugina (2017) used FEMA’s HAZUS-MH simulation model to estimate damages for major 

hurricanes in the U.S. as a function of wind speed and other storm characteristics. Hsiang and Jina (2014) use a 
reduced form approach to estimate the economic impact of major hurricanes around the world as a function of the 
wind speeds associated with each hurricane. Felbermayr and Groschl (2014) expand that approach to cover other 
types of disasters, using international geophysical and meteorological data. Similarly, Lackner (2019) estimates the 
impact of earthquakes, measuring their severity using spatially disaggregated data on ground shaking. 
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Although our preferred treatment measure is based on disaster declarations and monetary 

damages, as a robustness check we use hurricane wind speed data to examine whether such a 

measure would change our baseline results (for hurricanes). In particular, we use county level 

wind speed data for hurricanes made available via Anderson et al (2020a) and Anderson et al 

(2020b) using the U.S. National Hurricane Center’s Best Track Atlantic hurricane database 

(HURDAT2.)22 

B. Income and government transfers 

We use annual county level data on personal income and its components from the Regional 

Economic Information System (REIS) of the Bureau of Economic Analysis (BEA) for 1980 

through 2016. In addition to total personal income, we examine wage and salary income as well 

as total government transfers, income maintenance, and unemployment insurance compensation. 

We adjust each of these variables to a per capita basis using Census population data. We also 

examine local poverty rates from the Census Bureau’s Small Area Income and Poverty Estimates 

(SAIPE) program, as described in Appendix B1. 

C. Employment and Average Weekly Wages 

Our data on employment and average weekly wages by county come from the Quarterly 

Census of Employment and Wages (QCEW), as used and described in detail in Wilson (2017). 

The QCEW is compiled by the Bureau of Labor Statistics (BLS) based on state Unemployment 

Insurance administrative records. Nearly all private nonfarm employers in the U.S. are required 

to report monthly employment counts and quarterly wages of their employees to their state 

Unemployment Insurance agencies. Employment covers “all full- and part-time workers who 

worked during or received pay (subject to Unemployment Insurance wages) for the pay period 

which includes the 12th day of the month.” We separately examine effects for total nonfarm 

employment and construction employment (category 1012). Due to concerns about data quality, 

when estimating IRFs for the construction employment, we drop counties with more than 5 

months of missing or zero construction employment. Our data on total nonfarm employment and 

wages covers the period January 1980 to December 2016, while the construction employment 

data start in January 1990.23 

 
22 See the Appendix B3 for more details. 
23 Our employment and wages data cover “nonfarm” employment and so exclude any employment in 

agriculture, ranching, fishing, and hunting. 
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The BLS calculates average weekly wages (AWW) “by dividing quarterly total wages by 

the average of the three monthly employment levels (all employees, as described above) and 

dividing the result by 13, for the 13 weeks in the quarter.”24 Note that AWW reflect both 

hourly wages and the number of hours worked per week. 

To examine the potential role of compositional shifts, we supplement the AWW data with 

an industry mix-implied wage measure. We construct this measure using CEPR yearly 

extracts of the CPS Outgoing Rotation Group micro-data and Eckert, Fort, Schott, and Yang 

(2021)’s version of the Census Bureau’s County Business Patterns (CBP) data, as described 

in Appendix B2. 

D. House prices 

We use the CoreLogic Home Price Index (HPI), available by county at a quarterly 

frequency from 1980Q1 to 2016Q4, to measure house prices. The index is based on 

transaction prices of repeated home sales. Repeated-sales price indices have the advantage 

that they reflect price changes of individual houses holding fixed all of the permanent 

characteristics of the house and are therefore independent of changes in the composition of 

houses in an area. However, a natural disaster can seriously affect the characteristics of a 

given house. For instance, unrepaired damage will negatively impact a house’s value, while 

improvements made through renovations may increase its value. This potential for changing 

home characteristics should be kept in mind when interpreting our house price results. 

E. Population 

Estimates of annual population by county were obtained from the Census Bureau for 

1980 through 2017 and reflect the population in each county as of July 1 of each year. 

F. SBA Loans, IHP Aid, and NFIP Payouts 

We use data on SBA disaster loans for fiscal years 2001 through 2017 from the SBA 

website.25 Data for years from 1989 through 2000 came from Bondonio and Greenbaum 

(2018) and were generously provided by Robert Greenbaum. The data provide dollar 

amounts of disbursements of SBA disaster loans, separately for households and for 

 
24 https://www.bls.gov/news.release/cewqtr.tn.htm. 
25 See https://www.sba.gov/offices/headquarters/oda/resources/1407821.  

https://www.bls.gov/news.release/cewqtr.tn.htm
https://www.sba.gov/offices/headquarters/oda/resources/1407821
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businesses, by county and fiscal year. We use data on county level IHP payments going back to 

1990 that we obtained from FEMA via FOIA request. 

We use the Federal Insurance & Mitigation Administration National Flood Insurance 

Program (FIMA NFIP) Redacted Claims Dataset (available at https://www.fema.gov/media-

library/assets/documents/180374) to calculate NFIP payments associated with floods 

occurring each month in each county. Although we are able to observe the date of the incident to 

associate the payment amounts with our disaster observations, we are unable to observe when the 

payments are actually made.  

 

V. Methodology 

Throughout this paper, we estimate impulse response functions (IRFs) of various local 

economic outcomes with respect to FEMA-declared disaster shocks in order to see how 

economic activity responds over several years after a disaster. We use a variant of the Jordà 

(2005) local projection method, modified for panel data, as our baseline specification. We then 

build on that specification to explore heterogeneity in disaster effects and the contribution of 

government aid. 

A. Baseline 

In our baseline specification examining how disasters affect income and other outcomes, we 

estimate the following equation for a series of horizons ℎ ≥ 0:  

 𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ − 𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 = 𝛽𝛽ℎ𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 + 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡

ℎ + 𝛼𝛼𝑐𝑐,𝑚𝑚(𝑡𝑡)
ℎ + 𝜖𝜖𝑐𝑐,𝑡𝑡+ℎ . (1) 

 

 𝑦𝑦𝑐𝑐 ,𝑡𝑡 is an economic outcome of interest in county 𝑐𝑐 in period 𝑡𝑡. Table 1 outlines how the 

outcome variables are modeled in our analyses.  𝐷𝐷𝑐𝑐,𝑡𝑡 is the key treatment variable, equaling one 

if the county experienced a disaster in month 𝑡𝑡 with positive damages and zero otherwise, as 

described in Section IV.A. The series of 𝛽𝛽ℎ are the IRF coefficients of interest. 𝑿𝑿𝒄𝒄𝒄𝒄 is a vector of 

control variables with parameters 𝜸𝜸𝒉𝒉. Specifically,  𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 is defined as  

https://www.fema.gov/media-library/assets/documents/180374
https://www.fema.gov/media-library/assets/documents/180374
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𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 ≡ � 𝛿𝛿𝜏𝜏ℎ𝐷𝐷𝑐𝑐,𝑡𝑡+𝜏𝜏

ℎ

𝜏𝜏=−𝑝𝑝,
𝜏𝜏≠0

+ � 𝜃𝜃𝜏𝜏ℎ𝐷𝐷𝑐𝑐,𝑡𝑡+𝜏𝜏
0

ℎ

𝜏𝜏=−𝑝𝑝

+ 𝜌𝜌ℎΔ𝑦𝑦𝑐𝑐 ,𝑡𝑡−1,𝑡𝑡−𝑘𝑘 . (2) 

The first term in equation (2) controls for other disasters that may have hit the same county 

either before the current disaster (up to 𝑝𝑝 periods prior) or between the current disaster and 

the horizon of interest (h).26 This ensures that the estimated IRF from a disaster is not 

contaminated by either lingering effects of past disasters or effects of other disasters that 

happen to occur between the current disaster and horizon h.27 The second term controls for 

other minor disasters (i.e., without reported damages) occurring in the same county within 

the window from p periods before to h periods after period t.28 

The third term in equation (2) (𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 − 𝑦𝑦𝑐𝑐 ,𝑡𝑡−𝑘𝑘) explicitly accounts for the potential of a 

pre-trend in the outcome variable. Because the dependent variable is the sum of period-by-

period changes in the outcome over the post-disaster timeframe up until horizon ℎ: 𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ −

𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 ≡ ∑ Δ𝑦𝑦𝑐𝑐 ,𝑡𝑡−𝑖𝑖
ℎ
𝑖𝑖=0 , this pre-trend term is a lag of the dependent variable with a different 

time horizon. We measure this pre-trend over the prior three years, so k equals 3, 12, or 36 

depending on whether the outcome variable is annual, quarterly, or monthly.29,30  

We include region-specific time fixed effects 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡
ℎ  to absorb any regional, or national 

shocks that may have coincided with disasters. Because this could absorb the effects of 

region-wide disasters, we are potentially underestimating the true impact of a disaster on a 

given county. To control for county-level heterogeneity and seasonality, we also include 

 
26 Though not shown in equation (2) for tractability, when ℎ < 0 we still include the 𝑝𝑝 lags indicating whether 

disasters occurred before period 0.  
27 We note that in practice in our sample, the inclusion/exclusion of these intervening disaster dummies has 

virtually no effect on our results, suggesting that intervening disasters are a very rare occurrence. 
28 𝐷𝐷𝑐𝑐,𝑡𝑡

0  can only equal one if 𝐷𝐷𝑐𝑐,𝑡𝑡 is zero in a period. 
29 The choice of k involves a trade-off: higher values of k may provide a better forecast of the counterfactual no-

disaster trend in the outcome between time 0 and h but will also reduce the sample size available for any given h 
regression. 

30 We could alternatively control for the counterfactual no-disaster trend by including a county-specific time 
trend, which would entail no loss of regression observations from the beginning of the sample. The downside of this 
approach is that a county’s post-disaster time trend could itself be impacted by the disaster, making it a “bad 
control” (Angrist and Pischke 2009). Nonetheless, to assess robustness, in Appendix Figure A4, we provide 
alternative IRF results for each of our main outcome variables whereby we replace the pre-trend term in equation (2) 
with a county-specific time trend (i.e., an interaction between county fixed effects and the time variable). 
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county-by-calendar month (quarter for quarterly frequency data) fixed effects 𝛼𝛼𝑐𝑐,𝑚𝑚(𝑡𝑡+ℎ) . For 

annual outcomes, this amounts to a simple county fixed effect. 

B. Heterogeneity in Disaster Treatment Effects 

The IRFs estimated using the baseline specification above are essentially average 

treatment effects (ATE). The true treatment effect of disasters is likely to be heterogeneous 

along a number of dimensions. We consider heterogeneity in terms of disaster severity 

(damages), disaster type, initial county income, and historical disaster experience.  

To explore how the economic response to a disaster varies with the extent of its damages, 

we estimate an outcome’s impulse response at a given horizon h to a polynomial function of 

the damages caused by the disaster: 

 

𝛽𝛽ℎ(𝑠𝑠) = �𝛽𝛽𝑝𝑝ℎ
𝑃𝑃

𝑝𝑝=0

𝑠𝑠𝑐𝑐,𝑡𝑡
𝑝𝑝  (3) 

where 𝑠𝑠𝑐𝑐,𝑡𝑡 denotes the per capita damages for county 𝑐𝑐 in period 𝑡𝑡, as measured in SHELDUS. 

We use a third-order polynomial (P = 3) as our baseline case below. Substituting equation (3) 

into equation (1) yields the following specification: 

 𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ − 𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 = 𝛽𝛽0ℎ𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝛽𝛽1ℎ𝐷𝐷𝑐𝑐,𝑡𝑡𝑠𝑠𝑐𝑐,𝑡𝑡 + 𝛽𝛽2ℎ𝐷𝐷𝑐𝑐,𝑡𝑡𝑠𝑠𝑐𝑐 ,𝑡𝑡
2 + 𝛽𝛽3ℎ𝐷𝐷𝑐𝑐,𝑡𝑡𝑠𝑠𝑐𝑐,𝑡𝑡

3    

+ 𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 + 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡

ℎ + 𝛼𝛼𝑐𝑐,𝑚𝑚(𝑡𝑡)
ℎ + 𝜖𝜖𝑐𝑐,𝑡𝑡+ℎ  

(4) 

 

The estimated coefficients, �̂�𝛽𝑝𝑝ℎ for 𝑝𝑝 = 0, … ,3, from this regression allow one to compute the 

impulse response, �̂�𝛽ℎ(𝑠𝑠), for any given level of damages (s) according to equation (3). In Section 

VI, we report the full impulse response function (from h = 0 to H) for selected percentiles of the 

distribution of 𝑠𝑠𝑐𝑐,𝑡𝑡 across disasters in our sample. 

To examine heterogeneity by disaster type, we estimate the following joint regression: 

 𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ − 𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 = �𝛽𝛽𝑑𝑑ℎ𝐷𝐷𝑐𝑐,𝑡𝑡
𝑑𝑑

𝑑𝑑∈𝒟𝒟

+ 𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 + 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡

ℎ + 𝛼𝛼𝑐𝑐,𝑚𝑚(𝑡𝑡)
ℎ + 𝜖𝜖𝑐𝑐,𝑡𝑡+ℎ  (5) 

where 𝐷𝐷𝑐𝑐,𝑡𝑡
𝑑𝑑  is an indicator for a disaster of type 𝑑𝑑. The set of disaster types, 𝒟𝒟, consists of 

hurricanes, floods, severe storms, extreme winter weather, fires, tornadoes, and other. The 

estimates of 𝛽𝛽𝑑𝑑ℎ trace out the IRF of the outcome variable with respect to a disaster of type d. For 
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these regressions, we modify the first term of the control vector so that the leads and lags of 

disasters are differentiated by type:31 

 

𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 ≡ � � 𝐷𝐷𝑐𝑐,𝑡𝑡+𝜏𝜏

𝑑𝑑
ℎ

𝜏𝜏=−𝑝𝑝,
𝜏𝜏≠0

𝑑𝑑∈𝒟𝒟

+ � 𝜃𝜃𝜏𝜏ℎ𝐷𝐷𝑐𝑐,𝑡𝑡+𝜏𝜏
0

ℎ

𝜏𝜏=−𝑝𝑝

+ 𝜌𝜌ℎΔ𝑦𝑦𝑐𝑐 ,𝑡𝑡−1,𝑡𝑡−𝑘𝑘 . (6) 

 

We also investigate heterogeneity in treatment effects in terms initial income. To do so, 

we split county*year observations into four groups based on their quartile of the distribution 

of prior-year (𝑡𝑡 − 1) personal income per capita. We then interact the disaster indicator with 

the income quartile variable, estimating the following specification: 

 

𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ − 𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 = �𝛽𝛽ℎ,𝑞𝑞𝑀𝑀𝑐𝑐,𝑡𝑡−1
𝑞𝑞 𝐷𝐷𝑐𝑐,𝑡𝑡

4

𝑞𝑞=1

+ �𝜙𝜙ℎ,𝑞𝑞𝑀𝑀𝑐𝑐,𝑡𝑡−1
𝑞𝑞

4

𝑞𝑞=1

      

+ 𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 + 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡

ℎ + 𝛼𝛼𝑐𝑐,𝑚𝑚(𝑡𝑡)
ℎ + 𝜖𝜖𝑐𝑐 ,𝑡𝑡+ℎ  

(7) 

 

where 𝑀𝑀𝑐𝑐,𝑡𝑡−1
𝑞𝑞  is one of four income quartile indicators indexed by q and 𝑿𝑿𝒄𝒄𝒄𝒄

′ 𝜸𝜸𝒉𝒉  is as defined 

earlier in equation (2). The 𝛽𝛽ℎ,𝑞𝑞 coefficients trace out a separate impulse response function for 

each quartile q. We also include the four quartile indicators themselves as separate conditioning 

variables in the regression to ensure against possible “selection into treatment” – that is, the 

possibility that either higher or lower income counties are more likely to be hit by a disaster. 

C. Adaptation 

We apply to methods to examine adaptation. First, we estimate equation (7), where 

𝑀𝑀𝑐𝑐,𝑡𝑡−1
𝑞𝑞  is one of four different categories of local disaster experience. We again split 

observations into four categories and then interact the category indicators with the disaster 

indicator (as well as including the category indicators as separate regressors). We divide 

county- and time-specific disaster experience based on whether the county experienced (a) no 

periods, (b) 1 period, (c) 2-3 periods, or (d) 4 or more periods with disasters in the previous 

10 years, where periods are monthly, quarterly, or annual, based on the outcome of interest.  

 
31 For monthly outcomes, due to computational demands, we control for 12-month aggregate indicators for the 

leads and lags of each disaster type.  
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Second, we interact our disaster indicator with a continuous time variable in order to estimate 

how the impulse response function has evolved over time as shown below:   

 𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ − 𝑦𝑦𝑐𝑐 ,𝑡𝑡−1 = 𝜃𝜃ℎ ⋅ 𝑡𝑡 ⋅ 𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝛽𝛽ℎ𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 + 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡

ℎ + 𝛼𝛼𝑐𝑐,𝑚𝑚(𝑡𝑡)
ℎ + 𝜖𝜖𝑐𝑐,𝑡𝑡+ℎ . (8) 

Here 𝜃𝜃ℎ estimates how the response has evolved over time, where a positive value would 

reflect that personal income has increased more (or decreased less) over time.  

 

D. Spatial Spillovers and Wider Geographies 

We use two approaches to examine how natural disaster impacts propagate to neighboring 

regions. First, we build on our baseline specification in equation (1) by adding continuous 

treatment variables 𝐷𝐷𝑐𝑐,𝑡𝑡
𝑏𝑏  measuring the occurrence of disasters in other counties of varying 

distances away from county c: 

 𝑦𝑦𝑐𝑐 ,𝑡𝑡+ℎ − 𝑦𝑦𝑐𝑐,𝑡𝑡−1 = �𝜋𝜋ℎ,𝑏𝑏𝐷𝐷𝑐𝑐,𝑡𝑡
𝑏𝑏

𝑏𝑏∈𝐵𝐵

+ 𝛽𝛽ℎ𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝑿𝑿𝒄𝒄𝒄𝒄
′ 𝜸𝜸𝒉𝒉 + 𝛼𝛼𝑟𝑟(𝑐𝑐),𝑡𝑡

ℎ + 𝛼𝛼𝑐𝑐 ,𝑚𝑚(𝑡𝑡)
ℎ + 𝜖𝜖𝑐𝑐 ,𝑡𝑡+ℎ  (9) 

 

For any given focal county, c, we split all other counties into B separate distance bands 

(“donuts”) indexed by 𝑏𝑏, which we identify by the band’s lower bound. We consider distance 

bands of 50 – 199 miles (b = 50), 200 – 399 miles (b = 200), and 400 – 599 miles (b = 400).  

The treatment variable 𝐷𝐷𝑐𝑐,𝑡𝑡
𝑏𝑏  is then defined as the share of population within distance 

band 𝑏𝑏 from county 𝑐𝑐 that was in counties that experienced a disaster in period 𝑡𝑡: 

 𝐷𝐷𝑐𝑐𝑡𝑡𝑏𝑏 ≡ � 1[𝑏𝑏 ≤ 𝑑𝑑𝑐𝑐𝑖𝑖 < 𝑏𝑏′]𝜔𝜔𝑐𝑐𝑖𝑖𝐷𝐷𝑖𝑖𝑡𝑡
𝑖𝑖≠𝑐𝑐

, (10) 

 

where 

 𝜔𝜔𝑐𝑐𝑖𝑖 ≡
𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

∑ 1[𝑏𝑏 ≤ 𝑑𝑑𝑐𝑐𝑖𝑖 < 𝑏𝑏′]𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 , (11) 

 

and 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖  denotes population of county i and 𝑑𝑑𝑐𝑐𝑖𝑖 denotes the distance between the population 

centroids of counties c and i. For example, if county 𝑐𝑐 has 10 million people living within 200-
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399 miles of it, and there is a disaster in year 𝑡𝑡 in a county or counties in that band covering a 

population of 2 million, then 𝐷𝐷𝑐𝑐,𝑡𝑡
200 would be 0.2.  

In our second approach to understanding wider geographic impacts, we estimate the 

baseline specification in equation (1) at an aggregated state level.  Specifically, we replace 

the 𝐷𝐷𝑐𝑐,𝑡𝑡 indicator with a continuous measure of the share of the state’s population living in a 

county hit by a disaster in a given year. For this analysis, we cluster the standard errors at the 

state and time-by-Census division levels. 

 

VI. Baseline Results 

We now present our baseline IRF estimates, which come from estimating 𝛽𝛽ℎ in equation 

(1) above. The results are shown in Figure 3. The shaded areas around the coefficient 

estimates represent 90 and 95 percent confidence intervals, calculated based on errors that are 

robust to heteroscedasticity and clustering by county (to account for serial correlation). 

Recall that these IRFs should be interpreted—in line with an average treatment effect 

interpretation—as estimates of the average cumulative difference between the actual outcome 

for a county hit by a disaster and the counterfactual outcome for that county had it not been 

hit by a disaster. In other words, a point estimate on the horizontal zero line in the IRF graphs 

does not mean that the level of the outcome variable is equal to its pre-disaster (t – 1) level, 

but rather that it is equal to our estimate of what it would have been in a no-disaster 

counterfactual. This no-disaster counterfactual reflects region-by-time and county-by-

calendar month (or quarter) fixed effects as well as the controls in equation (2). 

A. Personal Income Per Capita 

Panel (a) shows the estimated IRF for personal income per capita (p.c.). We find a sharp 

drop, equal to roughly –0.1%, in income p.c. in the year the disaster hits. To put this 

magnitude in perspective, note that average annual growth in income p.c. in our sample is 

1.9%. Thus, a county hit by a disaster tends to experience about 5% lower income p.c. 

growth in that initial year than they would have experienced otherwise. However, after this 

initial drop, we find that income p.c. not only recovers to the no-disaster counterfactual but 

actually rises well above it. As of one year out, income p.c. is nearly 0.2% higher. Income 

p.c. remains about that much higher for the next several years and then increases more 
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around 6 to 7 years out. As of 8 years out, income p.c. is estimated to be a little over 0.6% above 

where it otherwise would have been. Recalling the hypothetical scenarios in Figure 2, these 

baseline results on income p.c. seem most consistent with the “build back better” scenario.  

Although these results establish that the longer run average income increases in counties 

directly affected by natural disasters, they do not tell us whether income increases across the 

income distribution or whether these average effects are instead driven, for example, by the top 

end of the distribution which would imply a rise in inequality.  Before turning to the mechanisms 

driving the average effects on personal income, we briefly report results on the response of the 

poverty rate to natural disasters.  Shown in Appendix Figure A6, our findings suggest a positive 

but statistically insignificant longer-run effect of average disasters on the poverty rate. However, 

if the personal income increase were experienced equally by all parts of the income distribution, 

we would expect the poverty rate to decline as some see their income rise above the poverty 

threshold. Thus, these results suggest that despite an increase in average personal income per 

capita, local inequality may rise after natural disasters. 

B. Related Outcomes 

To help understand the mechanisms driving the longer-run positive response of income per 

capita to disasters, we next estimate the disaster IRFs for several other outcomes. We start with 

the estimated IRF for total nonfarm employment, which is estimated at a monthly frequency. The 

results are shown in panel (b) of Figure 3. Consistent with an initial disruption in activity, 

employment falls sharply, by about 0.09%, in the month of the disaster. Average monthly 

employment growth in our sample is approximately 0.16%, so this initial impact amounts to 

cutting that month’s employment growth by more than half. The initial decline carries over into 

the next month, but then rises significantly over subsequent months for an extended recovery 

period, with employment peaking around one year out. After this recovery period, employment 

gradually returns to the no-disaster counterfactual. As of eight years out, the point estimate 

suggests modestly higher employment of about 0.2% but it is not statistically significant. 

To get a better sense of the extent to which the overall employment response is driven by 

recovery and rebuilding efforts, we look at the response of construction employment in Panel (c). 

As with total employment, there is a sharp decline in the month of the disaster, followed by a 

recovery period with local construction employment peaking about a year out, when construction 

employment is estimated to be roughly 1.2% higher than in the no-disaster counterfactual. This is 
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about six times larger than the total employment response at that horizon. The IRF of 

construction employment beyond one year flattens out somewhat but then, unlike total 

employment, steadily rises over the medium to longer run. As of eight years out, construction 

employment is estimated to be over 3% higher than it would have been in absence of the 

disaster. This suggests that the process of repairing and rebuilding public and private 

structures is, on average, quite long-lasting.  

Panel (d) shows the quarterly IRF for average weekly wages (AWW) of local workers. 

AWW reflect the product of weekly hours and the hourly wage. AWW rise steadily after a 

disaster; by the end of the 8-year horizon, we estimate that AWW are about 0.4% higher than 

they would have been in absence of the disaster. This rise could be driven by an increase in 

hours worked per week, the hourly wage, or a combination of the two.  

There are at least two potential channels for the rise in AWW. First, disasters could 

increase local labor demand related to recovery efforts which, combined with a sluggish 

extensive-margin labor supply response (due, for example, to temporarily reduced housing 

stock and/or frictions on the in-migration of additional workers with the necessary skills for 

reconstruction work), could push up both hours and hourly wages. Second, there could also 

be a compositional shift in the types of workers in a county after a disaster – for example, a 

shift toward higher-wage construction workers and away from lower-wage workers in retail 

and leisure and hospitality. A priori, one might not expect either of these two channels to be 

as persistent as the AWW increase that we find. However, the long-lasting increase in 

construction employment found in panel (c) suggests that both could be fairly persistent. 

To assess how much of the increase in AWW derives from this second channel – changes 

in industry mix of disaster-hit counties – we estimate the disaster IRF for the measure of 

industry mix described in Section IV. The results are provided in Appendix Figure A7. 

Consistent with this channel, we find that a gradual shift in the industry mix of disaster-hit 

counties toward higher-wage industries can explain roughly half of the longer run increase in 

AWW, though the response is not statistically significant at all horizons.  

Panel (e) displays the estimated IRF for quarterly house prices, based on the CoreLogic 

repeat-sales house price index. We find that the house price index increases very modestly in 

the near-term and then more substantially over the longer term. As of eight years after a 

disaster, the local house price index is estimated to be about 1.4% higher than it would have 
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been otherwise. While the initial modest increase likely reflects a reduction in housing supply 

due to disaster damage, the longer run positive price effect could be explained by a steady or 

increasing demand for housing—consistent with the AWW and employment responses—

combined with a persistently reduced supply. It is also possible that the higher house price path 

reflects a higher quality of homes in the rebuilding process or a shift in the composition of 

houses being resold for the CoreLogic repeat sales index. That is, it is possible that homes are 

being rebuilt in more resilient locations or using better methods and materials, reflecting a shift 

in quality that won’t be captured in a repeat-sales index.  

The results for population are shown in panel (f). We find that, on average, the response of 

population to a disaster is small and generally statistically insignificant up to at least eight years 

out. This suggests that the positive response found for personal income per capita is indeed 

driven by an increase in the numerator, personal income, rather than a decrease in the 

denominator, population.32 In Appendix Figure A8, we drill down into the population response 

by estimating the IRFs separately for in-migration and out-migration, each measured as the 

number of migrants divided by pre-disaster (t – 1) population. We find that the near-zero 

population response is not due to a lack of migration responses. Rather, there are modest 

negative responses over the longer-run of both in-migration and out-migration that roughly 

cancel each other out. 

Lastly, we examine the impact of disasters on government transfer income, including disaster 

aid, and loans. As discussed in Section III, natural disasters can trigger substantial disaster and 

non-disaster government transfers and loans. Here, we consider direct disaster relief from 

FEMA’s Individual and Household Program (IHP) aid, Small Business Administration (SBA) 

disaster loans (which can go to both households and businesses), and National Flood Insurance 

Program (NFIP) payouts. Note that IHP transfers and NFIP payouts are subcomponents of the 

BEA’s measure of personal income, while SBA loans are not part of personal income but could 

 
32 As shown in Appendix Figure A4, we obtain a somewhat different result if we use an alternative specification 

that replaces the county-specific pre-disaster linear time trend variable with a county-specific full-sample linear time 
trend variable (i.e., an interaction between the county fixed effect and year). As mentioned earlier, our preferred 
specification does not include the latter because it is potentially endogenous with respect to the disaster treatment. 
Nonetheless, using that specification yields results that are broadly similar to the baseline results for all outcomes 
except population. This specification yields an IRF for population that is steadily declining over time. As of eight 
year out, population is estimated to be a little over –0.1% below the no-disaster counterfactual.  
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potentially affect personal income over the medium to longer run.33 Disasters may also 

trigger significant transfer payments from non-disaster safety-net programs, especially 

Unemployment Insurance (UI) and Income Maintenance programs (such as Temporary 

Assistance for Needy Families, Medicaid, and the Earned Income Tax Credit). 

The results for these government programs are shown in Figure 4. Panels (a) – (c) show the 

post-disaster increases for IHP aid, SBA loans and NFIP payouts, in log per capita terms.34 

As one would expect, each of these aid outcomes increases substantially after a natural 

disaster.35 The data on these variables do not record the timing of the payouts, so these 

responses should not be interpreted as occurring all in the initial year, but rather represent the 

cumulative increase over all post-disaster years. Panel (d) shows that overall government 

transfers increase substantially in the first few years after a disaster, but are actually reduced 

over the longer run. This longer run decline appears to be driven by lower income 

maintenance transfers, as shown in panel (e). UI transfers, on the other hand, are elevated for 

the first few years but are essentially unchanged over the longer run (see panel (f)). The lack 

of any longer run increase in these safety-net transfers is consistent with the results in Figure 

3, namely that total employment is unchanged over the longer run while average weekly 

wages are higher, implying that over the longer run fewer local households are likely to 

qualify for safety-net programs. In addition, the increase in direct disaster aid appears to be 

too small and too short-lived to result in a longer run boost to total government transfers (as 

apparent by the decline seen in panel (d)). 

C. Summary of Baseline Results 

Our baseline results point to a longer-run increase in local personal income after a natural 

disaster. Given the longer-run decline in local government transfer income, the increase in 

personal income appears to stem from higher labor income, which in turn appears to stem 

from a longer-run increase in labor earnings (average weekly wages) rather than 

 
33 IHP aid is included in the Other Transfers subcomponent of the Total Government Transfers component of 

Personal Income. Insurance payouts are included in the Current Transfer Receipts of Individuals from Businesses 
component of Personal Income. See BEA (2017). 

34 Because these disaster-specific aid variables yield many observations with zeros, we use the log of the 
observed per capita aid amount plus 1.  

35 In results not shown, we find that aid increases with disaster severity. 
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employment.36 This increase in earnings is consistent with a long-lasting process of recovery and 

rebuilding – as reflected by the long-run increase in construction employment – along with, 

potentially, productivity gains from improved local public and private capital stock. The 

hypothesis that the local capital stock is substantially improved is supported by our finding of 

higher house prices over the longer run.37 A shift in composition to higher income individuals 

choosing to live in areas that have been built back better after disasters would also be consistent 

with these phenomena. 

 

VII. Heterogeneity, Adaptation, and Spatial Spillovers 

We now explore three sets of extensions relating to heterogeneity of disaster responses along 

several key dimensions, adaptation to disasters over time and based on county-specific 

experience, and spatial spillover effects.  

A. Heterogeneity  

Although the average dynamic response of local economic activity to natural disasters 

presented above is informative, this average response may well mask heterogeneity along several 

important dimensions that we explore in this section. In particular, we consider heterogeneity in 

terms of disaster severity, disaster type (i.e., floods, hurricanes, etc.), and county income prior to 

the disaster.  

1. Heterogeneity by disaster severity 

In our first heterogeneity analysis, we examine the role of disaster severity, which is 

important in light of projections that some disasters will become more severe with climate 

change. Furthermore, we need to understand whether our average results apply to the most 

severe disasters. As described in section V.B., we allow the impulse response of a given outcome 

to a disaster to vary as a function of the monetary damages caused by the disaster. Examining the 

same six economic outcomes as in Figure 3, Figure 5 displays the estimated IRFs for different 

 
36 This interpretation is also supported by IRF estimates for the wage and salary component of personal income, 

which is provided in Appendix Figure A9. The IRF for wage and salary income p.c. is similar to that for personal 
income p.c. 

37 Note that if the increase in the house price index reflects an increase in the quality-adjusted cost of housing 
services, then it implies an increase in local consumer prices (cost of living), which could offset the benefits of 
higher income for local residents. 
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levels of damages corresponding to various percentiles of the distribution of (non-zero) 

damages p.c. in our sample. In particular, in each panel the solid thick blue line depicts the 

IRF corresponding to a disaster with per capita damages equal to the 50th percentile of all 

disasters (with positive damages), while the thick solid orange line depicts the IRF for a 

disaster with per capita damages equal to the 99th percentile. The thin solid, dashed, and 

dash-dotted lines show the IRFs for other percentile damages. 

 Panel (a) shows the results for personal income p.c. The IRF for a median-damages 

disaster is quite similar to the IRF for the mean disaster shown in Figure 3, panel (a), with a 

modest initial drop followed by a modest positive response over the medium run and a larger 

positive response over the longer run. In particular, personal income p.c. following a median-

damages disaster is estimated to be around 0.6% higher after eight years. Note also that the 

25th percentile IRF is visually indistinguishable from the 50th. In fact, notable differences in 

either the level or shape of the IRF do not really emerge until damages rise above the 95th 

percentile. For the most severe disasters – those with damages above the 95th percentile – 

personal income p.c. increases substantially both in the short-run and over the longer-run. For 

instance, we estimate that a disaster in the top 1% of damages causes personal income p.c. to 

increase by over 1% in the initial year and by over 1.5% after eight years. 

Looking at the analogous results for the other outcomes in panels (b)-(f) allows us to 

unpack this result. First, we find that the most severe disasters cause large and persistent 

increases in both total employment (panel b) and average weekly wages (panel d), with 

employment and AWW up over 1% after eight years.38 Within overall employment, 

construction employment increases by nearly 6% by 1-2 years after the disaster but then 

comes down to a level similar to that after a more typical disaster. In other words, the short- 

to medium-run increase in construction activity after a disaster is much higher for very severe 

disasters, but the longer-run increase is roughly independent of the disaster’s severity.  

We uncover an interesting pattern for house prices, in that the medium-run (1-3 years 

out) response to very severe disasters is strongly positive while the longer-run response is 

strongly negative. This longer-run decline in house prices after very severe disasters may be 

 
38 The large increase in average weekly wages over the longer run is consistent with the worker-level evidence 

of higher long term wages following the major 2005 hurricanes, Katrina and Rita, provided by Groen, Kutzbach, and 
Polivka (2020). 
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partially explained by the population responses shown in panel (f). While population responds 

very little to disasters with damages up to the 90th percentile, population falls substantially after 

the most severe disasters.39 This longer-run drop in population should reduce demand for 

housing, putting downward pressure on home prices.   

In addition, the longer-run population response helps explain the magnitude of the longer-run 

increase in personal income p.c. In particular, we find that a disaster with damages p.c. equal to 

the 99th percentile causes population to decline by roughly 0.75% after eight years. This result in 

turn suggests that the roughly 1.5% longer-run increase in personal income p.c. after very severe 

disasters (panel (a)) is about half due to higher total county personal income and half due to 

reduced population.  

In addition to our preferred specification, we examine two alternative versions of the severity 

analysis.  First, we use the original SHELDUS data rather than our adjusted version that spreads 

duplicate damage observations evenly across counties on a per capita basis. As Figure A10 

shows, all of the severity results are qualitatively unchanged except for the population result, 

which shows that the population increase by the end of 8 years is unaffected by severity. In our 

view the original SHELDUS data incorrectly assign larger damages on a per capita basis to 

counties with smaller populations, which are going to be disproportionately represented among 

the top percentile damages in the original SHELDUS data. Panel (f) in this figure shows that 

those counties eventually experience the same larger growth as the median counties, and thus the 

original SHELDUS data hide the negative population effects of the most severe disasters that we 

find in our baseline outcome. 

Results for the second set of alternative severity analyses, which use hurricane wind speed 

rather than monetary damages to measure severity, are shown in Figure A11. For this analysis, 

we replace the 𝑠𝑠𝑐𝑐,𝑡𝑡 term in equation (4) with hurricane wind speed.  The results for our primary 

outcome, personal income per capita, are qualitatively the same when using this alternative 

measure of severity.  The wage results are also similar.  However, there are some interesting 

differences to the remaining outcomes.  Notably, by the end of eight years, the counties with the 

 
39 Appendix A6 provides results separately for annual in-migration and out-migration flows5 as a share of pre-

disaster population. While both increase substantially in the first 3-4 years after the most severe disasters, the out-
migration effect is much larger. Over the longer-run (up to 8 years out), both the in- and out-migration responses to 
severe disasters become somewhat negative, though out-migration continues to be higher (less negative). The higher 
out-migration response is consistent with the estimated decline in population over the medium and longer runs for 
the most severe disasters. These results points to considerable population “churn” after a disaster. 
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highest wind speeds see even higher home prices, similar population increases and 

construction increases as the median hurricane wind speed disaster. There are some 

nonlinearities for our employment outcomes, such that the 90th percentile events see higher 

employment for both total nonfarm employment and construction employment by the end of 

8 years, but the 99th percentile among wind speeds see close to median outcomes.  

We consistently find that increases in personal income are larger for more severe 

disasters.  What can explain this phenomenon? One possibility is that very severe disasters 

trigger investment in new, modern public and private infrastructure, funded perhaps by 

government aid as well as private insurance, which spurs local economic development, 

consistent with the “build back better” scenario from Figure 2. This is not unlike the theory 

and evidence on war destruction of capital, and subsequent investment-led growth, discussed 

in Section III. Another possibility, consistent with the large decline in population, is that the 

composition of households in affected counties is changed by the most severe natural 

disasters, with lower-income households more likely to move out of the county.40 This 

possibility is consistent with Sheldon and Zhan (2019), who find that post-disaster out-

migration increases with the severity of the disaster and more so the lower the income of the 

population.41 

2. Heterogeneity by type of disaster 

We next explore how economic responses to natural disasters vary by disaster type. In 

Figure 6, we show that there is significant heterogeneity in how personal income p.c. 

responds to different types of natural disasters. We see substantial medium- to longer-run 

increases in personal income p.c. for hurricanes, tornados, and fires. However, fires are quite 

rare in our sample, accounting for just 2 percent of the disasters, and thus their IRFs are 

imprecisely estimated. Non-hurricane floods, on the other hand, account for 60% of the 

disasters in our sample. For floods, we estimate a statistically significant negative effect in 

 
40 Indeed, as shown in Appendix Figure A8, we find that after the most severe damages both in-migration and 

out-migration increase over the medium term, with out-migration apparently dominating such that population falls. 
41 It is worth noting that our finding of a significant longer-run increase in income p.c. after very severe 

disasters is consistent with the observed pattern of income p.c. following the most severe disaster in our sample, 
Hurricane Katrina in 2005. Appendix Figure A12 plots actual income p.c. for Orleans Parish, Louisiana, from 1980 
to 2017. Relative to the approximately linear trend up to 2005, income p.c. spikes in the first 2-3 years after the 
disaster before gradually returning to the pre-disaster growth trend but at a permanently higher level.  
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the year of the disaster, followed by a modest positive effect in the medium term, and no 

significant effect in the longer run.  

This finding could reflect differences in destruction. To the extent that hurricanes and 

tornados tend to more fully destroy structures such that they must be completely rebuilt, this 

could yield more productivity-enhancing improvements in the capital stock. Another 

potential explanation is that while floods may increase the perceived risk of future flooding 

in the same exact location, hurricanes and tornados may be perceived to be unlikely to strike 

the same exact spot again soon, increasing relative willingness to make rebuilding and recovery 

investments. 

Interestingly, our results on hurricanes here contrast somewhat with prior findings by Strobl 

(2011). Strobl estimates the effect of hurricanes on income p.c. growth for coastal counties in the 

U.S. and finds that it falls significantly in the initial year then returns to the pre-hurricane growth 

rate in the following year. This dynamic growth pattern translates into an initial year decline in 

the level of income p.c. that is not made up thereafter (which would require above-trend growth 

in the following year), which contrasts with our positive impact even in the first year. Strobl’s 

estimates do not speak to whether income rises or falls beyond one year out. 

We show results for heterogeneity by disaster type for other outcomes in Appendix Figure 

A13. These results show that there is heterogeneity in what drives the personal income patterns 

for different disaster types. For example, the solid growth in personal income p.c. following 

hurricanes appears to be driven both by persistent increases in employment and average weekly 

wages which on net outpace more modest increases in population. In contrast, the climb in 

personal income p.c. after tornados appears to be driven by rising wages, as employment is 

relatively flat. Similar to our baseline results, a persistent rise in average weekly wages alone can 

explain the modest increase in income p.c. after non-hurricane floods. 

The heterogeneity in responses based on disaster type is reflected in results on heterogeneity 

by Census Division. As can be seen in Appendix Figure A14, only the South has the response in 

personal income reflected in our average response. These Census division results are consistent 

with the disaster type responses and the distribution of disaster types shown in Appendix Figure 

A2.  In particular, the South has a high concentration of hurricanes and tornados, which tend to 

have the impulse response functions most consistent with our baseline finding in Figure 3. 
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3. Heterogeneity by county pre-disaster income 

In our third heterogeneity analysis, we examine the role of pre-disaster income in the disaster 

response. This analysis is prompted by the findings in the literature that lower income countries 

see worse outcomes in GDP after natural disasters. Furthermore, households in higher income 

counties may have more private insurance. This, combined with reports that lower income 

households tend to receive less aid, would lead to higher income counties having more resources 

with which to fund their recovery and rebuilding activities. In Figure 7 we show the results of 

estimating equation (7), which estimates separate IRFs by quartile of pre-disaster county income. 

We find that the point estimates for all four quartiles are consistent with our baseline results of a 

longer-run (as of eight years out) increase in income p.c., although they are not all statistically 

significant. Furthermore, the timing of the increase differs, as only counties in the top quartile of 

pre-disaster income p.c., experience a statistically significant increase in income in the first four 

years after the disaster (relative to the no-disaster counterfactual.) Thus, if we looked only a 

couple of years post-disaster, our findings would be consistent with those showing increases in 

income or GDP only for higher income countries.42 

B. Adaptation 

An increase in disaster frequency can spur adaptation, as greater experience with 

disasters leads to learning and expectations of more future disasters spur investments in 

resilience. However, intensification can also overwhelm disaster response and recovery 

capacity, making it more difficult to rebuild quickly and effectively. We take two approaches 

to examine the extent of adaptation.  

We next examine the extent to which local areas adapt to the occurrence of disasters. We 

address this question in two ways. First, we investigate whether disaster IRFs vary with a 

county’s historical experience with disasters. For instance, have counties that are historically 

more disaster-prone better adapted to absorbing disaster shocks and hence see more positive 

economic responses after new disasters?  Applying the methodology described in section 

 
42 Looking at the other outcomes (shown in Appendix Figure A15), we find that the growth in personal income 

for the top quartile appears to be more driven by employment while for the bottom quartile it is driven more by an 
increase in wages. In fact, employment falls over the longer run for the bottom quartile. We also find that post-
disaster house price increases come primarily from the upper three quartiles, again suggesting that higher income 
counties may be better insured and thus better able to rebuild and improve the housing stock. Construction 
employment increases across all income quartiles, though the longer-run increase is much larger for the bottom 
quartile. 
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V.C., the results in Figure 8, panel (a) show limited evidence for adaptation. In contrast to the 

notion that disaster-prone areas adapt and become more resilient to disasters, we find that 

only counties with disaster experience show an immediate negative hit to income p.c. 

(statistically significant at the 90% level for the two intermediate categories). A possible 

explanation is that counties hit by other disasters within the previous 10 years may not have 

had time to fully recover and rebuild private and public capital, leaving them vulnerable to 

the impact of new disasters. In the medium- to longer-run, increased personal income p.c. 

occurs in all cases except for counties that have experienced zero disasters in the prior ten years.  

A closely related adaptation question is how the average disaster response across all 

counties—regardless of their individual disaster experiences—has evolved over time. Given the 

increased aggregate frequency of disasters that we documented in Figure 1, communities 

throughout the United States may be anticipating a higher likelihood of disasters going forward, 

which could in turn lead to adaptations to mitigate the initial negative impacts on income, not to 

mention the negative impacts to wealth, property, and health.  We estimate equation (8) and then 

calculate the implied IRF for the earliest (1983) and latest (2009) years in the sample, excluding 

the years in the earliest pre-trend interval (3 years) and the latest longer-run interval (8 years) 

using our estimate of  𝜃𝜃ℎ�. The results for income p.c. are shown in Figure 8, panel (b). The initial 

impact coefficient has become less negative, shifting toward zero over time, consistent with 

adaptation; however, the shift is not statistically significant. The magnitude of the longer-run 

post-disaster increase in income has also decreased over time.  In particular, in addition to 

dipping in the medium run, the longer-run increase as of the latest year in our analysis (2009) is 

about 0.4%, which is less than half the increase as of the earliest year of the analysis (1983). This 

result suggests that going forward, as disasters become more frequent and severe, counties that 

are affected may not see such significant boosts in personal income afterward.  

C. Spatial Spillovers and Wider Geographies 

Our focus thus far has been on estimating the economic impacts of natural disasters at the 

local level, proxied by counties. The impacts at higher levels of aggregation could be different as 

important spatial spillovers could propagate the effects of a disaster in one county to other 

counties of varying distances away. We investigate this issue in two complementary ways. First, 

we construct geographic circular bands (“donuts”) of counties of given distance ranges 

surrounding each focal county hit by a disaster and then jointly estimate the impact of disasters 
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on both the focal county and on the geographic areas defined by each surrounding band. Second, 

we aggregate to the state level our treatment and outcome variables and repeat our baseline IRF 

specifications at the state, rather than county, level.  

In Figure 9, we show the results of estimating equation (9) for personal income for bands of 

counties that are up to 199, 200-399, and 400-599 miles away from a county affected by a 

disaster.43 The thin blue curves show the IRFs for the directly-hit counties, while the orange 

curves show the spatial lag IRFs.44,45 These results show that nearby counties (within 199 miles) 

experience a medium-run boost to personal income, consistent with residents of nearby counties 

participating in recovery efforts and experiencing positive spillovers (panel (a)). However, these 

counties do not appear to share in any longer run boost to income per capita. Counties that are 

200-399 miles away see a persistent decline in personal income, as shown in panel (b). This 

could be explained by regional resources being redirected to the counties directly affected by 

disasters. Counties in the furthest band, 400-599 miles away, experience some modest 

intermediate gains in income per capita followed by a longer run decline (panel (c)).  

In panel (d) we show an estimate for the net effect on personal income per capita within 600 

miles of disasters.  Here we estimate the sum of the four curves shown in panels (a) – (c), where 

each IRF is rescaled by multiplying each of the  𝛽𝛽ℎ and 𝜋𝜋ℎ,𝑏𝑏  terms by the unconditional mean of 

the corresponding variable. With the estimated �̂�𝛽ℎ and 𝜋𝜋�ℎ,𝑏𝑏  coefficients representing the average 

effect for a county within each category at each horizon, intuitively, we are taking an average of 

the contribution of these responses to estimate a net effect. This post-estimation rescaling of the 

IRF coefficients is equivalent to a pre-estimation mean-normalization. These results suggest that 

while the longer run local impact of a disaster on income per capita in the area directly hit by a 

disaster is positive, the longer run impact for the broader region appears to be negative. As 

shown in Figure A18, it appears that this is driven by a long-run net decline in average weekly 

 
43 See Appendix Figure A17 for a visual illustration of the spatial lags for a single year of disasters. 
44 Note that the blue curve shown here differs from our baseline estimate shown in Figure 3 because many 

disasters affect multiple neighboring counties, in which case we would have to add to the blue curve the effect 
captured in the orange curve in panel (a). 

45 In panels (a)-(c), the spatial lag coefficients have been normalized such that 𝐷𝐷𝑐𝑐,𝑡𝑡
𝑏𝑏  has been divided it by its 

mean, conditional on  𝐷𝐷𝑐𝑐,𝑡𝑡
𝑏𝑏  > 0. Given this normalization, a one-unit change in each spatial lag variable represents the 

average population share in that distance band of disaster-hit counties in the event of at least one disaster. These 
conditional means vary slightly across horizons because the regression samples are horizon-specific. For the 50-199 
mile band, the conditional mean varies from 0.27 to 0.28. For the 200-399 band, it rounds to 0.24 across all 
horizons; and for the 400-599 band, it varies from 0.23 to 0.24. The coefficients 𝜋𝜋ℎ,𝑏𝑏 can then be interpreted as the 
impact in county c from the average disaster event hitting at least one county b to b’ miles away. 
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wages in the region of the disaster.  This could result from resources being diverted from other 

counties in a region to those hit by disasters. 

Figure 10 shows results of estimating equation (1) on state-aggregated data where the 

treatment (“disaster”) variable is now defined as the share of the state’s population living in a 

county hit by a disaster in a given year.46   The dynamic pattern is qualitatively similar to our 

baseline per capita income result at the county level (Figure 3, panel (a)). However, the state-

level disaster impacts are small and statistically insignificant, consistent with the results above 

showing a statistically insignificant net effect of disasters on income per capita for broad 

geographic areas.47    

 

VIII. Conclusion 

We have found that, on average, counties hit by natural disasters initially see a decline in 

income per capita but then experience a medium to longer run boost, lasting at least eight years. 

While a rise in employment contributes to the initial boost, we find the longer-run increase in 

income per capita is driven largely by an increase in average weekly earnings rather than an 

increase in employment or a decrease in population. This could be explained by disasters causing 

a persistent labor demand shock combined with inelastic labor supply. 

We have also found that there is significant heterogeneity in disaster effects. The post-

disaster response of personal income per capita depends on the severity of the disaster, the type 

of disaster, and, to a lesser extent, the pre-disaster income level of the county. We find that the 

positive medium- to longer-run effect of disasters on personal income per capita is amplified for 

more severe disasters. For the most severe disasters, part of the effect is due to a drop in 

population, though most of it comes from an increase in the aggregate county income. Across 

disaster types, we find that the longer-run increase in income per capita is true for all types 

except extreme winter weather and severe storms; the increase is largest for tornadoes, fires, and 

 
46 Using a simple indicator variable for whether there was a disaster in any county in a given state-year results 

in very few no-treatment observations and also lumps together disasters of widely varying geographic breadth. 
47 We also investigated whether the state-level impact varied with the scale/breadth of the disaster by interacting 

the disaster treatment variable with four dummy variables indicating whether the percentage of the state population 
in a county hit by a disaster was below 10%, 10-50%, 50-90%, or above 90%. Shown in panel (b) of Appendix 
Figure A19, the longer-run positive impacts are found to increase with the scale/breath of the disaster, though the 
results were not statistically significant. 



 

35 
 

hurricanes. We find that the longer-run increase holds for both rich and poor counties, as 

measured by their pre-disaster levels of income per capita.  

We have found mixed evidence when it comes to adaptation. On the one hand, consistent 

with adaptation, counties with more historical experience with disasters see larger post-disaster 

increases in personal income over the longer run. However, we find that the longer-run increase 

in personal income per capita has fallen roughly in half over the course of our sample period—a 

period in which disasters nationwide have become more frequent and severe—suggesting that 

the ability to recover and rebuild from disasters in a way that yields lasting economic benefits 

has declined over time, the opposite of what one might expect from adaptation. 

Lastly, while the main focus of this paper has been on the local impact of natural 

disasters, our spatial analyses suggests that the long run increase in personal income locally 

may come at the cost of, and be more than offset by, a long run decline in personal income in 

surrounding counties. This could potentially be explained by a diversion of resources to areas 

affected by disasters.  

Taken together, our results suggest that despite the immense toll that disasters take, local 

economies have generally recovered successfully in terms of income. Indeed, not only does 

local income recover fully after a few years, it ends up somewhat higher in the longer run 

than what it would have been without the disaster. However, this average finding masks 

significant heterogeneity across contexts and a potential rise in inequality after disasters, 

given the lack of any decline in the poverty rate.  

Our results contrast with some prior international evidence, especially that focused on 

developing countries, which has found long-lasting negative national income responses to 

certain disasters. An important difference in the U.S. setting is the wide availability of private 

and public insurance, the latter coming in the form of government aid. Going forward, 

climate change may lead to more, and more damaging, disasters, which could put increasing 

strains on insurance markets and government budgets.    
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Tables and Figures

Table 1: Dependent Variable Descriptions

Variable Frequency Form Winsorized Per capita Source

Personal income annual log no yes BEA
Total nonfarm employment monthly log 0.5, 99.5 no QCEW
Construction employment monthly log 0.5, 99.5 no QCEW
Average weekly wages quarterly log 0.5, 99.5 no QCEW
House price index quarterly log 0.5, 99.5 no CoreLogic
Population annual log 0.5, 99.5 no Census
Government transfers annual log no yes BEA
Income maintenance transfers annual log no yes BEA
UI transfers annual log no yes BEA
FEMA IHP aid annual log(1 + ·) 0.5, 99.5 yes FEMA
SBA disaster loans annual log(1 + ·) 0.5, 99.5 yes SBA
NFIP payouts annual log(1 + ·) 0.5, 99.5 yes FEMA
Wage & salary income annual log no yes BEA

Note: Although the IHP Aid and NFIP Payment data are available at higher frequency in terms of the disasters
which they cover, we use them entirely in annual terms as they are combined with annual SBA Loan data to
examine the effect of aid on annual outcomes. Furthermore, we do not observe when the IHP aid and NFIP
claims are paid out, but only when the damages they apply to occur. Note that the annual SBA Loan data
are based on the fiscal year closing at the end of September each year. We examine log(1 + ·) form for the aid
variables to address the very high share of observations with 0 aid.
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Table 2: Summary Statistics

Mean Std Dev Min Max N

Personal income p.c. 23,201 11,991 2583 204,67 111,516
Total nonfarm employment 30,501 117,547 0 3,875,009 1,317,168
Construction employment 2,566 7,609 0 181,710 662,688
Average weekly wages 460 190 0 8,456 441,523
House price index 102 44 19 369 186,560
Population 89,195 290,606 55 10,163,510 116,581
Government transfers p.c. 4,512 2,751 218 18,223 111,516
Income maintenance transfers p.c. 434 328 8 2,995 111,516
UI transfers p.c. 113 104 8 2,995 111,516
FEMA IHP aid p.c. 3 47 0 6,548 116,581
SBA disaster loans p.c. 5 100 0 14,282 92,037
NFIP payouts p.c. 5 151 0 34,950 116,581
Wage & salary income p.c. 9,385 7,449 710 272,927 111,516

Source: QCEW, Census, CoreLogic, BEA, FEMA, and SBA.

Figure 1: Natural Disaster Trends and Distribution, 1980 - 2017

(a) Disaster Frequency and Damages
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(b) Geographic Distribution of Disasters

Source: FEMA and SHELDUS.
Note: The count in panel (a) shows the number of counties each year with at least one disaster declaration.
The count in panel (b) shows the number of years with disaster declarations for each county over the period
1980-2017.
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Figure 2: Theoretical paths for disaster recovery

Source: Hsiang and Jina (2014)
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Figure 3: Baseline Effects - All Disasters
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: These plots show the IRFs from estimating equation (1), where the inner shaded regions indicate the 90
percent confidence intervals, and the lighter outer shaded regions indicate the 95 percent confidence intervals.
All variables are observed at the county level and modeled as cumulative differences in logs between the horizon
pictured and the period before the disaster (t = −1).
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Figure 4: Effects on Government Transfers (per capita)

(a) IHP Aid
0

10
0

20
0

30
0

40
0

p
er

ce
nt

 c
ha

ng
e

-3 -2 -1 0 1 2 3 4 5 6 7 8
years

(b) SBA Loans

0
10

0
20

0
30

0
40

0
p

er
ce

nt
 c

ha
ng

e

-3 -2 -1 0 1 2 3 4 5 6 7 8
years

(c) NFIP Payouts

0
50

10
0

15
0

20
0

25
0

p
er

ce
nt

 c
ha

ng
e

-3 -2 -1 0 1 2 3 4 5 6 7 8
years

(d) Government Transfers

-.6
-.4

-.2
0

.2
.4

p
er

ce
nt

 c
ha

ng
e

-3 -2 -1 0 1 2 3 4 5 6 7 8
years

(e) Income Maintenance

-3
-2

-1
0

1
p

er
ce

nt
 c

ha
ng

e

-3 -2 -1 0 1 2 3 4 5 6 7 8
years

(f) Unemployment Insurance

-2
0

2
4

6
p

er
ce

nt
 c

ha
ng

e

-3 -2 -1 0 1 2 3 4 5 6 7 8
years

Source: FEMA, SHELDUS, SBA, FIMA NFIP Redacted Claims data, Census, and BEA.
Note: These plots show the IRFs from estimating equation (1), where the shaded regions indicate the 90 and 95
percent confidence intervals. All variables are observed at the county level and modeled as cumulative differences
in logs between the horizon pictured and the period before the disaster (t = −1).
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Figure 5: Effects by Damages Percentile
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: These plots show the IRFs from estimating equation (4), where the percentile lines reflect the model
predictions given the per capita damage distributions for all county-month observations with FEMA disaster
declarations. All variables are observed at the county level and modeled as cumulative differences in logs between
the horizon pictured and the period before the disaster (t = −1).
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Figure 6: Personal Income (per capita) Effects By Disaster Type
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Source: FEMA, SHELDUS, BEA, and Census.
Note: These plots show the IRFs from estimating equation (5), where the shaded regions show the 90 and 95
percent confidence intervals. The disaster type categories are based on FEMA declaration types and titles, with
the flood category excluding floods associated with hurricanes. One disaster cannot have two categories, however,
within a year a county can experience multiple disaster types. Personal income per capita is observed at the
county level and modeled as cumulative differences in logs between the horizon pictured and the period before
the disaster (t = −1).
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Figure 7: Personal Income (per capita) Effects By Initial Personal Income Per Capita
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Source: FEMA, SHELDUS, BEA, and Census.
Note: These plots show the IRFs from estimating equation (7), where the shaded regions show the 90 and
95 percent confidence intervals. The quartiles of initial personal income per capita are based on the personal
income in year -1 relative to the national distribution in that year. Personal income per capita is observed at the
county level and modeled as cumulative differences in logs between the horizon pictured and the period before
the disaster (t = −1).
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Figure 8: Adaptation and Personal Income Per Capita

(a) Heterogeneous Effects By Local Historical Disaster Exposure
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(b) IRFs for Earliest and Latest Years Based on Time Trend Interaction
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Source: FEMA, SHELDUS, BEA, and Census.
Note: Panel (a) shows the IRFs from estimating equation (7), where the shaded regions show the 90 and 95
percent confidence intervals. The four categories of historical disaster experience (0, 1, 2-3, and 4+) represent
the number of years within years -10 to -1 in which a county experienced a major disaster with positive damages.
Panel (b) shows the implied IRFs from estimating equation (8) and then calculating the implied IRF for the
earliest (1983) and latest year (2009) possible given our sample period and leads and lags. Personal income per
capita is observed at the county level and modeled as cumulative differences in logs between the horizon pictured
and the period before the disaster (t = −1).
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Figure 9: Impacts of Own-county Disasters vs. Spatially-Lagged Disasters on Personal Income (p.c.)

Results for spatial lags of varying distance bands
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Source: FEMA, SHELDUS, Census, and BEA.
Note: Panels (a)-(c) show the IRFs from estimating equation (8), where the shaded regions show the 90 and
95 percent confidence intervals. The thin blue curve (repeated in each panel) reflects the IRF estimated for
counties directly experiencing a disaster. The orange curves depict the IRFs for the counties within the indicated
mile ranges of counties experiencing disasters. The intensity of treatment for the orange curves is the share of
population within each band that has experienced a disaster in period 0. Each of the orange curves has been
rescaled by the mean population share for positive observations within the band. Thus the curves represent the
average effect on counties having at least one county within the given range experience a disaster in period 0.
Panel (d) shows the net effect on personal income within these bands, where each coefficient has been rescaled
by the variable’s unconditional mean. Personal income per capita is observed at the county level and modeled
as cumulative differences in logs between the horizon pictured and the period before the disaster (t = −1).
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Figure 10: State-Level Impacts of Disasters on Personal Income (p.c.)
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: This figure shows the IRF from estimating equation (1) on state-aggregated data, where the treatment is
the share of the state’s population living in a county hit by a disaster. The inner shaded region indicates the 90
percent confidence intervals, and the lighter outer shaded region indicates the 95 percent confidence intervals.
Personal income is aggregated at the state level and modeled as cumulative differences in logs between the
horizon pictured and the period before the disaster (t = −1). Standard errors are clustered at the state and at
the time-by-division levels.
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Appendix A

Figure A1: The Frequency and Costs of Disasters 1980 - 2017
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(d) Extreme Winter Weather
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(f) Tornados
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Source: FEMA and SHELDUS.
Note: The blue bars show the number of counties each year with at least one disaster declaration in the listed
categories. The black dots indicate total damages in USD 2017. If a county experienced flooding due to a
hurricane, that will show up only on the hurricane plot. If a county receives two separate disaster declarations
in a month, one for a hurricane and one for a flood not caused by the hurricane, this will also only show up on
the hurricane plot. Similarly, severe storms exclude disaster declarations with the string “flood” in the title.
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Figure A2: Distribution of Disaster Declarations

Source: FEMA, SHELDUS.
Note: The All Disaster Types map shows counts of months with at least one disaster with damages reported in
SHELDUS. The Per Capita Damages at or Above 99th Percentile map shows the number of months a county’s
disasters had per capita damages in the 99th percentile of those with FEMA disaster declarations from 1980 to
2017. The remaining maps show the counts of months in which the disaster type was declared in a given county
with some hierarchical ordering. If a county experienced flooding due to a hurricane, that will show up only on
the hurricane map. If a county receives two separate disaster declarations in a month, one for a hurricane and
one for a flood not caused by the hurricane, this will also only show up on the hurricane map.52



Figure A3: Distribution of Per Capita County Damages by Disaster Type
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Source: FEMA, SHELDUS.
Note: The y-axis shows density and not frequency.
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Figure A4: Alternative Specifications for Trends

Impacts on Personal Income Per Capita - All Disasters

(a) Baseline – Control for Pre-trend
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: These plots show the IRFs from estimating an alternative to equation (1), the equation (2) pre-trend term
has been replaced with a county-specific time trend. The inner shaded regions indicate the 90 percent confidence
intervals, and the lighter outer shaded regions indicate the 95 percent confidence intervals. All variables are
observed at the county level and modeled as cumulative differences in logs between the horizon pictured and the
period before the disaster (t = −1).
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Figure A5: Alternative Specification - County-Specific Linear Time Trend

Impacts - All Disasters

(a) Personal Income (per capita)
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: These plots show the IRFs from estimating an alternative to equation (1), the equation (2) pre-trend term
has been replaced with a county-specific time trend. The inner shaded regions indicate the 90 percent confidence
intervals, and the lighter outer shaded regions indicate the 95 percent confidence intervals. All variables are
observed at the county level and modeled as cumulative differences in logs between the horizon pictured and the
period before the disaster (t = −1). 55



Figure A6: Impact of Disasters on Poverty Rate
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Source: FEMA, SHELDUS, and the Census Bureau’s Small Area Income and Poverty Estimates (SAIPE)
program.
Note: Figure shows the IRF from estimating equation (1) where the dependent variable is the poverty rate. The
inner shaded regions indicate the 90 percent confidence intervals, and the lighter outer shaded regions indicate
the 95 percent confidence intervals. Standard errors are clustered at the county and time-by-state level.

Figure A7: Impact of Disasters on Wages Implied by Local Industry Composition and National Wages
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Source: FEMA, SHELDUS, CEPR yearly extracts of the CPS Outgoing Rotation Group micro-data, and the
Census Bureau’s County Business Patterns.
Note: Figure shows the IRF from estimating equation (1) where the dependent variable is an estimate of what
the mean wage would be if the local wage composition is applied to the national wage rates. The inner shaded
regions indicate the 90 percent confidence intervals, and the lighter outer shaded regions indicate the 95 percent
confidence intervals. Standard errors are clustered at the county and time-by-state level.
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Figure A8: Disaster Effects on Migration

(a) In-Migration – All Disasters
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(c) In-Migration – By Disaster Severity
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(d) Out-Migration – By Disaster Severity
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: Plots (a) and (b) show the IRFs from estimating equation (1), where the shaded regions indicate the
90 and 95 percent confidence intervals. Plots (c) and (d) show the IRFs from estimating equation (4), where
the percentile lines reflect the model predictions given the per capita damage distributions for all county-month
observations with FEMA disaster declarations. All variables are observed at the county level and modeled as
cumulative differences in logs between the horizon pictured and the period before the disaster (t = −1).
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Figure A9: Wage & Salary Income (per capita)
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Source: FEMA, SHELDUS, Census, and BEA.
Note: This plots show the IRFs from estimating equation (1), where the inner shaded regions indicate the 90
percent confidence intervals and the lighter outer shaded regions indicate the 95 percent confidence intervals.
Wage & salary income isobserved at the county level and modeled as cumulative differences in logs between the
horizon pictured and the period before the disaster (t = −1).
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Figure A10: Effects by Damages Percentile – Using Original SHELDUS per capita damages
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: These plots show the IRFs from estimating equation (4), where the percentile lines reflect the model
predictions given the per capita damage distributions for all county-month observations with FEMA disaster
declarations. All variables are observed at the county level and modeled as cumulative differences in logs between
the horizon pictured and the period before the disaster (t = −1).
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Figure A11: Effects by Wind Speed Percentile – Using HURDAT2 data
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Source: FEMA, SHELDUS, HURDAT2, BLS, Census, BEA, CoreLogic, and Anderson et al (2020a, 2020b).
Note: These plots show the IRFs from estimating equation (4), where the percentile lines reflect the model
predictions given the per capita damage distributions for all county-month observations with FEMA disaster
declarations. All variables are observed at the county level and modeled as cumulative differences in logs between
the horizon pictured and the period before the disaster (t = −1).
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Figure A12: Historical Per Capita Personal Income in New Orleans
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Source: BEA, Census.
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Source: BEA and Census.
Note: Vertical red line indicates 2005, the year of Hurricane Katrina.
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Figure A13: Effects By Disaster Type
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See notes at end of figure.
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Figure A13: Effects By Disaster Type (continued)
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See notes at end of figure.
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Figure A13: Effects By Disaster Type (continued)

(e) Home Prices
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Source: FEMA, SHELDUS, BLS, and Census.
Note: These plots show the IRFs from estimating equation (5), where the shaded regions show the 90 and 95 percent confidence intervals. The
disaster type categories are based on FEMA declaration types and titles, with the flood category excluding floods associated with hurricanes. All
outcomes are observed at the county level and modeled as cumulative differences in logs between the horizon pictured and the period before the
disaster (t = −1).
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Figure A14: Impacts of Disasters on Personal Income (p.c.)

Differentiated by Census Division
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: These plots show the IRFs from estimating equation (1) but interacting the disaster indicator with separate
indicators for each of the four Census divisions. The inner shaded regions indicate the 90 percent confidence
intervals, and the lighter outer shaded regions indicate the 95 percent confidence intervals. All variables are
observed at the county level and modeled as cumulative differences in logs between the horizon pictured and the
period before the disaster (t = −1).
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Figure A15: Effects By Initial Personal Income Per Capita

(a) Personal Income (per capita)
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See notes at end of figure.

66



Figure A15: Effects By Initial Personal Income Per Capita (continued)

(c) Construction Employment
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See notes at end of figure.
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Figure A15: Effects By Initial Personal Income Per Capita (continued)

(e) Home Prices
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Source: FEMA, SHELDUS, BEA, and Census.
Note: These plots show the IRFs from estimating equation (7), where the shaded regions show the 90 and
95 percent confidence intervals. The quartiles of initial personal income per capita are based on the personal
income in year -1 relative to the national distribution in that year. All outcomes are observed at the county level
and modeled as cumulative differences in logs between the horizon pictured and the period before the disaster
(t = −1). 68



Figure A16: Effects By Local Historical Disaster Exposure

(a) Personal Income (per capita)
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See notes at end of figure.
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Figure A16: Effects By Local Historical Disaster Exposure (continued)

(c) Construction Employment
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See notes at end of figure.
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Figure A16: Effects By Local Historical Disaster Exposure (continued)

(e) Home Prices
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Source: FEMA, SHELDUS, BEA, BLS, Census, and CoreLogic.
Note: These plots show the IRFs from estimating equation (7), where the shaded regions show the 90 and 95
percent confidence intervals. The four categories of historical disaster experience (0, 1, 2-3, and 4+) represent
the number of years within years -10 to -1 in which a county experienced a major disaster with positive damages.
All outcomes are observed at the county level and modeled as cumulative differences in logs between the horizon
pictured and the period before the disaster (t = −1).
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Figure A17: Spatial Lags in 1988

(a) Disasters with damages (b) < 199 miles

(c) 200-399 miles (d) 400-599 miles

Source: FEMA, SHELDUS.
Note: Using 1988 as an example, panel (a) depicts the counties that received major disaster declarations from
FEMA with positive damages in SHELDUS. Panels (b)-(c) depict the share of population within each band
(50-199, 200-399, and 400-599 miles) of a given county that had disaster declarations with damages. Darker
shading in panels (b)-(d) indicate a higher population share.
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Figure A18: Impacts of Own-county Disasters vs. Spatially-Lagged Disasters
Results for spatial lags of varying distance bands
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See notes at end of figure.
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Figure A18: Impacts of Own-county Disasters vs. Spatially-Lagged Disasters
Results for spatial lags of varying distance bands (Continued)

(c) Average Weekly Wages
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See notes at end of figure.
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Figure A18: Impacts of Own-county Disasters vs. Spatially-Lagged Disasters
Results for spatial lags of varying distance bands (Continued)
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Source: FEMA, SHELDUS, Census, BEA, BLS, and CoreLogic.
Note: Subpanels (a)-(c) for each dependent variable show the IRFs from estimating equation (8), where the
shaded regions show the 90 and 95 percent confidence intervals. The thin blue curve (repeated in each panel)
reflects the IRF estimated for counties directly experiencing a disaster. The orange curves depict the IRFs for
the counties within the indicated mile ranges of counties experiencing disasters. The intensity of treatment
for the orange curves is the share of population within each band that has experienced a disaster in period 0.
Each of the orange curves has been rescaled by the mean population share for positive observations within the
band. Thus the curves represent the average effect on counties having at least one county within the given
range experience a disaster in period 0. Subpanel (d) for each dependent variable shows the net effect on that
dependent variable within these bands, where each coefficient has been rescaled by the variable’s unconditional
mean. The dependent variables are observed at the county level and modeled as cumulative differences in logs
between the horizon pictured and the period before the disaster (t = −1).
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Figure A19: State-Level Impacts of Disasters on Personal Income (p.c.) with Disasters Differentiated by
Geographic Breadth
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Source: FEMA, SHELDUS, BLS, Census, BEA, and CoreLogic.
Note: This figure shows the IRFs from estimating equation (1) on state-aggregated data, but allowing the
coefficient on the disaster treatment variable to vary across four geographic breadth indicator variables. These
variables indicate what quartile the disaster falls in of the distribution of the share of the state’s population
in a county hit with a disaster (with positive damages), conditional on having a disaster. The inner shaded
regions indicate the 90 percent confidence intervals, and the lighter outer shaded regions indicate the 95 percent
confidence intervals. Personal income is aggregated at the state level and modeled as cumulative differences in
logs between the horizon pictured and the period before the disaster (t = −1). Standard errors are clustered at
the state and at the time-by-division levels.
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Appendix B 

B1. Poverty Data 

The county-level poverty rate data come from the Census Bureau’s Small Area Income and 

Poverty Estimates (SAIPE) program and cover the years 1989, 1993, 1995, and 1997-2020. We 

fill in the missing years for each county via linear interpolation between adjacent years. We 

expect the resulting measurement error to be systematically unrelated to disaster occurrence and 

hence expect it to inflate standard errors but not to introduce bias.1 

B2. Data for Industry Mix-Implied Wages 

We construct a measure of industry mix in order to assess how disasters impact the industry 

composition of a county’s workforce. Specifically, we construct a variable measuring each 

county’s expected average wage in a given year based only on its industry composition: 

𝑤𝑤𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐

𝑐𝑐

 ;    �𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐

= 1   

where 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 is the employment in industry j in county c in year t and 𝑤𝑤𝑐𝑐𝑐𝑐 is the national mean 

wage in industry j in year t.   

Data on 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 come from the Census Bureau’s County Business Patterns (CBP) data. We use 

Eckert, et al. (2021)’s version of the CBP data, which exploits various adding-up constraints in 

the raw data to fill in missing values. It imputes some missing values in the raw CBP data by 

exploiting cross-county (within industry) and cross-industry (within county) totals and adding up 

constraints. To further minimize missing values, we use the “major sector” NAICS industry level 

rather than a finer level of industry categorization. 

We calculate 𝑤𝑤𝑐𝑐𝑐𝑐 as the mean wage by NAICS major sector across individuals using the 

CEPR yearly extracts of the CPS Outgoing Rotation Group micro-data.2  

B3. Hurricane Wind Speed Data 

For hurricane wind speed data, we use county level data made available via Anderson et al (2020a) 

and Anderson et al (2020b) using the U.S. National Hurricane Center’s Best Track Atlantic hurricane 

 
1 Using only 1997-2020 results in too short a sample to estimate the full dynamic pattern from ℎ =  −3 to 8 with 
reasonable precision. 
2 Using the median wage yields qualitatively similar results to the mean. 
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database (HURDAT2.)  We use versions 0.1.1 and 0.1.0 of R packages hurricaneexposure and 

hurricaneexposuredata, respectively. Our wind speed measure is the highest maximum sustained wind 

speed that has a duration of at least 10 minutes.  We only include the observed wind speed for a county 

and event if the maximum gust is at least 64 knots, the maximum sustained wind is at least 50 knots, the 

daily precipitation is at least 50 mm (about 2 inches), or the total precipitation over the five day period is 

at least 200 mm (about 8 inches).  
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