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Abstract

Much of technological progress is embodied in capital and realized through the availability
of new, more efficient, capital goods. How does capital-embodied technical change (CETC)
impact the labor market? We study workers’ exposure to CETC at the occupation level by
unpacking the cross-price elasticity of occupational labor demand. To do so, we construct a
novel dataset of the stocks and prices of different types of capital used by workers in each
occupation. Our dataset yields the first available occupational estimates of CETC and of
the elasticity of substitution between capital and labor. CETC varies substantially across
occupations, but it is the heterogeneity in the elasticity of substitution which fuels differences
in workers’ exposure and ultimately sets the direction of the labor reallocation triggered by
CETC. We evaluate the impact of CETC in a general equilibrium model of endogenous
sorting of workers across occupations of different CETC and substitutability between capital
and labor. CETC explains 87% of labor reallocation in the US between 1984 and 2015: it is
responsible for 73% of the gains in employment in high-skill occupations, and for 57% of the
employment losses in middle-skill occupations. A forecasting exercise for the US economy in
2005 suggests that occupational disparities in the pace of CETC over the previous 10 years
are a strong predictor of occupational employment flows over the subsequent 10 years.
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1 Introduction

Technological progress and labor market outcomes are tightly linked. In the post-war era,

technological progress has been mostly embodied in factors of production, such as capital

(Greenwood et al., 1997). By changing the availability of capital goods and its costs, capital-

embodied technical change (CETC) vastly changed the tools workers use to perform their

job. For example, chimney sweepers went from using manual brushes to alternate spinning

brushes and high-tech cameras to detect blockage; postal workers went from paper parcel-

tracking to mobile scanners at delivery; and the list continues. Yet, not much is known about

workers’ exposure to CETC via their occupational choice. We provide the first available

measures of CETC and factor complementarity at the occupation level and quantify their

role for labor market outcomes in the US over the last 30 years. CETC varies substantially

across occupations, but it is the heterogeneity in factor complementarity that ultimately sets

the direction of the labor reallocation triggered by CETC. CETC explains 87% of the gross

labor reallocation across occupations observed in the US since 1984: it is responsible more

than 2/3 of the gains in employment in high-skill occupations and for more than 1/2 of the

employment losses in middle-skill occupations between 1984 and 2015.

CETC materializes as a decline in the relative price of capital to consumption (Hulten,

1992). The availability of cheaper capital affects workers through a myriad of channels

– for example, it replaces workers in certain occupations, while increasing the demand of

other occupations that are complementary to these new technologies, some of which are new

altogether. A useful way to summarize these disparate channels is to think about workers’

exposure to CETC through the cross-price elasticity of occupational labor demand – that

is, the response of occupational labor demand to changes in the cost of capital. Under the

assumptions of constant returns and price-taking behavior, this elasticity is solely a function

of (i) the extent of labor substitutability to capital (ii) the own price elasticity of labor

supply (iii) the importance of capital for production, or its input share; and (iv) the demand

elasticity for occupational output (Hicks, 1932 and Robinson, 1934).

Our first task is to measure this cross-price elasticity across occupations. The mea-

surement of workers’ occupational exposure to CETC allows us to characterize the relevant

channels through which technical change affects labor reallocation. Our second task is to

quantify the importance of these channels. The cross-price elasticity of labor demand consid-

ers each occupation in isolation and abstracts from general equilibrium forces, so we run the

quantification in a general equilibrium model that is consistent with our concept of exposure

and features endogenous worker selection across occupations. Workers differ by gender, age,

2



and education, and occupation-specific CETC along with shifts in the demand for occupa-

tional output drive the employment allocation and equilibrium wages through time.

To carry out these two tasks, we start by constructing a novel dataset of the capital

stocks used for production in each occupation. Our dataset covers 24 major equipment

categories considered by the BEA and 327 occupations in the Census classification, over

the last 30 years in the US. For each occupation, we construct capital requirements by

equipment category, exploiting information on the occupation-specific tools that workers use

in their jobs. We measure occupational tools in two separate years, 1977 and 2016. The

Tools and Technology module of the Occupational Information Network (O*NET) readily

provides this information for 2016, but tool information in the earlier years is hard to come

by. To collect such information, we apply Natural Language Processing (NLP) algorithms

over the description of occupations in the 1977 Dictionary of Occupational Titles (DOT),

the predecessor to O*NET. Based on the occupational capital requirements, we build an

allocation rule to distribute capital for each of the 24 equipment categories across occupations

in each year, between 1984 and 2015. Then, we aggregate across equipment categories in

each occupation to build their stocks.1

With our dataset at hand, we take on our first task of measuring workers’ occupational

exposure to CETC. Two ingredients of exposure can be inferred directly from our dataset:

the capital share and the elasticity of substitution between capital and labor. To measure the

former, we work under the assumption of constant returns so that labor and capital expenses

equal the value of output. Capital expenses are computed using our newly constructed stocks

and estimates of the user cost of capital by equipment category in the tradition of Jorgenson

(1963).2 In 1984, the capital share ranges from 5% in sales occupations to 43% in mechanics

and transportation occupations. Capital shares change substantially over time: between

1984 and 2015, they decrease by 9.7p.p. in mechanics and transportation occupations and

by 7.6p.p in precision occupations and increase by more than 11p.p. for professionals and

machine operators. We exploit this time variation along with changes in the relative price of

capital to labor to estimate their elasticity of substitution in each occupation. Our estimates

range from 0.65 for technicians to 2.2 for administrative services. Middle- and low-skill

occupations are substitutable to capital on average, with an average elasticity of 1.5; while

high-skill occupations are complementary to capital, with an average elasticity of 0.81.3

1In the tradition of Greenwood et al. (1997), we deflate the investment series by the quality-adjusted
price of equipment, which yields a measure of efficiency units of capital or quality-adjusted stocks.

2Our estimates of the user cost are based off of a series of constant quality equipment prices, which we
build following the methodology in Cummins and Violante (2002) to update the estimates of Gordon (1987).

3In the aggregate, we estimate an elasticity of substitution between capital and labor of 0.88, consistent
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Inferring the output demand and labor supply elasticities brings up two challenges. First,

the estimation of the demand elasticity relies on occupational output and price data, which

are inherently unobservable. Second, the estimation of the labor supply elasticity is tangled

by selection effects from the endogenous sorting of workers across occupations, which are

also unobservable. To make progress, we specify a model of endogenous sorting of workers

across occupations in the tradition of Roy (1951). First, we assume a CES aggregator

of occupational output so that its demand elasticity equals the elasticity of substitution

across occupational outputs. Cost minimization at the occupation level is sufficient to infer

occupational output and prices from our data on occupational capital per worker and its

price. We find that occupational outputs are gross substitutes, with an elasticity of 1.34.

Second, we take a Frechet distributional assumption on workers’ comparative advantage

across occupations to obtain a structural counterpart to the price elasticity of labor supply,

which we estimate at 0.3.

We document substantial variation in exposure across occupations, ranging from a neg-

ative exposure of -3.5% for precision production occupations to the most positive exposure

of 5.7% for mechanics and transportation occupations. Exposure is positive in five occupa-

tions out of nine – managers, professionals, technicians, low-skilled services, mechanics and

transportation – with the implication that the positive scale effect of a decline in the relative

price of capital dominates the negative substitution effect and so CETC increases labor de-

mand. We combine exposure with CETC and compute the reallocation of labor implied by

changes in labor demand to find it to be consistent with the polarization of employment ob-

served in the US labor market over the last 30 years. Employment flows toward occupations

with lower substitutability between capital and labor, and so higher exposure. Prima facie,

the phenomena of employment polarization is consistent with either heterogeneous substi-

tutability of capital and labor across occupations, emphasized in Autor et al. (2003) and of

which we provide the first available estimates; or with a common elasticity of substitution

of capital and labor across occupations, faster capital deepening in occupations that loose

employment and complementarity in output across occupations, as in Goos et al. (2014).

Our estimates favor the substitution channel rather than the scale channel as a driving force

for employment polarization.

So what has been the impact of CETC on the US labor market? To answer this question

we take on our second task and quantify the role of CETC for labor market outcomes

in general equilibrium. Unlike the exposure measure, the model considers incentives for

with estimates by Oberfield and Raval (2020) based on establishment level data in the manufacturing sector;
and Leon-Ledesma et al. (2010) using normalized production functions and aggregate data.
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reallocation of workers of different characteristics across occupations as well as changes in

equilibrium wages. We use our model to compute the equilibrium response of the labor

allocation to CETC by conducting counterfactual exercises. We find that CETC explains

73% of the observed reallocation of labor toward high-skill occupations between 1984 and

2015. CETC also accounts for 57% of the reallocation out of middle-skill occupations and

for a small fraction of the reallocation toward low-skill occupations, 11% of it. An in-sample

forecasting exercise attests to the centrality of CETC for the labor market dynamics of high-

skill occupations. Standing in 2005, information on the pace of CETC in the previous 10 years

is enough to adequately forecast employment flows in high- and middle- skill occupations

over the subsequent 10 years.

Our finding that the role of CETC for employment flows varies across occupations of

different skill highlights that occupational choices are an important channel through which

workers reap the benefits of CETC. Various studies emphasize the importance of labor market

frictions linked to workers’ demographic characteristics for occupational choice (Hsieh et al.,

2019). Arguably, such frictions prevent workers from fully responding to CETC with their

occupational choices and therefore may exacerbate inequality across demographic groups.

Indeed, we find that CETC generates 54% of the increase in the college premium, about

1/3 of the rise in the cross-sectional age premia, and also widened the gender wage gap by

12.5p.p., between 1984 and 2015.

The richness of our structural model allows us to explore the role of other channels that are

potentially important for labor reallocation across occupations. Occupational demand shifts,

in the form of offshoring or related to structural change, have been posed as an important

driver of employment polarization (Autor and Dorn, 2013; Comin et al., 2020). We find

that this demand channel is quantitatively important to explain the gains in employment of

low-skill occupations, but it misses most of the gains in employment of high-skill occupations.

Last, we tease out the role of technological advances in each equipment type, by extend-

ing our baseline model and specifying occupational capital as a CES composite of different

capital goods, with an elasticity of substitution of 1.13, which we estimate using our newly

constructed dataset. Consistently with Eden and Gaggl (2018) and Acemoglu and Restrepo

(2018), our results indicate that CETC in computers, communication equipment, and soft-

ware have been important drivers of the returns to skill and employment reallocation in the

US over the last 30 years. Distinctively to previous studies, we show that CETC becomes

quantitatively relevant to predict labor reallocation only in combination with heterogeneous

elasticities of substitution between capital and labor across occupations. In other words, the
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magnitude of measured disparities in CETC across capital types and occupations can not in

itself rationalize employment dynamics as it does not systematically correlate with observed

employment flows.

Literature Review. Katz and Murphy (1992) were the first to highlight factor-biased

technical change as a mechanism to reconcile key features of the labor market dynamics in the

US, over the second-half of the 20th century, i.e. the contemporaneous increase in skill supply

and the skill-premium; while Krusell et al. (2000) posed CETC in combination with capital-

skill complementarity as an economic mechanism to rationalize such a bias. Motivated

by recent changes in the earnings and employment distribution observed in industrialized

economies, Acemoglu and Autor (2011) highlight that the focus on workers’ skills misses

important features of the labor market, advocating for a shift of focus toward workers’ jobs.

A worker’s occupation is a commonly used measured for those jobs, and non-monotone

changes in wages and employment across occupations of different skill intensity are a major

feature of labor markets in recent decades, i.e. wage and employment polarization (Autor

et al., 2006, Krueger et al., 2010, Autor and Dorn, 2013). In this paper, we provide the first

direct measures of the bias of technology at the occupation level, by measuring CETC and

capital-labor complementarity across occupations.

As a byproduct of constructing occupation-specific capital price indexes and exposure

to CETC, we build quality-adjusted equipment stocks for each occupation over the last 30

years in the US. These stocks are key to computing other relevant structural features that

determine labor demand in an occupation. The information on occupational tools in the

O*NET was first exploited by Aum (2017) to study the impact of software innovation on the

demand for high-skill jobs. Aum et al. (2018) further use these tools to measure computer

and software demand by occupation. Distinctively, we use occupational tools to measure

occupation-specific capital price indexes, which we link to technological change. In addition,

a novel contribution of our paper is the construction of occupational tools in 1977, from

the text of the DOT by using machine-learning algorithms. The DOT is the predecessor

to the O*NET and therefore the natural data source to document changes in occupational

tools. This feature allows us to tackle the changing nature of occupations and their capital

requirements over time.

Our estimates of the occupation-specific elasticities of substitution between capital and

labor are an important input in measuring workers’ exposure to technical change, in the

form of computerization, trade (Burstein et al., 2019) and off-shoring (Goos et al., 2014),

and, more generally, to long-run changes in the structure of production of the economy
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(Barany and Siegel, 2018). For tractability, these elasticities are typically assumed con-

stant across occupations. Kehrig (2018) is the first attempt to measuring heterogeneity in

these elasticities for the case of computers. In this paper, we provide the first available

measures for broad equipment categories across occupations by exploiting changes in tool

requirements and investment over time. Consistent with the literature emphasizing the role

of general purpose technologies (Jovanovic and Rousseau, 2005; Bresnahan, 2010 and the

extensive literature cited therein), we highlight that communication equipment has become

an increasingly important equipment category for workers’ exposure to technical change.

Finally, our work relates to the extensive literature that highlights the task content of

occupations as a measure of exposure to technology and computerization as the driving

force of job polarization (Autor et al., 1998, 2003; Autor and Dorn, 2013). Consistently with

the literature, we find that employment reallocated away from occupations that became

computer-intensive. However, we find that employment reallocated into occupations that

became intensive in other equipment categories that displayed similar or faster raise in stocks

and similar degree of technical change than computer equipment. The effect of capital-

deepening is significant even after accounting for the task content of occupations.

The rest of the manuscript is organized as follows. Section 2 constructs stocks and prices

of capital at the occupation level and presents key correlations between CETC and employ-

ment flows. Section 3 estimates the elasticity of substitutions between capital and labor

across occupations. We use the findings in these sections to measure occupational exposure

to CETC and quantify the partial-equilibrium effects of technical change on the labor market

(Section 4). Section 6 evaluates the differential role that CETC has for employment realloca-

tion across occupations in general equilibrium, using the model outlined and parameterized

in Section 5. Section 7 discusses relevant model extensions and Section 8 concludes.

2 Capital stock and CETC across occupations

In this section, we document the path of the capital stock used in each occupation as well

as its user cost in the US between 1984 and 2015. We focus on equipment capital and

measure occupational capital stocks consistently with the aggregate investment series in the

Fixed-Asset Tables (BEA). We follow the extensive literature that highlights the capital-

embodied nature of technology and the secular decline in the cost of capital goods with

time, and construct time-series of quality-adjusted capital stocks. To allocate these stocks

to occupations, we construct a novel index of the capital requirements in each occupation
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through time. Our index is based off of the tool commonly used in each occupation, which

we extract from the DOT in the 1970s and from it successor, the O*NET, in the 2010s.

2.1 Data and methodology

Data sources. We combine four different data sources: a novel dataset on occupational

tool usage that we construct using Natural Language Processing (NLP) algorithms over the

textual occupational definitions of the 1977 DOT and the Tools and Technology supplement

of the 23.4 O*NET; annual Fixed-Assets (BEA) series of investment for 24 equipment cat-

egories; annual quality-adjusted series for the price of (new) capital constructed following

Cummins and Violante (2002)’s methodology; and annual labor market statistics computed

from the March Current Population Survey (CPS) between 1984 and 2015. Labor market

statistics include full-time equivalent workers by occupation as well as hourly wages, which

we measure by dividing labor income by total hours worked in the subsequent CPS. We

deflate wages and the price of quality-adjusted capital by the price of personal consumption

expenditures provided by the BEA.4

Quality-adjusted capital stocks. We start by constructing chained-weighted quality-

adjusted stocks for each of the 24 equipment categories considered by the BEA. This is our

measure of the stock of capital in efficiency units (capital, for short) for each equipment

category. The stocks correspond to their nominal counterparts in 1985, our base year.5 We

apply the permanent inventory method to construct efficiency units through time. For that,

we need a measure of the efficiency units of investment and of the physical depreciation

rate. We construct chained-weighted measures of efficiency units of investment by deflating

nominal investment with quality-adjusted prices of each of the 24 equipment categories. We

adjust BEA depreciation rates by the change in the quality-adjusted price of equipment,

i.e. a measure of economic obsolescence, to obtain estimates of physical depreciation by

equipment. Quality-adjusted prices and physical depreciation rates follow the methodology

proposed by Cummins and Violante (2002), see Appendix A.1 for details.

An index of capital requirements across occupations. We refer to the capital

requirements of an occupation as to the fraction of the aggregate stock of each capital

category used by the occupation. We infer these requirements from the tools used by workers

in the occupation. For example, commonly used tools by a dental assistant include air

4Additional details on our datawork on the CPS are in the Online Appendix. We also use comparable
measures form the Census, with the caveat that these are available at 10-year frequency prior to year 2000.

5Because the stock is assigned to workers in 1984, our measurement implies that any investment occurring
during 1984 (and showing up in the stock in 1985) was available to workers in that year.
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compressors, dental cutting instruments, and personal computers. We collect information

on these tools across occupations in the US over the last 30 years. Our dataset includes

more than 7,000 tools, which correspond to commodities in the United Nations Standard

Products and Services Code (UNSPSC) classification system and are linked to the equipment

categories considered by the BEA.6

The O*NET, a database collecting standardized occupation-specific descriptors, readily

provides information on occupational tools for the period post-2010 (Aum, 2017). The Tools

and Technology module of the O*NET is available since 2006, with scattered occupational

coverage in the earlier years. To collect occupational tools in the 1980s (the beginning

of our sample), we use the textual definition of occupations collected in the 1977 version

of the DOT. We parse out the set of the tools used in each occupation by applying NLP

algorithms.7 For illustration, Figure 1 compares the occupational tools measured in the

O*NET and DOT datasets. It plots the fraction of tools used across 1-digit occupations for

two capital categories, computers and communication equipment. For both categories, the

DOT records the highest share of tools for administrative services while the O*NET records it

for professionals. Through time, a worker in a professional occupation have seen the share of

computers and communication equipment tools allocated to him increase, whereas a worker

in an administrative service occupation has seen it decline. These differences exemplify how

technology impacts occupations by changing the nature of the activities performed, as well

as the tools used to perform those tasks. To generate measures of occupational tools through

the sample period we linearly interpolate the DOT-based and O*NET-based occupational

tools for each of the 324 3-digit occupations we observe.8

We then use our time-series of occupational tools to construct occupational capital re-

quirements. Let τojt be the number of tools of BEA capital category j used by a worker in

occupation o at time t – that is, τojt ≡
∑

c I
ot
c∈j, where Iotc∈j is an index function that takes

value 1 if UNSPSC commodity c belongs to capital category j and is used in occupation o

at time t. Let lot be the number of full-time equivalent workers in occupation o at time t.

6We map UNSPSC commodities to the BEA equipment categories using the textual definition provided
by the BEA as in Aum (2017) (see the Online Appendix for details on this mapping).

7We build a corpus of the universe of tools listed under Commodity Titles, i.e. UNSPSC, and T2-Examples
in the tools and technology module of the O*NET and use it for string-matching to the descriptions in the
DOT. We experiment with different matching criteria as described in the Online Appendix. Our benchmark
results exploit occupational cross-walks to disambiguate generic tool descriptions found in the DOT.

8These occupations are those for which we consistently observe labor and capital over time. The classifi-
cation of occupations based on the O*NET-SOC system is a modification of the 2010 Standard Occupational
Classification (SOC) system that allows for a link to the American Community Survey classification system.
To build a consistent occupational definition through time, we use the classification and the crosswalks of
the ACS classification system provided by Acemoglu and Autor (2011).
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Figure 1: Changes in tool shares.

The left panel displays the share of computer tools used by a worker in each 1-digit occupation in 1977 (from
the DOT, lighter colors) and in 2016 (from O*NET, darker colors). The right panel displays the share of
communication tools used by a worker in each 1-digit occupation in 1977 and 2016. Source: O*NET, DOT
and own computations.

We define the requirement for capital j in occupation o as the number of tools used by the

workers in that occupation relative to the total tool used in the economy:

reqjot ≡
τojtlot∑
o τojtlot

. (1)

These capital requirements are the base of our assignment rule for the stocks of capital across

occupations.

We distribute the stock of capital of a given category across occupations proportionally to

the capital requirements in that category. We then construct a Tornqvist quantity index for

the capital stock in each occupation using the expenditure share of each equipment type in

the occupation as weights for the growth rates of each equipment category, following Oulton

and Srinivasan (2003). The construction of these weights requires us to measure the usercost

of capital for each equipment category as described in Appendix A.1.

A few features of our assignment require further discussion. First, the measurement

of occupational capital requirements is challenged by the absence of data on the amount

of time a worker uses a particular capital good. Our assignment rule exploits the highly

disaggregated nature of tool descriptions to proxy for intensity of usage. For a fixed capital

category, occupations that use a larger variety of tools within that category will be allocated

more capital. For the case of computers, our assignment is comparable to that based off

use a binary answer to a question in the October Supplement of the CPS on whether a
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worker uses a computer at work or not (Autor et al., 1998; Burstein et al., 2019).9 Second,

the capital assigned to an occupation changes whenever there is employment reallocation

in other occupations, even if its employment is fixed. The reason is that the tool usage

is heterogeneous across occupations and the aggregate stock of capital is fixed at a point

in time, so when workers reallocate across occupations the fraction of tools used changes.

Heterogeneous tool usage is consistent with an economy where the intensity of use of capital

differs across occupations. Third, while differences in relative prices across capital categories

are fully accounted for (through the value of the efficiency units of each stock), our assignment

implies that no additional price heterogeneity exists across tools that belong to the same

category. While this is certainly a limitation, the tool description is general enough that

imputing prices would induce a fair amount of measurement error.10 Fourth and last, changes

in the relative prices of different capital goods generate fluctuations in occupational capital

due to the heterogeneity in intensity of tool usage by capital category across occupations.

2.2 Salient features of occupational capital

We now document the path of occupational capital and that of the user cost of occupational

capital relative to consumption in each occupation, our measure of occupational CETC.

To ease the exposition, we group the data into 9 occupational groups, which correspond

to the 1-digit non-agricultural occupational grouping in the US census – that is, managers,

professionals, technicians, sales, administrative services, low-skilled services, mechanics and

transportation, precision workers, and machine operators.

Capital per worker by occupation. Panel (a) in Figure 2 shows the time series of the

capital stock per worker across occupations. The levels are normalized relative to the stock

allocated to a manager in 1984. Overall, the stocks of capital per worker increased in all

occupations and their dispersion shrank throughout the period. The increase in capital per

worker was largest for administrative services, professionals, and sales workers (1.1%, 1.1%,

and 1.4% annualized growth rates between 1984 and 2015, respectively). Capital-per-worker

in precision production occupations and mechanics and transportation occupations grew the

least, with annualized growth rates of 0.4% and 0.5%, respectively.

CETC by occupation. We measure capital-embodied technical change from the decline

9We compare the assignment of the stock of computers across occupations using our tool shares and using
the CPS October Supplement and find that the allocations are strongly correlated, both in levels at different
points in time, and in changes for an occupation across time; see the Online Appendix.

10There is no description of the characteristics of the tool. For example, prices for personal computers
vary widely depending on its features and capabilities, none of which are reported in the data.
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Figure 2: Capital stock and CETC by occupation.

Panel (a) displays the logarithm of the stock of quality-adjusted capital per worker for each occupation
relative to the stock allocated to managers in 1984. Panel (b) displays the logarithm of the user cost of
capital relative to consumption across occupations. Source: BEA and own computations.

in the user cost of capital to consumption in each occupation, Panel (b) in Figure 2. We

construct the usercost of the bundle of capital in an occupation using the ratio between

the total expenses in capital in an occupation and the stock of capital in the occupation

constructed using a Tornqvist quantity index as explained Appendix A.1.11 Managers, sales,

and administrative services occupations experienced the strongest decline in the relative

user cost of capital to consumption, by more than 8% per year between 1984 and 2015. On

the opposite end, mechanics and precision production occupations recorded a decline in the

relative user cost of capital to consumption of 2.9% and 3.4% per year, respectively.12

Relationship to employment.13 Given the novel nature of our stocks of occupational

capital as well as their user cost relative to consumption (CETC), it is worth exploring

evidence for the relationship between these measures and labor market outcomes.

Figure 3 panel (a) displays the change in the employment share between 1984 and 2015 for

each of the 9 1-digit occupations plotted against CETC. Prima facie, there is little association

between the extent of CETC and employment flows across occupations. For example, the ex-

tent of CETC was similar for low-skill services and precision production occupations, but the

11This implied usercost is almost identical to a Tornqvist price index, with shares equal to the expenditure
share of a given capital category and occupation at a point in time, see Appendix A.1.

12These disparities are related to heterogeneity in capital bundles across occupations as reported in the
Online Appendix.

13For brevity, we only report features on the association between CETC and labor market outcomes that
are central to our analysis. We defer to Appendix A.2 for a broader evaluation.
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(b) Input expense ratio

Figure 3: Employment shares by occupation.

Panel (a) displays the change in the share of employment between 1984 and 2015 in each 1-digit occupation
against the annualized decline in the user cost of capital relative to consumption. Panel (b) displays the
change in the share of employment between 1984 and 2015 in each 1-digit occupation against the percentage
change in the input expense ratio (capital expenses divided the wage-bill) in each occupation between 1984
and 2015. All entries are in percent. Source: BEA, CPS, and own computations.

share of employment in the latter decreased, while the share in the former increased.14 Het-

erogeneity in CETC across occupations that gained and lost employment is likely grounded

in differences in capital-labor substitutability across occupations, as hypothesized by Autor

et al. (2003) and Autor et al. (2008).

Figure 3 panel (b) displays the same employment changes plotted against the change in

the input expense ratio, i.e. capital expenses divided by the wage-bill in each occupation.

We see again vast heterogeneity in employment gains and losses for occupations that became

more capital intensive. For example, the change in the input expense was comparable for

professionals and machine operators, but the share of employment in the latter decreased

while the share in the former increased. On the flip side, occupations that displayed similar

declines in their share of employment had vastly different changes in input expense ratios.

For example, the share of employment decreased similarly for machine operators and admin-

istrative service occupations, but the ratio of capital expenses to labor expenses increased

substantially more in the former (2.5p.p. per year versus 0.25p.p. per year).

Heterogeneity in the path of capital per worker across occupations is partially explained

by differences in the composition of the stock of capital. Occupations that are more in-

14In levels, the only occupation that lost employment sustainedly through the period was machine opera-
tors, particularly post-2000.
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tensive in capital categories that experienced stronger CETC also record faster growth in

their capital per worker. This heterogeneity persists even when looking at more disaggre-

gated occupational data: across 327 occupations, employment shares fell for occupations

at the bottom of the distribution of growth rates in capital-labor ratios and increased at

the top of the distribution, see Panel B in Table E.I. This disparate association between

changes in capital and employment across occupations is again consistent with occupational

heterogeneity in the substitutions patterns between capital and labor. Importantly, these

differences in employment changes coexisted with wage gains across all occupations (about

1% per year, on average), and these wage gains were largest in occupations with highest

changes in capital-labor ratios and the highest gains in skilled workers, consistently with

capital skill complementarity as a driver of skill-biased technical change Katz and Murphy

(1992); Krusell et al. (2000).

There is an extensive literature linking capital-deepening and employment reallocation.

Notably, the routinization hypothesis sustains that workers that engage in tasks that are rou-

tine intensive are more likely to be replaced by machines, particularly computers and robots

(Autor et al., 2008, Autor et al., 2003). This hypothesis is consistent with the observation

that employment has flown out of computer-intensive occupations, which we also confirm

with our data. However, the gains in employment and wages in occupations intensive in other

types of capital that displayed levels of CETC comparable to that of computers, suggest that

other dimensions of occupational heterogeneity may play a role in understanding the link

between employment reallocation, CETC, and capital-deepening. For example, panel C of

Table E.I shows that while workers in computer-intensive occupations saw their wages rise

the fastest, by 1% per year on average, these occupations lost employment overall (with their

share falling by 3.6p.p. between 1984 and 2015). At the same time, workers in occupations

intensive in other capital goods with strong CETC, including communication equipment,

also saw their wages rise by a similar amount, 0.8% per year, but these occupations gained

employment throughout (5.5p.p. over the period). This heterogeneity highlights the need for

estimates of occupation-specific elasticities of substitution between capital and labor, which

we discuss in the next section.

3 Elasticity of substitution between capital and labor

The heterogeneous occupational paths of CETC, capital-per-worker, and employment sug-

gest that substitution patterns between capital and labor may differ across occupations. In
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this section, we estimate these occupation-specific elasticities using our newly constructed

dataset.

The elasticity of substitution is the partial equilibrium response of the capital labor ratio,
ko
no

, to a change in the marginal rate of transformation. With the assumption of competitive

factors markets, the marginal rate of transformation equals the relative factor prices, λnot/λ
k
ot,

where λnot is the price of a unit of labor and λkot is the user cost of a unit of capital. We can

then write the parameter of interest as:

σo ≡
dln(kot/not)

dln(λnot/λ
k
ot)
.

To measure the elasticity, we need information on input ratios (in efficiency units) and price

ratios. Non-neutral technical change has direct implications for the measurement of the

capital labor ratio and is, for the most part, unobserved. To see this, rewrite the elasticity

as a function of observable variables – that is, observable labor ñot (for example, full-time

equivalent workers) and its price λñot as well as our measure of capital in efficiency units and

its user cost:

σo ≡
d ln

(
kot
ñot

)
dln
(
λñot exp(γot)

λkot

) , (2)

where γot is the log difference between labor and capital-augmenting technical change in

occupation o and, jointly with the elasticity of substitution, shapes the bias of technology.

Diamond et al. (1978) formally proved the impossibility of separately identifying the elasticity

of substitution and biased technical change from a time series of factor shares and observable

capital-labor ratios. In a nutshell, for an arbitrary elasticity of substitution, declining ob-

servable capital-labor ratios kot
ñot

can be rationalized by capital-augmenting technical change,

a decline in exp(γot), and increasing observable capital-labor ratios, by labor-augmenting

technical change, an increase in exp(γot).

To circumvent this impossibility result and identify the elasticity of substitution, the

literature imposes structure on the path of factor-augmenting technical change (see Herren-

dorf et al., 2015, Antras, 2004). In line with the literature, we assume that we assume that

factor-augmenting technical change is exponential, i.e. exp(γot) = ao exp(γot) for some initial

level ao > 0. Then, under constant elasticity, the empirical counterpart to equation 2 is:

ln

(
kot
ñot

)
= β1o + β2ot+ β3o ln

(
λñot
rot

)
+ εot, (3)
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where β1o is the intercept of the regression which corresponds to a constant of integration

in equation 2; β2o identifies γo for an estimate of σo; β3o is the elasticity of substitution

between capital and labor, σo; and εot is an error term with which augments the structural

equation 2. We measure labor, ñot, using full-time equivalent workers adjusted for disparities

in their efficiency due to observable characteristics, i.e. age, schooling, and gender, using

their relative wages as a proxy for skill (see Antras, 2004, among others). We compute the

price of measured labor, λ̃not, as the ratio between the total wage bill in an occupation and

our measure for labor ñot. Finally, we use our measures of the usercost of capital and stocks

in each occupations constructed in Section 2. All series are available from 1984 to 2015 and

the occupation is mapped to the 1-digit occupational classification system of the Census.

The estimation of regression equation 3 exposes an obvious endogeneity problem. Ob-

served capital labor ratios are endogenous to their relative factor prices. In general, the

elasticity will not be identified unless one uses an exogenous shift in the supply of capital or

labor. Therefore, the OLS estimates are biased and the direction of that bias is unknown.

To overcome this potential endogeneity we propose two alternative instruments, which we

interpret as exogenous supply and demand shifters in occupational labor. First, we use the

interaction between 16-year lagged birthrates and the predicted employment in an occupa-

tion computed from the product of the 1984 share of employment of a given education level

in the occupation and the total supply of workers of that educational level in the economy in

each year. Second, we use a shifter in the demand for the output produced in an occupation

based on the interaction of the economy-wide exports (as % of GDP) and the predicted oc-

cupational demand for labor computed by interacting the 1984 sectoral employment shares

of the occupation with the change in the total number of workers in each sector in each year.

A valid instrument should be exogenous to the system and correlated with the regressors.

We take fertility choices as exogenous and argue that changes in the size of the population

and the skills available in the economy are likely correlated with the labor services avail-

able in each occupation. Similarly, we consider aggregate trade shocks as exogenous to the

workings of the labor market and argue that changes in US exports of goods and services

as a share of GDP and the size of the production sectors in the economy, measured by the

number of workers in each sector, are likely correlated with the labor services available in

each occupation. Since occupational employment differs in its sectorial composition, a shift

in sectorial demand generates heterogeneous employment demand across occupations.

Table 1 presents our baseline estimates of the elasticity of substitution across occupa-

tions. For the aggregate economy, we obtain an OLS point-estimate of 0.56 and an IV
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point-estimate of 0.88. The IV estimate is consistent with prior exercises in Antras (2004),

using time-series variation, and with Oberfield and Raval (2020), exploiting cross-sectional

variation in the manufacturing sector. Focusing on the results from the instrumented regres-

sion equation, the lowest elasticities (highest complementarity) are reported for technicians

and mechanics and transportation (at 0.65 and 0.73, respectively), followed by professionals

and managers. For the remaining occupations we estimate substitutability between capital

and labor. The point estimates are significantly different from a unitary elasticity for tech-

nicians, sales, administrative services, and precision production workers. We also run Wald

type tests to assess whether point estimates are significantly different from each other. We

find that the elasticity of substitution between capital and labor is significantly lower for

managers, professionals and technicians, than in administrative services, sales, and precision

occupations. We also find that the point estimate for mechanics and transportation occupa-

tions is significantly lower to that in administrative services and precision occupations.

Discussion. The structural equation 2 is consistent with two econometric models, equa-

tion 3 and its inverse,

ln

(
rot
λñot

)
= β̄1o + β̄2ot+ β̄3o ln

(
kot
ñot

)
+ ε̄ot. (4)

As pointed out by Antras (2004), not much can be said about the relative magnitudes of

the OLS estimates for β3o and β̄3o on statistical grounds. However, when using an exactly

identified IV-regression, the estimates are identical irrespective of whether relative prices are

on the left-hand side or the right-hand side of the econometric model. Indeed, acknowledging

the biases in the estimates associated to alternative representations of the same equation,

Leon-Ledesma et al. (2010) propose the estimation of a system of equations that includes the

production function itself and the optimality conditions for each input. Unfortunately, the

inherent unobservability of occupational prices and output yields this approach unfeasible

for us.

In the remaining of the discussion, we focus on the IV estimates. First we run statistical

tests for the strength of the proposed instruments, then we test for potential spurious correla-

tion in the variable of interest. Formally, with one endogenous variable and one instrument

the Kleibergen-Paap Wald-type test for weak-instruments is desirable under possible het-

eroscedasticity. Table 1 presents the value of the statistic and the critical value for a variety

of maximal IV sizes as tabulated by Stock and Yogo (2005). In all cases but for mechanics

and transportation we reject the null that the maximum relative bias in the estimate is 15%
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Table 1: Elasticity of substitution between capital and labor.

OLS IV Kleibergen-Paap Dickey-Fuller

Aggregate 0.56 0.88 29.20 -2.57
0.11 0.18

Managers 0.48 0.93 23.74 -1.90
0.11 0.25

Professionals 0.64 0.86 24.96 -2.98
0.10 0.17

Technicians 0.30 0.65 15.98 -2.93
0.10 0.21

Sales 1.00 1.38 43.24 -2.34
0.11 0.16

Admin Service 0.92 2.18 16.47 -2.22
0.19 0.50

Low-skilled Serv 0.71 1.32 10.74 -2.96
0.21 0.37

Mechanics & Transp. 0.04 0.73 5.94 -4.47
0.11 0.39

Precision 0.44 2.06 12.06 -5.27
0.19 0.63

Machine Operators 0.05 1.41 7.48 -2.75
0.10 0.61

Note: Authors’ estimation of equation 3. Columns (1) presents the OLS estimates and the corresponding
std. errors for the estimate; Columns (2) contains the IV estimates using the instruments described in the
text. Column (3) contains the F-statistic for weak instruments robust to heteroscedasticity, Kleibergen. The
relevant Stock-Yogo critical value for a 15%, 20% and 25% bias in the IV estimates are 8.96, 6.66 and 5.53,
respectively. Column (4) contains the Dickey-Fuller test statistic for a test of a unit root in the error for the
IV estimated equation. The 5% and 10% critical values are -1.95 and -1.6 respectively.

or larger. For mechanics we reject the null that the maximum relative bias in the estimate

is 25% or larger. Another important threat to the validity of the estimates is the possibility

of spurious correlation induced by unit roots in the time series of relative prices and input

ratios. For the IV specification, we construct tests for the presence of unit roots in the error

of the regression equation following Dickey and Fuller (1979) and report the statistics in

Table 1. For all occupations as well as in the aggregate we reject the null of a unit root in

the error of the regression.

A commonly used strategy when estimating the elasticity of substitution between capital

and labor is to exploit cross-sectional variation across geographical locations in production

units, as in Oberfield and Raval (2020), or in the occupational composition, as in Kehrig
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(2018). One interpretation of these estimates is that they correspond to the “long-term”

elasticity of substitution, whereas the one identified from time-series variation corresponds

to the “short-term” elasticity of substitution. Indeed, adjustments in input ratios that do not

respond to changes in prices within a unit of time (in our case, a year) would be abstracted

away by the latter estimation. Assumptions on factor mobility and standard Bartik-style

instruments are enough to identify the parameter of interest in the cross-section. Such an

identification strategy is challenging for us because we do not observe capital usage in each

location. At best, our cross-sectional estimation can exploit variation across locations in

their 3-digit occupational composition because workers in a 3-digit Census occupation would

have identical capital allocations across locations at a point time.15

Finally, we loop back and discuss the implications of our elasticity estimates for the

occupational heterogeneity in capital per worker and employment flows. We focus on the

labor share, which combines information on both factor quantities and prices (equation 4 can

be rewritten as a function of the factor shares). Our aggregate estimates for the elasticity

of substitution between capital and labor suggest complementarity, as well as the estimates

of 4 out of 9 1-digit occupations. The consistency between these findings and the decline

in the labor share reported in the US (Sahin et al., 2013) depends on the relative strength

of labor and capital-augmenting technical change, which combined with the value of the

elasticity of substitution yields the bias of technology. In the aggregate, we find a 1.35% faster

increase in labor-augmenting technology relative to capital-augmenting technology. This

finding jointly with the aggregate complementarity between capital and labor implies capital-

biased technology and is consistent with the decline in the aggregate labor share. Prior

literature that focuses on the estimation of aggregate production functions has generated

estimates for the bias of technology in the US and are very much in line with ours, see

Klump et al. (2012) for a review. Leon-Ledesma et al. (2010) (using a normalization of

the production function and data between 1960 and 2004) estimates a difference between

labor-augmenting and capital-augmenting technology of 0.9%.16

15Another approach to the estimation of the elasticity of substitution focuses on the differential intensity
of input usage across output goods, as reflected in the direct requirements matrix of the input-output
tables.Identification requires an assumption on the correlation between the bias in technology across goods
and cross-sectional variation in input shares, Hubmer (2020) assumes none. In the case of occupations, a
parallel assumption implies that more capital intensive occupations do not hire workers with relatively more
skills, which is problematic given the complementarities between skill and capital that Krusell et al. (2000)
document.

16We present occupation-specific estimates of the bias of technology in the Online Appendix.
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4 Occupational exposure to CETC

In this section, we use the findings in Sections 2 and 3 to measure occupational heterogeneity

in the exposure to CETC and quantify the partial-equilibrium effects of technical change on

the US labor market between 1984 and 2015.

As described in the introduction, we conceptualize occupational exposure to CETC in

the cross-price elasticity of labor demand – that is, the response of the labor demand in

an occupation to changes in the user cost of capital. Under the assumptions of constant

returns, price-taking behavior, and cost minimization, Hicks (1932) and Robinson (1934)

independently show that this elasticity can be expressed as a function of four components:

− d ln(no)

d ln(λko)
=

ηnλn(ρ− σo)λ
k
oko
λyoyo

ρ+ ηnλn + (σo − ρ)λ
k
oko
λyoyo

, 17 (5)

where (i) σo is the extent of labor substitutability to capital in occupational output produc-

tion, (ii) ηnλn is the own price elasticity of labor supply, (iii) λkoko
λyoyo

is the importance of capital

for production in the occupation, or its cost share and (iv) ρ is the demand elasticity for

occupational output. On the one hand, a decline in the cost of capital decreases the labor

demand via a substitution effect, a function of the elasticity of substitution between capital

and labor in the occupation σo. On the other hand, it increases labor demand through a

scale effect associated to the higher demand for occupational output in response to lower

production costs, a function of the demand elasticity for occupational output ρ. Ultimately,

the relative magnitude of these two elasticities determines which of the two effects domi-

nates and therefore if exposure rises labor demand in the occupation (σo < ρ) or reduces it

(σo > ρ).

We bring exposure to the data by assuming that all three elasticities that enter its

specification are constant in time. The elasticity of substitution between capital and labor

across occupations as well as the capital share have been directly estimated from our dataset

(Section 3). These two sets of parameters are the source of heterogeneity in exposure across

occupations.

The remaining two parameters that characterize exposure, ρ and ηnλn , cannot be esti-

mated directly in the data as their inference requires information on occupational output

and on selection effects due to workers’ occupational sorting, which are intrinsically unob-

servable. For their inference, we use a structural model where exposure arises endogenously

17Derivations in the Online Appendix.
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Figure 4: Occupational exposure to CETC and CECT-powered employment reallocation.

The left panel plots occupational exposure to CETC (equation 5) across 1-digit occupations ordered by
increasing skill requirements. Exposure is computed using the capital share in 1984, the initial year in our
sample. The right panel plots the change in the share of employment between 1984 and 2015 attributed to
CETC by the Hicks’s prediction (left axis) and that observed in the data (right axis). The striped lines are
cubic polynomial fit.

and is consistent with equation 5, as described in Section 5. Our estimate of the labor supply

elasticity is ηnλn = 0.30 and of the demand elasticity for occupational output is ρ = 1.34.

We defer to Section 5 the details of our estimation strategy. To identify the former elastic-

ity, we take a Frechet distributional assumption on workers’ comparative advantage across

occupations and construct a structural counterpart to the price elasticity of labor supply,

which we then estimate from residual wage inequality, as in Hsieh et al. (2019). To identify

the latter elasticity, we exploit time-series variation in occupational expenditure shares and

occupational output prices. The novelty of our approach relies on our ability to measure

occupational capital and so occupational expenditure shares.

We start by reporting exposure to CETC in each occupation, Figure 4 left panel. In

the figure, 1-digit occupations are ranked by increasing skill requirements, following Autor

(2015). Exposure is positive in five occupations out of nine: managers, professionals, techni-

cians, low-skilled services, mechanics and transportation. In these occupations, the elasticity

of substitution between capital and labor is lower than the demand elasticity for occupa-

tional output, with the implication that the positive scale effect of a decline in the relative

cost of capital on labor demand dominates the negative substitution effect and therefore

CETC increases labor demand. Sales, administrative services, precision production, and

machine operators are occupations for which, instead, the substitution effect dominates the
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scale effect, even though only by a small amount, and CETC has a negative impact on labor

demand. Low-skill services, sales, and machine operators measure scale and substitution

effects of similar sizes and so a small elasticity of labor demand to CETC.18

Exposure to CETC varies substantially across occupations: it ranges from a negative

exposure of -3.5% recorded for precision production to the most positive exposure of 5.7%

recorded for mechanics and transportation. Heterogeneity in the elasticity of substitution

between capital and labor is the main determinant of these differences: occupations with

higher elasticity have smaller exposure to CETC. Exposure also varies with the capital share

in each occupation, albeit the correlation is weaker (see the Online Appendix). Combined,

the elasticity of substitution and the capital share generate an exposure to CETC that is

U -shaped across occupations ranked by their average wage and skill content. The exposure

of high-skill occupations (i.e. managers, professionals, and technicians) and that of low-skill

occupations is positive, averaging 2% in the former and 0.1% in the latter, while the exposure

of middle-skill occupations (i.e. the remaining occupations) is negative, at an average of -

0.1%.

Next, we combine exposure with CETC to compute the yearly changes in occupational

labor demand generated by CETC.19 Then, we cumulate these changes over the 1984-2015

period and re-weight them so that total net employment reallocation equals zero. The

predicted employment change is the Hicks (1932)’s (partial equilibrium) prediction for the

impact of CETC on each occupation. Figure 4, right panel, presents these results for occu-

pations ranked by increasing skill requirements in black markers along with the reallocation

of workers in the data in red markers.

The direction of employment reallocation generated by Hicks’s prediction is consistent

with the data. This direction is mostly set by occupational heterogeneity in exposure,

rather than in the extent of CETC. Consider for example the occupations that experienced

the strongest CETC, at a rate above 8% per year: managers, sales, and administrative

workers. Despite experiencing similar CETC, these occupations record changes in labor

demand that are at opposite extremes due to their differential exposure. Sales have an

exposure that is very close to zero, implying a very small elasticity of labor demand to

CETC. Administrative services, instead, record the highest decrease in demand across all

18Our finding that CETC mostly increased labor demand is robust to alternative estimates of a demand
elasticity for occupational output that are less than but close to 1. Goos et al. (2014)’s estimate of the labor
demand elasticity at 0.9 extends the list of occupations with negative exposure in our framework by one
occupation only (sales). That is, our estimates still indicates that the scale effect has been at least as strong
as the substitution effect between 1984 and 2015.

19The yearly rate of CETC in an occupation is as reported in Section 2 (plotted in Figure 2).
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occupations, at 0.21p.p. per year, combining the second highest negative exposure with

strong CETC; while the average exposure of managers implies the third-highest change in

labor demand. Similarly, precision production, mechanics and transportation, and machine

operators experience similar levels of CETC but they record very different changes in labor

demand, of -0.16%, 0.23%, and -0.01% respectively. We conclude that the key driver in

the heterogeneity in labor demand across occupations is exposure rather than the extent of

CETC.

Yet the magnitude of employment reallocation set by exposure is always smaller than that

in the data. For example, in high-skill occupations the Hicks (1932)’s prediction generates

an inflow of employment of only 0.62p.p., compared to 10.05p.p. in the data. An important

limitation of the Hicks’s prediction is its partial equilibrium nature, which considers occupa-

tions in isolation and abstracts from important feedback effects in labor reallocation across

occupations. In the remaining part of the paper we address this limitation. We re-evaluate

the impact of CETC on the labor market in a general equilibrium model where these effects

are considered and exposure endogenously responds to CETC through the capital share.

5 A model of occupational capital, labor and output

In this section, we lay out and parameterize a framework that links occupational output

to capital and labor inputs. Our framework extends Greenwood et al. (1997) to include

multiple occupations that differ by their exposure to CETC and to include an heterogeneous

worker’s assignment to occupations in the tradition of Roy (1951). In Section 7.1, we extend

our framework to explicitly model the usage of different capital goods across occupations.

5.1 Environment

Time is discrete and indexed by t. The economy is populated by a continuum of heteroge-

neous workers indexed by i. Workers are divided into a countable number of labor groups

of cardinality H, indexed by h. A labor group is defined on the basis of the demographic

characteristics of the workers. For example, we can think of h as comprising schooling e,

cohort c and gender g, h ≡ (e, c, g). The measure of workers of type h at a point in time is

exogenously given by πht.

There is a countable set of occupations of cardinality O, indexed by o. An occupation is

a technology that combines capital and labor of different types to produce an occupational
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good. Occupations differ in two dimensions, by the technology embodied in capital (CETC)

and by the elasticity of substitution between capital and labor. This is supported by the

evidence provided in Sections 2 and 3.

There are three sets of goods: a final good that can be used for consumption and to

produce capital goods; O-types of occupational goods that are used in the production of the

final good; and O-types of capital goods that are used in the production of each occupa-

tional good, along with labor. Capital fully depreciates after usage within the period. We

relax this assumption when microfounding differences in occupational capital and CETC via

occupational disparities in the capital bundles, see Section 7.2.20

Last, equipment, output, and labor markets are frictionless.

Occupational good producer. In each occupation, a representative producer uses a

CES technology in capital, kot, and labor, not, to produce the occupational good, yot:

yot =

[
αk

σo−1
σo

ot + (1− α)n
σo−1
σo

ot

] σo
σo−1

. (6)

A producer facing an occupational price λyot, a price of capital-o λkot, and a wage per

efficiency unit of labor λnot, chooses equipment and labor to maximize profits:

max
{kot,not}

λyotyot − λkotkot − λnotnot. (7)

Note that this description of behaviour and technology of the occupational output pro-

ducer is sufficient for the model to generate a specification of exposure to CETC as in

equation 5.

Final good producer. Final consumption goods are produced combining occupational

goods using a CES technology:

yt =

(∑
o

ω
1/ρ
ot y

(ρ−1)/ρ
ot

) ρ
ρ−1

,

where ρ is the elasticity of substitution across occupational goods. This elasticity is the

20When capital of different types is combined via an occupation-specific bundle, the capital allocation
problem can be split into two. First, one chooses an equilibrium capital-labor ratio in each occupation (our
benchmark), and second, one chooses the composition capital. Modelling capital dynamics when capital is
occupation-specific implies a slower factor reallocation in response to technical change than in an economy
where capital of different types are accumulated each period and then allocated and combined into bundles
in each occupation in spot markets.
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model equivalent of the demand elasticity for occupational output in occupational exposure,

equation 5. Changes ωo over time are isomorphic to demand shifters. They capture, for

example, the increase in demand for low-skill services discussed by Autor and Dorn (2013);

and the increase in demand for skill-intensive output discussed by Buera et al. (2015).

A producer facing a final good price λyt and prices of occupational goods λyot maximizes

profits:

max
{yot}Oo=1

λyt yt −
∑
o

λyotyot. (8)

Capital producer. Each occupational capital is produced with a linear technology in

the final good. Let qot be the rate of transformation for capital-o. Changes in qot formalize

the notion of capital embodied technical change (CETC), as in Greenwood et al. (1997).

A producer facing a price of capital λkot and a price of the final good λyt demands xot units

of final output to maximize:

max
{xot}

λkotqotxot − λ
y
txot. (9)

Workers. Workers value consumption and are endowed with one unit of time, which

they inelastically supply to work in an occupation. Worker i of type h supplies noht(i)

efficiency units of labor when employed in occupation o at time t. Each worker draws

a profile of {noht(i)}o across occupations at each point in time. We assume that noht(i)

is a random variable drawn from a univariate Frechet distribution with cumulative density

function Foht(z) ≈ exp(−Tohtz−θ). The draws of efficiency units of labor are independent and

identically distributed across occupations and workers.21 The parameters θ and Toht govern

the dispersion of efficiency units of labor across workers and across groups/occupations,

respectively.

We allow the scale parameter Toht to vary across groups and occupations, shifting the

mean efficiency units of labor at each point in time. The group-h common component of Toht

determines the absolute advantage of the labor group. For example, the average efficiency

units supplied by a college graduate working for an hour of time might be higher than that

supplied by a non-college graduate. The dispersion of Toht across occupations and groups

determines the structure of comparative advantage. The comparative advantage of working

in occupation o relative to o
′

for labor type h with respect to labor type h
′

is:

(
Toht
To′ht

/
Toh′ t
To′h′ t

) 1
θ

, (10)

21This assumption can be relaxed following Lind and Ramondo (2018).
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with a comparative advantage for h if the ratio is greater than 1.

The scale parameters of the distribution of efficiency units of labor encompass differences

in human capital, differences in labor productivity in the occupational technologies, as well

as labor market frictions (see, Burstein et al., 2019 and Hsieh et al., 2019). Our framework

remains agnostic as of the source of these differences. We infer the scale parameter residually

to match labor market outcomes.

A worker i of type h who provides noht(i) units of labor to occupation o receives com-

pensation,

woht(i) ≡ noht(i)λ
n
ot.

Workers maximize their consumption, coht(i) = woht(i) (and therefore instantaneous utility),

by choosing the occupation that yields the highest compensation. Hence, given a set of

wages per efficiency units {λnot}Oo=1, the problem of worker i in labor group h reads:

o?ht(i) ≡ arg max
o
{woht(i)}. (11)

5.2 Parameterization

We parameterize the model equilibrium to the US economy, over the 1984-2015 period. The

definition and characterization of the equilribium is standard and, for brevity, described in

the Appendix, Section B.1. Our parameterization strategy consists of two steps. First, we

use our newly constructed dataset on occupational capital to measure occupational hetero-

geneity in CETC and in the elasticity of substitution between capital and labor. Second, we

parameterize the distribution of efficiency units of labor to match labor market outcomes and

the demand structure of occupational output to match the stock of capital per worker across

occupations. The parameterization of the model delivers the two components of exposure to

CETC, equation 5, that remain to be inferred – that is, the labor supply elasticity and the

demand elasticity of occupational output.

We map the estimates of the elasticity of substitution in Table 1 to σo in each occupation.

In Section 2, we constructed the user cost of the quality-adjusted capital in each occupation,

in units of consumption (figure 2). We map this price to the price of each occupational

capital good relative to consumption in the model, λkot.

Next, we parameterize the distribution of efficiency units of labor, as determined by the

shape parameter of the Frechet distribution, θ, and the scale parameters, {{{Toht}Oo=1}Hh=1}t={1984,2015}}.
The shape parameter governs the magnitude of the right tail of the distribution of efficiency
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units of labor: a lower θ induces a fatter tail and therefore more dispersion in talent draws.

To estimate its value, we use maximum likelihood to fit an inverse Weibull distribution on

the wage residuals predicted from a Mincerian regression with age, age squared, dummies for

sex and education, and 1-digit occupation fixed effects. We run these estimates for each year,

between 1984 and 2015, and take the average over the period at θ = 1.30. This is consistent

with Hsieh et al. (2019) and Burstein et al. (2019) who, using a similar identification strat-

egy, infer the estimate θ to be 1.24 and 2, respectively. Combining our estimate of θ with

the specification of the labor supply elasticity in our model, we deduce ηnλno = θ− 1 = 0.30.

The model defines a link between the labor market outcomes of workers of a given group

h and their associated scale parameters of the Frechet distribution, Toht (equations 19 and

21). We consider 12 labor groups, as defined by three of their demographic characteristics:

age, gender and schooling attainment. We group age in three groups: 16- to 29-years old,

30- to 49-years old and 50- to 65-years old. We group schooling attainment into two groups:

less-than 4-year of college and 4-year of college or more. We use the occupational choice and

average wages of workers to parameterize the profile of Toht, given wages per efficiency units

in each occupation.

We choose a profile of wages per efficiency units across occupations, woht, so that the

model matches the capital per worker across occupations, kot
`ot

. The equilibrium of the model

specifies that the capital-labor ratio differs across occupations as a function of the elasticity

of substitution between capital and labor and factor prices (equation 18). The capital-labor

ratio maps to capital per worker for a value of the average efficiency units of labor in each

occupation. This last term is not directly observable in the data and is a result of worker’s

selection into different occupations. The properties of the Frechet distribution allows us

to link the selection effect of each worker group to their occupational choice, and therefore

measure differences in efficiency units of labor per-worker from data on occupational choices

(equation 20).22

We now turn to the inference of the parameters of the production function of final output.

We first estimate the elasticity of substitution across occupational output, ρ, from the first

order condition for the final good producer, equation 17:

ln

(
λyotyot
λyobtyobt

)
= (1− ρ) ln

(
λyot
λyobt

)
+ ln

ωot
ωobt

.

22Details on the inference of the scale parameters of the Frechet distribution are in Appendix B.2. Figure
10 in the appendix depicts the evolution of the scale parameters of the Frechet distribution, separately for
the group and the occupation components.
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The covariation of the value of occupational output with relative occupational prices gives

an estimate of the elasticity of substitution across occupational. The value of output across

occupations, λyotyot, can be readily measured from our dataset on capital and labor expen-

ditures at the occupation level, under the assumption of competitive markets. However,

occupational output prices, λyot, are intrinsically unobserved. To overcome this challenge, we

rely on the structure of our model, which links these prices to our previously inferred wage

per efficiency units of labor and to the price of capital (see equation 16).

We are then able to estimate the following regression equation:

ln

(
λyotyot
λyobtyobt

)
= β1 + β2ot+ β3 ln

(
λyot
λyobt

)
+ εot, (12)

where εot ≡ ln ωot
ωobt

+ νot, and νot is an error term, normally distributed, mean-zero, and i.i.d.

across observations. We control for occupation-specific time trend in equation 12 to capture

trends in unobserved occupation-specific demand shifters. Note that our model predicts that

changes in equilibrium occupational prices depend on changes in the unobserved demand

shifters. We then expect the error term to be correlated with
λyot
λyobt

and the resulting estimate

of ρ to be biased, with unknown direction. To address this endogeneity issue, we follow

Burstein et al. (2019) and use a Bartik-style instrument based on the average cost of capital

in each occupation with equipment weights within each occupation fixed at 1984 levels.23

Our estimation considers eight occupations, over 32 years, between 1984 and 2015. The

OLS yields an estimate for the elasticity of substitution of 1.11 (se: 0.008) while the IV yields

an estimate of 1.34 (se: 0.061).24 Burstein et al. (2019) estimate the elasticity of substitution

using the same method, under a Cobb-Douglas production structure for occupational output.

They obtain an estimate of 1.78, which is close to our estimate. Note, however, that under a

Cobb-Douglas production structure the wage per efficiency units of labor cannot be inferred

from capital per worker, and therefore can only be measured up to a value for the scale

parameters of the Frechet distribution.25

Last, to pin down the demand shifters, ωot, we use the first-order conditions of optimiza-

tion of the final good producer (equation 17) along with the price of occupational output

23We construct a Tornqvist price index using the expenditure share of each equipment type in each
occupation in 1984 as weights for the growth rates of each equipment price,

24The first-stage regression of the 2-stage least squares returns a p-value on the coefficient for the instru-
ment of 0.009 and an R2 of 0.80.

25Alternative estimates are in Goos et al. (2014) and Lee and Shin (2019), who estimate the demand
elasticity using data on routine tasks’ intensity and computer capital, respectively, and find an elasticity
lower than 1.
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implied by the wage per efficiency units of labor and our estimate of elasticity of substitution

across occupational output.

6 The role of CETC for labor market outcomes

In this section, we use the model described in Section 5 to quantify the impact of CETC

on labor re-allocation and the evolution of wage premia across labor groups in the US. This

is the general equilibrium counterpart of the analysis developed in Section 4. We close the

section by evaluating other forces that may have contributed to these labor market outcomes.

Our main findings are based on a set of counterfactual exercises, where we take the 2015

economy and progressively remove all exogenous forces in the model, by setting their value to

that in the 1984 economy. These exogenous forces are: the decline in the user costs of quality-

adjusted capital, λkot, (“CETC”); the change in the scale parameters of the distribution of

efficiency units of labor associated to occupations, Tot, and in the demand shifters in final

production, ωoT (“Demand”); the change in the scale parameters associated to worker types,

Tgt (“Demographics”); the change in the structure of worker comparative advantage, T̃ogt

(“CA”); the change in the weights of the different labor groups, πgt (“Composition”).26

Because each of these forces interact non-linearly with each other, their role for labor market

outcomes depends on the value of the remaining forces. To account for these non-linear

interactions we remove these forces in different ordering and compute the effect of a particular

force by averaging across different orderings.27

6.1 CETC

We start by considering the role of CETC for the polarization of US employment (Acemoglu

and Autor, 2011). The top panel of Table 2, column Data, reports that, between 1984

and 2015, low-skill occupations (low-skill services) and high-skill occupations (professionals,

managers, and technicians) gain 3.52p.p. and 10.06p.p. in their employment shares, respec-

tively. Column CETC, in the same table, reports the contribution of CETC to this pattern,

i.e. the difference between the data and the counterfactual employment allocation. CETC

is consistent with employment polarization, as it generates an increase in the employment

26Details on the decomposition of the scale parameters of the Frechet distribution in the occupation, group,
and comparative advantage components are in Appendix B.2.

27The interaction effects are quantitatively relevant. The Online Appendix compares our findings to those
based on a set of counterfactual exercises where we remove each of the exogenous forces starting from the
2015 economy.
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Table 2: The role of CETC for employment reallocation.

Data CETC CETC/Data

Fraction moving into:
High-skill 10.06 7.31 72.72
Middle-skill -13.58 -7.72 56.85
Low-skill 3.52 0.41 11.55

Abs average movement:
All 3.04 2.64 86.95
Non-college graduates 2.61 3.22 123.23
College graduates 1.03 1.87 180.90
16- to 29-year old 3.97 2.65 66.79
30- to 49-year old 2.86 2.32 81.03
50- to 65-year old 2.29 2.70 117.98
Females 4.33 3.20 74.01
Males 2.17 2.10 96.85

Note: Column “CETC” reports the outcome attributed to the decline in the price of capital relative to
consumption via the counterfactual exercise. “High-skill” occupations are managers, professionals, and
technicians. “Low-skill” occupations are low-skill services. All remaining occupations are “Middle-skill”
occupations. Entries are in percent.

share for low- and high- skill occupations. CETC has been most relevant for high-skill oc-

cupations. The model predicts that employment reallocation toward high-skill occupations

due to CETC was of 7.31p.p. – that is, 73% of the observed reallocation. CETC had a

lesser role in the reallocation out of middle-skill occupations, accounting for 57% of it, and

even a smaller one in the reallocation toward low-skill occupations, accounting for 12% of

it. Figure 5 gives a visual representation of the role of CETC for employment polarization.

It plots employment changes across occupations of increasing skill requirements, as reported

in the data (black dashed line) and as generated by CETC alone (red dotted line).

Workers of different demographic characteristics differ in their occupational choices (see,

among others, Hsieh et al., 2019). As CETC tends to be more relevant for high-skill occu-

pations, it may have a different impact on the labor market outcomes of workers of different

demographic characteristics. The bottom panel of Table 2 reports the absolute change in

employment allocation across occupations generated by CETC for workers of different edu-

cation, age and gender. We find that CETC had a stronger role in the reallocation of more

educated, older, and male workers. CETC accounts for 58p.p. more of of the reallocation

of college graduates than of non-college graduates, for 52p.p. more of the reallocation of
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Figure 5: Employment polarization.

“Data & model” plots 100 times the change in share of employment between 1984 and 2015; “CETC” plots
the same outcome attributed to the CETC via the counterfactual exercise. Lines are cubic polynomial fits.

50- to 65-year-old workers compared to 16- to 29-year-old workers, and for 23p.p. more of

the reallocation of male workers compared to female workers. This finding is a reflection

of more educated, older, and male workers choosing high-skill occupations more frequently

and highlights the importance of the occupational choice for workers to access the returns

of CETC.

In our model, differences in the occupational choices across demographic groups are

rationalized via a residual component of the productivity shifters that determines the com-

parative advantage. Various studies highlight how this residual component reflects labor

market frictions linked to the demographic characteristics (see, among others Hsieh et al.,

2019). Such frictions prevent workers to fully respond to CETC with their occupational

choices and therefore exacerbate inequality in labor market outcomes across demographic

groups. Table 3 shows the impact of CETC on the wage premia across labor groups. In the

data, the college premium increased by 31p.p. between 1984 and 2015, the cross-sectional

age premium increased by 8p.p. for 30- to 49-year old workers and by 14p.p. for 50- to

65-year old workers. CETC generates 54% of the increase in the college premium and about

1/3 of the rise in the cross-sectional age premia. Over the same period of time, the gender

wage gap decreased of 28p.p.. Our model generates an increase of the gender wage gap

due to CETC because males are more likely to work in high-skill occupations, where wages
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Table 3: The role of CETC for the wage premia across demographic groups.

Data CETC CETC/Data

College premium 30.58 16.49 53.93
Age premium
30- to 49-year old 7.95 4.12 51.86
50- to 65-year old 13.83 1.26 9.09

Gender wage gap -28.01 12.48 -44.56

Note: The table reports percentage variation in the college premium, the age premia, and the gender wage gap
between 1984 and 2015. Column “CETC” reports the outcome attributed to CETC via the counterfactual
exercises. Entries are in percent.

increase as a consequence of technical change.

To conclude our evaluation of the role of CETC for labor market outcomes, we test its

predictive capacity on employment flows via an in-sample prediction exercise. Standing in

2005, we ask how well we would had predicted occupational employment over the subsequent

10 years in the US using only the information on occupational CETC over the previous 10

years. To do so, we take the calibrated model economy in 2005 and input the path of CETC

that is implied by the average yearly decline in the user cost of capital relative to consumption

we observe over the 1995-2005 period, to forecast employment reallocation between 2006 and

2015. The results are in Figure 6, which plots the predicted employment changes (dotted

lines) along with the data (solid lines). CETC is a strong predictor of employment in high-

skill occupations: it predicts 3.8p.p. of the realized 5.0p.p. rise in the employment share

of these occupations, between 2005 and 2015. CETC is also able to predict the outflow of

employment from middle-skill occupations over the same period, 64% of the realized one,

but predicts an outflow of employment from low-skill occupations of 0.35p.p. in contrast to

the realized inflow of 0.34p.p..

Partial vs general equilibrium quantification. Aggregating the effects of CETC

across occupation, we summzarize the role of CETC for the reallocation of US labor between

1984 and 2015. Table 2 shows that the average absolute change in employment allocation

across occupations over this time period is 3.0%. CETC accounts for 87% of this employment

reallocation (2.6p.p.).

The contribution of CETC to labor market outcomes using our general-equilibrium frame-

work is more than five times the number we obtain when using the Hicks’s prediction (see

Section 4). The Hicks’s prediction considers occupations in isolation and therefore misses
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Figure 6: Forecasting exercise.

The left panel plots 100 times the employment share in the data and as predicted by our in-sample forecasting
exercise, between 1995 and 2015. Forecasting starts in 2006 and uses CETC data from 1995 to 2015. The
right panel plots the same statistics but as a difference between 2015 and 2005 and separately for 1-digit
occupations; lines are cubic polynomial fits.

feedback effects across occupations for labor reallocation. In particular, the elasticity of

employment to a decline in the cost of using capital in an occupation is computed fixing

employment and output prices in all other occupations in the Hicks exercise, whereas those

are allowed to endogenously change in our general-equilibrium estimates. Our exercise shows

that these feedback effects are quantitatively important.

At the same time, the direction of employment flows implied by our model and by the

Hicks’s formulae are mostly consistent. We conclude then that we can use the concept of

exposure developed in Section 4 and the channels therein highlighted to understand the

workings of CETC in the labor market.

Quantification of the channels. In Section 4, we established that CETC influences

labor market outcomes through heterogeneity in occupational exposure, which shapes the

scale and substitution effects in each occupation. Through the lens of the model, hetero-

geneity in exposure is driven solely by the heterogeneity in the elasticity of substitution

between capital and labor across occupations. At the same time, for a given level of expo-

sure, CETC is heterogeneous across occupations due to differences in the bundle of capital

used in each occupation, which influence the observed decline in the relative price of capital

to consumption across occupations
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To isolate the quantitative role of these two source of heterogeneity, we design three

alternative experiments: first, we equalize the path of the relative user cost of capital to

consumption across occupations (Identical CETC ); second, we input a common elasticity of

substitution of capital and labor across occupations, (Identical elasticity); third, we input

both a common relative user cost of capital and elasticity of substitution in all occupations,

(Identical elasticity). We set the common elasticity of substitution to σ = 0.81, which

is estimated by imposing a common elasticity parameter in regression equation 3, Section

3.28 We quantify the importance of CETC in each of these alternative experiments by

shutting down the decline in the relative price of capital to consumption – that is, by setting

λko2015 = λko1984, and computing the difference between the data and the counterfactual in

2015. Table E.III in the Appendix reports the contribution of CETC in the three alternative

experiments.29

Consistently with our findings in Section 4, the heterogeneity in the elasticity of substi-

tution across occupations is the most important driver for the direction and the magnitude

of the reallocation of labor across occupations. When we force identical elasticities of substi-

tution in all occupations, CETC generates about a 1/3 of the inflow of employment toward

high-skill occupations generated in the baseline.

6.2 Other forces at play

In the previous section we established that CETC has played a major role in shaping labor

market outcomes in the US over the 30 years. However, not all labor market outcomes can

be traced back to CETC. In this section, we quantify the contribution of other exogenous

forces in the model to labor market outcomes via counterfactual exercises.

Figure 7 shows the contribution for employment polarization of the occupational demand

shifters, in the left panel, and of all other exogenous forces, in the right panel. Consistently

with the hypothesis in Autor and Dorn (2013) and the recent work of Comin et al. (2020), we

find that demand shifters were responsible for the increase in employment at the bottom of

the skill distribution. The model predicts that demand shifts towards low-skill occupations

should have generated a 2.41p.p. increase in the share of workers allocated to them; in

28We use 16-years lagged birthrates interacted with the share of employment in an occupation in 1984 as
an instrument and include occupation-specific time trends.

29In each alternative experiment, we recalibrate the model following the calibration strategy in Section
5.2. We keep the elasticity of substitution across occupational output as in the baseline, at ρ = 1.34, for
comparability. Note that our counterfactual exercises on the alternative experiments abstract from interac-
tion effects among the exogenous forces in the model. These effects are inconsequential to the conclusions
we take from the alternative experiments.
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(a) The role of demand shifters
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(b) The role of other forces

Figure 7: Other forces at play.

“Data & model” plots the fifth-degree polynomial fit of 100 times the change in share of employment between
1984 and 2015; the remaining lines plot the quadratic polynomial fit of the same outcome attributed to the
various forces via the counterfactuals described in the text.

the data, this change was 3.52p.p. Demand shifters mostly miss the employment gains

at the top of the skill distribution, as well as the hollowing out in middle skill occupations.

Employment losses at the middle of the skill distribution that follow from the demand shifters

are redirected equally toward higher employment in both high- and low- skill occupations,

This is in contrast to the data, where see a flow into high-skill occupations that is 74% of

the outflow from middle-skill occupations.

The right panel of Figure 7 shows that exogenous forces beyond CETC and demand

shifters mostly play a secondary role in the US employment polarization. The only effect

worth noting is that of changes in the weights of the different labor groups (“Composition”

effects), which generate an outflow of employment from middle-skill occupations of a magni-

tude of 20% that observed in the data (mostly accounted by mechanics, transportation, and

machine operators) and an inflow of employment toward high-skill occupations of a magni-

tude of 31% that observed in the data (mostly accounted by managers and professionals).30

Overall, we conclude that, on average, CETC, demand effects, and demographic compo-

sitional effects are the most important determinants of workers reallocation from middle skill

occupations to high and low skill occupations. CETC is the most important contributor of

30Details on the quantifications of each of the effects by occupation are in Table E.II in the Appendix.
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changes in the reallocation of labor in high-skill occupations.

7 Discussion

There is a growing literature studying the role of computers, automation and general pur-

pose technologies for labor market outcomes, Aghion et al. (2002), Eden and Gaggl (2018),

Acemoglu and Restrepo (2018), Aum et al. (2018), Burstein et al. (2019). In measuring

capital, these studies typically rely on survey data for a handful of equipment goods, mostly

computers. One of the key advantages of our measurement is that we see disaggregated data

for all equipment categories and that our series are consistent with BEA’s measurement of

equipment stocks.

To study the effect of particular equipment categories on labor market outcomes, we

modify the commodity space of the economy in Section 5 to model occupational capital

as an endogenous composite of different capital goods. In Section 7.1, we document the

contribution of CETC that relates to specific capital goods for the reallocation of labor

in the US between 1984 and 2015. In Section 7.2 we discuss the implications of capital

accumulation for the equilibrium allocations.

7.1 Multiple capital goods

Consider a countable set of capital goods of cardinality J indexed by j. These capital goods

map to the 24 BEA equipment categories, including for example computers and communi-

cation equipment. Each capital good is produced with a linear technology in the final good,

with a rate of transformation qjt specific to each capital good. Occupational capital is an

occupation-specific CES aggregator of a subset of capital goods, Ωk
ot of cardinality Jot:

kot =

∑
j∈Ωkot

ξ
1/φ
jot k

(φ−1)/φ
jot


φ
φ−1

.

The equipment producer now chooses the quantity of each capital good used in the occupa-

tion, along with the stock of capital and labor.

The competitive equilibrium is analogous to the one described in the benchmark, except

that the capital markets are now indexed by the capital type rather than the occupation.

As before, the equilibrium price of capital relative to consumption equals the inverse of the
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rate of transformation, λkjt = 1/qjt. Given the price of each capital good, the optimal capital

allocation in an occupation and the price of occupational capital satisfy:

ξjot
ξj′ot

=
kjot
kjbot

(
λkjt
λkj′t

)φ

, λkot =

∑
j∈Ωkot

ξjotλ
1−φ
jt

 1
1−φ

(13)

Hence, given these prices, the equilibrium allocations in this extension of the model are as

in the baseline. The capital labor ratio and the relation of the wage per efficiency unit and

the occupational price follow from equations 18 and 16. In this sense, the problem of capital

allocation within each occupation can be split into two. First, solving for the value of the

capital labor ratio, and second, solving for the mix of capital types within the occupational

composite, as in equation 13.

To quantify this extended version of the model, we first parameterize the CES aggregator

for capital and then run the calibration procedure in Section 5.2. We use the parameterized

model to run counterfactual exercises analogous to those of Section 6 and quantify the role

of CETC in each capital good on the reallocation of labor across occupations.

To infer the elasticity of substitution across capital goods, we use the ratio of the first

order condition for the occupational good producer across capital goods, equation 13:

ln

(
λkjtkjot

λkjtkjbot

)
= (1− φ) ln

(
λkjt
λkjbt

)
+ ln

ξjot
ξjbot

.

We observe all the elements of the above equation, except for the occupational efficiency by

capital type,
ξjot
ξjbot

. Therefore, we estimate the following regression equation:

ln

(
λkjtkjot

λkjtkjbot

)
= β1 ln

(
λkjt
λkjbt

)
+ εjt, (14)

where εjot = ln
ξjot
ξjbot

+ νjot, and νjt is an error term, normally distributed, mean-zero, and

i.i.d. across observations. We take changes in the ratio of capital prices over time,
λkjt
λkjbt

, as

exogenously determined by changes in technology. We then estimate regression equation

above using OLS. We consider 24 capital goods, over 9 occupations and 32 years, between

1984 and 2015 and estimate an elasticity of substitution of φ = 1.13 (se: 0.017).31 Given

31Including a time-trend in regression equation 14 gives an estimate for the elasticity of substitution across
capital goods of 1.42 (se: 0.030). If the trend is allowed to vary by occupation and capital good, we estimate
a value of 1 (se: 0.014).
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Table 4: CETC across capital goods.

Data CETC in:
computers communication software

Fraction moving into:
High-skill 10.16 0.70 0.81 1.12
Middle-skill -13.82 -0.61 -0.73 -0.97
Low-skill 3.52 -0.09 -0.08 -0.15

Managers 3.97 0.27 0.32 0.38
Professionals 6.19 0.30 0.41 0.54
Technicians -0.11 0.14 0.08 0.20
Sales -1.15 -0.12 -0.12 -0.19
Administrative serv. -4.16 -0.67 -0.80 -0.79
Low-skilled serv. 3.52 -0.09 -0.08 -0.15
Mechanics and transp. -1.88 0.32 0.29 0.17
Precision production -2.14 -0.09 -0.05 -0.10
Machine operators -4.24 -0.05 -0.05 -0.07

Fraction moving into:
High-wage 10.06 0.70 0.81 0.16
Middle-wage -13.58 -0.61 -0.73 -1.49
Low-wage 3.52 -0.09 -0.08 -0.30

Note: entries are in percent. Columns under “CETC” present the outcome attributed to CETC via the
counterfactual exercise. “High-skill” occupations are managers, professionals, and technicians. “Low-skill”
occupations are low-skill services. All remaining occupations are “Middle-skill” occupations.

the estimate of φ, we set the occupational efficiency by capital type, ξjot to match our newly

documented occupational expenditure shares by capital good and occupational capital stocks

(Figure 2).

First, note that under our calibration the inferred role for CETC in all capital goods is

identical to the one measured in our baseline model with occupational capital goods. We

then use our model with multiple capital goods to evaluate the role of specific capital goods

for the reallocation of labor. To do so, we run a counterfactual where we shut down, one

at a time, the CETC in each capital good – that is, we set λj2015 = λj1984 ∀j, and consider

the implications for employment reallocation between 1985 and 2015. Table 4 shows the

contribution of CETC, separately for the three capital goods with the strongest impact on

allocations: computers, communication equipment, and software. The direction of employ-

ment reallocation generated by CETC in the three capital goods is identical. However, the

magnitude of these reallocations are not. CETC in computer generates the smallest reallo-

cation of employment, communication equipment comes second in order of magnitude, while

software comes first. This difference in magnitude is particularly relevant for administrative

services and professionals. CETC in both communication and software generates an employ-
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ment outflow from administrative service occupations that is more than 0.10p.p. stronger

than that generated by computers. In professional occupations, CETC in software generates

an employment inflow that is more than 0.10p.p. stronger than that generated by commu-

nication equipment and more than 0.20p.p. stronger than that generated by computers.32

Our results highlight the importance of studying broader equipment categories, other

than computers. This is particularly important for the post-2000 period, where the stock of

computers and software experienced a slow down in growth while communication equipment

has continued its linear trend and has now surpassed the efficiency units value of the stock

of computers.

7.2 Capital accumulation

A distinctive feature of equipment is its durability.

An important feature of the embodied nature of technology is that technological changes

shift the returns to capital accumulation. Capital accumulation and output growth would

necessarily be unbalanced in an environment where there are multiple capital goods and

therefore multiple trends for investment-specific technical change, as well as arbitrary elas-

ticities of substitution across different inputs and outputs. This feature poses a major chal-

lenge in characterizing the equilibrium path of the economy. To make progress, we restrict

the parameter space of the economy to an aggregator of capital at the occupation level, and

an aggregator of occupational output that display unitary elasticity, i.e. Cobb-Douglas. In

addition, we restrict the occupation specific component of the scale parameter of the dis-

tribution of talent to grow at the same rate as the measure of investment-specific technical

change at the occupation level. Therefore, technological growth is Hicks-neutral.

As we show in the Online Appendix, this economy displays a BGP where final output,

occupational output and capital grow at constant albeit different rates. As in Greenwood

et al. (1997) capital grows faster than output and the return to capital declines at constant

rates. Because the shares of occupational output are constant along the BGP (due to the

Cobb-Douglas structure of the demand), occupational prices exactly offset the effect of CETC

on occupational output. Capital-labor ratios, measured in efficiency units, are constant along

the equilibrium path as they are in our baseline economy. Finally, the detrended version of

this economy is observationally equivalent to the economy discussed in section 7.1.

32Different in magnitudes across CETC are also recorded for technicians, transportation, and mechanics,
but the model generates counterfactual directions of the employment flows.
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8 Conclusions

We document two new facts. First, there is substantial heterogeneity in the capital bundles

used by different occupations, and therefore in CETC. Second, workers’ exposure to CETC

varies considerably across occupations, as a function of heterogeneity in the intensity of

capital use and in the elasticity of substitution between capital and labor. Through the

lens of a general equilibrium model of occupational choice, we find that CETC accounts

for 87% of the gross labor reallocation across occupations observed in the US since 1984.

CETC is particularly important in explaining the gains in employment at the top of the skill

distribution.

Occupations with higher skill requirements experienced strongest CETC. These occu-

pations also gained employment overall. Our structural model rationalizes these gains in

employment through capital-labor complementarity, as well as a relatively substitutable oc-

cupational output. As the demand for higher skill occupations shifted upwards, both capital

and labor reallocated toward those occupations. How changes in the demand for skills feed

back into the pace of CETC is still an open question.
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Appendix

A Data

A.1 Data construction

Stocks in efficiency units. Given the nominal series for investment we construct measures
of efficiency units of investment using the quality adjusted price of investment. To prop-
erly compute quality-adjusted stocks, capital prices need to be adjusted by changes in the
quality of investment. We use extrapolations of the series of quality-adjusted capital prices
constructed by Gordon (1987), following the methodology proposed in Cummins and Vi-
olante (2002) and updated in DiCecio (2009).The price of consumption corresponds to a
chained-weighted price index of personal consumption expenditures (known as PCE).

Measures of capital depreciation available from the BEA account for both economic
and physical obsolescence. To correct the measurement and obtain estimates for physical
depreciation we rely again on quality-adjusted prices of investment. In an economy with
linear production technology for investment, the change in the quality-adjusted price through
time captures changes in the quality of the stocks, and therefore obsolescence. Let δjt be the
physical depreciation of capital j in period t; djt be the depreciation rate reported by BEA.
Physical depreciation satisfies:

djt = 1− (1− δjt)
qjt−1

qjt
.

We assume a linear technology to transform consumption goods into investment at rate qjt, in
the tradition of Greenwood et al. (1997). Then, the quality-adjusted relative price of capital
relative to consumption, λk

λy is the inverse of the rate of transformation qjt.

With these ingredients, we use the law of motion for capital to construct stocks,

kjt+1 = kjt(1− δjt) + xjt.

where xjt is the quality-adjusted investment series for a particular equipment category j.
Available equipment categories are described in the Online Appendix.

We exploit information on tools to allocate capital of different equipment categories to
each occupation at a point in time as described by reqjot in Section 2. Then we construct the
stock of equipment in each occupation using a Tornqvist quantity index. Following, Oulton
and Srinivasan (2003), the weights in the index correspond to the expenditure share of each
equipment category ωoj =

rjkojt∑
j′∈o rj′koj′t

, using estimates of the usercost of capital that follow

from the standard no-arbitrage condition Jorgenson (1963):

rjt =
pjt−1

pct−1

[
R− (1− δ̄jt)

pjt
pct

pjt−1

pct−1

]
,

where pc is the price of consumption, pj is the price of equipment good i, and δ̄ corresponds
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to the average depreciation in the relevant decade of analysis.33 We average the depreciation
rates to smooth the effect of annual fluctuations in economic depreciation on the residual
estimate for physical depreciation. The gross return on a safe asset is set at 2% per year,
for R = 1.02. Hence, the growth rate of the stock at a point in time is γkot =

∑
j ωojγ

k
ojt, where

γkojt is the growth rate in the quality-adjusted stock of equipment j in occupation o at time
t. We construct the stock of capital in each occupation by imposing that the stock in 1984
equals its nominal stock k̃o1984, and iterating forward:

kot = kot−1e
γkot , ko1984 = k̃o1984.

34 (15)

Assignment of stocks to occupations. Our assignment rules for the capital stocks across
occupations (equation 1) implies the allocation changes due to disparities in CETC across
capital types through its impact in the quality-adjusted value of each of the stocks. The
capital allocation also moves in response to shifts in the share of employment across occu-
pations, by changing the distribution of tools for each capital type. Figure 8 illustrates the
role of these channels comparing the dynamics of the occupational stock to what we would
have been obtained if either (a) the capital requirements were held constant to its 1984 lev-
els (reqjot = reqjo1984, red line) or (b) in addition, the level of nominal investment was held
constant to its 1984 level (green line).35

The difference between the benchmark data (blue) and a constant requirements series
(red) is the tool and employment reallocation effect. This reallocation effect is positive for
administrative services, low-skill services and precision production occupations, i.e. occu-
pational tools increased relative to their 1984 level; and particularly so after the 2000s for
machine operators, technicians, mechanics and transportation. The contribution of this re-
allocation for the growth in capital per worker is 26%, on average across these occupations.
The reallocation effect is negative for professionals and sales occupations i.e. occupational
tools decreased relative top their 1984 levels. The contribution of this reallocation for the
growth in capital per worker is -17.7%, on average across these occupations. When in addi-
tion nominal investments are held fixed (green), the dynamics of the stocks are explained by
the decline in the relative price of capital to consumption. The contribution of the decline in
the relative price of capital to the change in the stock per worker across occupations averages
41%, and it is as low as 19% for machine operators and as high as 57% for administrative
service occupations.

CETC at the occupational level. Our measure of CETC tracks the decline in the user
cost of capital for the bundle of capital used in each occupation. Particularly, we compute a
measure of the usercost of capital (in units of consumption) of the quality-adjusted capital
services used in each occupation. We construct the usercost of the bundle of capital in an

33Our choice of weights in the Tornqvist quantity index is also consistent with those suggested by Gabaix
and Koijen (2019).

34To compute the value of the nominal stock in 1984 in each occupation we use the tool requirements to
assign the current cost stock of equipment of each category across occupations in 1984. We sum its dollar
value to compute the nominal stock.

35In constructing fixed capital requirements we reweight the proportion of tools allocated to each 3 digit
allocation within a (1-digit) occupation so that it replicates the distribution of shares in 1984.
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(i) Machine Operators

Figure 8: Allocation of capital to occupations.

Each panel corresponds to an occupation. The stock of capital per worker, normalized to 1984, is in blue.
The stock of capital fixing the capital-requirements share to its 1984 level in red. The stock of capital per
worker fixing the capital requirements and the nominal investment to their 1984s level is in green.

occupation using the ratio between the total expenses in capital in an occupation and the
stock of capital in the occupation constructed using a Tornqvist quantity index.

A.2 Further evidence on CETC and the labor market

We consider the relevance of CETC for the polarization of the US labor market by construct-
ing reduced-form counterfactuals in the spirit of Autor and Dorn (2013). In particular, we
reweight the observed employment distribution across occupations by imposing no employ-
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(b) Wage polarization

Figure 9: Change in capital-intensity and the labor market.

The left panel shows employment changes by occupation between 1984 and 2015 (polynomial fit, parameter
0.8) in blue, and reweighed employment changes by occupation assuming no change in occupations with
above median changes in the capital stock per worker. The right panel shows wage changes by occupation
between 1984 and 2015 (polynomial fit) in blue, and wage changes by occupation imputing the average
change in wages in occupations with above median changes in the capital stock per worker.

ment change in occupations above the median of the distribution of changes occupational
capital per worker (see Panel (a) in Figure 9). We find that employment polarization would
have been weaker if abstracting from the shifts in employment in occupations that became
more capital intensive. Particularly, we should have seen lower gains in employment at the
top of the skill distribution, as proxied by the wage. In the same spirit, Panel (b) of Figure 9
explores the dynamics of hourly wages. If we set wage gains in occupations that experienced
above median changes in capital per worker to the average wage gains over the period we
find that wage gains would have been lower at the bottom and top of the skill distribution,
and that these lower gains concentrate at the top of the skill distribution.

A.3 Elasticity of substitution between capital and labor

Labor inputs. We construct measures of efficiency units of full-time equivalent workers using
male young college-educated workers as the base group in each occupation. We adjust the
efficiency units of labor of other demographics using the ratio of their average wages in a
given occupation to the wages of the base group.

Wage per efficiency unit in each occupation. Constructed by dividing the wage-bill in an
occupation year by our measure of efficiency units of full-time equivalent workers.

Capital services. We construct a measure of capital services in an occupation as the
Torqvinst quantity index of quality-adjusted capital stocks for different equipment categories
in the occupation.

User cost of capital. For consistency with the measurement of average wages, we compute
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the user cost of capital in an occupation as the ratio between capital expenses and the
occupation-specific Torqvinst quantity index of capital in an occupation.36 Capital expenses
in an occupation are computed as the sum across equipment categories of the product of the
stock of quality-adjustment equipment of a given category in an occupation and the user
cost of capital for that equipment category at each point in time.

A.3.1 Instruments

To address the endogeneity concerns of the capital-labor ratio and relative input prices, we
construct the following instruments.

Supply IV. For the aggregate estimate of the elasticity of substitution we use lagged birth
rates, br, to proxy exogenous variation in the supply of labor. The instrument in year t is:

brt−a,

where a is the minimum working age in the sample (i.e. 16 years).

We modify this instrument when used for occupational-level regression to proxy exoge-
nous variation in the supply of labor in a specific occupation. We do so by multiplying it by
the share of employment of an educational level e allocated to the occupation in 1984 times
the aggregate supply of skills at time t measured as the overall number of workers with ed-
ucation level e who have at least 24 years old. Education levels correspond college-educated
workers, and those with less than college:

log(brt−a
∑
e

shloe1984net),

where shloet = noe1984
no1984

is the share of workers in occupation o and education e in 1984. This
instrument is used in pooled regressions across 1-digit occupations, where we impose a com-
mon elasticity of substitution across occupations as well as in the benchmark regressions for
each occupation in isolation. This instrument is weak in two occupations, namely, low skill
services and mechanics and transportation. Therefore, we create an alternative instrument

Demand IV. We generate a measure of the demand for labor in an occupation using
information on the sectorial composition of occupations in 1984, the sectorial composition
of the labor force in each year, and exports as a share of GDP in each year. Sectors s

are distributed between agriculture, manufacturing, low and high skill services following the
industry codes available in CPS, which correspond to the 1990 Census Bureau industrial
classification scheme. We construct a measure of the share of workers in a given occupation
that are employed in a sector in 1984, shos1984 = nos1984

no1984
, and multiply it by the number of

workers in a sector and the share of exports in GDP, Xt at each point in time. We add
these measures up within each 1-digit occupation and take the logs to construct a measure

36By construction, the user cost computed this way is almost identical to what one obtains through a
Torqvinst price index for the user cost of capital in an occupation based on the user cost of each equipment
category.
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of exogenous changes in occupational labor demand:

log(
∑
s

shos1984nstXt).

B Model

B.1 Equilibrium

We characterize the equilibrium prices and allocations of labor and capital.37 We start
by defining equilibrium, given a set of technological parameters {ωo, qo}Oo=1, a set of a scale
parameters in the distribution of efficiency units of labor, {{Toh}o=1}Hh=1, and a set of measures
of workers by labor groups, {πh}Hh=1.

Definition. A competitive equilibrium consists of (1) consumption and labor decisions for
workers of each type i and labor group h, {o?h(i), co?h(i)h(i)}Hh=1, (2) labor, capital and output
allocations across occupations, {{no, ko, yo, xo}Oo=1, y}; such that given prices {{λno , λko , λyo}Oo=1, λ

y}:

1. Workers maximize wages, equation 11;

2. Profits in all occupations, final output, and capital production are maximized, equa-
tions 7, 8, 9;

3. The labor market for each occupation clears, i.e., no =
∑
h

∫
i∈Ωho

noh(i)πhdFoh(i), where
Ωho identifies the set of workers with o?h(i) = o;

4. The market for each capital-o clears, ko = qoxo.

5. The market for final output clears, i.e.
∑
ho

∫
i
co?h(i)h(i) +

∑
o xo = y.

Input and output prices across occupations. From the zero-profit condition of the producer
of occupational output, we express the wage per efficiency unit of labor as a function of the
price of occupational output and the price of capital:

λnot =

((
1

1− α

)σo
λy1−σo
ot −

(
α

1− α

)σo
λk1−σo
ot

) 1
1−σo

. (16)

The wage per efficiency unit does not equalize across occupations because workers are not
equally productive across them, i.e. they draw different efficiency units depending on the
occupation {noht(i)}Oo=1, as in Roy (1951).

From the zero-profit condition of the capital producer, the price of capital-o equals the
inverse of the exogenous rate of transformation from consumption, λko = 1/qo.

The optimal demand from the final good producer characterizes occupation output prices,

λyot = λyt

(
ωot

yt
yot

) 1
ρ

, (17)

37Derivations in the Online Appendix.
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where λyt is the price index for the final good and which we normalize to 1 at each point in
time, λyt =

(∑
o ωot(λ

y
ot)

1−ρ) 1
1−ρ = 1.

Capital-labor ratios across occupations. The optimality conditions of the occupational
good producer pin down the capital to labor ratio in the occupation as a function of prices,

kot
not

=

(
α

1− α
λnot
λkot

)σo
. (18)

Therefore, the capital-labor ratio differs across occupations as a function of the elasticity of
substitution between capital and labor and factor prices.

Workers’ labor supply. The probability that worker i of group h chooses occupation o is:

πoht ≡ Prob(woht(i) > wo′ht(i)) ∀o
′
6= o.

Replacing equilibrium wages and using the properties of the Frechet distribution, we solve
for the occupational allocation of workers of group h:

πoht =
Toht(λ

n
ot)

θ∑
o′ To′ht(λ

n
o′ t

)θ
. (19)

The occupational choice of the worker defines the amount of efficiency units supplied to an
occupation o:

not =
∑
h

∫
i∈Ωhot

noht(i)πhtdFoht(i) =
∑
h

πhtπohtE(n|oht) =
∑
h

πhtπoht

(
Toht
πoht

) 1
θ

Γ(1− 1

θ
). (20)

These are a function of the number of workers that choose that occupation, πhtπoht, and
their average efficiency units, E(n|oht). The properties of the Frechet distribution yield a
close form solution for the average efficiency.

Workers’ expected wages. The average wages of workers of type h in occupation o
are the product of the wage per efficiency unit and the average efficiency units supplied,
woht = λnotE(n|oht). Using equation 20 average wages are:

woht =

(
Toht

∑
o

λnθot

) 1
θ

Γ(1− 1

θ
). (21)

The equilibrium of the model predicts no differences in the average wages of a group
h across occupations, wht = woht. The assumption of i.i.d. Frechet draws implies that
selection effects perfectly offset differences in the scale parameters across occupations (or
mean efficiency of the workers). For example, an increase in the mean worker efficiency
associated to occupation o through a higher scale parameter increases the returns to working
in that occupation. This increases the number of workers that choose such an occupation and
therefore decreases the efficiency units of the inframarginal worker, pushing average wages
down.38

38Different occupational wages across occupation for a labor group, as observed in the data, can be
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Labor supply-elasticity. Combing equations equation 19, 20 and 21, we can charac-
terize the elasticity of labor supply to its price for fixed average wages across labor groups :

ηnλno = θ − 1.

The constant elasticity result is a direct result of the Frechet distributional assumption of
workers’ efficiency units across occupations.

B.2 Parameterization

Scale parameters of the Frechet distribution. The model defines a link between the
occupational choice of workers of a given group h and the scale parameters, Toht:

πoht
πobht

=
Toht
Tobht

(
λnot
λnobt

)θ
, (22)

where ob is a baseline occupation, which we set to be low-skill services (the occupation with
the lowest average wage in 1984). The equation above delivers two important points for
our inference. First, the level of the scale parameters for a group of individuals (absolute
advantage) does not influence the occupational choice. That is, the fact that high-school
may, on average, be endowed with lower efficiency units for labor than college graduates does
not have a bearing on the different occupational choice of the two groups. Second, the link
between the scale parameters and the occupational choice in equation 22 relies on a measure
of wages per efficiency units across occupations.

To pin down the absolute advantage across labor groups, we use wage differentials. The
level of the scale parameters influences the average wage a group receives. In particular, one
can infer the scale parameters across labor groups in an occupation from data on average
wages and the relative frequency of that occupation:

wht
whbt

=

(∑
o Toht(λ

n
ot)

θ∑
o Tohbt(λ

n
ot)

θ

) 1
θ

=

(
Tobht
Tobhbt

πobhb
πobh

) 1
θ

,

where hb is a baseline demographic group, which we set to be a young, male, worker without
a four-year college degree. The above equation links differences in the scale parameter across

groups in occupation ob at time t,
Tobht
Tobhbt

, to average wages and frequency of occupation ob

for the groups.

To complete the inference of the scale parameters, we need to pin down the level of
efficiency units in each year, Tobhbt. To do so, we use the specification of average wages,
which links the wages of our baseline labor group to Tobhbt and the wage per efficiency

rationalized via occupational preferences that generate equilibrium compensating differentials (see Hsieh
et al., 2019). In a Mincerian regression run separately on the initial and final years of our sample (1984
and 2015), controlling for demographics alone accounts for approximately 80% of the explained variation in
wages by a model that also controls for 1-digit occupational dummies.
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unit in our baseline occupation. To measure the latter, we use data on capital per worker.
Combining the wage equation with the capital per worker equation, we write:

kobt
`obt

= λ
nσob−1
obt

whbt

(
αob

1− αob
1

λkot

)σob (∑
o

πohbt
πobhbt

)− 1
θ
nobt
`obt

.

With a measure of λnobt at hand, we can then pin down the evolution of Tobhbt as a residual
between the observed change in wages for young, male workers without a college degree and
the change in the wage per efficiency units and frequency of managerial occupation for the
group. We normalize Tobhbt in 2015 to 1.

Wages per efficiency units. We choose a profile of wages per efficiency units across
occupations so that the model is consistent with capital per worker across occupations, kot

`ot
.

Replacing equation 19 into equation 18, we write differences in capital per worker across
occupations as a function of relative wages per efficiency units and observable variables:

kot
`ot
/
kobt
`obt

=

(
α

1− α
λnot
λkot

)σo ( α

1− α
λnobt
λkobt

)−σob not
`ot

(
nobt
`obt

)−1(
λnot
λnobt

)−1

, (23)

where `ot =
∑

h πohtπht. The first two terms on the RHS are the capital labor ratios, for
labor measured in efficiency units. They are a function of the wage per efficiency units and
observables. We observe the price of capital in our dataset and assign a value of 0.24 to the
capital share in the production of the occupational good, as estimated by Burstein et al.
(2019). The remaining terms in equation 23 give the ratio of the average efficiency units
supplied by workers to each occupation. This term is not directly observable in the data
and is a result of worker’s selection into different occupations. The properties of the Frechet
distribution allows us to link the selection effect to the occupational choice, and therefore
measure differences in per-worker efficiency units from data on occupational choices, given
the wage per efficiency unit:

not
`ot

= Tobhbt
∑
h

πohtπht

(
Tobht
Tobhbt

) 1
θ
(

1

πobht

) 1
θ

.

With these numbers at hand, equation 23 yields a measure of the variation in the price of

labor across occupations scaled by the elasticity of substitution,
λnσo−1
ot

λ
nσob

−1

obt

. With equation 22,

we are able to parameterize the dispersion of the scale parameter across occupations for each
labor groups and year, up to differences in the elasticity of substitution σo.

Outcomes. Figure 10 plots the group and occupation component of the scale parameter
of the Frechet distribution. To isolate those two components, we specify Toht to be the
product of an occupational component, Tot, a labor group component, Tht and a residual
component, T̃oht. In particular, we define the scale parameter for labor group h in occupation
o at time t as:

Toht = TotThtT̃oht.
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Figure 10: Scale parameters.

The left panel shows the logarithm of the labor group component of the scale parameter in the distribution of
the efficiency units of labor, ln(Th). Lighter (green) color indicates females and darker (blue) color indicates
males; stars indicate individuals with a 4-year college degree or more and circles indicate individuals without
a college degree. The right panel shows the logarithm of the occupation component of the scale parameter
in the distribution of the efficiency units of labor transformed to the elasticity, ln(Tσo−1

o ). oi indicates
occupation numbered i in the 1-digit Census classification. Our baseline occupation (o6, low-skill services)
have normalized To = 1. Occupation numbers follow the ordering of occupations in the tables, such as Table
2.

In the above equation, Tht is the average efficiency units of labor of group h. The profile
{Tht}Gh=1 describes the pattern of absolute advantage across the groups. The pattern of
comparative advantage across labor groups is instead described by T̃oht. Last, the profile
{Tot}Oo=1 describes the average efficiency units across occupation. For example, an increase
in To associated to managers implies that individuals become more efficient in managerial
occupations, across all groups.39 To measure the components of T , we estimate, in each year,
the following regression equation:40

lnToht = βotdot + βhtdht + εoht,

where the ds are dummies for occupational groups and worker groups and the βs their
coefficients. βo and βh corresponds to the logarithm of To and Th, respectively.

Figure 10, panel (a), shows the labor group component of the scale parameter, Th. It
increases with the schooling of the group on average, and is higher for males than for females.
These findings are mostly a reflection of the structure of wages in the data. The elasticity to
which wage differentials across labor groups translate into differences in Th is shaped by θ.

39Note that our model does not specify the channel through which an increase in To happens. Labor may
become more efficient in an occupation due to the accumulation of human capital related to that occupation
or because the occupational technology improves and the execution of occupational tasks simplifies.

40In estimating the regression by which we measure the components of T , we weight each observations by
the measure of workers of each labor type choosing an occupations.
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In 2015, the component associated to college graduates is 40p.p. higher than that associated
to individuals without a college degree. The gap in wages between these two groups is 57p.p.
in the same year. The group component associated to males is 31p.p. higher than that
associated to females, while the gender wage gap is of 18p.p., in 2015. Between 1984 and
2015 the gender wage gap decreases of three seventh and the gap in efficiency units reduces
of 2/3.

Figure 10, panel (b), shows the occupation component of the scale parameter in the
distribution of the efficiency units of labor transformed by the elasticity of substitution be-
tween capital and labor, T σo−1

o . The dispersion of the occupation component at each point in
time is a reflection of the dispersion in the evolution of the price and quantity of capital, the
elasticity of substitution, as well as of the occupational choice. For example, consider admin-
istrative services and mechanics, which are the two occupations that calibrates an increase in
its demand shifter relative to low-skill services, between 1984 and 2015. These occupations
both measure a slow increase in the wage per efficiency unit (equation 23), which push up the
path of the occupation component (equation 22). Administrative services record the biggest
changes in price and quantity of capital, as well as the highest elasticity of substitution. On
the opposite end, mechanics and transportations record the smallest changes in price and
quantity of capital along with the second smallest elasticity of substitution.

C Tables and Figures

54



T
ab

le
E

.I
:

C
E

T
C

an
d

ch
an

ge
s

in
th

e
la

b
or

m
ar

ke
t

19
84

-2
01

5.

W
ag

e
gr

ow
th

p
er

ye
ar

W
a
g
es

E
m

p
lo

y
m

en
t

sh
a
re

a
ll

sk
il
le

d
w

or
ke

rs
1
9
8
4
-2

0
1
5

(m
ed

ia
n

,
p

.p
.)

%
ch

a
n
g
e

(m
ed

ia
n

p
.p

.)
(1

)
(2

)
(3

)
(4

)

P
a
n

e
l

A
:

A
ll

o
c
c
u

p
a
ti

o
n

s
0.

8
2
8
.7

0
.0

6
.1

P
a
n

e
l

B
:

O
c
c
u

p
a
ti

o
n

s
o
rd

e
re

d
b
y

ch
a
n

g
e

in
c
a
p

it
a
l-

p
e
r-

w
o
rk

e
r

B
ot

to
m

th
ir

d
0.

7
2
4
.2

-4
.8

3.
4

M
id

d
le

th
ir

d
0.

7
2
4
.7

2
.2

7.
6

U
p

p
er

th
ir

d
1.

0
3
6
.3

2
.4

8.
6

P
a
n

e
l

C
:

O
c
c
u

p
a
ti

o
n

s
o
rd

e
re

d
b
y

in
te

n
si

ty
o
f

u
se

o
f

c
a
p

it
a
l

c
a
te

g
o
ri

e
s

w
it

h
d

iff
e
re

n
t

C
E

T
C

co
m

p
u

te
rs

1.
0

3
4
.9

-3
.6

5
.1

h
ig

h
C

E
T

C
0.

8
2
8
.2

5
.5

7.
4

lo
w

C
E

T
C

0.
6

2
1
.7

-2
.0

3
.5

N
ot

es
:

C
ol

u
m

n
(1

)
re

p
or

ts
an

n
u

a
li

ze
d

ch
a
n

g
e

in
av

er
a
g
e

w
a
g
es

fo
r

w
o
rk

er
s

in
a

g
iv

en
ca

te
go

ry
.

C
o
lu

m
n

(2
)

re
p

or
ts

th
e

cu
m

u
la

te
d

ch
an

g
e

in
w

a
g
es

ov
er

th
e

1
9
8
4
-2

0
1
5

p
er

io
d

.
C

o
lu

m
n

(3
)

re
p

o
rt

s
th

e
ch

a
n

g
e

in
em

p
lo

y
m

en
t

sh
ar

es
w

h
il

e
C

ol
u

m
n

(3
)

re
p

o
rt

s
th

e
ch

a
n

g
e

in
th

e
sh

a
re

o
f

h
ig

h
-s

k
il

l
w

o
rk

er
s

in
a

g
iv

en
ca

te
g
o
ry

.
P

an
el

B
cl

as
si

fi
es

o
cc

u
p

at
io

n
s

b
y

th
e

ch
a
n

g
e

in
ca

p
it

a
l

p
er

w
o
rk

er
ov

er
th

e
sa

m
p

le
p

er
io

d
.

P
a
n

el
C

cl
a
ss

ifi
es

o
cc

u
p

at
io

n
s

b
y

th
e

in
te

n
si

ty
of

u
se

o
f

ca
p

it
a
l

w
it

h
d

iff
er

en
t

C
E

T
C

in
2
0
1
5
.

55



Table E.II: Forces driving labor reallocation across occupations.

Data CETC demand demographics CA composition

Fraction moving into
Managers 3.97 2.98 0.89 -0.28 -0.83 1.21
Professionals 6.19 2.69 3.42 -1.09 -0.80 1.96
Technicians -0.11 1.64 -1.79 -0.02 0.13 -0.08
Sales -1.15 0.22 -1.61 0.19 0.18 -0.13
Administrative services -4.16 -8.86 4.75 -0.31 0.26 -0.07
Low-skilled services 3.52 0.41 2.41 0.49 0.60 -0.40
Mechanics and transp. -1.88 3.96 -6.40 1.48 0.18 -1.09
Precision production -2.14 -2.33 0.06 0.09 0.32 -0.30
Machine operators -4.24 -0.71 -1.74 -0.60 -0.05 -1.14

High-skill 10.06 7.31 2.53 -1.38 -1.49 3.08
Middle-skill -13.58 -7.72 -4.94 0.85 0.89 -2.74
Low-skill 3.52 0.41 2.41 0.49 0.60 -0.40

Note: All columns present the outcome attributed to the various forces via the counterfactual exercise. The
description of all the counterfactuals in the columns is in the text. “High-skill” occupations are managers,
professionals, and technicians. “Low-skill” occupations are low-skill services. All remaining occupations are
“Middle-skill” occupations. Entries are in percent.
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Table E.III: The role of CETC: channels.

Data Identical:
elasticity CETC elasticity and CETC

Fraction moving into:
High-skill 10.16 1.44 6.58 1.49
Middle-skill -13.69 -0.48 -5.07 0.44
Low-skill 3.52 -0.96 -1.51 -1.93

Abs average movement:
All 3.04 0.44 2.10 0.95
Non-college graduates 2.61 0.52 2.27 1.03
College graduates 1.03 0.36 1.86 0.85
16- to 29-year old 3.97 0.48 2.13 0.95
30- to 49-year old 2.86 0.43 2.07 0.94
50- to 65-year old 2.29 0.44 2.14 0.97
Females 4.33 0.45 2.10 1.06
Males 2.17 0.43 2.11 0.87

Note: entries are in percent. All columns aside from “Data” report the outcome attributed to CETC via the
counterfactual exercises. Columns Identical elasticity, Identical CETC, and Identical elasticity and CETC
show the results for the alternative exercises. “High-skill” occupations are managers, professionals, and
technicians. “Low-skill” occupations are low-skill services. All remaining occupations are “Middle-skill”
occupations. Entries are in percent.
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