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1 Introduction

Over the last three decades, interest rates across the developed world have starkly

declined. Low interest rates, together with low output growth following the Great

Recession of 2009, has evoked, for some, the possibility of “secular stagnation,” a

term coined by Hansen (1939) to describe a persistent period of low investment,

employment, and growth. Summers (2015) and Gordon (2015) argue for the

relevance of Hansen’s concept from two angles: demand-side—an increase in

demand for savings arising from changing demographics or growing inequality—

and supply-side—arising from a decline in the ideas and dynamism that have

fueled the economic growth of the last half-century. A complementary idea is

that of a “global savings glut” (Bernanke, 2005): there is too great a supply of

savings, mainly from patient investors outside the United States, compared to

demand arising from the need to fund productive activities (ideas for which may

be lacking).

However, is a greater desire for savings, in fact, what lies behind the decline

in interest rates? On some level, the link appears too obvious to be worth ques-

tioning. Yet any explanation based on a greater desire for savings runs into a

significant problem when one also considers evidence from the U.S. stock market.

A greater desire for savings should have pushed up stock prices to a similar degree

as bond prices, but it did not. From the point of view of the literature on in-

creased desire for savings, low interest rates, and low growth, the behavior of the

aggregate stock market is a puzzle. For a careful explanation of this puzzle, one

can look to Farhi and Gourio (2018), who jointly consider growth, interest rates,

and stock valuations in a neoclassical growth model that allows for rare disasters

of the type considered by Gourio (2012). Farhi and Gourio (2018) show that a

significant increase in the risk of rare disasters is necessary to jointly reconcile

the level of interest rates and stock prices.
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While Farhi and Gourio (2018) succeed in jointly explaining stock prices and

interest rates, an explanation based on increased fears of a disaster runs into its

own problems. First, the nature of rare disasters means that increased disaster

fears are hard to falsify, but one would expect to find evidence in option prices.

Yet evidence from options suggests remarkable stability in fears of rare disasters.

Second, implications of increased risk of disasters are fragile in that they depend

directionally on whether the elasticity of intertemporal substitution (EIS) is above

or below one. If the EIS is below, rather than above one, increased risk of rare

disasters, together with low growth, require that agents become less patient, not

more. Yet the arguments in Summers (2015) and Caballero et al. (2008) point

unambiguously toward an increase in patience.

We therefore propose a different explanation, one based on a decline in the

risk of inflation. There is substantial evidence for a steady decline in inflation

expectations, spanning the 30 years over which interest rates have declined. More

recently, evidence from options markets suggests that inflation expectations have

become “anchored”—that is, investors do not fear either very high or very low

inflation (Reis, 2020).1 When one takes this evidence into account, it is not

difficult to jointly explain the decline in interest rates and the stability of stock

valuation ratios. Because the true real rate has not declined, valuation ratios are

unchanged, and there is no need to assume a large increase in the probability of

a rare disaster to explain the evidence.

One may wonder: if it is simply inflation expectations that have declined,

why is it that measured real rates, namely nominal rates minus ex post realized

inflation, have also declined? But this apparent disconnect disappears if one

accounts for inflation risk. Indeed, if inflation were perfectly forecastable, then

1Further, there is evidence to suggest that the sign of the correlation of inflation on the

output gap has changed since 2001, as noted by Campbell et al. (2020).
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a change in inflation expectations should not impact ex post real rates. But

historically, inflation has on occasion come as a surprise. A decline in inflation

risk will lead investors to require a lower premium to hold nominal securities.

Interest rates will decline if this premium declines, even if measured in real terms

ex post. This effect is more pronounced if investors fear inflation that, in sample,

does not occur. From the point of view of cash flows, and given that the sovereign

has control over the money supply, inflation risk is essentially risk of default.2 A

decline in inflation risk is thus a decline in the probability of default, and thus

should also be expected to affect rates on securities that are said to be inflation-

protected. The first contribution of our paper is to show that a model with rare

disasters and a decline in inflation risk can explain the decline in interest rates and

the stability of valuation ratios. Because sovereign risk depends on institutions

that have altered substantially over the centuries, this explanation could account

for the striking fact that current rates are low, not just relative to the last 30

years, but to the last 300 years.

We also show that fear of rare disasters, together with low inflation risk, leads

to nominal rates that are at or below zero without the need to assume an increased

desire for savings. In practice, the existence of cash creates an effective lower

bound on interest rates. Such a lower bound is absent in traditional asset pricing

models. Thus a second contribution of our paper is to augment a traditional asset

pricing model with cash. We introduce cash in a way that does not require any

change to preferences, or demand for liquidity. In our model, cash is a storage

technology (inventory).3 When interest rates are sufficiently low, agents have an

2We say “essentially” as there is a literature that examines the possibility of outright

U.S. government default. Credit default swaps (CDS) traded on U.S. government debt im-

ply a default probability of 0.2%, a phenomenon examined in depth by Chernov et al. (2020).
3The theory of cash as inventory dates to Baumol (1952), who applies an inventory control

analysis to the theory of money.
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incentive to hold cash, which becomes a positive-net-supply asset.

When we consider storage of output, together with productive technologies

in a general equilibrium model, we can jointly match low growth, as well as flat

valuation ratios and low interest rates. Including inventory in this framework

allows us to obtain dynamics even within a framework with independent and

identically distributed shocks.

The model with inventory also allows us to match an additional puzzle: the

decline in the investment-capital ratio over the last 40 years. In standard models

with production, if interest rates are low due to an increased demand for savings,

investment relative to capital should rise, and can only be offset by lower pro-

ductivity or high levels of risk (Farhi and Gourio, 2018). Neither mechanism is

needed in a model with riskfree storage of consumption goods. In low-interest-

rate regimes, resources that would have been spent on capital are endogenously

funneled into non-productive inventory, crowding out private investment.

The crowding out mechanism comes into play when expected returns on the

risky asset do not rise fast enough as real rates fall; in the absence of sufficiently

attractive investment opportunities, investors look to hoard funds through un-

productive avenues. Our approach provides a new mechanism through which

low growth can be compounded by low interest rates in a general equilibrium

environment.

The remainder of this paper is organized as follows. In Section 2, we briefly

summarize the empirical evidence. Section 3 considers the ability of an endow-

ment economy to match this evidence, either with changes in the probability

of disaster, or changes in the probability of default. In Section 4, we solve the

model with an inventory technology and show additional implications. Section 5

concludes.
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2 Summary of the data

Figure 1: Nominal government rates

Panel A shows a five-year moving average of long-term nominal sovereign yields in the United
Kingdom, Holland, Germany, Italy, and the United States from 1311–2018. The solid black
line represents an average of all of the plotted series. Yields are from Schmelzing (2020) and
are in annual terms. Yields come from a variety of archival, primary, and secondary sources.
Panel B shows the nominal lending rate for the Bank of England expressed in annual terms.
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Panel A of Figure 1 shows nominal government rates in a seven-century-long

dataset collected by Schmelzing (2020). Interest rates are highly volatile, as

Jordà et al. (2019) emphasize.4 Periods of extreme spikes, and also low rates,

occurred around the American Revolution, Napoleonic Wars, and World War II,

reflecting a tension between an increase in risk of sovereign default and precau-

tionary savings around disasters. High rates in the 1970s and 1980s clearly stand

out. Nonetheless, the figure shows a steady decline. Perhaps a more dramatic

demonstration comes from Figure 1, Panel B, which shows the Bank of England

lending rate, from the start of when the series was available. Only in the very

4Jordà et al. (2019) note that prior observations of a real rate of zero are not unusual.

However, these are observations after subtracting ex post realized inflation, not ex ante yields.

While it is true that both returns are zero from an investor’s perspective, one was a realization

of zero because of high inflation, whereas the other is an expected value of zero.
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most recent period did this rate reach a zero lower bound.

Figure 2 zooms in on the last thirty years, the focus of much of the literature.

The Federal Funds Rate in the U.S. declined sharply from 10% to 2% at present

(Panel A). On the other hand, the price-dividend ratio has gone from around

20 to 50, implying a dividend yield of approximately 5% going to 2%—a smaller

decline (Panel B). Moreover, the last row of Figure 2 displays the decline in the

investment-capital ratio (Panel C) and real GDP growth (Panel D) from 1984–

2016. Investment as a percentage of the capital stock went from an average of

7.7% to 6.9%, while real GDP growth declined from an average of 3.7% to 1.9%.

Figure 2: Various data moments, United States from 1984–2018

The figure shows the effective federal funds rate (shown in annual percentage points), the annual
price-dividend ratio for the United States on the value-weighted CRSP index, the investment-
capital ratio, and the annual real GDP growth rate for the United States.
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Figure 3 shows a longer time series of the price-dividend ratio, and also in-

cludes the cyclically-adjusted price-earnings (CAPE) ratio and the price-dividend

ratio from the United Kingdom. It shows that the price-dividend ratio shifted

upward in the late 1990s. This pattern does not appear in the CAPE ratio, nor

in the U.K., and therefore may reflect a use of repurchases rather than cash pay-

ments as a means of returning cash to shareholders, and not a decline in interest

rates (Boudoukh et al., 2007, Fama and French, 2001). For more information on

the data and sources, see Appendix A.

Figure 3: Price-dividend and price-earning ratios: United States and United King-

dom

The figure shows the price-dividend ratio for the United States and United Kingdom since
1870 and the U.S. cyclically-adjusted price-earnings (CAPE) ratio. The black, solid line shows
data for the United States price-dividend ratio and the red, solid line shows data for the price-
dividend ratio of the United Kingdom. Price-dividend ratios are the end of year price divided
by the aggregate dividends from the preceding year. The blue dashed-dotted line shows the
CAPE ratio.
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3 Endowment economy model with rare disas-

ters

To interpret the data, we first turn to a standard endowment economy with a

representative agent. Following Farhi and Gourio (2018), the model is calibrated

separately to two sample periods (1984–2000 and 2001–2016), assuming constant

parameters. While this approach means that certain features of the data (such

as volatility of prices and interest rates) remain outside the scope of the analysis,

it allows us to consider the possibility of long-run unforeseen structural changes.

Farhi and Gourio assume a neoclassical growth model. We will return to such

a model in the next section, but for the analysis at hand the extra degree of

complication is not necessary. As far as prices and interest rates are concerned,

and in this i.i.d. growth rate setting, the production model and the endowment

model yield the same predictions.

Aggregate endowment evolves according to

Ct+1 = Cte
µ(1− χt+1), (1)

where χt+1 represents an occurrence of rare disaster:

χt+1 =

 0 with probability 1− p

η with probability p,

(2)

for η ∈ (0, 1). Note that p represents the probability of a disaster and η its

magnitude. We assume the representative agent has Epstein-Zin-Weil recursive

preferences (Epstein and Zin, 1989, Weil, 1990) with risk aversion γ, elasticity

of intertemporal substitution (EIS) ψ, and discount factor β. Let Wt denote the

representative agent’s wealth, here assumed to be the cum-dividend value of the

consumption claim. Let RW,t+1 ≡ Wt+1/(Wt − Ct) denote the return on wealth

8
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from time t to t+ 1. The stochastic discount factor (SDF) then equals

Mt+1 ≡ βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1, (3)

for θ ≡ (1− γ)/(1− 1/ψ).

In this section, we assume that the aggregate stock market equals aggregate

wealth (ex-dividend) and that the ex post real return on the Treasury bill equals

the riskfree rate. We relax these assumptions in the sections that follow. In

equilibrium, RW,t+1 must satisfy:

Et [Mt+1RW,t+1] = 1. (4)

Our assumptions and the endowment and preferences imply a constant price-

dividend ratio (Wt − Ct)/Ct, which we denote by κ. Standard arguments (see

Appendix B) then imply that

κ =

βe(1− 1
ψ

)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

1− βe(1− 1
ψ

)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

. (5)

Given the return on the wealth portfolio, the Euler equation provides the return

on the one-period riskless bond:

logRf = − log β +
1

ψ
µ− log(1 + p((1− η)−γ − 1))

+

(
θ − 1

θ

)
log(1 + p((1− η)1−γ − 1)). (6)

Equations (5) and (6) constitute a system of two equations in two unknowns,

which can in principle be solved for p and β.5 Combining (5) and (6) gives the

5There are some parameter combinations for which this is not possible. For example, when

we try to set β = .967 for both 1984–2000 and 2001–2016 and then estimate µ and p, we are

not able to obtain a solution for the 2001–2016 period.
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equity premium:

logEt[RW,t+1]− logRf = log(1− pη) + log(1 + p((1− η)−γ − 1))

− log(1 + p((1− η)1−γ − 1))

≈ pη((1− η)−γ − 1)

where the approximation is accurate for small p.

3.1 Increasing disaster probability

We calibrate this model assuming measured growth rates of µ = 0.0350 from

1984 to 2000 and µ = 0.0282 from 2001 to 2016. In what follows, we refer to

µ as expected growth, even though it is in fact expected growth in the absence

of disasters. Table 1 shows the results. For greatest comparability, we consider

γ = 12, ψ = 2, and a disaster size η = 0.15, the same parameters used by Farhi

and Gourio.6 Similar to their findings, we match the data using a discount factor

(β) of 0.967 in the early period and 0.979 in the later period, and a disaster

probability (p) of 3.43% in the early period and 6.67% in the later period. We

thus arrive at our first result: matching the combined stability of valuations and

the decrease in riskfree rates requires a large increase in the disaster probability,

even after accounting for decreased growth.

One can reasonably question the robustness of this interpretation, in partic-

ular, the role of the EIS. In fact, a change in the EIS changes the interpretation

6Farhi and Gourio estimate the growth rate within a neoclassical growth model with rare

disasters. Their growth rate is the composition of three different growth rates: namely, the

growth rate of TFP, the growth rate of the population, and the growth in investment prices.

We instead take this growth rate as being exogenously set at the same level. We also use

identical values for the price-dividend ratio and the riskfree rate, which are reported in Panel

A of Table 1.
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of the data, as Panel C of Table 1 shows. For an EIS below one—say, ψ = 1/2—

matching (5) and (6) with p and β still requires an increase in p in the second

period. However, β is now lower, implying that investors would need to have

become less patient, not more, contradicting the demand-side intuition for the

decline in interest rates (Summers, 2015).

Table 1: Accounting for the data with a change in disaster probability

This table shows parameters necessary to match the data, assuming an endowment economy
with rare disasters and no inflation risk. Unless otherwise noted, we take average consumption
growth from the data, and calibrate the disaster probability p and the subjective discount factor
β to fit average interest rates and the price-dividend ratios in each of two sample periods.
Because there is no inflation or inventory storage in the model, the riskfree rate proxies for
the ex post real yield on the Treasury bill (Treasury bill yield minus realized inflation, or
“inflation-adjusted Treasury yield”), and the wealth-consumption ratio proxies for the price-
dividend ratio on the aggregate market. The table shows how p and β change depending on
assumptions regarding elasticity of intertemporal substitution (EIS) and on growth. Treasury
yields in the data, and parameters in the model, are annual.

Values

Parameter 1984–2000 2001–2016

Panel A: Moments in the data

Price-dividend ratio κ 42.34 50.11

Inflation-adjusted Treasury yield yb 0.0279 -0.0035

Panel B: γ = 12, EIS = 2, η = 0.15

Average consumption growth µ 0.0350 0.0282

Discount factor β 0.967 0.979

Probability of disaster p 0.0343 0.0667

Panel C: γ = 12, EIS = 0.5, η = 0.15

Average consumption growth µ 0.0350 0.0282

Discount factor β 0.997 0.983

Probability of disaster p 0.0343 0.0667

To summarize: one needs an increase in the disaster risk to account for the

data; but this explanation is fragile to a number of considerations, outlined in
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detail in Appendix Sections B.3 and B.4. van Binsbergen (2020) states the puzzle

as follows: given the decrease in interest rates and the duration of the stock

market, one would have expected a much larger capital gain if the risk premium

were to remain constant.

3.2 Did the equity premium rise?

We now ask whether the equity premium did in fact rise. The literature studying

long-run variation in the equity premium generally comes to the conclusion that

the equity premium has declined over the postwar period, including from the first

to the second periods that are our focus (Avdis and Wachter, 2017, van Bins-

bergen and Koijen, 2010, 2011, Fama and French, 2002, Lettau, Ludvigson and

Wachter, 2008).

Options markets are another place to look for evidence of an increase in the

equity premium. Virtually any explanation for an increase in the ex ante eq-

uity premium involves an increase in risk. While it is possible that such risk

is not realized in sample, option prices incorporate the probability market par-

ticipants assign to such risk materializing. Figure 4 shows the VIX, reported

by the Chicago Board Options Exchange (CBOE). The VIX is the risk-neutral

expectation of quadratic volatility, which is tightly tied to the equity premium.

While the VIX is highly volatile, the average level of the VIX is remarkably stable

between the two periods: equal to 21 in both. It is hard to reconcile this stability

with an increase in the equity premium.

Given a model, one can say more. In Appendix C, we show how to go from the

endowment economy model to a value of the VIX. A higher disaster probability

implies a significantly higher VIX, not only because the ex ante volatility is

higher (due to the realization of disasters), but because the risk-neutral volatility

is higher still. If we ask the model to explain the level of the VIX in the earlier
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sample, and then modify the disaster probability as required, the VIX would

need to rise from 21 to 23, rather than remain at 21 as it in fact did.7 A test of

whether the higher value is consistent with the data is rejected at the 1% level.

Figure 4: Chicago Board Options Exchange Volatility Index (VIX)

The figure plots the VIX series from 1986 to 2020 from the Chicago Board Options Exchange
(CBOE). The long dashed red line is the average VIX from the beginning of the series to the end
of the year 2000. The long dashed blue line shows the average VIX from the beginning of 2001
to 2016. Estimated averages in both samples are plotted with a two-standard-error confidence
interval where standard errors are adjusted for heteroskedasticity and autocorrelation (Newey
and West, 1987) with two lags on the monthly VIX.

7In a similar way, Siriwardane (2015) and Seo and Wachter (2018) back out measures of

disaster risk using options data and do not find an increase in the probability of disaster over

this period.
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3.3 Sovereign default risk

The typical empirical estimate of the equilibrium riskfree rate is the real return

on short-term government debt; however, this return is not necessarily riskless,

as the government can default either outright or through inflation. We now price

this claim by including partial default that co-occurs with disasters. A decline in

partial default risk can explain the secular trends in riskfree rates and valuation

ratios since 1980.

Suppose, in a disaster, creditors lose a fraction λη relative to the face value of

the bond. That is, a bond issued at time t pays 1−Lt+1 at time t+ 1, where loss

Lt+1 = λχt+1 represents a loss of zero if there is no disaster, and λη if a disaster

should occur. If λ = 1, the loss to creditors is equal, in percentage terms, to the

decline in consumption η. If λ = 0, then the bond is riskfree. Values of λ < 0 will

correspond to deflation in disasters, as we describe below. Let Qt be the price of

the one-period bond, so that

Qt = Et [Mt+1(1− Lt+1)] . (7)

Define the yield on the bond yb = yb,t ≡ − logQt as the log of the return on

the bond in the case of no default—that is, the realized return when there is

no disaster and the government makes its promised payment. Evaluating (7)

implies:

yb = logRf+log (1 + p((1− η)−γ − 1))−log (1 + p((1− λη)(1− η)−γ − 1)), (8)

where Rf is the gross riskfree rate from (6). For λ > 0, the yield exceeds the

riskfree rate. Letting Rb,t+1 ≡ (1−Lt+1)/Qt denote the return on the defaultable

14

Electronic copy available at: https://ssrn.com/abstract=3641568



bond, we have that the expected return

logE[Rb,t+1] = logRf + log(1− pλη) + log (1 + p((1− η)−γ − 1))

− log (1 + p((1− λη)(1− η)−γ − 1)) (9)

≈ logRf + pλη((1− η)−γ − 1).

When λ > 0, the agent is compensated for the risk of partial default in a con-

sumption disaster. Notice that the yield

yb = logE[Rb,t+1]− log(1− pλη) ≈ logE[Rb,t+1] + pλη

exceeds both the riskfree rate and the expected return on the bond when λ > 0.

In a sample in which no disasters occur, the average ex post real return on the

bond will correspond to the yield (8), not the expected return (9).

We have thus far assumed that the government defaults by failing to make

part of its promised payments; a potentially more plausible way in which the

government can default is through unexpected inflation. Let Πt denote the price

level, so that Πt+1/Πt is level inflation and ∆πt = log(Πt+1/Πt) is inflation in

logs. The short-term nominal government bond has equilibrium price

Q$
t = Et

[
Mt+1

Πt

Πt+1

]
, (10)

with yield y$
b,t ≡ − logQ$

t , and with nominal return R$
b,t+1 ≡ 1/Q$

t . Note that the

nominal return is known at time t with R$
b,t+1 = exp{y$

b,t}. A capital loss of Lt+1

through default is equivalent, in real terms, to an inflation of 1/(1 − Lt+1). To

also allow for normal-times inflation, assume

Πt+1 = Πte
µπ,t(1− Lt+1)−1, (11)

where µπ,t represents growth in the price level that is locally deterministic (e.g.

capturing lagged inflation). During disasters, the price level increases by a mul-

tiple (1 − Lt+1)−1 of its previous level, so that if consumption falls by 1/3, and

λ = 1, inflation is 50% (that is, 1/(1− λη) = 1/(1− 1/3) = 3/2).
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What is the relation between the nominal quantities and their real counter-

parts? Because Q$
t = Qte

−µπ,t , the yield on the nominal bond equals the real

yield, plus an adjustment for normal-times inflation: y$
b,t = yb+µπ,t. To compute

the real return on the nominal bond, we take R$
b,t+1 and multiply by the inverse

change in the price level. The expected real return on the nominal bond equals

Et
[
R$
b,t+1

Πt

Πt+1

]
= Et[Rb,t+1],

namely, the same expected return as on the defaultable bond. Normal-times

inflation is already priced in. Finally, the real yield yb equals the average nominal

yield minus inflation in samples in which no disasters occur:

E[y$
b,t −∆πt+1 | no disasters] = E[yb + µπ,t − µπ,t] = yb. (12)

In what follows, we refer to (12) as the inflation-adjusted Treasury bill yield. It

is the model counterpart of the average Treasury bill yield minus average realized

inflation over the sample period of interest. One benefit of thinking of inflationary

default, as opposed to outright default, is that it gives an intuitive interpretation

of λ < 0. We can understand this case as corresponding to deflationary disasters,

in which case the government bond becomes a hedge against disaster risk.

We now calibrate the model as we did above, but instead of varying p and β,

we keep p constant at 3.43% (the calibrated value from 1984–2000) and allow λ

to vary. The calibrated λ, therefore, gives the inflation risk premium such that no

change in the disaster probability is needed to explain the decline in the riskfree

rate and relative flatness of valuation ratios.

Table 2 shows the results. Panel B presents a calibration with risk aversion

γ set to 5 and where consumption declines 30% in a disaster. We will use this

calibration as our benchmark throughout the remainder of the paper, as it is

more in line with estimates in the disaster risk literature. However, our points are

qualitatively similar with higher γ and smaller disasters. The patience parameter
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β does not rise as much as it did in the calibration where we allowed the disaster

probability to vary, because it need only explain a slight increase in the price-

dividend ratio. Further, there is a large inflation premium in the first half of the

sample, and, essentially, no inflation premium in the second half. In Panel C, we

consider an EIS equal to 1. Now neither µ nor p can affect the price-dividend

ratio. Patience rises to account for the increase in the price-dividend ratio, and

the default/inflation probability falls to explain the decline in the ex post real

interest rate. Not surprisingly, these results are robust to alternative valuation

measures, like the CAPE ratio, and to assumptions about the disaster probability.

Table 2: Accounting for the data with inflationary default risk

This table shows parameters necessary to match the data, assuming an endowment economy
with rare disasters and inflationary default. We take average consumption growth from the
data in each sample. We calibrate the discount factor β to match the average price-dividend
ratio and the decline in bond value λη to match the average ex post real yield on the Treasury
bill, assuming no disasters. We vary the elasticity of intertemporal substitution (EIS) as shown.
We assume the disaster probability equals 3.43%, its benchmark value in Table 1. Parameters
and yields are in annual terms.

Values

Parameter 1984–2000 2001–2016

Panel A: Moments in the data

Price-dividend ratio κ 42.34 50.11

Inflation-adjusted Treasury yield yb 0.0279 -0.0035

Panel B: γ = 5, EIS = 2, η = 0.30

Average consumption growth µ 0.0350 0.0282

Discount factor β 0.972 0.979

Fraction of bond value lost λη 0.163 0.016

Panel C: γ = 5, EIS = 1, η = 0.30

Average consumption growth µ 0.0350 0.0282

Discount factor β 0.977 0.980

Fraction of bond value lost λη 0.163 0.016
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The decline in the inflation risk premium is similar to the findings of Campbell,

Pflueger and Viceira (2020), namely that inflation risk premia switched signs

starting in 2001. While our estimates for λ vary across calibrations—we refer the

reader to our final calibration in the next section for a quantitative estimate—

each calibration shows that a decline in inflationary default risk is sufficient to

explain the decline in real returns on short-term government debt.

3.4 Evidence from survey data

We have argued that a decline in the risk of unexpected inflation in a disaster is a

more plausible explanation than a large and persistent increase in the probability

of a consumption disaster. But is there evidence to support our explanation?

Figure 5 shows that expected inflation in the U.S. has declined substantially over

the past four decades. It is reasonable that the stabilization in inflation expec-

tations would coincide with a stabilization in the risk of large and unexpected

inflation shocks. Indeed, we also find independent evidence of declining inflation-

ary default risk when we compare expected and realized inflation. Consider the

inflation process implied by (11). Assuming agents incorporated a probability of

inflationary default into their expectations that is never realized in sample, the

difference between expected and realized log inflation is approximately given by

pλη.8

8For our given inflation process (11), a rational agent would predict inflation to be

Et[∆πt+1] = µπ,t − p log(1− λη).

Now suppose there are no disasters in the sample, in which case the observed difference between

realized and expected inflation is equal to

Et[∆πt+1]−∆πt+1 = −p log(1− λη) ≈ pλη.
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Figure 5: Expected inflation in the United States

The solid black line shows expected inflation from the Surveys of Consumers of University of
Michigan. The dashed blue line shows the 10-year breakeven inflation rate computed from
Treasury Inflation-Indexed Constant Maturity Securities. The dashed-dotted red line shows
10-year expected inflation from the Survey of Professional Forecasters.

2
4

6
8

10
 

1980 1990 2000 2010 2020
Year

UMICH Expected Inflation
TIPS 10-year Breakeven Inflation
Survey of Professional Forecasters (10-year)

We estimate this difference using the one-year-ahead inflation forecast from the

Survey of Professional Forecasters, which is plotted in Figure 6. The horizontal

dashed lines show the average difference in each of our respective samples, along

with two-standard-error confidence intervals, and can be interpreted as estimates

of pλη. If we assume a disaster probability of p = 0.03, then the implied bond

value loss in the disaster state is roughly λη = 1/3 from 1980 to 2000 and zero

from 2000 to present. Quantitatively, this corresponds to an inflation disaster

of around 50% and 0% in the first and second samples, respectively. There are

other reasons for which expected and realized inflation could differ—for example,

learning. We do not argue that there was a risk of inflation disasters as high as

50%; nonetheless, this exercise lends support to our explanation.

Our model and calibration imply that the true riskfree rate and equity risk
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premium have remained relatively constant over time, a conclusion that is consis-

tent with evidence from valuation ratios, which have remained relatively flat; and

the VIX, which suggests no substantial increase in risk. The price-dividend ratio,

decomposed in (B.10), is unaffected by inflationary default risk. It is, however,

common in the literature to use the return on the short-term government bond

as a proxy for the true riskfree rate. Our calibration suggests that estimating

the equity premium directly using this bond return implies an increase in the

measured risk premium. In the model, this increase comes not from an increase

in equity risk, but from a decline in the risk premium on government debt.

Figure 6: Expected versus realized one-year inflation

The figure plots the difference between expected and realized one-year inflation, where expec-
tations are taken from the Survey of Professional Forecasters. The horizontal dashed lines show
the average difference in each of our respective samples along with two-standard-error confi-
dence intervals. These averages could be interpreted as estimates of pλη in our model, where
p is the probability that a disaster occurs, and λη is the fraction of bond value lost when a
disaster occurs.
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4 Production economy model

Section 2 shows that, from 1984 to 2016, the decline in interest rates and stability

of valuation ratios correspond with a decline in investment relative to capital and

GDP growth rates. To tie these four facts together, we introduce a model with a

productive capital asset and a riskless inventory asset. We first solve the standard

model with no inventory and show that, under any realistic calibration, it is

not possible to simultaneously explain these secular trends. We then introduce

inventory and show that its existence imposes an endogenous zero lower bound

on the equilibrium riskfree rate and, at this lower bound, has real effects on

investment and risk premia that can explain the data well.

4.1 No-inventory case

We consider a standard production model in which capital quality can decline

suddenly and unpredictably.9 Let Kt denote the quantity of productive capital

at time t. Given Kt and constant productivity A, output equals

Yt = AKt. (13)

Let δ denote depreciation, Xt investment. Capital evolves according to:

K̃t+1 ≡ Xt + (1− δ)Kt (14)

Kt+1 ≡ K̃t+1(1− χt+1), (15)

where χt+1, defined in (2), represents destruction of capital. We consider param-

eters such that A > 1− δ, consistent with a growing economy. Following Gomes

et al. (2019), we refer to K̃ as planned capital, the quantity of capital available

if the disaster does not occur.

9See Barro (2009), Gabaix (2011), and Gourio (2012).
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We can restate the agent’s problem as a consumption-portfolio choice decision

in which the agent allocates savings to capital and the riskfree bond. Let Bt

denote the time-t dollar allocation to the riskfree asset. Define the agent’s wealth

at time t as

Wt ≡ Ct +Bt + K̃t+1, (16)

Then, if investment in capital grows at the stochastic rate RK,t+1, wealth at time

t+ 1 must equal

Wt+1 = BtRf,t+1 + K̃t+1RK,t+1. (17)

What is RK,t+1? Equations (13–15) indicate that, should a disaster not occur,

a single unit of capital creates A units of output. A fraction δ is lost prior to

the next period. Should a disaster occur, then a fraction χt+1 is lost. Given the

remaining capital, A units of output are created and an additional fraction δ is

lost. Therefore, the return on capital

RK,t+1 = (1− δ + A)(1− χt+1). (18)

We can rewrite the budget constraint in terms of flow variables. Applying

(17) at time t implies:

Wt = Bt−1Rf,t + K̃tRK,t. (19)

Equating (16) with (19) and substituting in for RK,t implies

Ct +Bt + K̃t+1 = Bt−1Rf,t + K̃t(1− δ + A)(1− χt)

It follows from (15) that K̃t(1− χt) = Kt. Using (14) and subtracting (1− δ)Kt

from both sides implies

Ct +Bt +Xt = Yt +Bt−1Rf,t. (20)

That is, output from the capital stock, plus wealth in bonds can be used toward

consumption, bond purchases at time t, or investment in the productive asset.
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We can also rewrite the budget constraint in terms of the evolution of wealth.

Define the share of savings invested in capital as

αt ≡
K̃t+1

Wt − Ct
.

Substituting in for Bt in (17) from (16) implies that

Wt+1 = (Wt − Ct)(Rf,t+1 + αt(RK,t+1 −Rf,t+1)), (21)

is an equivalent expression for the budget constraint. Let RW,t+1 ≡ Wt+1/(Wt −

Ct) denote the return on the wealth portfolio.

We assume Epstein and Zin (1989) and Weil (1990) preferences with unit EIS.

The agent chooses consumption Ct and the capital portfolio share αt to solve

max
Ct,αt

(
C1−β
t

(
Et
[
V (Wt+1)1−γ]) β

1−γ
)
, (22)

subject to (21). Conjecturing that V (Wt) equals a constant multiplied by Wt, and

applying the first-order condition for optimal consumption implies the standard

unit EIS result Ct/Wt = 1− β.

In equilibrium, the bond is in zero net supply (αt = 1), and (20) reduces to

Ct +Xt = Yt = AKt. (23)

Furthermore, α = 1 and Ct = (1 − β)Wt imply that consumption is a fixed

percentage of planned capital:

Ct =
1− β
β

K̃t+1 =
1− β
β

(Xt + (1− δ)Kt). (24)

The second equality follows from the capital accumulation equation (14).

What does this model imply for investment and for economic growth? Sub-

stituting in for Ct in (23) gives us the equilibrium investment-capital ratio with

unit EIS:
Xt

Kt

= β(1− δ + A)− (1− δ). (25)
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A savings glut unambiguously leads to an investment boom: (25) is strictly in-

creasing in β. Evidently, an increased demand for savings coming from an increase

in the β parameter implies an increase in the investment-capital ratio. Further, in

the unit EIS case, risk does not affect the investment decision: lower investment

relative to capital must come through either a reduction in β or the deterministic

components of the return on capital A and δ. One may reconcile a decline in

the riskfree rate with a decline in investment by arguing that productivity A or

depreciation δ have declined. In order to match the decline in growth—a decline

in µ in the endowment economy—one would need A− δ to decline as well. But

even if this explanation succeeds at matching investment and interest rates, the

puzzle of stable valuation ratios and the dependence of results on the EIS return.

If the EIS were to exceed 1, increased risk could lead to a reduction in X/K, but

this relies on scant evidence of increased risk and requires placing economically

meaningful restrictions on the EIS.

Consumption, investment, and output grow at the same rate. First note that

wealth grows at rate:

Wt+1

Wt

=
Wt − Ct
Wt

Wt+1

Wt − Ct
= βRK,t+1. (26)

(We have used the constant consumption-wealth ratio and the equilibrium con-

dition α = 1.) This must also be the growth rate of consumption. Substituting

in for RK,t+1 implies

Ct+1

Ct
= β(1− δ + A)(1− χt+1). (27)

This is then also the growth rate of planned capital, lagged one period. In

equilibrium, all investment is in planned capital and so K̃t+1/K̃t = Wt/Wt−1.

From (26), the relation between planned capital and actual capital, it follows

that

Kt+1

Kt

=
K̃t+1

K̃t

1− χt+1

1− χt
= βRK,t

1− χt+1

1− χt
= β(1− δ + A)(1− χt+1).
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Note that we have used the fact that planned capital K̃t+1 is a constant fraction

of wealth Wt (in this model, this fraction is one), so that K̃t+1/K̃t = Wt/Wt−1 =

βRK,t. The result for output then follows from Yt = AKt and the result for

investment follows from (23). As a consequence, if we let κY denote the price-

dividend ratio on the claim to output, κY = κ = β/(1− β), where κ denotes the

price-dividend ratio on the consumption claim.

We now turn to the implications of this model for the interest rate and for

stock returns. Given V (Wt) ∝ Wt, the first-order condition with respect to α

implies

Et
[
R1−γ
W,t+1

]−1 Et
[
R−γW,t+1(RK,t+1 −Rf,t+1)

]
= 0 (28)

(see Appendix D for details). The equilibrium condition α = 1 implies RW,t+1 =

RK,t+1. Substituting RK,t+1 into (28) implies the riskfree rate equals:

Rf = Et
[
R1−γ
K,t+1

]
Et
[
R−γK,t+1

]−1

= (1− δ + A)(1 + p((1− η)1−γ − 1))(1 + p((1− η)−γ − 1))−1.
(29)

Equations (28) and (29) imply the following expression for the SDF:

Mt+1 = Et
[
R1−γ
W,t+1

]−1
R−γW,t+1. (30)

Furthermore, the risk premium equals

logEt[RK,t+1]− logRf = log(1− pη)

+ log(1 + p((1− η)−γ − 1))− log(1 + p((1− η)1−γ − 1)), (31)

exactly as in the endowment economy.

These asset pricing results are isomorphic to the endowment economy from

Section 3. Indeed, equilibrium prices in the two models are identical if the pa-

rameters are such that the equilibrium consumption growth processes are the
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same.10 The key difference between the models, however, is that there are two

margins of adjustment in the production economy: quantities and prices. This is

why, for example, the patience parameter β does not show up in (29). Instead, β

influences quantities through the investment-capital ratio, which in turn affects

prices. In the standard endowment economy, quantities cannot adjust, as the

representative investor consumes whatever is produced in a given period.

Panel B of Table 3 calibrates the production model to match the cyclically-

adjusted price-earnings (CAPE) ratio,11 the short-term government bond rate,

and the real GDP growth rate. Specifically, β, λ, and δ are chosen to match

the data moments in the two samples. The calibration elucidates the puzzling

nature of the reduction in the investment-capital ratio over the last four decades

in light of falling interest rates and a stable marginal product of capital.12 While

the model matches rates and valuation ratios with reasonable estimates of β and

λ, the calibration implies an increase in the investment-capital ratio (Table 4).

4.2 General case

Suppose now that, in addition to capital and a riskfree bond, the agent can

put funds into inventory, namely a riskfree storage technology with a zero net

return. If we impose the condition that riskfree storage be in zero supply, then

10In this setting, this occurs when β−1eµ = (1−δ+A). One can verify this by comparing (6)

and (29). In general, production and endowment economies can be mapped to one another by

equating the consumption processes, a fact which is discussed in Chapter 2 of Cochrane (2001).
11We calibrate to the U.S. CAPE ratio because the U.S. price-dividend may be inflated by

changes in the tendency of U.S. companies to pay dividends (Fama and French, 2001).
12Farhi and Gourio (2018) also note that the behavior of the investment-capital ratio rep-

resents a puzzle from the point of view of the standard model. They proxy for the marginal

product of capital (MPK) using gross profitability, constructed as the ratio of (1−labor share)

to the capital-output ratio. They also use the return on capital as constructed by Gomme et

al. (2011). Both measures display a small increase in the MPK between the two samples.
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the economy reduces to the one in the previous section. The innovation in this

section is that the inventory can be in positive supply across the economy.

Why would one have a positive-supply riskfree asset? Conceptually, anything

that is a store of value from one period to another could count as inventory,

provided that it is in fact riskfree and can be frictionlessly interchanged between

consumption and investment. Many consumption goods would not fit this de-

scription because they cannot easily be changed into something other than what

they are. Money does fit this description provided that there is no unexpected

inflation (in which case it ceases to be riskfree). To keep things simple, we will

think of inventory as money.13 Strictly speaking then, our analysis applies only

to the second sample period, in which we estimate low, negative inflation risk.

This turns out to make no difference—when the equilibrium real interest rate is

greater than zero, inventory can exist but agents choose not to hold it.14 Again,

strictly speaking, if the asset is cash and there is non-zero expected inflation but

no unexpected inflation, then we could specify a non-zero return on the inventory

asset. However, expected inflation in the second sample period is small, and thus

allowing for a slightly different return on inventory would make little difference.

Likewise, we estimate unexpected inflation to be close to zero. Like all valua-

tion equations, the existence of this riskfree storage is predicated on investors’

(subjective) expectations about inflation. Evidence suggests (Reis, 2020) that

investors believed inflation would be low and stable, and thus consistent with our

assumptions on the existence of inventory. If, for example, government spend-

ing plays the role of inventory, as it does in Blanchard (2019), the fiscal theory

13This is not unlike the “social contrivance of money” as proposed by Samuelson (1958),

which asserts that money can be used to obtain the socially optimal allocation in an overlapping

generations framework in which the storage of consumption goods is impossible.
14Liquidity services could be such a reason investors choose to hold inventory in the presence

of a positive riskfree interest rate, but for simplicity we do not assume these.
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of the price level (Cochrane, 2021) could provide a foundation for these beliefs.

However, inventory might not be synonymous with government spending.

Consider the agent’s problem in Section 4.1, except here the agent can invest in

a storage technology. The agent maximizes unit-EIS recursive utility by choosing

consumption and Bt, It, and K̃t+1. That is, the agent recursively solves

max
Ct,Bt,It,K̃t+1

(
C1−β
t

(
Et
[
V (Wt+1)1−γ]) β

1−γ
)
, (32)

subject to

Wt = Ct +Bt + It + K̃t+1 (33)

Wt+1 = BtRf,t+1 + It + K̃t+1RK,t+1 (34)

It ≥ 0. (35)

The solution is still characterized by V (Wt) a constant multiple of Wt, implying

the standard unit EIS result of Ct/Wt = 1− β.

We now characterize the equilibrium. Let R∗f denote the equilibrium interest

rate in the economy in Section 4.1, namely the economy with no inventory.

1. If R∗f > 1, then in equilibrium It = 0, and the equilibrium is the same as in

Section 4.1.

2. If R∗f < 1, then It > 0. Investment in inventory crowds out investment in

productive capital.

The argument is as follows (Appendix D gives an alternative and more formal

argument). First assume parameters such that R∗f > 1, and conjecture that

Rf,t+1 = R∗f in the problem (32–35) constitutes an equilibrium. This investor

would never choose It > 0 because bonds offer superior returns; on the other

hand (35) implies that the agent cannot short-sell inventory. Therefore It = 0,

namely, the inventory asset is irrelevant, and thus α = 1 is still the equilibrium

condition. Equilibrium quantities and returns are the same as in Section 4.1.
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Now assume that R∗f < 1. Note that the only possible equilibrium value for

Rf is unity; this is because Rf < 1 implies an arbitrage opportunity (the investor

would borrow at Rf and invest the proceeds in the inventory asset), whereas if

Rf > 1, the reasoning in the above paragraph implies the agent would hold no

inventory. Then R∗f = Rf > 1, contradicting the assumption. Intuitively, we can

find an equilibrium with inventory for the following reason: if the agent does not

hold inventory (α = 1) and the riskfree rate equals R∗f,t+1 < 1, then the agent

will wish to hold more inventory. Doing so, however, reduces the volatility of the

return on the wealth portfolio and stochastic discount factor and thus increases

the equilibrium riskfree rate. The agent will increase holdings of inventory until

the equilibrium rate is equal to the return on inventory. Note the power of this

reasoning: it implies we can proceed by analyzing the cases R∗f < 1 and R∗f > 1

separately.

We focus on the case of R∗f < 1; as the above argument shows this is where

inventory matters. We show it is also empirically relevant in that it prevails in the

second sample period. Note that bonds are redundant and we can assume Bt = 0.

The requirement Rf = 1 replaces α = 1 as the equilibrium condition. Given that

we have established that the equilibrium takes this form, for convenience we can

rewrite the agent’s optimization problem as

max
Ct,αt

(
C1−β
t

(
Et
[
V (Wt+1)1−γ]) β

1−γ
)
,

subject to

Wt+1 = (Wt − Ct)(1 + αtrK,t+1),

where rK,t+1 = RK,t+1−1 is the net return on capital and α has the same meaning

as in Section 4.1. It is again the case that V (Wt) ∝ Wt and that Ct/Wt = 1− β.

The first-order condition for α continues to be (28), which, in the case with

29

Electronic copy available at: https://ssrn.com/abstract=3641568



inventory, becomes

Et
[

1

(1 + αrK,t+1)γ
rK,t+1

]
= 0. (36)

Thus far we have not imposed distributional assumptions. Given our assumption

on χt, we obtain:
prK,η

(1 + αrK,η)
γ +

(1− p)rK,0
(1 + αrK,0)γ

= 0, (37)

where (with some abuse of notation), we let rK,0 ≡ (1 − δ + A) − 1 and rK,η ≡

(1− δ + A)(1− η)− 1 denote the net returns on capital in the non-disaster and

disaster states, respectively. Solving for α implies:

α = min

{
1,− ((1− p)rK,0)1/γ − (−prK,η)1/γ

((1− p)rK,0)1/γrK,η − (−prK,η)1/γrK,0

}
, (38)

For future reference, we note that RW,t = αRK,t + (1− α) = 1 + αrK,t.

Because the consumption-wealth ratio is again 1− β, we can apply the same

reasoning used to show (27) to find:

Ct+1

Ct
=
Wt+1

Wt

= β(1 + αrK,t+1) = β (α(1− δ + A)(1− χt+1) + 1− α) . (39)

Relative to the model in Section 4.1, consumption growth is less volatile be-

cause, in aggregate, agents use inventory to smooth out fluctuations. It is also, on

average, lower, because less is invested in the productive asset. Output growth,

however, is more volatile. Moreover, consumption growth is no longer tethered

to output as in Section 4.1. While the relation between growth in the capital

stock and growth in wealth remains the same:

Kt+1

Kt

=
K̃t+1

K̃t

1− χt+1

1− χt

=
Wt

Wt−1

1− χt+1

1− χt
.

Substituting in from (39) now implies

Yt+1

Yt
=
Kt+1

Kt

= β

(
α(1− δ + A)(1− χt+1) + (1− α)

(
1− χt+1

1− χt

))
, (40)
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Output growth is more volatile than consumption growth because it bears the full

brunt of disasters: note that 1−χt+1 multiplies both the term with α (representing

investment in the risky technology) and 1−α. By definition, the disaster applies

to the entire existing capital stock. While this effect makes output growth more

volatile than consumption in the present model, it does not, by itself, raise the

volatility relative to the model in Section 4.1. There is, however, a second effect,

represented by 1 − χt in the denominator. Coming out of a severe recession

featuring capital destruction χt < 1, output growth is higher, because agents

invest more to get back to the optimal allocation. This raises the volatility of

output growth relative to the model in Section 4.1.

What are the properties of investment? Rewriting the capital accumulation

equation (14) so that Xt is on the left-hand side, and dividing by Kt implies

Xt

Kt

=
K̃t+1

K̃t

K̃t

Kt

− (1− δ)

= βRW,t(1− χt)−1 − (1− δ)

= β(α(1− δ + A) + (1− α)(1− χt)−1)− (1− δ),

where we have used the fact that K̃t+1/K̃t = βRW,t, due to the fact that the

fraction invested in risky capital, and the consumption-wealth ratio are both

constant. The investment-capital ratio is time-varying in this economy, despite

the fact that shocks are i.i.d. and that there is a balanced growth path.
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Figure 7: Investment capital ratio in the model

The figure shows how capital investment varies with the size of the consumption decline in a
disaster for the production models with and without inventory. The figure plots the investment-
capital ratio X/K in the model with inventory when there is and is not a disaster, and in the
model without inventory. It also plots α, the share of savings invested in capital. Risk aversion
γ = 6, the EIS ψ = 1, the patience parameter β = 0.964, depreciation δ = 0.057, the probability
of disaster p = 0.0343, and the marginal product of capital A = 0.12. The dotted black line
represents the point at which the riskfree rate is equal to 0 in the model without inventory.
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A disaster in the prior period increases investment in productive capital. This

is because the disaster affected capital disproportionately, and the agent must

re-invest to return capital back to its pre-crisis level. For an illustration, see

Figure 7, which shows the investment-capital ratio for χt = 0 (no disaster) and

χt = η (disaster) for various values of the disaster size. The figure also shows the

optimal planned capital to wealth ratio, which is constant. For comparison, the

figure also shows quantities in the case of no inventory. Fixing other parameters,

for disaster sizes of less than 25%, the gross riskfree rate is above one, implying

that the economies with and without inventory are the same. As the size of the

disaster increases, the equilibrium riskfree rate in the no-inventory economy falls
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sharply (we illustrate this in Figure 9). It becomes optimal to hold inventory

and investment in productive assets falls. At that point, investment depends

on the occurence of a disaster in the prior period. The greater the size of the

disaster, the greater the increase in investment. In contrast, with no inventory,

the investment-capital ratio is always the same.

We define the stock market as the claim to output Yt in all future periods. As

(40) shows, the growth rate of capital is no longer i.i.d. but depends on χt (note

that χt+1 is i.i.d. given time-t information). Therefore, the price-dividend ratio

on the output claim is a function of χt and solves

κY (χt) = Et
[
Mt+1

(
1 + κY (χt+1)

) Yt+1

Yt

]
,

where the stochastic discount factor takes the same form as (30), with RW,t+1 now

given as above. Note that RW,t+1 is i.i.d. Under our distributional assumptions:

κY (0) =
β̂

1− β
(
(1− p)(1 + αrK,0)1−γ + p(1 + αrK,η)

−γ(1 + αrK,0)(1− η)
)
,

(41)

κY (η) = κY (0)

(
1 + αrK,η
1 + αrK,0

)
(1− η)−1, (42)

where β̂ ≡ β ((1− p)(1 + αrK,0)1−γ + p(1 + αrK,η)
1−γ)

−1
. See Appendix D for

details. In the case where α = 1, the price-dividend ratio is the constant κY =

β/(1− β).

Figure 8 shows the price-dividend ratio for various levels of the disaster size,

both in the economy with inventory and the economy without. The economy

without inventory has a constant price-dividend ratio solely determined by β.

When there is inventory, the price-dividend ratio rises in disasters because divi-

dends are temporally depressed (they are also low because of the disaster). This

increase is due to the endogenous investment response, whereby inventory is liq-

uidated in a disaster to replace the capital that is destroyed.
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Figure 8: Price-dividend ratio in the model

The figure shows how the price-dividend ratio varies with the size of the consumption decline
in a disaster for the production models with and without inventory. The figure plots the price-
dividend ratio in the model with inventory when there is and is not a disaster, and in the model
without inventory. Risk aversion γ = 6, the EIS ψ = 1, the patience parameter β = 0.964,
depreciation δ = 0.057, the probability of disaster p = 0.0343, and the marginal product of
capital A = 0.12. The dotted black line represents the point at which the riskfree rate is equal
to 0 in the model without inventory.
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Note also that in contrast with standard production models, the price-dividend

ratio in the case of no disaster declines (in a comparative statics sense) as a func-

tion of the disaster probability (see Figure 8). In the case without inventory,

the price-dividend ratio is independent of the disaster probability. Models with

production that seek to match business-cycle fluctuations in investment and valu-

ation ratios require the EIS to be greater than 1. Endowment models achieve the

same effect by imposing exogenous leverage (dividends more sensitive to shocks

than consumption). In this model, leverage is endogenous, and qualitatively cor-

rect price-dividend ratio dynamics could in principle occur, even with an EIS of
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one. The magnitude of the decline in Figure 8 suggests that the effect is small.

Figure 9 shows that the equity risk premium in this economy loses its usual

dependence on disaster risk. The equity premium equals rp ≡ logEt[RY,t+1] −

logRf , where the return on the output claim is

RY,t+1 =

(
κY (χt+1) + 1

κY (χt)

)(
Yt+1

Yt

)
.

The blue line in the figure shows the equity premium in the model without in-

ventory: it is highly dependent on the disaster probability, as is the riskfree

rate. However, the return on capital—which, in the economy with no inventory,

is the equity return—is only very slightly decreasing. This is a standard result

in disaster-risk economies: the full discount rate on the equity claim decreases

slightly with the probability of a disaster.

While this might seem counterintuitive, it arises from the fact that, while

the equity premium increases, the riskfree rate declines, and more than offsets

the effect. Also recall that the continuously compounded return in a standard

i.i.d. economy can be expressed as the log dividend yield plus the log growth in

cash flows. When the EIS equals one, the dividend yield does not depend on the

disaster probability, and so the only effect is the small one, through expected cash

flows. In the economy with inventory, the return on capital is the same as in the

economy without (this is defined by the production opportunities), and thus is

slightly decreasing. The riskfree rate is constant, implying that the premium on

capital is also slightly decreasing. The equity premium decreases slightly more in

the disaster size as compared to logE[RK ]− logRf . This is because the increase

in the price-dividend ratio counteracts the decline in output due to the disaster.
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Figure 9: Risk premia and riskfree rate in the model

The figure shows how the riskfree rate and risk premium vary with the size of the consumption
decline in a disaster for the production models with and without inventory. The moments
plotted are: the equity premium in the models with and without inventory, rpinv and rp∗; the
riskfree rates in the models with and without inventory, rinvf and r∗f ; and the expected return
on capital, E[rK ]. The equity premium is defined as the log expected return on the output
claim minus the log riskfree rate. Risk aversion γ = 6, the EIS ψ = 1, the patience parameter
β = 0.964, depreciation δ = 0.057, the probability of disaster p = 0.0343, and the marginal
product of capital A = 0.12. The dotted black line represents the point at which the net riskfree
rate is equal to 0 in the model without inventory.
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Finally, the inflation-adjusted Treasury yield is equal to

yb = log
(
p(1 + αrK,η)

1−γ + (1− p)(1 + αrK,0)1−γ)
− log

(
p(1 + αrK,η)

−γ(1− λη) + (1− p)(1 + αrK,0)−γ
)
. (43)

Notice that, while the true riskfree rate cannot go below zero, the yield and

expected return on the defaultable claim could be positive or negative, depending

on the direction of the default risk premium.

The model is calibrated to match the real interest rate, price-dividend ratio,

and GDP growth in the U.S., as in the sections above. Calibrating to match these
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data requires solving a system of three equations in three unknowns, where the

unknowns are the parameters β, λ, and δ and the three equation are Equations

(41), (43) and
Yt+1(0)

Yt(0)
= β (α(1− δ + A) + (1− α)) (44)

which is GDP growth when the disaster does not occur. Indeed, each of the

moments to which we calibrate parameters is the value in the no-disaster state

(χt = 0), consistent with the fact that we do not observe any disasters in our

sample. We then find the values of the parameters of interest that make it such

that the data moments match their corresponding model moments.

The results from the calibration are displayed in Table 3. The model with

inventory is able to match the data moments with a quantitatively reasonable

calibration of β, λ, and δ. The slight increase in β matches the modest rise

in the CAPE ratio; similarly, higher depreciation matches the lower growth in

the second sample. The calibrated inflation default premium is in line with the

empirical estimates for λ in Section 3. One can interpret the estimated values

of λη as the percent inflation that would occur in a disaster. In the model with

inventory, the calibration suggests an 11% disaster inflation in the first sample

and a 2% deflation in the second. Finally, note that the presence of inventory

allows the model to match the low growth from 2001 to 2016 with a smaller rise

in depreciation than the model without inventory.

The smaller rise in depreciation comes from the crowding out effect, whereby

inventory substitutes for investment in productive capital. This crowding out is

shown in Table 4 by the lower investment-capital ratio from 2001–2016 in the

model with inventory. In the model without inventory, the investment-capital

ratio increases from the first half to the second half of the sample, due to the

slightly higher β and δ. In the model with inventory, however, the investment-

capital ratio is lower in the second half of the sample in the state where a disaster
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has not occurred, as the agent diverts investment from capital to inventory in the

non-disaster states, anticipating that a disaster will occur in the future. When

the disaster finally comes, the agent invests heavily, as seen in Figure 7. The

crowding out effect of inventory in normal states allows the model to match the

reduction in the investment-capital ratio in the data without targeting it.

Table 3: Inventory and inflationary default in a model with production

The model is solved with risk aversion γ = 6 and EIS ψ = 1. Consumption declines 30% in a
disaster (η = 0.30), the probability of disaster p = 3.43%, and the marginal product of capital
A = 0.12.

Values

Parameter 1984–2000 2001–2016

Panel A: Moments in the data

US CAPE ratio κ 25.97 26.73

Inflation-adjusted Treasury yield yb 0.0279 -0.0035

US GDP growth ∆Y
Y

0.0368 0.0191

Panel B: Without inventory, γ = 6, EIS = 1, η = 0.30

Discount factor β 0.963 0.964

Fraction of bond value lost λη 0.108 0.055

Capital depreciation δ 0.043 0.063

Panel C: With inventory, γ = 6, EIS = 1, η = 0.30

Discount factor β 0.963 0.964

Fraction of bond value lost λη 0.108 -0.018

Capital depreciation δ 0.043 0.057

Table 4 also displays the endogenous zero lower bound that inventory creates

in the second half of the sample. In the sample from 2001–2016, the unconstrained

riskfree rate in the model with inventory is −1.1 percentage points (meaning that,

were it not for the existence of inventory, the riskfree rate would be 1.1 percentage
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points lower). To achieve equilibrium in the model, the agent increases his or her

holdings of inventory until the riskfree rate in the economy is zero. In Table 4,

this happens when roughly 9% of the portfolio is invested in inventory. In the

first half of the sample, however, the unconstrained riskfree rate is slightly greater

than zero (around 20 basis points) meaning that the representative agent has no

incentive to hold inventory.

Table 4: Inventory and inflationary default with production: untargeted moments

The model is solved with risk aversion γ = 6 and EIS ψ = 1. Consumption declines 30% in a
disaster (η = 0.30), the probability of disaster p = 3.43%, and the marginal product of capital
A = 0.12. The calibrated parameters from Table 3 are used for β, λ, and δ.

Values

Parameter 1984–2000 2001–2016

Panel A: Without inventory, γ = 6, EIS = 1, η = 0.30

Risky capital share α 1.000 1.000

Investment-capital ratio X
K

0.080 0.082

Unconstrained riskfree rate r∗f 0.002 -0.016

Panel B: With inventory, γ = 6, EIS = 1, η = 0.30

Risky capital share α 1.000 0.912

Investment-capital ratio X
K

0.080 0.077

Unconstrained riskfree rate r∗f 0.002 -0.011

5 Concluding remarks

The puzzle of low interest rates is a puzzle not only from the point of view of the

last quarter century, but over a much longer horizon. It is also a joint puzzle:

why have low interest rates not been accompanied by higher valuation ratios?
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The purpose of this article is to argue that the most natural explanation is

not an increased demand for savings, which would lower interest rates and raise

valuation ratios; nor a decrease in growth, which is hardly enough on its own to

account for the observed change; nor an increase in the risk premium, as there is

no evidence that risk has increased by nearly the required amount. These joint

phenomena have a simple explanation, which is that the true riskfree rate has

hardly changed at all. Short-term debt claims are defaultable, and investors have

come to require a lower premium for this risk of default.

Because our explanation implies that the true riskfree rate has remained

roughly constant, we require a framework that allows for, first, a riskfree rate

that is sufficiently low to explain nominal debt yields at zero and, second, an

explanation that survives the existence of a zero lower bound. We accomplish

the former using a model with a risk of rare disasters. In a rare disaster model,

investors’ precautionary savings pushes the riskfree rate below zero. We accom-

plish the latter by introducing a costless storage technology into a production

economy. When parameters are such that the true riskfree rate is below zero,

agents choose to save into inventory until markets clear at a riskfree rate of zero.

What we do not model is the cause for the decline in investor expectations

of sovereign default. Evidence suggests that this decline both has a relatively

short-term component based on the history of the last 30 years and a long-term

component spanning centuries, based on a growing faith over time in the stability

of sovereigns. The forces determining this shift in expectations are an interesting

topic for further research.
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A Data appendix

We use various series to illustrate the secular decline in interest rates in the short-

and long-run. To obtain interest rates from 1311–2018, we rely on data from

Schmelzing (2020). The dataset contains nominal interest rate and inflation time

series for several developed economies over the last eight centuries. Specifically,

the data include long-term sovereign borrowing rates with an average maturity

that hovers around 10 years; however, this varies over time and across countries.

From these data, we plot the nominal sovereign borrowing yields for the United

Kingdom, Holland, Germany, Italy, and the United States in Panel A of Figure 1.

The data are collected from a variety of sources, outlined in detail in the paper

and online appendix. The U.K. borrowing rates come from the Calendar of State

Papers and the Bank of England. Data before 1694 for the U.K. (before the

founding of the Bank of England) are not used, since the data are incomplete.

Data for the Netherlands come from Dormans (1991), Weeveringh (1852), the

European Central Bank, and various sources from Leiden, Haarlem, Utrecht,

Schiedam, and Amsterdam. German data come from various sources from several

German principalities. U.S. data come from Durand and Winn (1947), Homer and

Sylla (2005), the NBER Macrohistory database, and Federal Reserve Economic

Data (FRED) from the Federal Reserve Bank of St. Louis.

We also report the Bank of England (BoE) short-term lending rate (series

BOERUKM) from FRED. From 1694 to 1971, the “bank rate” is used; from

1972 to 1981, the minimum lending rate is used; from 1981 to 1997, the BoE base

rate is used; and from 1997 to the present, the BoE Operational interest rate is

used. For more information see the Bank of England research datasets webpage.

Data for U.S. interest rates from 1984 to 2016 come from FRED. Our main

measure for nominal interest rates in the U.S. is the effective Federal Funds Rate

(series FEDFUNDS), the rate corresponding to the median volume of overnight
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unsecured loans between depository institutions. This is plotted in Panel A of

Figure 2. In our calibration exercises, for comparability with Farhi and Gourio

(2018) we use the one-year constant maturity Treasury rate, less current inflation.

Data for U.K. interest rates from 1984 to 2016 come from Jordà et al. (2019),

who in turn use data from Zimmermann (2017) and the Bank of England, who

use the average rate on 3-month Treasury bills.

Data on U.S. inflation expectations come from FRED and the Survey of Pro-

fessional Forecasters. From FRED, we use the inflation expectations from the Sur-

veys of Consumers of University of Michigan (series MICH), which covers short-

term inflation expectations, and the expected 10-year-ahead inflation implied

from Treasury Inflation-Indexed Constant Maturity Securities (series T10YIE).

From the Survey of Professional Forecasters, we use the 10-year ahead infla-

tion expectations. These data are shown in Figure 5. Further, we use median

one-year-ahead expected inflation from the Survey of Professional Forecasters to

construct the deviation of expected inflation from realized inflation, shown in

Figure 6.

Growth data come from different sources. In Tables 1–2, the U.S. growth

parameter µ is set to the same values as in Farhi and Gourio (2018)15, who use

a composite growth parameter obtained by combining the growth in population,

investment, total factor productivity, and the Cobb-Douglas production function

parameter α (which they estimate). In Figure 2 and Table 3, we use real GDP

growth rates from FRED (series GDPC1) as the growth rate for the U.S. When

calibrating to the U.K. data, we use the real GDP growth series from Jordà et

al. (2019).

Data on investment and capital stock come from the Bureau of Economic

Analysis (BEA) Fixed Assets Accounts Tables. Investment data come from Table

15In particular, we set µ equal to the gT parameter in Farhi and Gourio.
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1.5, Line 2 and capital stock data come from Table 1.1, Line 2. In these data,

investment as a fraction of capital averaged 7.7% from 1984–2000 and 6.9% from

2001–2016.

Price-dividend ratio data for the U.S. from 1984 to 2016 are from the Center

for Research in Security Prices (CRSP). Specifically, we use cum-dividend returns

(series VWRETD) and ex-dividend returns (series VWRETX). To calculate the

price-dividend ratio, we back out prices and dividends from cum- and ex-dividend

returns. This series is plotted in Panel B of Figure 2. We use this procedure to

calculate our price-dividend ratio moments for the calibrations in Tables 1 and

2.

For the longer U.S. valuation data, we use prices and dividends on the S&P

500 from Shiller (2000). We also form the cyclically-adjusted price-earnings ratio

(CAPE): the price divided by the average inflation-adjusted earnings from the

previous 10 years. See (Shiller, 2000) and online data description. For the U.K.

valuation data, we use data from Jordà et al. (2019). Jordà et al. aggregate total

returns data from Grossman (2002) and from Barclays Equity Gilt Study.

Finally, we obtain the Volatility Index (VIX) series from the Chicago Board

Options Exchange (CBOE). The CBOE calculates the risk-neutral expected 30-

day quadratic variation using option prices. There are small differences in the

calculation methodology over the years; see CBOE white paper.
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B Derivations for Section 3: Endowment econ-

omy with rare disasters

B.1 Price-consumption ratio

Given the SDF (3), the Euler equation with respect to the consumption claim is

1 = Et
[
βθ
(
Ct+1

Ct

)− θ
ψ

Rθ
W,t+1

]
. (B.1)

Conjecture a constant price-consumption ratio

κ ≡ (Wt − Ct)/Ct. (B.2)

Substituting (B.2) into (B.1) and using RW,t+1 = Wt+1/(Wt − Ct) implies

1 = βθEt
[(

Ct+1

Ct

)θ(1− 1
ψ

)(
κ+ 1

κ

)θ ]
. (B.3)

Given (2–1),

κ

κ+ 1
= βe(1− 1

ψ
)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

. (B.4)

A solution exists provided that the right hand side of (B.4) is less than one. We

restrict attention to parameter combinations satisfying this restriction. Finally,

κ =

βe(1− 1
ψ

)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

1− βe(1− 1
ψ

)µ

[
1 + p((1− η)1−γ − 1)

] 1
θ

, (B.5)

verifying the conjecture.

B.2 Riskfree rate

The riskfree rate is given by the Euler equation for the riskfree asset

Rf = Et

[
βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1

]−1

. (B.6)
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This simplifies to

Rf = Et

[
βθ
(
Ct+1

Ct

)−γ(
κ

κ+ 1

)1−θ
]−1

. (B.7)

where κ/(κ+ 1) is given by (B.4). Solving this yields the expression for the gross

riskfree rate

Rf = β−1e
1
ψ
µ

[
1 + p((1− η)−γ − 1)

]−1[
1 + p((1− η)1−γ − 1)

] θ−1
θ

(B.8)

which implies that the log riskfree rate is given by

logRf = − log β +
1

ψ
µ− log(1 + p((1− η)−γ − 1))

+

(
θ − 1

θ

)
log(1 + p((1− η)1−γ − 1)). (B.9)

B.3 Interpretation of rising disaster probability

In Section 3.1, three parameters change across the two samples to affect the

price-dividend ratio and the riskfree rate: the patience parameter β, the drift

term in growth µ, and the probability of a disaster p. We now drill down to find

out the role of each of the three. Table B.1 reports the results. The effect of

the parameters on the price-dividend ratio can be decomposed into a term that

depends only on the riskfree rate, a term that depends on the risk premium,

and a term that depends on expected growth, analogous to the decomposition in

Campbell and Shiller (1988):

log
κ

κ+ 1
≈ −

(
− log β +

1

ψ
µ− p((1− η)−γ − 1) +

(
θ − 1

θ

)
p((1− η)1−γ − 1)

)
︸ ︷︷ ︸

riskfree rate effect

−
(
pη((1− η)−γ − 1)

)︸ ︷︷ ︸
risk premium effect

+ (µ− pη)︸ ︷︷ ︸
cash flow effect

(B.10)

First note that β only affects the price-dividend ratio through the riskfree rate.

Greater patience lowers the riskfree rate, and thus the rate at which investors
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discount all future cash flows, raising the price-dividend ratio. Because the price-

dividend ratio is a convex function of β, apparently small shifts in β cause massive

changes.16 One way to understand this result is through duration: when the price-

dividend ratio discounts cash flows in the distant future, their valuation is more

sensitive to small changes in rates than short term cash flows. Just to send the

riskfree rate even half of the distance between the two samples would, therefore,

send the price-dividend ratio soaring to nearly 100. Such a stark rise in valuation

ratios reveals the fundamental problem with basing the decline in interest rates

on an increased desire to save. Accounting for the decline in growth rates helps

to lower the price-dividend ratio, provided that the EIS is greater than one.

16Specifically, the price-dividend ratio is a convex function of κ/(κ + 1), meaning that, at

values of κ/(κ+ 1) close to 1 (for which the price-dividend ratio is high), a small increase in β

implies a very large increase in the price-dividend ratio.
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Table B.1: Contribution of each parameter

This table starts with the model of Panel A in Table 1, calibrated to 1984–2000 and changes
first the discount factor β, then average consumption growth µ, then the disaster probability
p to obtain the calibration that matches 2001–2016. Risk aversion γ = 12 and consumption
declines 15% in a disaster. In Panel A, the elasticity of intertemporal substitution (EIS) equals
2; in Panel B, the EIS equals 0.5. Parameters and yields are in annual terms.

Panel A: γ = 12, EIS = 2, η = 0.15

Parameter values Targeted moments

β µ p PD ratio rf

Baseline calibration (1984–2000) 0.967 0.0350 0.0343 42.34 0.0279

Higher β 0.979 0.0350 0.0343 94.74 0.0151

Higher β & lower µ 0.979 0.0282 0.0343 71.44 0.0117

Baseline calibration (2001–2016) 0.979 0.0282 0.0667 50.11 -0.0035

Panel B: γ = 12, EIS = 0.5, η = 0.15

Parameter values Targeted moments

β µ p PD ratio rf

Baseline calibration (1984–2000) 0.997 0.0350 0.0343 42.34 0.0279

Higher β 0.983 0.0350 0.0343 25.63 0.0428

Higher β & lower µ 0.983 0.0282 0.0343 31.27 0.0292

Baseline calibration (2001–2016) 0.983 0.0282 0.0667 50.11 -0.0035

In contrast, the growth rate µ enters into the price-dividend ratio in two

ways, once multiplied by the multiplicative inverse of the EIS, representing its

effect on the riskfree rate, and once multiplied by unity, representing its effect on

future cash flows. A decrease in µ lowers the riskfree rate, following the usual

consumption Euler equation intuition: the lower is expected growth, the greater

the desire to save for the future, and hence the lower the riskfree rate must be.

Or, in a production economy, the lower is growth, the lower the demand for
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borrowing, and the lower the riskfree rate. Either way, low interest rates and low

growth clearly go together. However, when the EIS is above one, the effect of

growth on the interest rate is small: unlike patience, the fall in growth lowers the

riskfree rate, but raises the price-dividend ratio, so the cash flow effect dominates

the riskfree rate effect.

Panel A of Table B.1 shows that accounting for both an increase in β and a

decline in growth leads to a price-dividend ratio of about 70, not 50 as the data

require. The remainder must be filled in by an increase in the risk premium (and

a further decrease in expected future cash flows) through the disaster probability.

That the increase in the disaster probability is concomitant with a decline in the

riskfree rate helps the model even further.

When the EIS is below one, any decrease in the growth rate µ will lead to

an increase in the price-dividend ratio, as the riskfree rate effect will dominate

the cash flow effect. It will also, through the channel described above, lead to

a decline in the riskfree rate, and the decline should be larger than that in the

case of EIS greater than one. Suppose one starts with the demand-side view that

investors have become more patient: β has risen. As Panel A shows, any increase

in β sends the price-dividend ratio soaring (this effect is not mediated by the

EIS, and so is present regardless of what side of unity the EIS is on). One then

needs to change growth µ and/or the disaster probability p to match the fact

that the price-dividend ratio did not soar. When the EIS is below one, however,

a decrease in µ makes the problem worse in that it raises the price-dividend ratio

still further. It is then impossible to match the data with p because, again, an

EIS less than one means that increasing p lowers the riskfree rate and raises the

price-dividend ratio. If one tries to bring the price-dividend ratio down with

lower p, the riskfree rate rises. For this reason, matching the price-dividend ratio

and the riskfree rate requires that investors be less, not more, patient.
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To summarize: when the EIS is greater than one, one can reconcile the demand

and supply intuition for lower interest rates, at the cost of assuming a higher

probability of disaster. However, this reconciliation is fragile: it falls apart with

an EIS less than one. Thus, accepting greater patience and lower growth as an

explanation for the decline in interest rates requires accepting also that there is a

higher probability of disaster and an EIS greater than one. While many models

do assume an EIS greater than one, it is unsettling to have qualitative predictions

of the model depend so heavily on a parameter falling within a certain range, for

which there is little direct intuition or outside data support.

B.4 Calibrating to alternative moments

In this section, we note that the result of an increase in the the disaster probability

from 3.43% to 6.67% from the first sample to the second sample is dependent

on calibrating to the price-dividend ratio in the United States, which may be

inflated by changes in the tendency of U.S. companies to pay dividends (Fama

and French, 2001). If one calibrates the model to alternative moments, such

as the cyclically-adjusted price-earnings ratio in the U.S., or to the U.K. price-

dividend ratio, that do not have this issue, one needs a much greater increase

in the disaster probability to match valuation ratios (Table B.2). In particular,

calibrating to the CAPE ratio (U.K. price-dividend ratio) requires a rise in the

disaster probability from 5.56% (1.34%) in the first sample to a quite large 10.1%

(5.33%) disaster probability in the second sample.
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Table B.2: Accounting for the data: alternative measures for valuations and rates

This table repeats the exercise of Panel B, Table 1, except that parameters are calibrated to
the CAPE ratio rather than the price-earnings ratio (Panel A) and to U.K. data rather than
U.S. data (Panel B).

Values

Parameter 1984–2000 2001–2016

Panel A: Calibration to US CAPE ratio

CAPE ratio κ 25.97 26.73

Inflation-adjusted Treasury yield yb 0.0279 -0.0035

Average consumption growth µ 0.0350 0.0282

Discount factor β 0.957 0.968

Probability of disaster p 0.0556 0.101

Panel B: Calibration to UK moments

UK price-dividend ratio κ 27.78 30.86

Inflation-adjusted Treasury bill yield yb 0.0500 0.0040

Average consumption growth µ 0.0278 0.0156

Discount factor β 0.955 0.971

Probability of disaster p 0.0134 0.0533

B.5 Yield and expected return with sovereign default risk

Consider the defaultable short-term government bond paying (1−Lt+1) dollars—

that is, 1 dollar in the case of no default and 1−λη dollars in the case of default.

The price of this claim is obtained by solving the Euler equation

Qt = Et
[
βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1(1− Lt+1)

]
, (B.11)

which simplifies to

Qt = Et
[
βθ
(
Ct+1

Ct

)−γ(
κ

κ+ 1

)1−θ

(1− Lt+1)

]
, (B.12)
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where κ/(κ + 1) is given by (B.4). This gives the price of the defaultable claim

as

Qt = βe−
1
ψ
µ

[
1 + p((1− η)1−γ − 1)

] 1−θ
θ
[
1 + p((1− λη)(1− η)−γ − 1)

]
. (B.13)

The yield on the defaultable claim is defined as yb,t ≡ − logQt, and is thus equal

to the constant

yb = logRf + log (1 + p((1− η)−γ − 1))− log (1 + p((1− λη)(1− η)−γ − 1)),

(B.14)

where logRf is given by (B.9). The expected excess return on the bond is the

expected payoff divided by the price, less the log riskfree rate, and therefore

equals

logEt [Rb,t+1]− rf = log (1 + p((1− λη)− 1))

+ log (1 + p((1− η)−γ − 1))− log (1 + p((1− λη)(1− η)−γ − 1)). (B.15)

Suppose instead of being subject to outright default, the bond is a nominally

riskfree asset and so the government partially defaults through inflation. Assume

inflation is given by the process (11). The price of this defaultable claim is

obtained by solving the Euler equation

Q$
t = Et

[
βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1

Πt

Πt+1

]
, (B.16)

which simplifies to Q$
t = Qte

−µπ,t for the price Qt given by (B.13). Subsequent

results in the main text then follow straightforwardly.

C Volatility Index in a disaster economy

For tractability, we adapt the simple disaster model to continuous time, following

Seo and Wachter (2019). Suppose consumption follows the jump-diffusion process
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dCt
Ct−

= µdt+ σdBt + (e−zt − 1)dNt, (C.1)

where Bt is a standard Brownian motion, Nt is a Poisson process with constant

intensity λ, and zt has time-invariant distribution υ. As in Abel (1999) and

Campbell (2003), we model dividends as levered consumption: Dt = Cφ
t . Under

both power utility and recursive preferences, it follows that the price of the claim

to the dividend stream follows the process

dSt
St−

= µSdt+ φσdBt + (e−φzt − 1)dNt. (C.2)

The quadratic variation is then given by

QVt,t+τ ≡
∫ t+τ

t

d[logS, logS]s = φ2σ2τ +

∫ t+τ

t

φ2z2
sdNs. (C.3)

For risk-neutral measure Q, the VIX is then given by

VIX2
t ≡ EQt [QVt,t+τ ] = φ2

(
σ2 + λEυ

[
eγztz2

t

])
τ, (C.4)

where the last term follows from Girsanov’s theorem:

EQt−
[
φ2z2

sdNs

]
= Et−

[
πt
πt−

φ2z2
sdNs

]
= λφ2Eυ

[
eγztz2

t

]
. (C.5)

Note that these formulas hold for both time-additive utility and recursive prefer-

ences.

To calculate the implied VIX in the model, we choose parameters according

to our calibration in Table 1: disaster size z = − log 0.85, relative risk aversion

coefficient γ = 12, consumption volatility σ2 = 0.02, first sample disaster intensity

λ1 = 0.03, and second sample disaster intensity λ2 = 0.07. These are annualized

parameters, so τ = 1/12 matches the time interval used to calculate the VIX. We

then choose φ2 such that (C.4) with λ1 is equal to the empirically observed value

0.20562 in the first sample. Given this calibration—which implies φ2 = 19.8—we
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calculate that the implied VIX with λ2 = 0.07, using this value of φ2, is 23.36

compared to the empirical average of 20.66. Using Newey-West standard errors

with two lags on the monthly VIX, the t-statistic on this test is 2.66.

D Production model

D.1 Solution to the no-inventory case

Consider the model in Section 4.1. The agent maximizes (22), subject to (21).

Conjecture that

V (Wt) = νWt, (D.1)

for some constant ν > 0. Substituting this conjecture into (22), with RW,t+1 ≡

Rf,t+1 + αt(RK,t+1 −Rf,t+1) implies

(1−β) log ν+logWt = max
Ct,αt

{
(1− β) logCt + β log (Wt − Ct) +

β

1− γ
log
(
Et
[
R1−γ
W,t+1

])}
.

(D.2)

At the optimum. the derivative of the right-hand side with respect to Ct equals

zero. Thus:
1− β
Ct
− β

Wt − Ct
= 0

yielding the result Ct/Wt = 1 − β. Setting the derivative of the right hand side

with respect to α equal to zero yields (28).

D.2 Solution to the general case

The agent can invest in an inventory asset with net return rI = 0, a riskfree

bond with net return rf,t+1, and a risky capital asset with net return rK,t+1. Let

rj,t+1, j ∈ J = {I, f,K}, represent net returns, and let αj,t denote the percent

allocation of savings to asset j. Note that, in our setting with a binary shock χt+1,
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markets are complete, so the agent will be able to construct any state-contingent

portfolio return ri,t+1. Inventory and capital are the only securities in positive net

supply; furthermore, we restrict inventory to be in non-negative supply (It ≥ 0).

It follows from this setup that the return on wealth RW,t+1 =
∑

j∈J αj,t(1+rj,t+1),

where
∑

j∈J αj,t = 1.

Suppose that the agent has Epstein-Zin utility with unit EIS. The agent’s

optimization problem is therefore

max
Ct,{αj,t}j∈J

(
C1−β
t

(
Et
[
V (Wt+1)1−γ]) β

1−γ
)
, (D.3)

subject to the dynamic budget constraint

Wt+1 = (Wt − Ct)RW,t+1 = (Wt − Ct)
∑
j∈J

αj,t(1 + rj,t+1), (D.4)

the portfolio weight restriction ∑
j∈J

αj,t = 1, (D.5)

and the inventory non-negativity constraint

αI,t ≥ 0. (D.6)

Let ζt and ξt denote the Lagrange multipliers on the constraints (D.5) and (D.6),

respectively.

Substituting (D.1) and the budget constraint (D.4) into (D.3), then taking

logs, we again obtain (D.2) and the identical first-order condition for consumption

as above. The first-order condition with respect to asset allocation αj,t, j 6= I, is

βEt
[
R1−γ
W,t+1

]−1 Et
[
R−γW,t+1(1 + rj,t+1)

]
= ζt, (D.7)

and the first-order condition with respect to the inventory allocation αI,t is

βEt
[
R1−γ
W,t+1

]−1 Et
[
R−γW,t+1

]
+ ξt = ζt. (D.8)
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Multiply both sides of (D.7) by αj,t, take the sum over j ∈ J \{I}, and substitute

in (D.8) to see that

ζt = β + ξtαI,t = β, (D.9)

by complementary slackness. This implies the Euler equation for gross returns

Et
[
R1−γ
W,t+1

]−1 Et
[
R−γW,t+1Rj,t+1

]
= 1 (D.10)

and the Euler equation for inventory

Et
[
R1−γ
W,t+1

]−1 Et
[
R−γW,t+1

]
+
ξt
β

= 1. (D.11)

Note the market clearing condition αI,t = 1− αK,t, where αK,t is simply denoted

αt in our setup in the main text. We thus have that ξt > 0 if and only if αt < 1.

We now show formally that inventory imposes a zero lower bound. Through-

out, we assume that the bond is in zero net supply.

Lemma 1. If αt < 1, then the gross real riskfree rate Rf,t+1 = 1. If αt = 1, then

Rf,t+1 ≥ 1 and is equal to the real riskfree rate in a no-inventory economy R∗f,t+1.

Proof. If αI,t > 0, then ξt = 0 and (D.10) and (D.8) combine to give us Rf,t+1 = 1.

If αI,t = 0, then ξt ≥ 0 and

Rf,t+1 =
β

β − ξt
, (D.12)

which is greater than or equal to 1. Moreover, if αI,t = 0, then market clearing

implies RW,t+1 = RK,t+1 and the Euler equation (D.10) yields

Rf,t+1 = Et
[
R1−γ
K,t+1

]
Et
[
R−γK,t+1

]−1
, (D.13)

which is the same as the riskfree rate R∗f,t+1 in the no-inventory economy.

We next show that the unconstrained riskfree rate determines α.
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Theorem 1. If the unconstrained gross riskfree rate R∗f,t+1 < 1, then αt < 1

and the constrained riskfree rate Rf,t+1 = 1. If R∗f,t+1 ≥ 1, then αt = 1 and the

equilibrium is as in a standard no-inventory production economy with Rf,t+1 =

R∗f,t+1.

Proof. We will prove the theorem by contradiction using Lemma 1.

Suppose R∗f,t+1 < 1 and αI,t = 0. Then Rf,t+1 = R∗f,t+1 < 1, which contradicts

Lemma 1. It must therefore be the case that R∗f,t+1 < 1 implies αI,t > 0, which

implies Rf,t+1 = 1.

Now suppose R∗f,t+1 > 1 and αI,t > 0. Then Rf,t+1 = 1 < R∗f,t+1, which

contradicts Lemma 1. Moreover, in the knife-edge case R∗f,t+1 = 1, the equilib-

rium conditions (D.10) and (D.8) imply ξt = 0, which implies that αI,t = 0 and

Rf,t+1 = R∗f,t+1 = 1. Thus, it must be that R∗f,t+1 ≥ 1 implies αI,t = 0, which

implies Rf,t+1 = R∗f,t+1 ≥ 1.

We conjecture that the price-dividend ratio depends only on the current state

χt (i.e., whether the disaster occurred or not). The intuition for this is that

output growth Yt+1/Yt is a function of χt. Thus,

1 = Et
[
R1−γ
W,t+1

]−1 Et
[
R−γW,t+1

(
κY (χt+1) + 1

κY (χt)

)(
Yt+1

Yt

)]
. (D.14)

This implies that we have two equations, one for the non-disaster state,

κY (0) = β̂

[
(1− p)(1 + αrK,0)1−γ(κY (0) + 1)

+ p(1 + αrK,η)
−γ(κY (η) + 1)(1− η)(1 + αrK,0)

]
, (D.15)

and one for the disaster state,

κY (η) = β̂

[
(1− p)(1 + αrK,0)−γ(κY (0) + 1)(1− η)−1(1 + αrK,η)

+ p(1 + αrK,η)
1−γ(κY (η) + 1)

]
. (D.16)
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In these equations, β̂ ≡ β

[
(1 − p)(1 + αrK,0)1−γ + p(1 + αrK,η)

1−γ
]−1

, rK,0 ≡

(1− δ+A)− 1, and rK,η ≡ (1− δ+A)(1− η)− 1. The solution to this system is

κY (0) =
β̂

1− β

[
(1− p)(1 + αrK,0)1−γ + p(1 + αrK,η)

−γ(1− η)(1 + αrK,0)

]
,

(D.17)

κY (η) = κY (0)(1− η)−1 1 + αrK,η
1 + αrK,0

. (D.18)

Although the price-dividend ratio is state-dependent when the agent chooses

to hold inventory, the risk premium is not. The risk premium at time t when the

agent holds inventory is given by logEt[RY
t+1]− logRf where the expected return

on the output claim is given by

Et[RY,t+1] = Et
[(

κY (χt+1) + 1

κY (χt)

)(
Yt+1

Yt

)]
. (D.19)

If the expected return on the output claim is the same across states, than so is

the risk premium, so we focus on the expected return on the output claim here.

In the no disaster state, the expected return on the output claim is

Et[RY,t+1|χt = 0] =

(
(1− p)κY (0) + pκY (η) + 1

κY (0)

)
×(

β(1− pη) (α(1− δ + A) + 1− α)

)
(D.20)

and in the disaster state by

Et[RY,t+1|χt = η] =

(
(1− p)κY (0) + pκY (η) + 1

κY (η)

)
×(

β(1− pη)

(
α(1− δ + A) +

(
1− α
1− η

)))
. (D.21)

Examining the two expressions, we see that the expected return in both states

are the same provided that

κY (η)(1− η)

(
α(1− δ + A) + 1− α

)
= κY (0)

(
α(1− δ + A)(1− η) + 1− α

)
.
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Note that the terms inside the parentheses can be written as

κY (η)(1− η)(1 + αrK,0) = κY (0)(1 + αrK,η)

which, after rearranging is identical to Equation (D.18). This implies that while

the price-dividend ratio is time-varying, the risk premium is not.
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