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Abstract

This paper measures option-implied skewness at the firm and market levels between

1980 and 2020. It reports the first real-time measure of conditional micro skewness.

There are three key results: 1. Firm skewness is significantly procyclical, while market

skewness is acyclical; 2. Firm-level skewness leads the business cycle, and it is strongly

linked to credit spreads, suggesting one potential causal channel; 3. Firm skewness is

significantly, and not mechanically, correlated with aggregate volatility, implying that

there is a common shock driving them both, which is also linked to the business cycle.

1 Introduction

Background

A growing literature has developed evidence that the conditional distributions of eco-

nomic variables, at both the aggregate and micro levels, varies over time. There is work

on shocks to volatility and uncertainty and the aggregate level, time-varying disaster risk,

and estimates of cross-sectional variance and skewness of outcomes at the micro level.1 The

evidence on micro outcomes has come from analyses of the distribution of realized outcomes,

typically at just an annual frequency. For example, research has measured the skewness

*Northwestern University and NBER. I appreciate helpful comments from Stefano Giglio, Simon Oh,
Laura Veldkamp, Matthias Kehrig, and Thiago Ferreira.

1On uncertainty, see, among many others, Bloom et al. (2018), Adrian, Boyarchenko, and Giannone
(2019), and Berger, Dew-Becker, and Giglio (2020). On disasters and skewness, see Barro (2006), Gabaix
(2012), Gourio (2012, 2013), and Wachter (2013). At the micro level, see also Storesletten, Telmer, and
Yaron (2004), Guvenen, Ozkan, and Song (2014), and Kehrig (2015).
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of the distribution of annual firm-level employment growth and annual individual income

growth.2

But in models in which time-varying risk – whether through volatility or skewness –

is a driving force (e.g. Christiano, Motto, and Rostagno (2016) and Salgado, Guvenen,

and Bloom (2020)), it is agents’ ex ante beliefs about future skewness that matter. That

is, decisions today depend on beliefs about the moments of shocks that will be realized

tomorrow, rather than the moments of the shocks that were already realized today. And

realizations are always equal to expectations plus an error, meaning that they are noisy

relative to the true conditional expectation. The use of annual data makes estimation and

measurement difficult, since there are so few observations and they come at a low frequency

relative to, for example, the length of the typical recession.3 Finally, policymakers benefit

from having measures available in real time that can be used for actual decisionmaking.

Estimation and testing of models based on time-varying risk, whether volatility or skewness,

and also using measures of risk as inputs to policy, therefore requires high-frequency measures

of conditional moments.

Contribution

This paper’s fundamental contribution is to develop real-time forward-looking measures

of the conditional skewness of both firm-level and aggregate shocks from option prices.4 The

measures are available since 1980 at up to the daily frequency (or even intraday) and without

any reporting delay, making them particularly attractive to policymakers. The sample is of

comparable length to those used in other studies and enables analysis of the behavior of

micro and aggregate skewness across six business cycles.

To validate the skewness indexes, I show that they have significant predictive power for

future realized skewness – i.e. the skewness of the shocks that are actually realized – for both

stock returns and a novel text-based skewness measure from news articles. Those results hold

even after controlling for lagged realized skewness. The option-implied skewness measures

are also significantly positively correlated with annual measures of realized cross-sectional

skewness of employment and income growth.

Results

2For variance, Campbell et al. (2001), Bloom (2009), Herskovic et al. (2016), and Bloom et al. (2018)
all examine measures of realized dispersion rather than conditional variances. Guvenen, Ozkan, and Song
(2014), Ferreira (2018), Jondeau, Zhang, and Zhu (2019), Oh and Wachter (2019), and Salgado, Guvenen,
and Bloom (2020) study skewness. The evidence on stock returns is the exception to the general pattern
that research has typically looked at low frequencies.

3See Guvenen, Ozkan, and Song (2014), Harmenberg and Sieversten (2017), Busch et al. (2018), Ilut,
Kehrig, and Schneider (2018), and Salgado, Guvenen, and Bloom (2020).

4While the CBOE reports a market-level skewness index, it has received little attention, and this paper
is novel for combining market skewness with firm-level information.

2



The paper’s key finding is that skewness at the firm level is significantly procyclical.

In each of the past six recessions, firm-level skewness became noticeably more negative.

Skewness of the overall stock market, on the other hand is actually slightly above average

during NBER-dated recessions, and acyclical overall. Given that the total uncertainty faced

by firms is a combination of aggregate and firm-specific shocks, the natural conclusion is

that the skewness of firm-specific shocks must be procyclical, and I show formally that they

are.

The paper’s second result is that aggregate volatility and firm-level skewness are signifi-

cantly negatively correlated. Most or all of the jumps down in firm skewness are associated

with jumps up in market-level volatility. A mechanical effect can, in principle, cause that

link, but it turns out to be insufficient quantitatively (and the correlation between firm

skewness and aggregate volatility is far from 1, inconsistent with a purely mechanical ex-

planation). Instead, there appears to be a common factor affecting aggregate volatility and

firm-level skewness, making both cyclical. That point is sharply identified here due to the

high-frequency nature of the data, and cannot be seen in lower frequency realized measures.

This result is reminiscent of the analysis in Kozienauskas, Orlik, and Veldkamp (2018) show-

ing how shocks to aggregate volatility can drive a range of measures of uncertainty and

dispersion.

I next use cross-correlations to examine the lead-lag relationship between firm-level skew-

ness and the business cycle. Skewness very clearly moves first, in the sense that it predicts

measures of output better than output predicts skewness. Firm-level skewness also moves

approximately contemporaneously with the Philadelphia Federal Reserve’s Leading Indicator

index.

A number of papers have proposed channels through which changes in risk might drive

the business cycle. In Gourio (2013) and Christiano, Motto, and Rostagno (2014), changes

in risk affect the business cycle through their effects on credit spreads. I show that there is a

very tight relationship in the data between credit spreads and the conditional third moment

faced by firms – they have a correlation of over 80 percent. This is certainly not the only

channel, though, through which skewness and output could be related, and the paper does

not provide causal evidence on this point.

In a related paper, Dew-Becker and Giglio (2021) show that firm-specific volatility has

no consistent relationship with the business cycle. The results there and in this paper thus

echo and extend those of Guvenen, Ozkan, and Song (2014), who argue that skewness in

individual income growth is procyclical, while variance is acyclical. Ilut, Kehrig, and Schnei-

der (2016) develop a model based on concave responses to firm-level shocks that generates
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countercyclical aggregate volatility and procyclical cross-sectional skewness, consistent with

the empirical results here.5

Many of this paper’s results rely on the high-frequency variation made newly available by

using option data. Using annual data would not allow one to uncover lead/lag relationships

or to see exactly how entries into recessions are associated with high skewness, and this is

the only dataset that allows one to disentangle aggregate, firm, and idiosyncratic skewness.

Related literature

In addition to the work described above, this paper is also related to work using stock

options to estimate investor views about conditional distributions, such as CBOE’s VIX and

SKEW indexes, which measure the conditional volatility skewness of the S&P 500 (see also

Kozhan, Neuberger, and Schneider (2013) and Kozlowski, Veldkamp, and Venkateswaran

(2020)). Those are both aggregate moments, so Dew-Becker and Giglio (2021) provide a

long time-series of firm-level implied volatility. This paper takes that work a step further by

measuring firm-level skewness, which is significantly more difficult technically. There is also

a broader finance literature studying firm-level skewness, typically in the context of option

pricing or return forecasting.6 Finally, note that this paper focuses on skewness – measuring

asymmetry – but total downside risk also depends on volatility (e.g. Adrian, Boyarchenko,

and Giannone (2019)), discussed in section 4.4.

2 Data and methods

2.1 Option-implied skewness

The goal is to construct an estimate of the conditional skewness of economic outcomes at

the aggregate and firm levels. I focus on stock returns as the outcome because stock options

can be used to measure investor beliefs about their future distribution. Stock prices are

economically relevant because they summarize investor beliefs about the future profitability

of US corporations. It would arguably be preferable to have measure of skewness of some

more fundamental concept, such as productivity, but productivity is not directly measurable,

nor does it have an associated options market to help reveal agents’ probability distributions.7

This paper measures skewness throughout as the scaled third moment. For a generic

5See also Kozienauskas, Orlik, and Veldkamp (2018) and Dew-Becker, Tahbaz-Salehi, and Vedolin (2021)
for other models in which time-varying moments are generated through concave responses to structural
shocks.

6Conrad, Dittmar, and Ghysels (2013) study firm-level option-implied skewness in the context of return
forecasting. See also Bakshi, Kapadia, and Madan (2003).

7Past work also studies skewness of endogenous outcomes, such as income and employment.
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random variable xt+1,

skewt (xt+1) ≡
Et

[
(xt+1 − Etxt+1)

3]
Et

[
(xt+1 − Etxt+1)

2]3/2 (1)

where Et denotes the statistical expectation conditional on information available at time t.

Asset prices do not in general reveal statistical expectations, but instead “risk-neutral”

expectations, which are affected by risk premia. This paper refers to “option-implied ex-

pectations”, by which it means those risk-neutral expectations. If risk premia are constant,

they will only induce a level shift in the skewness. If they vary over time, though, they may

cause the option-implied measure to fail to perform as a good statistical predictor of realized

skewness. This point is analyzed in detail in section 3.2 and appendix A.2.2.

More than one method of constructing option-implied skewness has been proposed in the

literature. I use the formula of Kozhan, Neuberger, and Schneider (2013), denoting option

Implied Skewness by ISt,

ISt ≡ 3

∫∞
0

K−Ft

K2Ft
Ot (K) dK[∫∞

0
1
K2Ot (K) dK

]3/2 (2)

where Ot (K) is the price of an out-of-the-money option at strike K on date t. The CBOE

uses a similar formula for its S&P 500 skew index. The CBOE formula has a tighter link to

the conditional third moment but a weaker link to feasible measures of realized skewness.

Figure A.3 shows that the Kozhan, Neuberger, and Schneider (2013) and CBOE measures

are highly similar, though not identical.

2.2 Data

I calculate implied skewness at the market level using S&P 500 option prices from the CME

for 1983–1995 and the CBOE for 1996–2020. The analysis here is entirely in terms of monthly

skewness – using options with a one-month average maturity. That yields comparability

with the well known VIX index of monthly volatility and is consistent with the measurement

frequency of macroeconomic data.

Option markets are also more liquid at shorter maturities. There is very little volume in

12-month options, for example, especially for individual stocks.8 As discussed in appendix

8Dew-Becker and Giglio (2021) extensively discuss the relationship between persistence of risk shocks
and how they affect investment. Calculating a 12-month skewness is in principle feasible, but would be
significantly more difficult (and the analysis here is already far from trivial) and would require making more
assumptions and relying more strongly on interpolation and extrapolation. In addition, unlike variance,
skewness is not directly comparable across horizons (intuitively, due to the force underlying the central limit
theorem that smoothes out distributions).

5



A.1, I apply standard filters to isolate relatively more liquid options. Section A.3.4 examines

differences in liquidity across options and shows they are very small and are unrelated to the

patterns in skewness.

This paper’s innovation is to calculate a skewness index for firm-level outcomes using

options on individual stocks. For 1/1996–12/2020, the data is from Optionmetrics, and for

1/1980–6/1995 from the Berkeley Options Database (note that there is a six-month gap).

Because the BODB sample covers only the largest firms, I restrict attention to only the

200 largest firms by market capitalization in the Optionmetrics sample. That also helps

ensure that the options used are liquid and reduces selection bias among smaller stocks (e.g.

Mayhew and Mihov (2004)). Dew-Becker and Giglio (2021) provide an extensive analysis of

the BODB data. It is important to emphasize that the results here are for the largest firms

in the economy. That will be more appropriate for some models than others (for example,

conditional skewness might be linked to the odds of receiving a granular shock to a large

firm, à la Gabaix (2011)).

While data through 2020 is available, the events of the spring of that year in particular

are sufficiently extreme as to dominate certain parts of the analysis. I therefore plot and

discuss the univariate properties of uncertainty through the end of 2020, but all comparisons

with macro variables use data only through the end of 2019.9

For the exercises forecasting realized skewness one month ahead, theory requires using

implied skewness calculated on the last trading day of the month. For all other purposes, I

average skewness over days in the month. The differences are minor.

2.3 Skewness indexes

Denote firm i’s implied skewness on date t by ISi,t. Implied skewness is calculated us-

ing equation (2), with the integral constructed using methods described in appendix A.1.

Average firm-level skewness on date t is then

ISfirm,t ≡
∑

i ISi,tmkti,t∑
imkti,t

(3)

where mkti,t is the market capitalization of firm i on date t.

Skewness for the overall market – the S&P 500 – is denoted by ISmkt,t, and is calculated

using equation (2) and S&P 500 option prices.

9Prior to 2020, the largest monthly absolute growth rate in employment in the sample is 1.2 log points,
while employment fell 14.7 log points in April, 2020.
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2.3.1 Idiosyncratic skewness

Most of the analysis just focuses on firm and aggregate skewness, ISfirm,t and ISmkt,t, but it

is also useful to understand the determinants of ISfirm,t. To do so, I consider the single-factor

specification of Campbell et al. (2001),

ri,t = rmkt,t + εi,t (4)

where ri,t is the return on stock i on date t, rmkt,t is the return on the market, and εi,t is a

residual uncorrelated with rmkt,t As in Campbell et al. (2001), the loading on the market is

treated as approximately 1.

Importantly, note that nothing about the calculation of ISfirm,t and ISmkt,t relies on that

approximation.

It is then straightforward, using the definition of skewness, to show that the contribution

of firm-specific shocks to ISfirm,t is

skew (εi,t) + 3
E
[
rm,tε

2
i,t

]
σ3
ε,t

(5)

That contribution, which I refer to as idiosyncratic skewness has two sources: skewness in

the firm-specific shocks themselves, and covariance between the magnitude of the firm-level

shocks, ε2i,t, and the return on the overall market.10 Option-implied idiosyncratic skewness

is then

ISidio,t =

(
1−

IV 2
mkt,t

IV 2
firm,t

)−3/2ISfirm,t −

(
IV 2

mkt,t

IV 2
firm,t

)3/2

ISmkt,t

 (6)

where IVmkt,t and IVfirm,t are option-implied volatilities (measured as in the denominator of

(2)) for the S&P 500 and averaged across individual firms.11,12

10Formally, the εi,t need not be independent across firms, so “idiosyncratic” here just means uncorrelated
with aggregate returns.

11Equation (6) comes from expanding the skewness formula for (4) to get

skewt (ri,t) =

(
σ2
m,t

σ2
i,t

)3/2

skewt (rm,t) +

(
1−

σ2
m,t

σ2
i,t

)3/2(
skewt (εi,t) + 3

E
[
rm,tε

2
i,t

]
σ3
ε,t

)
︸ ︷︷ ︸

Idiosyncratic skewness

(7)

where the σ2
·,t terms are conditional variances. Option-implied idiosyncratic skewness in (6) inserts option-

implied moments for the conditional moments.
12Note that ISidio,t is not an average across firms, but is calculated from average moments across firms,

reducing the impact of measurement error. Formally, ISidio,t is the contribution of idiosyncratic shocks to
skewness for a hypothetical firm that has the average level of skewness and volatility on date t.
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3 The time series of conditional skewness

3.1 Basic characteristics

The left-hand panels in figure 1 plot the time series of ISfirm,t, ISmkt,t, and ISidio,t. All

three have clear downward trends over time. Aggregate skewness is now significantly more

negative than firm skewness, having fallen from around 0 to -3 over 1980–2020, compared to

0 to -1 for firm skewness. A significant fraction of the total declines in aggregate and firm

skewness come in two episodes in 1987 and 1989. The 1987 episode is the October crash,

which had the largest single-day decline in the history of the S&P 500. In 1989, there was

also a significant decline in the stock market associated with a large increase in volatility.

Prior to those events, both conditional and realized stock return skewness were near zero.

This link between the downward shifts and large jumps in the market is the first indication

of a link between aggregate volatility and firm-level skewness.

Gray bars in the figure represent NBER-dated recessions. Section 4 studies the cyclicality

of skewness in detail, but one can see in figure 1 that firm and idiosyncratic skewness have

fallen in each recession in the sample, while market skewness displays no clear pattern,

sometimes rising and sometimes falling in recessions. Perhaps most strikingly, in March and

April of 2020, when firm skewness reached some of its most negative values and employment

fell by 15 percent, market-level skewness actually rose toward zero.

The correlation between firm and market skewness is, in some sense, surprisingly weak.

They have an overall correlation of 0.64, but that is entirely due to their shared time trend.

Once a linear trend is removed from both series, the correlation falls to 0.05. So while

both have trended down, their business cycle and higher-frequency variation is essentially

independent.

Shocks to ISfirm,t, ISmkt,t, and ISidio,t are notably short-lived. Figure 2 plots the first 12

autocorrelations for Hodrick–Prescott detrended employment, industrial production, credit

spreads, and skewness. The autocorrelations in the three skewness measures decay far more

quickly than those for employment, IP, and credit spreads – to zero within a year, compared

to approximately 0.4 for employment.

Table 1a summarizes the results so far and gives statistics that can be used to guide

calibrations of models driven by variation in idiosyncratic skewness. It reports the uncondi-

tional means and standard deviations of the three skewness measures along with the monthly,

quarterly, and annual autocorrelations, both with and without removing a time trend.13

13Note that the 12th autocorrelation is much larger than the first autocorrelation raised to the 12th power,
implying that skewness has transitory variation. If it were to be calibrated as an AR(1) process, matching
the annual autocorrelation would likely be most natural.
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3.2 Validating implied skewness

Since skewness is a scaled moment, the formal link between conditional and realized skewness

is not simple. True conditional skewness does not equal the statistical expectation of the

realized skewness coefficient in equation (1) since the latter is a nonlinear function of two

realized moments. That said, one would still in general expect conditional skewness to predict

realized skewness, and this section checks that. I measure realized skewness here using

methods developed in Neuberger (2012) and described in detail in appendix A.2. Figure A.1

plots implied and realized skewness, showing that while they follow similar paths, realized

skewness appears much noisier.

Table 1b reports results of forecasting regressions for realized skewness. The first column

shows that implied skewness has significant predictive power for realized skewness at the

firm level. The second column shows that the predictive power holds even after controlling

for lagged realized skewness. In other words, investors have information about the future

skewness of firm-level economic outcomes, which they use to price options and which hence

appears in the implied skewness measure. That information is independent of the information

contained in lagged realized skewness. The remaining four columns in table 1b show that

similar results hold for market-level and idiosyncratic skewness.

Appendix A.2 provides a more thorough analysis of the forecasting power of the con-

ditional moments, treating the theoretical side more carefully – forecasting the numerator

and denominator of the skewness coefficient separately – and also directly accounting for the

possibility of time-varying risk premia in the option prices. It shows that the paper’s results

are robust to those modifications. Appendix A.2 derives an alternative skewness measure

based on direct projections of realized returns on state variables. The advantage of the pa-

per’s focus on option prices is that it requires no significant modeling choices – skewness is

simply read from option prices directly.

3.3 Relationship with other measures of skewness

The top-left panel of figure 3 plots ISfirm,t and the skewness of media news about firms using

event sentiment scores from the Ravenpack database of news articles (reported quarterly to

reduce noise; see appendix A.3.1). The text-based measure is useful for giving a measure that

is independent of asset prices and still available at high frequency, though the news measure

is more about the skewness of realized shocks rather than a conditional skewness. The

text-based skewness measure is novel to this paper and potentially of independent interest.

The two series are clearly strongly related, with an overall correlation of 0.39 and (0.47
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for quarterly changes). Table A.2 reports results of regressions of news skewness on its

own lag and lagged implied and realized skewness. Implied skewness has economically and

statistically significant forecasting power for news-based skewness, showing that it not only

predicts the behavior of stock returns but also the distribution of news events (consistent

with the Ravenpack series measuring realized rather than conditional skewness).

The bottom panels on the left-hand side of figure 3 plot ISfirm,t, minus an HP-filtered

trend, against two alternative measures of cross-sectional skewness in annual growth rates:

sales growth in Compustat and employment growth in the Census LBD.14 These are measures

of realized rather than conditional skewness, measuring the skewness of growth rates that

actually occurred, as opposed to what agents expected the skewness so be. Furthermore,

they are growth rates (of an annual flow, in one case) making the comparison to a monthly

time series difficult.

In both panels, there is a clear positive correlation – both about 0.35 – between detrended

ISfirm,t and the alternative cross-sectional skewness measures. The three series display sim-

ilar patterns particularly since the late 1990’s, all falling in the 2001 and 2008 recessions, for

example. Since these series are only available at the annual frequency, forecasting regressions

have insufficient power to test whether they are predicted by implied skewness.

Appendix A.3.2 shows that ISfirm,t is also very similar to a measure of skewness based on

the difference between upside and downside variances (e.g. Segal, Shaliastovich, and Yaron

(2015)).

4 Cyclicality of skewness

As discussed above, one can see, based on the gray bars in figure 1, that firm skewness is

procyclical and aggregate skewness is acyclical. Table 1c reports correlations of the three

skewness series, with and without HP-filtering, with various measures of real activity for

the sample up to 12/2019.15 In all cases, firm and idiosyncratic skewness are estimated

to be significantly procyclical. Furthermore, the cyclicality is somewhat stronger for the

idiosyncratic component.

An alternative way to quantify the cyclicality is to simply measure the average skewness

in and out of recessions. After controlling for a time trend, firm skewness is on average lower

by 0.17 in recessions, and idiosyncratic skewness is lower by 0.40, representing shifts of 0.67

and 0.74 standard deviations, respectively.

14The LBD data is taken from Salgado, Guvenen, and Bloom (2020). Both measures use the Kelley
skewness coefficient to control outliers.

15Table A.1 reports results through 2020.
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The correlations for ISmkt, on the other hand, are all close to zero and there is no

consistent evidence of cyclicality – some correlations imply ISmkt is procyclical and others

imply it is countercyclical. During NBER-dated recessions, S&P 500 skewness is actually

on average higher by 0.35 (0.60 standard deviations). Overall, then, aggregate skewness has

been acyclical or even countercyclical over the past 40 years, while firm-level outcomes have

consistently procyclical skewness.

To further illustrate the cyclicality of firm-level skewness, the bottom-right panel of figure

3 plot detrended ISfirm,t against the Philadelphia Fed’s Leading Indicators index. Each of

the declines in the leading indicators index is associated with a decline in skewness (though

the reverse is not true).

4.1 Cross-correlations

The bottom four panels of figure 2 plots the cross-correlations of implied skewness and the

market and firm levels with employment, the unemployment rate, the Chicago Fed National

Activity index (CFNAI), and the Philadelphia Fed’s Leading Indicator index. The shaded

regions represent 90-percent confidence bands.

I apply the Hodrick–Prescott filter to both employment and skewness in order to focus

on cyclical relationships, which means these correlations do not measure true forecasting

relationships (appendix A.3.3 shows similar, though somewhat weaker, results hold without

detrending).

ISfirm,t has strong correlations with all four measures of activity, peaking at 0.2–0.4 for

each. Furthermore, the correlations are highest between current levels of real activity and

lagged ISfirm,t: skewness leads the cycle. Its correlations with the leading indicators index

peak near lag zero, implying they move contemporaneously.

The results for market-level skewness are again drastically different from those for firm

skewness. In all four cases, the correlations are close to zero, and in fact ISmkt,t again appears

if anything to be countercyclical. Furthermore, the estimated correlations are statistically

significantly different from those for ISfirm.

4.2 Aggregate and idiosyncratic contributions to firm skewness

Rearranging the definition of ISidio,t in equation (6),

ISfirm,t =

(
IV 2

mkt,t

IV 2
firm,t

)3/2

ISmkt,t +

(
1−

IV 2
mkt,t

IV 2
firm,t

)3/2

ISidio,t
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where, again, IV represents option-implied volatility. The total skewness faced by individual

firms, ISfirm,t, has three sources: market skewness, ISmkt,t, idiosyncratic skewness, ISidio,t,

and changes in their relative weights, through IVmkt,t/IVfirm,t. Intuitively, since ISmkt,t tends

to be more negative than ISidio,t, when IVmkt,t/IVfirm,t is larger, so that aggregate shocks

have a larger scale, firm skewness will become more negative. The question is what effect

that mechanism has quantitatively.

The right-hand panels of figure 1 illustrate the relative contributions of those three terms

by plotting ISfirm,t against the following three comparisons:

Idio. skew only:

(
IV 2

mkt

IV 2
firm

)3/2

ISmkt +

(
1− IV 2

mkt

IV 2
firm

)3/2

ISidio,t

Mkt. skew only:

(
IV 2

mkt

IV 2
firm

)3/2

ISmkt,t +

(
1− IV 2

mkt

IV 2
firm

)3/2

ISidio

Volatility only:

(
IV 2

mkt,t

IV 2
firm,t

)3/2

ISmkt +

(
1− IV 2

mkt,t

IV 2
firm,t

)3/2

ISidio

In each case, only one of the three variables determining the value of ISfirm,t varies over

time, while the other two are held at their unconditional means over the sample (denoted by

overbars). The figure removes time trends from each to focus on higher frequency variation.

The top-right panel in figure 1 shows that when only ISidio,t varies, the series looks nearly

identical to total firm skewness, with a correlation of 78 percent. The volatility of this series

is also about the same as the volatility of ISfirm,t. So variation over time in the total

skewness faced by individual firms is almost entirely explained by variation in the skewness

of their idiosyncratic shocks, consistent with models that emphasize variation in micro risk.

The next two panels essentially confirm the result from the top panel. The middle-right

panel of figure 1 shows that variation in the market skew explains essentially none of the

variation in firm risk – their correlation is -0.01, and the volatility of this series is only 38

percent of that of ISidio,t.

Interestingly, the bottom-right panel shows that variation in volatility does matter some-

what. Since market volatility is countercyclical – and more so than idiosyncratic volatility

(see Dew-Becker and Giglio (2021)) – that channel will drive firm skewness to be procyclical.

In episodes when IVmkt,t/IVfirm,t rose significantly, such as the spikes in the late 1990’s,

the financial crisis, and the debt ceiling and Euro crises in 2010 and 2011, firm skewness

became more negative. In those periods, though, there were typically also declines in the

idiosyncratic component of skewness (with the exception of 1998, which seems to have been
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purely related to volatility changes). Overall, changes in volatility have a correlation of 0.67

with firm skewness. However, changes in volatility only generate a time series that is 38

percent as volatile as overall ISfirm,t.
16

Because ISfirm,t is a nonlinear function of the three components, there is no additive

variance decomposition. Nevertheless, the ranking of importance of the determinants of

firm skewness, both in terms of ordering and magnitude, is clear: variation in idiosyncratic

skewness is most important, variation in the relative volatility of aggregate and idiosyncratic

shocks contributes to procyclicality but is small quantitatively, and variation in aggregate

skewness is unimportant at the firm level.

The fact that the cyclicality of skewness is driven by the firm-specific component has

important implications. Models in Gabaix (2012), Wachter (2013), Gourio (2013), and Ko-

zlowski, Veldkamp, and Venkateswaran (2020) etc. are driven by variation in the conditional

skewness of aggregate shocks. But the results here show that while aggregate skewness does

vary, it is not related to the business cycle in the 1980–2020 sample. Instead, it is variation

in firm-level risk that has been important, consistent with models that emphasize micro-level

mechanisms, including Christiano, Motto, and Rostagno (2014), Ilut, Kehrig, and Schneider

(2018), Salgado, Guvenen, and Bloom (2020), and Dew-Becker, Tahbaz-Salehi, and Vedolin

(2021).

4.3 Credit spreads, skewness, and the third moment

There are a number of channels through which skewness and the business cycle could be re-

lated. A prominent channel is credit spreads: declines in skewness could raise firm borrowing

costs, reducing investment and GDP.

Corporate debt is like a short put option (Merton (1974)) – when firm value falls suffi-

ciently far, the value of the debt is eventually impaired. Credit spreads should thus increase

in the mass of the distribution of outcomes in the left tail. That mass can increase either due

to the scale of the distribution increasing – rising variance – or due to a shift in its shape to

be more left skewed. A number of structural models of the economy rely on those effects.

In Gourio (2013), the effect is due to variation in aggregate risk, while in Christiano, Motto,

and Rostagno (2014) it is about firm-level risk.

Table 1d reports regressions of the Gilchrist–Zakrajsek (2012) credit spread on option-

implied moments. The first column confirms the negative relationship with firm skewness

and the positive relationship with firm implied volatility, IVfirm,t, consistent with Christiano,

Motto, and Rostagno (2016). The second column replicates the regression from column

16The results are the same if the three components of firm skewness are shut off one at a time.
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1, but replacing firm-level volatility and skewness with S&P 500 moments, showing that

increased volatility and decreased skewness are again both associated with higher credit

spreads, consistent with Gourio (2013).

A simple way to summarize the positive relationship with volatility and the negative

relationship with skewness is through the third moment of returns, I3:

I3idio,t = ISidio,t × IV 3
idio,t

I3mkt,t = ISmkt,t × IV 3
mkt,t

The third column of table 1d reports results from a regression of credit spreads on I3idio,t

and I3mkt,t. The R2, at 0.66, is slightly higher than in the first and second columns, showing

that the option-implied third moment summarizes the information available in the skewness

and standard deviation. Both I3idio,t and I3mkt,t have significantly negative coefficients,

though the coefficient on I3idio,t is far larger. Furthermore, its marginal R2 is substantially

larger – 14.0 compared to 3.1 percent for I3mkt,t. Overall, then, fluctuations in both market

and firm-specific risk affect credit spreads, but the firm-specific component is quantitatively

far more important.17

Consistent with the intuition from models driven by variation in both aggregate and

cross-sectional risk, movements in equity volatility and skewness feed into credit spreads,

and that information is summarized well by the third moment. Most of the variation in risk

driving spreads comes from common shocks to firm-level rather than aggregate risk.

4.4 Comparing volatility and skewness

The results in this paper are closely related to work on time-variation in the conditional

volatility of stock returns. Dew-Becker and Giglio (2021) show that market-level conditional

volatility is countercyclical, while idiosyncratic conditional volatility is acyclical. That is

the opposite of what is found here. So, when studying stock returns, cyclical variation in

the aggregate contribution to risk is characterized by changes in the second moment, while

cyclical variation in the firm-level contribution to risk is due to changes in the third moment.

To see that, the bottom two panels on the right-hand side of figure 3 plot ISfirm,t rel-

ative to market and idiosyncratic volatility (i.e. market and idiosyncratic option-implied

conditional standard deviations, which sum, in terms of squares, to total firm volatility). In

every episode where market volatility jumps up, firm skewness jumps down. Their overall

correlation, after removing a linear trend from ISfirm,t, is -0.47. Section 4.2 shows that that

17Table A.1 reports results for the same regressions on the sample through 2020.
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relationship is not purely mechanical. Also, the correlation of ISidio,t, which removes the

mechanical component, with IVmkt,t, is -0.38, illustrating that the relationship comes from

skewness in firm-specific shocks.

The bottom-right panel, shows, conversely, that there is no clear relationship between

ISfirm,t and the idiosyncratic component of volatility, IVidio,t. Idiosyncratic volatility rises

in three main episodes, and skewness is low in two of them (2008 and 2020) and high in the

other (the late 1990’s). The correlation between ISfirm,t and IVidio,t reflects that, at only

-0.12.

There appears, then, to be a single shock that both drives firm-level skewness to become

more negative and market-level volatility to become more positive. That common component

in risk is also clearly cyclical, rising in every recession in the sample. This link has not been

previously noticed since, up to now, there was not a high-frequency measure of conditional

skewness – the common jumps in market volatility and firm skewness are not visible in

annual data.

5 Conclusion

This paper provides the first real-time, high-frequency measure of conditional skewness. Its

key finding is that aggregate skewness is essentially acyclical, but firm-level skewness is

strongly procyclical, due to variation in the skewness of firm-specific shocks. Combining the

results here with those in other work, recessions are characterized by greater dispersion in

aggregate outcomes, but little or no change in asymmetry, while firm-level shocks become

more tilted to the left but, conditionally, no more volatile.

The business cycle also potentially explains a large fraction of the variation in skewness

– the correlation of firm skewness with capacity utilization is over 50 percent, for example.

These results are consistent with models emphasizing cyclical variation in firm specific risk.
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Table 1: Moments and regressions

(a) Calibration moments

Raw data Detrended
Mean SD AC(1) AC(3) AC(12) SD AC(1) AC(3) AC(12)

ISfirm,t -0.54 0.46 0.93 0.87 0.76 0.22 0.70 0.44 0.03
[0.07] [0.04] [0.01] [0.03] [0.07] [0.02] [0.04] [0.06] [0.07]

ISmkt,t -1.66 0.84 0.94 0.86 0.73 0.40 0.73 0.43 0.02
[0.13] [0.12] [0.02] [0.04] [0.09] [0.04] [0.03] [0.06] [0.09]

ISidio,t -0.53 0.75 0.89 0.77 0.57 0.48 0.72 0.43 0.02
[0.11] [0.09] [0.02] [0.05] [0.09] [0.07] [0.05] [0.09] [0.06]

(b) Forecasting realized skewness

Firm Market Idiosyncratic

ISx,t 0.29 0.20 0.43 0.30 0.32 0.20
[0.04] [0.03] [0.04] [0.04] [0.08] [0.06]

RSx,t 0.46 0.30 0.28
[0.04] [0.06] [0.08]

Constant -0.14 -0.11 -0.04 -0.04 -0.25 -0.19
[0.03] [0.02] [0.07] [0.05] [0.05] [0.04]

(c) Correlations

ISfirm,t ISfirm,t ISmkt,t ISmkt,t ISidio,t ISidio,t

detrended detrended detrended
Industrial prod. 0.17 0.21 -0.01 -0.07 0.25 0.24
Employment 0.17 0.22 -0.01 0.02 0.23 0.19
Unemployment -0.22 -0.26 0.02 0.04 -0.28 -0.24
CBO output gap 0.15 0.21 -0.16 -0.08 0.27 0.27
NBER rec. ind. -0.11 -0.14 0.10 0.15 -0.17 -0.16
Capacity util. 0.51 0.15 0.14 -0.09 0.56 0.20
Empl. growth 0.17 0.09 0.01 -0.17 0.23 0.18
IP growth 0.34 0.14 0.06 -0.19 0.40 0.22

(d) Credit spread regressions

Firm moments Market moments mkt vs. idio.
ISfirm,t −1.06 ISmkt,t −0.23 I3idio,t −22.15

[0.17] [0.07] [2.65]
IVfirm,t 6.53 IVmkt,t 11.00 I3mkt,t −13.00

[1.68] [2.43] [3.71]
R2 0.62 0.55 0.66

Notes: In panels (a), (b), and (d), standard errors, reported in brackets, are calculated using the Newey–
West method with 12 lags. Panels (a) and (c) detrend using the HP filter with a smoothing parameter of
129,600. The levels of industrial production and employment are detrended in the same way. There is no
detrending in panel (d). The sample in panels (c) and (d) stop in 12/2019.
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Figure 1: Implied skewness and its components
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Note: The left-hand panels plot option-implied skewness at the firm, market, and idiosyncratic levels.
The right-hand panels plot total firm skewness when just one of its three components varies over time,
with the other two left at their unconditional means. The series in the right-hand panel are HP-filtered.
Gray bars indicate NBER-dated recessions.
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Figure 2: Auto- and cross-correlations
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Figure 3: Comparisons with other variables
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A.1 Fitting option prices to get risk-neutral moments

This section describes how I fit option prices in order to calculate risk-neutral moments at

the firm and market level. I first describe the firm specification, which is more general. The

method for the S&P 500 is a special case with restrictions imposed.

The key assumption is that the log price of a stock option approaches an asymptote that

is linear in the log strike, as in Bollerslev and Todorov (2014). That is, the price of an

out-of-the-money option on stock i at log strike k is

pi,k = ai + bi |k|+ b+i max (k, 0) + fi (k) + εi,k (A.1)

where ai, bi, and b+i are coefficients. fi (k) is some function of the strike, and εi,k is a

measurement error that is uncorrelated across strikes and firms. fi (k) captures the deviation

of the log option price from the linear asymptotes. The assumption that pi,k has a linear

asymptote is imposed by assuming that fi (k) → 0 as k → ±∞. b+i controls the difference

between the slope as k →∞ and k → −∞.

The main step is estimating the parameters ai, bi, and b+i and the function fi. I treat

them as having a joint Normal distribution, so this is a standard Gaussian process regression.

For the parameters ai, bi, and b+i , I assume that

ai ∼ N
(
a, σ2

a

)
(A.2)

bi ∼ N
(
b, σ2

b

)
(A.3)

b+i ∼ N
(
b+, σ2

b+

)
(A.4)

The parameters governing the distributions, a, σ2
a, etc., are hyperparameters that can be

estimated through MLE. Conditional on a, b, and b+, the parameters ai, bi, and b+i are

independent across firms.

To help absorb the cross-sectional variation in those parameters, I first normalize all

underlyings to have a price of 1. That is, given an observation with an underlying price of

Si,t, a strike of K̃, and an option price of P̃K̃,i,t, we divide through by Si,t, to get

Kt = K̃t/Si,t (A.5)

PK,i,t = P̃K̃,i,t/Si,t (A.6)

This is simply a renormalization in terms of a different numeraire (units of the underlying

instead of dollars).
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To fully specify the likelihood of the data, under the assumption that f is Gaussian,

we need to define its mean and covariance matrix (i.e. its covariance kernel). I model it

as following a Brownian bridge stretched to cover the entire real line and with a jump at

k = 0. The stretched Brownian bridge assumption implies that fi (k) → 0 almost surely as

k → ±∞. The assumption of a jump at zero allows the price function to be continuous at

zero even though the linear part of the model, ai + bi |k|+ b+i max (k, 0) has a discontinuity

(i.e. f is able to smooth out the discontinuity with an offsetting jump).

More formally, similar to above,

E [fi (k)] = 0∀i, k (A.7)

cov (fi (k) , fj (m)) = σ2
B (min (L (k) , L (m))− L (k)L (m)) (A.8)

+σ2
Dδk>0δm>0 (1− L (k)) (1− L (m)) (A.9)

+δi=j

(
σ2
B̂

(min (L (k) , L (m))− L (k)L (m))

+σ2
D̂
δk>0δm>0 (1− L (k)) (1− L (m))

)
(A.10)

where L (k) ≡ exp(sk)
exp(sk)+1

is a scaled logistic function and s, σ2
B, σ2

D, σ2
B̂

, and σ2
D̂

are hyperpa-

rameters. δz is an indicator function equal to 1 if z is true and 0 otherwise.

The specification for the distribution of fi is such that it is the sum of two Brownian

bridges: one that is common to all firms, and a second that is specific to firm i. The logistic

function L (k) is what stretches the Brownian bridge to cover the full real line, while the

parameter s in L (k) determines the rate at which the variance of f converges to zero as |k|
grows.

Intuitively, the method here incorporates information across firms on a given date. That

information is shared through the parameters that are common to all firms: a, b, b+, and

also the covariance kernel of fi. Firms also have scope for independent variation trough the

random components in ai, bi, b
+
i , and fi (k).

For the S&P 500, I run the estimation separately from the individual firms. The i-specific

hyperparameters above are therefore eliminated: σ2
a, σ2

b , σ2
b+ , σ2

B̂
, and σ2

D̂
. The only unknown

parameters are then a, b, b+, s, σ2
B, and σ2

D.

The Gaussian process regression not only fits the option prices but also can be used

to create an estimate of prices at any unobserved strike – specifically, one can get the ex-

pectation of the price at a given strike conditional on the other observed prices and the

hyperparameters. The integral in equation (2) can then be calculated to arbitrary precision

over a discrete grid of strikes.
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A.1.1 Data filters and estimation

I estimate the model above using daily closing prices for options on individual stocks and

the S&P 500 index. On each day, I take prices for out-of-the-money options where the bid

is greater than $0.10 and where the strike is less than five at-the-money standard deviation

units from the underlying price. The maturity must be greater than 7 days and less than

64. I weight observations in the estimation by the underlying firm’s market value divided

by the bid-ask spread for the log option price (i.e. the log ask minus the log bid for each

option). I also drop any observations where the implied volatility is below 0.01 or above 5

(which are generally data errors). When I do the estimation for the S&P 500, I require at

least six total prices on each date, with at least two strikes above and below the underlying

price.

For the S&P 500, I estimate all of the hyperparameters on each date. When using

all firms, estimating the hyperparameters is slow and does not appear to have a substantial

impact on the results. I therefore fix the variance hyperparameters at values that were found

to be optimal on a representative date. The parameters a, b, and b+ are re-estimated, as is the

residual variance for the fitting errors (var (εi,k)). The fact that the variance hyperparameters

are fixed does not mean that the fi or ai, etc. are fixed. They are fit for each day, but the

variances are fixed. This is mathematically equivalent to running the Kalman filter with

fixed variance parameters, just updating the state estimates. The estimation of the fi and

ai is linear conditional on the variances, and hence has linear closed-form expressions.

A.1.2 Extensions to the baseline specification

Figure A.1 plots the measure of skewness first against skewness calculated using the formula

used by the CBOE. The results are essentially identical for both firms and the S&P 500.

Next, it compares the skewness measure to the CBOE’s reported values for the S&P 500.

Those time series are highly similar. While skewness under the CBOE index is more negative

in 2020 than in this paper’s series, the CBOE series rises towards zero almost monotonically

between 1/1/2020 and 4/1/2020 – i.e. as the market was falling and volatility rising.

It compares the results using data from CME S&P 500 futures options to CBOE SPX

options as reported by Optionmetrics. The results are highly similar.

The Optionmetrics sample is restricted to the top 200 firms by market capitalization on

each date for the sake of consistency with the Berkeley Options Database, for which I only

have the largest firms. To evaluate the impact of that restriction on the results, I also re-

estimated the option-implied skewness using the top 100 firms. With 100 firms, skewness has
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a correlation with the baseline measure of 99.4 percent, confirming that any difference from

including smaller firms, at least under value weighting, is quantitatively small. When I use

200 firms in the Optionmetrics sample, the average fraction of total market capitalization

covered in the Optionmetrics period rises from 48 to 60 percent. That is also plotted in

figure A.1.

A.2 Realized skewness and risk premia

A.2.1 Realized skewness from the text

The results in the main text calculate the realized third moment using the method of Neu-

berger (2012) (see proposition 6),

R3i,t =
∑

days∈t

3∆pEi,daily (exp (ri,daily)− 1)+6 (ri,daily exp (ri,daily)− 2 exp (ri,daily) + ri,daily + 2)

(A.11)

where R3i,t denotes the realized third moment for firm i in month t. The summation is taken

over the days in the month. ∆pEi,daily is the daily change in the price of the entropy contract

for firm i (equation (24) of Kozhan, Neuberger, and Schneider (2013)). ri,daily is the daily log

return on firm i’s stock. In Neuberger’s (2012) formulation, the maturity of the log contract

changes over the course of the month. I just take it at the average maturity of 15 days for

the sake of simplicity (this difference has minimal impact on the results).

Based on (A.11), and following Neuberger (2012), I calculate average Realized Skewness

at the firm level in the main text as

RSfirm,t =
∑
i

mkti,t

∑
days∈t r

3
i,daily + 3ri,daily∆IV

2
i,daily(∑

days∈t r
2
i,daily

)2/3 (A.12)

and RSmkt,t is again defined analogously for the S&P 500 is used to represent the aggregate

market. Idiosyncratic realized skewness, RSidio,t, is then constructed using the formula (6)

replacing implied with realized moments.

Note that even if ISi,t is the true conditional skewness coefficient, it will not be the case

that ISi,t is equal to the expectation of the realized skewness coefficient, Et

[
R3i,t+1/RV

3/2
i,t+1

]
,

where RV is realized volatility,

RVi,t ≡

( ∑
days∈t

r2i,daily

)1/2

(A.13)
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That is,

ISi,t 6= Et [RSi,t+1] (A.14)

Neuberger (2012) and Kozhan, Neuberger, and Schneider (2013) also discuss this issue. It

is due to the fact that the skewness coefficient is a nonlinear function of moments. The next

section discusses how to address it and also how to account for time-varying risk premia.

A.2.2 Accounting for risk premia and nonlinearity in the skewness

coefficient

The main text takes ISi,t as an estimate of conditional skewness. An alternative to that

is to simply directly calculate the conditional expectations – the moments that go into the

skewness coefficient, Etr
3
i,t+1 and Etr

2
i,t+1 – from linear projections. The idea in that case is

that there is some set of state variables determining the conditional moments and risk premia,

so then the conditional expectations can be recovered from a projection of the realized second

and third moments on those state variables.

To do that, I estimate regressions of the form

R3firm,t = β′3,firmXt−1 + ε3,firm,t (A.15)

where R3firm,t is the average of the realized third moment, R3i,t, across firms, weighting by

market values as elsewhere. The same regression can be run for the average realized second

moment, R2firm,t, and the same for the overall stock market. Xt here is a vector of date-t

state variables, and β3,firm is a vector of coefficients. ε3,firm,t is then a zero-mean residual.

For Xt, I include ISfirm,t, ISmkt,t, IVfirm,t, IVmkt,t, the S&P 500 price/earnings ratio, the

CBO output gap, the unemployment rate, and the Gilchrist–Zakrajsek credit spread. The

same Xt is used in all forecasting regressions.

In the data, the realized moments have distributions with heavy tails – they have kurtosis

of over 200. That means that there are large outliers, so OLS performs poorly, and it is

inefficient since the residuals are not Gaussian. Instead, I obtain the coefficients β through

maximum likelihood estimation in which I assume that the residuals are t-distributed with

four degrees of freedom (results are similar assuming a few more degrees of freedom or

switching to a Cauchy distribution).

The regression is estimated for the second and third moments at both the market and

firm levels – i.e. using R3firm,t, R2firm,t, R3mkt,t, and R2mkt,t as the dependent variable,
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where

R2firm,t ≡

∑
i

(
mkti,t

∑
days∈t r

2
i,daily

)
∑

imkti,t
(A.16)

R2mkt,t ≡
∑

days∈t

r2mkt,daily (A.17)

The maximum likelihood estimation of the four regressions then yields estimated coefficients

β̂3,firm, β̂2,firm, β̂3,mkt, and β̂2,mkt. That then yields estimates of the conditional moments

based on P rojections,

P3firm,t ≡ β̂
′
3,firmXt (A.18)

P2firm,t ≡ β̂
′
2,firmXt (A.19)

P3mkt,t ≡ β̂
′
3,mktXt (A.20)

P2mkt,t ≡ β̂
′
2,mktXt (A.21)

and the P rojected Skewness at the firm and market levels is defined as

PSfirm,t ≡
P3firm,t

P2
3/2
firm,t

(A.22)

PSmkt,t ≡
P3mkt,t

P2
3/2
mkt,t

(A.23)

In other words, PS is defined analogously to IS, but instead of the conditional moments

coming from option prices, which may contain risk premia, they come from direct regressions

of realized moments on observables. In principle, the analysis in the main text could have

been done entirely in terms of PS instead of IS (that might have been natural in the absence

of available option prices).

I now confirm that the key results from the text on implied skewness also hold for skewness

from the projection. Specifically:

1. Low correlation between firm and market skewness: The correlation between

ISfirm,t and ISmkt,t after removing time trends is 0.04. For PSfirm,t and PSmkt,t it is -0.06.

So in both cases market and firm skewness are close to uncorrelated.

2. Negative correlation between firm skewness and market volatility: The

correlation between ISfirm,t and IVmkt,t after removing time trends is -0.52. For PSfirm,t

and IVmkt,t it is -0.62. So in both cases firm skewness is significantly negatively correlated

with market volatility. For PSfirm,t and P2mkt,t, the correlation is -0.50.
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3. Firm skewness is procyclical and market skewness is acyclical: The table

below reports correlations between ISfirm,t, ISmkt,t, PSfirm,t, PSmkt,t, and measures of real

activity. Both ISfirm,t and PSfirm,t are consistently procyclical, while PSmkt,t has correla-

tions close to zero, as with ISmkt,t. As in the main text, the data for the table runs to the

end of 2019.
ISfirm,t ISmkt,t PSfirm,t PSmkt,t

HP indus. prod. 0.17 -0.01 0.21 0.03

HP employment 0.16 -0.01 0.13 -0.03

Unemployment 0.01 0.31 -0.15 0.35

CBO output gap 0.15 -0.16 0.23 -0.18

NBER rec. ind. -0.12 0.10 -0.26 0.00

Capacity util. 0.48 0.14 0.51 0.17

Empl. growth 0.32 0.06 0.40 0.17

IP growth 0.15 0.01 0.21 0.04

A.3 Other robustness checks

A.3.1 Ravenpack news skewness

To construct a measure of news skewness, I obtain news Event Sentiment Scores (ESS)

from the Ravenpack database for the firms included in the implied skewness index. The

firms are linked from Optionmetrics by finding matches on either CUSIP or ticker. For each

firm×month observation, I calculate the skewness coefficient for the ESS across all events. I

then average the skewness across firms within each month (the results are highly similar –

with a correlation of 90 percent – with and without weighting by stock market capitalization)

to get the overall skewness index.

Figure 3 in the main text plots quarterly moving averages of news skewness. The top

panel of figure A.2 plots the original monthly data, where the transitory noise is clearly

evident. The 1-month autocorrelation of changes in news skewness is -0.31 (compared to

only -0.13 for ISfirm), consistent with the presence of transitory measurement error or other

noise.

Table A.2 reports results from regressions of news skewness on lagged ISfirm,t along with

controls for lagged news skewness and lagged RSfirm,t. The dependent and independent

variables are normalized to have unit variance to aid interpretation of the coefficients. In all

three cases, the coefficient on lagged option implied skewness is statistically and economically
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significant. Option prices thus have the ability to forecast the skewness of realized news

events at the firm level, even after controlling for lagged news skewness and lagged realized

stock market skewness. The regressions in table A.2 use the full data sample (2000–2020),

but the results are almost identical if the sample is stopped at the end of 2019.

A.3.2 VIX asymmetry

Recent work ha analyzed upside and downside variance (e.g. Bekaert, Engstrom, and Er-

molov (2015) and Segal, Shaliastovich, and Yaron (2015)). To use that to give a measure of

asymmtery, I define

V IXAt =
Et

[
r2t+1 | rt+1 > 0

]1/2 − Et

[
r2t+1 | rt+1 < 0

]1/2
Et

[
r2t+1

]1/2
V IXAt is a scaled measure of asymmetry, similar to skewness. The bottom panel of figure

A.2 plots ISfirm,t along with V IXAfirm,t (rescaled to have the same standard deviation

as ISfirm,t). The two series have a correlation of 0.97, and a similar result holds when

comparing S&P 500 skewness to S&P 500 VIX asymmetry. The information contained in

the option-implied skewness coefficient is thus highly similar to that in relative upside and

downside variance.

A.3.3 Cross-correlations and alternative detrending

Figures A.4 and A.5 plot cross-correlations similar to those in the main text, but with two

changes. Figure A.4 replaces the HP filtering of implied skewness with linear detrending,

and also uses growth rates for employment and IP instead of HP-filtered levels. Figure A.5

eliminates all detrending. The correlations are somewhat smaller in these figures, which is

natural since the trend absorbs some of the variance of implied skewness. Directionally, the

results are almost all identical.

A.3.4 Liquidity

As discussed in the main text, this is not the first paper to measure skewness in individual

stocks, and liquidity is discussed elsewhere in the literature. The filters described in section

A.1.1 are similar to those used in past work to address liquidity concerns; see, e.g., Bakshi

and Cao (2003).
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The concern with liquidity is that the liquidity of options could affect their price. Differ-

ences in liquidity across strikes could then create implied skewness, even if investors believe

returns to be symmetrically distributed. If those differences in skewness change systemat-

ically over time, e.g. correlated with the business cycle, then liquidity could drive some of

the results.

A standard way to measure liquidity is to examine bid/ask spreads. It is important to

note that in the case of options it is often possible to trade inside the quoted spread, so that

the effective spread paid is smaller than the quoted spread, which at times can be large.

Muravyev and Pearson (2020) show that the effective spreads that traders actually pay can

be less than 40 percent of the quoted spreads.

To evaluate the possibility that liquidity drives the results, I calculate percentage bid-ask

half-spreads (i.e. scaled by the mid-price of the option) for puts and calls over time. The

half-spreads are calculated for a hypothetical put and call with strike/spot equal to 90%

for the put and 110% for the call. They are obtained by taking the fitted values from the

regression

spri,j,t = b0 + ai + b1 log

(
strikei,j,t
spoti,t

)
i,j,t

+ b2 log

(
strikei,j,t
spoti,t

)
i,j,t

× 1

{
log

(
strikei,j,t
spoti,t

)
i,j,t

> 0

}

+b31

{
log

(
strikei,j,t
spoti,t

)
i,j,t

> 0

}
+ ηi,j,t (A.24)

where spri,j,t is the bid/ask spread for option j of firm i on date t, ai is a set of firm fixed

effects normalized to have zero mean across the firms, 1 {·} represents an indicator function,

ηi,j,t is a residual, and the b’s are coefficients. The regression is run month-by-month to get

monthly average fitted spreads. The results are highly similar taking the median bid/ask

spread for all options with strike/spot within 2 percentage points of 90% and 110% or if the

observations are weighted by the market capitalization of the firm.

The top panel of figure A.6 plots the average fitted spreads over time. The magnitude

of the half-spreads is similar to what is reported in past work, e.g. Muravyev and Pearson

(2020) (and, again, is an overestimate of actual trading costs by likely a factor of two).

In addition, the spreads are almost identical for strikes above and below the spot price,

which implies that there is no significant asymmetry in liquidity that might distort implied

skewness.

In addition, while the spreads vary significantly over time (potentially partly due to vari-

ation in minimum tick size, e.g. related to the CBOE Penny Pilot program), the variation

appears to be unrelated to short-term variation in implied skewness, especially at high fre-
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quencies. Jumps down in skewness, as are often observed in recessions and when the S&P

500 VIX jumps up, do not appear to be related to shifts in liquidity.

At very low frequencies – i.e. comparing the very beginning of the sample to the very

end – liquidity for low strikes has risen relative to liquidity for high strikes.

The conclusion from the top panel of figure A.6 is therefore that liquidity, based on

bid/ask spreads, is similar at strikes above and below the underlying price, and while the

spreads vary over time, they do not do so in a way that is correlated with business cycle

frequency shifts in skewness.

To further examine liquidity, the bottom panel of figure A.6 plots the simple median of

raw bid/ask spreads across options with moneyness between 88% and 92% and 108% and

112%. The raw spreads vary over time in a way that is generally similar to what is observed

for the percentage spreads, and again without any substantial difference between spreads

above and below the spot price and without a clear relationship with short-term movements

in skewness. Again, at the lowest frequencies, the put spreads have fallen slightly relative

to the call spreads as implied skewness has declines, but the change is small relative to the

overall magnitude of spreads.
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Table A.1: Correlations and regressions including 2020

(c) Correlations

ISfirm,t ISfirm,t ISmkt,t ISmkt,t ISidio,t ISidio,t

detrended detrended detrended
Industrial prod. 0.18 0.24 -0.04 -0.12 0.26 0.28
Employment 0.15 0.22 -0.05 -0.04 0.20 0.19
Unemployment -0.18 -0.26 0.06 0.09 -0.25 -0.25
CBO output gap 0.20 0.24 -0.11 -0.12 0.30 0.29
NBER rec. ind. -0.17 -0.15 0.02 0.19 -0.21 -0.18
Capacity util. 0.53 0.18 0.17 -0.13 0.57 0.23
Empl. growth 0.15 0.15 0.00 -0.13 0.21 0.22
IP growth 0.17 0.17 -0.02 -0.18 0.25 0.28

(d) Credit spread regressions

Firm moments Market moments mkt vs. idio.
ISfirm,t −1.01 ISmkt,t −0.20 I3idio,t −22.68

[0.17] [0.07] [2.25]
IVfirm,t 6.21 IVmkt,t 10.32 I3mkt,t −6.68

[1.64] [2.36] [5.87]
R2 0.60 0.53 0.60

Notes: These results replicate panels (c) and (d) from table 1 but using the sample through the end of
2020.

Table A.2: Forecasting news skewness

ISfirm,t−1 0.49 0.19 0.40
[0.17] [0.09] [0.16]

News skewt−1 0.57
[0.06]

RSfirm,t−1 0.14
[0.12]

Constant 0.35 0.14 0.33
[0.19] [0.08] [0.19]

Notes: Forecasting regressions for news skewness from Ravenpack (see appendix A.3.1). All variables are
normalized to have zero mean and unit variance. Standard errors calculated by the Newey–West method
with six lags are reported in brackets. The data is monthly, 2000–2020.
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Figure A.1: Implied versus realized skewness

-2
-1

0
1

S
k
ew

n
es

s

1980 1990 2000 2010 2020

RSfirm ISfirm

-4
-3

-2
-1

0
1

S
k
ew

n
es

s

1980 1990 2000 2010 2020

RSmkt ISmkt

-6
-4

-2
0

2
S
k
ew

n
es

s

1980 1990 2000 2010 2020

RSidio ISidio

Note: Implied and realized skewness

A.12



Figure A.2: Alternative skewness series
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Figure A.3: Skewness comparisons
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Figure A.4: Cross-correlations with linear detrending of implied skewness
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Figure A.5: Cross-correlations without detrending
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Figure A.6: Liquidity and skewness
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Note: In the top panel, the put spread is for a put option with strike/spot equal to 0.9, calculated as the
fitted value from the regression A.24. The call spread is for a call option with strike/spot equal to 1.1.
Both are scaled by the price of the option. The bottom panel reports the median raw bid/ask spread for
puts and calls with strike/spot between 0.88 and 0.92 for puts and 1.08 and 1.12 for calls. In both cases,
the figure plots half-spreads. A.17


