New Frontiers: The Origins and Content of New Work, 1940 – 2018

David Autor MIT & NBER Anna Salomons Utrecht University Bryan Seegmiller MIT Sloan

NBER Labor Studies July 27, 2021

Technology, Automation, and How We Should Respond

SUSSKIND

Asymptotic task encroachment

"Machines will not do everything in the future, but they will do more. And as they slowly, but relentlessly, take on more and more tasks, human beings will be forced to retreat to an ever-shrinking set of activities." –Susskind, 2020

Technology, Automation, and How We Should Respond

Asymptotic task encroachment

"Machines will not do everything in the future, but they will do more. And as they slowly, but relentlessly, take on more and more tasks, human beings will be forced to retreat to an ever-shrinking set of activities." –Susskind, 2020

Channeling Leontief's 'horse equilibrium'

"...[P]rogressive introduction of new computerized, automated, and robotized equipment can be expected to reduce the role of labor... similar to the process by which the introduction of tractors and other machinery first reduced and then completely eliminated horses and other draft animals." –Leontief, 1983

A WORLD WITHOUT WOR

Technology, Automation, and How We Should Respond

SUSSKIND

Task models of technological progress: Leontief formalized

- Automation simultaneously substitutes some tasks, complements remainder
- Machines have expanding comparative advantage Zeira '88; Autor-Levy-Murnane '03; Acemoglu-Autor '11; Acemoglu-Restrepo '18, '21; Susskind '20

A WORLD WITHOUT WOR

Technology, Automation, and How We Should Respond

SUSSKIND

Task models of technological progress: Leontief formalized

- Automation simultaneously substitutes some tasks, complements remainder
- Machines have expanding comparative advantage Zeira '88; Autor-Levy-Murnane '03; Acemoglu-Autor '11; Acemoglu-Restrepo '18, '21; Susskind '20

Empirical evidence of task displacement

 Striking substitution of computers and robotics for directly affected occupations / industries
Autor-Dorn '13; Michaels-Natraj-Van-Reenen '13; Cortes '16;
Goos-Manning-Salomons '14; Graetz-Michaels '18; Acemoglu-Restrepo '19, '21; Bessen-Goos-Salomons-VandenBerge '19;
Deschezlepretre-Hemous-Olsen-Zanella '19; Kogan-Papanikolaou-Schmidt-Seegmiller '19; Webb '20

Countervailing force: The emergence of new work tasks

Technology, Automation, and How We Should Respond

SUSSKIND

Asymptotic task encroachment vs. new work emergence

- Set of tasks is not fixed/static
- Jeff Lin '11: Measures new work over 1970–2000

Countervailing force: The emergence of new work tasks

Technology, Automation, and How We Should Respond

SUSSKIND

Asymptotic task encroachment vs. new work emergence

- Set of tasks is not fixed/static
- Jeff Lin '11: Measures new work over 1970–2000

Adding new work to the 'task model'

- New tasks \rightarrow Labor 'reinstatement' (counters displacement)
- Race between task displacement and new task creation
- Acemoglu-Restrepo '18,'19 ('A-R' for short)

Limited evidence on the emergence of new work tasks

Technology, Automation, and How We Should Respond

Acemoglu-Restrepo '18-'19 add to new work evidence

• Develop ingenious empirical proxies for new work

Limited evidence on the emergence of new work tasks

Technology, Automation, and How We Should Respond

SUSSKIND

Acemoglu-Restrepo '18-'19 add to new work evidence

• Develop ingenious empirical proxies for new work

Related evidence on task change within occupations

- Atack-Margo-Rhode '19: Hand & Machine Labor Study 1899
- Atalay-et-al '20: Historical job advertisements
- Deming-Noray '20: Burning Glass skills data
- Limited evidence on new work beyond Lin '11 and A-R

Limited evidence on the emergence of new work tasks

Technology, Automation, and How We Should Respond

SUSSKIND

Acemoglu-Restrepo '18-'19 add to new work evidence

• Develop ingenious empirical proxies for new work

Related evidence on task change within occupations

- Atack-Margo-Rhode '19: Hand & Machine Labor Study 1899
- Atalay-et-al '20: Historical job advertisements
- Deming-Noray '20: Burning Glass skills data
- Limited evidence on new work beyond Lin '11 and A-R

Our objectives

- Consistently measure the task content of new work over eight decades, 1940 – 2018
- 2 Explore its technological and economic origins
- 3 Analyze its relationship to labor demand

Occupational distribution of U.S. work in 1940: Lots of agriculture, production

Occupational distribution of work in 2018 v. 1940

About 63% of employment in 2018 found in job types added since 1940

New Frontiers: Contributions

New work: Where does it come from, and what is it made up of?

1 Hypothesize new task creation and task displacement are linked to three forces:

- Technologies that complement the outputs of occupations ('augmentation')
- Technologies that substitute for the inputs of occupations ('automation')
- Demand shifts that create incentives for task creation and task automation

New Frontiers: Contributions

New work: Where does it come from, and what is it made up of?

1 Hypothesize new task creation and task displacement are linked to three forces:

- Technologies that complement the outputs of occupations ('augmentation')
- Technologies that substitute for the inputs of occupations ('automation')
- Demand shifts that create incentives for task creation and task automation

2 Measure

- The emergence of **new work** over 1940–2018; document evolution
- Technologies that augment occupational outputs vs. automate occupational inputs

New Frontiers: Contributions

New work: Where does it come from, and what is it made up of?

1 Hypothesize new task creation and task displacement are linked to three forces:

- Technologies that complement the outputs of occupations ('augmentation')
- Technologies that substitute for the inputs of occupations ('automation')
- Demand shifts that create incentives for task creation and task automation

2 Measure

- The emergence of **new work** over 1940–2018; document evolution
- Technologies that augment occupational outputs vs. automate occupational inputs

3 Test empirically, whether:

- Augmentation and demand forces explain new task creation
- Augmentation and automation have countervailing consequences for labor demand

Agenda

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

6 Conclusions

Testable hypotheses

1 Augmentation creates new tasks; Automation does not

- Augmentation complements labor's outputs, demands specialization, new expertise
- Conversely, automation *substitutes* for labor's inputs

2 New task creation responds elastically to demand

- Outward shifts in occupational demand accelerate emergence of new tasks
- Inward shifts in occupational demand *slow* emergence of new tasks

3 Augmentation & Automation occur in same occs—with opposing demand impacts

- New task creation \rightarrow Increases employment and wagebill
- Task automation \rightarrow Decreases employment and wagebill

① Catalog of new 'tasks' ('micro-titles') entering U.S. Census over eight decades

- Source: Census Alphabetical Index of Occupations & Industries, 1930–2018 editions
- Approx 30K occupational titles, 20K industry titles, in each decade
- 2 Technologies that complement occupational outputs ('augmentation')
 - Source: U.S. utility patents 1930-present
 - Linked to Census Alphabetical Index of Occupations and Industries, 1930–2018
- **3** Technologies that substitute occupational inputs ('automation')
 - Source: U.S. utility patents 1930-present
 - Linked to Dictionary of Occupational Titles (DOT) '91 job descriptions
 - Based on Kogan et al. '19, and similar in spirit to Webb '20 and Mann-Püttmann '20

Agenda

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

6 Conclusions

Agenda

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

6 Conclusions

Data sources

Data: Use highly detailed Census occ/ind coding manuals to identify new work

Example of Index of Occupation (CAIO) entries, 1990

08 HEALTH TECHNOLOGISTS AND TECHNICIANS, N.E.C.	E.k.g. technician — (840) E.m.t.	Orthoptic technician
	Electrocardiograph operator-(840) Electrocardiograph technician-(840)	Orthoptist
mbulance driver nare-medic	Electroencephalograph technician - (840)	Orthotist
nimal technician		Otometric technician
Artificial-limb fitter_(372)	Emergency medical technician	Oxygen-equipment technician
	Encephalographer (831)	Oxygen-therapy technician
	Environmental health sanitarian	Para-medic emergency treatment
Assistant	Environmental-health technician	raa moore, amargancy adamant
Anestnesiologist	Environmental-health technologist	Bern modio n o 101 010
Anesthetic		Para-medic, n. s 401,910
Laboratory, n. s Medical school 850	Extracorporeal-circulation specialist	
Medical (812)	Food-service technician-831,832,840	Pertusionist
Occupational therapy	Health sanitarian	Pharmacy laboratory technician-812-840
	Hospital technician-831	Pharmacy technician
Ophthalmic	Industrial hygionist	
Optometric		Physician's aide-831,832,840
Orthopedic	Inspector	Prosthetist
Orthotics	Sanitarian—840	Public-health technician
Pharmacist's		Public-bealth technologist
	Laboratory technician, veterinary	Radiological bealth specialist
Physical therapist	Laboratory technician, n. s030,812	riadiological-health apocialies
Physical therapy	Laboratory technician, n. s Medical school	Dediclosical bealth technician
Podiatriat's 920	850	Hadiological-nealth technician
Provatistis - 030	Laboratory tester-030,812	Henabilitation technician - 831
Public bealth	Laboratory tester-Medical school 850	Hespiratory therapy technician
Speech correction	Laboratory worker, n. s030,812	Restoration officer-831
Speech thereav	Laboratory worker, n. s Medical school 850	Restoration technician-831,832,840
Speech therapy		Sanitarian - 470,471,831,840
	Mechanic	Scrub technician-831
Audiometrist	Orthopedic	
siocnemistry technician		Supervisor
Biological technician, health	Medical-emergency technician	Central supply-831
Brace maker - 372,831,840	Medical research (less than bachelor's degree)	Central supply technician 821
Brain-wave technician — (840)	Medical service technician	Laboratory Medical achool 850
C.M.T. (certified medical technician)	Medtronics technician	Laboratory-Medical school 850
	O.B. technician-831	Surgical brace maker
Cardiograph operator – (840)	Occupational therapy technician	Surgical-brace maker
Cardiographer – (840)		Surgical technician
Cardiopulmonary technician	Ocular-care technician	Surgical technologist
Cardiovascular technologist	Ocular-care technologist	
Certified medical technician	Operating-room technician-831	Teachers, exc. elementary & secondary
	Ophthalmic technician	Prosthetic aides - 831,832,840
Child bealth associate 821 822 840	Ophthalmic technologist	
-000+000000000000000000000000000000000	· · · ·	Technician, health type n. s.
Closed circuit screen watcher_831		
Closed circuit screen watcher-831	Optometric technologist	Technician, n. s Medical school 850
Chick-health associate—631,632,640 Closed circuit screen watcher—831 Dialysis technician E.e.a. technician—(840)	Optometric technologist Orthopedic-brace maker	Technician, n. s. – Medical school 850 Watch-closed-circuit screen – 831

Example of Index of Occupation (CAIO) entries, 1990

208 HEALTH TECHNOLOGISTS AND TECHNICIANS, N.E.C.

Ambulance driver, para-medic Animal technician Artificial-limb fitter-(372)

Assistant Anesthesiologist Anesthetic Laboratory, n. s. – Medical school 850 Medical – (812) Occupational therapy

Ophthalmic Optometric Orthopedic Orthotics Pharmacist's

Physical therapist Physical therapy Podiatrist's - 830 Prosthetics Public health Speech correction Speech therapy

Audiometrist Biochemistry technician Biological technician, health Brace maker-372,831,840

Brain-wave technician-(840)

C.M.T. (certified medical technician)

Cardiograph operator – (840) Cardiographer – (840) Cardiopulmonary technician Cardiovascular technologist Certified medical technician

Child-health associate --831,832,840 Closed circuit screen watcher --831 Dialysis technician E.e.g. technician --(840) E.e.g. technologist E.k.g. technician-(840) E.m.t. Electrocardiograph operator-(840) Electrocardiograph technician-(840) Electroencephalograph technician- (840)

Emergency medical technician Encephalographer—(831) Environmental health sanitarian Environmental-health technician Environmental-health technologist

Extracorporeal-circulation specialist

Food-service technician—831,832,840 Health sanitarian Hospital technician—831 Industrial hygienist

Inspector Sanitarian-840

Laboratory technician, a consolid conso

Mechanic Orthopedic

Medical-emergency technician Medical research (less than bachelor's degree) Medical service technician Medtronics technician O.B. technician – 831 Occupational therapy technician

Ocular-care technician

Ocular-care technologist Operating-room technician—831 Ophthalmic technician Ophthalmic technologist

Optometric technologist Orthopedic-brace maker Orthopedic technician Orthoptic technician Orthoptist

Orthotist Otometric technician Oxygen-equipment technician Oxygen-therapy technician Para-medic, emergency treatment

Para-medic, n. s. -401,910 Pediatric associate-831,832,840 Perfusionist Pharmacy laboratory technician-812-840 Pharmacy technician

Physician's aide-831,832,840 Prosthetist Public-health technician Public-health technologist Radiological-health specialist

Radiological-health technician Rehabilitation technician—831 Respiratory therapy technician Restoration officer—831 Restoration technician—831,832,840 Sanitarian—470,471,831,840 Scrub technician—831

Supervisor Central supply—831 Central supply technician—831 Laboratory—Medical school 850

Surgical-brace maker

Surgical technician Surgical technologist

Teachers, exc. elementary & secondary Prosthetic aides - 831,832,840

Technician, health type n. s. Technician, n. s. – Medical school 850 Watch-closed-circuit screen – 831 Water-pollution specialist

Examples of job titles

- Artificial-limb fitter
- Brain-wave technician
- Extracorporeal-circulation specialist
- Ocular-care technician
- Surgical-brace maker

 ${\sim}30,000$ titles per edition

Each title is classified to a Census occupation

Example of Index of Occupation (CAIO) entries, 1990

208 HEALTH TECHNOLOGISTS AND TECHNICIANS, N.E.C.

Ambulance driver, para-medic Animal technician Artificial-limb fitter-(372)

Assistant Anesthesiologist Anesthetic Laboratory, n. s. – Medical school 850 Medical – (812) Occupational therapy

Ophthalmic Optometric Orthopedic Orthotics Pharmacist's

Physical therapist Physical therapy Podiatrist's - 830 Prosthetics Public health Speech correction Speech therapy

Audiometrist Biochemistry technician Biological technician, health Brace maker-372,831,840

Brain-wave technician-(840)

C.M.T. (certified medical technician)

Cardiograph operator – (840) Cardiographer – (840) Cardiopulmonary technician Cardiovascular technologist Certified medical technician

Child-health associate --831,832,840 Closed circuit screen watcher --831 Dialysis technician E.e.g. technician --(840) E.e.g. technologist E.k.g. technician-(840) E.m.t. Electrocardiograph operator-(840) Electrocardiograph technician-(840) Electroencephalograph technician- (840)

Emergency medical technician Encephalographer—(831) Environmental health sanitarian Environmental-health technician Environmental-health technologist

Extracorporeal-circulation specialist

Food-service technician —831,832,840 Health sanitarian Hospital technician —831 Industrial hygienist

Inspector Sanitarian-840

Laboratory technician, a consolid conso

Mechanic Orthopedic

Medical-emergency technician Medical research (less than bachelor's degree) Medical service technician Medtronics technician O.B. technician – 831 Occupational therapy technician

Ocular-care technician

Ocular-care technologist Operating-room technician—831 Ophthalmic technician Ophthalmic technologist

Optometric technologist Orthopedic-brace maker Orthopedic technician Orthoptic technician Orthoptist

Orthotist Otometric technician Oxygen-equipment technician Oxygen-therapy technician Para-medic, emergency treatment

Para-medic, n. s. -401,910 Pediatric associate -831,832,840 Perfusionist Pharmacy laboratory technician -812- 840 Pharmacy technician

Physician's aide-831,832,840 Prosthetist Public-health technician Public-health technologist Radiological-health specialist

Radiological-health technician Rehabilitation technician—831 Respiratory therapy technician Restoration officer—831 Restoration technician—831,832,840 Sanitarian—470,471,831,840 Scrub technician—831

Supervisor Central supply – 831 Central supply technician – 831 Laboratory – Medical school 850

Surgical-brace maker

Surgical technician Surgical technologist

Teachers, exc. elementary & secondary Prosthetic aides - 831,832,840

Technician, health type n. s. Technician, n. s. – Medical school 850 Watch-closed-circuit screen – 831 Water-pollution specialist

Examples of job titles

- Artificial-limb fitter
- Brain-wave technician
- Extracorporeal-circulation specialist
- Ocular-care technician
- Surgical-brace maker

 ${\sim}30{,}000$ titles per edition

Each title is classified to a Census occupation

Compare successive CAIO editions to identify new titles

Emergence of new 'tasks' measured by:

- Flow of *newtitles_{jt}* by Census occupation during a decade (e.g., 1930 1940)
- New title share $\frac{newtitles_{jt}}{alltitles_{jt}}$, equals the flow of new titles over stock of titles within Census occupation during a decade

Examples of new occupation titles, 1940 – 2018

Year	Example titles added	
1940	Automatic welding machine operator	Acrobatic dancer
1950	Airplane designer	Tattooer
1960	Textile chemist	Pageants director
1970	Engineer computer application	Mental-health counselor
1980	Controller, remotely-piloted vehicle	Hypnotherapist
1990	Circuit layout designer	Conference planner
2000	Artificial intelligence specialist	Amusement park worker
2010	Technician, wind turbine	Sommelier
2018	Pediatric vascular surgeon	Drama therapist

The emergence of new work, non-college workers, 1940–1980

The emergence of new work, non-college workers, 1940–1980 Concentrated in middle-paid occs

The emergence of new work, non-college workers, 1940–1980 v. 1980–2018

The emergence of new work, non-college workers, 1940–1980 v. 1980–2018 Moving from middle-paid to low-paid occs

The emergence of new work, college workers, 1940–1980 v. 1980–2018 Increasingly concentrated in high-paying occs

The emergence of new work by education group, 1940–1980 v. 1980–2018 Polarizing into low-paid occs for non-college workers and high-paid occs for college workers

Agenda

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

(5) Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

6 Conclusions

Data sources

Data: Occ'l exposure to techs complementing labor's outputs \rightarrow Augmentation

Data: Occ'l exposure to techs substituting labor inputs \rightarrow Automation

Health Technologists & Technicians: Outputs

Census Index of Occupations, 1990

208 HEALTH TECHNOLOGISTS AND TECHNICIANS, N.E.C.

Ambulance driver, para-medic Animal technician Artificial-limb fitter - (372)

Assistant Anestheticlogist Anesthetic Laboratory, n. s. – Medical school 850 Medical – (812) Occupational therapy

Ophthalmic Optometric Orthopedic Orthotics Pharmacist's

Physical therapist Physical therapy Podiatrist's - 830 Prosthetics Public health Speech correction Speech therapy

Audiometrist Biochemistry technician Biological technician, health Brace maker—372,831,840 Brain-wave technician—(840) C.M.T. (certified medica) technician)

Cardiograph operator – (840) Cardiographer – (840) Cardiopulmonary technician Cardiovascular technologist Certified medical technician

Child-health associate—831,832,840 Closed circuit screen watcher—831 Dialysis technician E.e.g. technician—(840) E.e.g. technician—(840) E.k.g. technician-(840)

Electrocardiograph operator — (840) Electrocardiograph technician — (840) Electrocencephalograph technician — (840)

Emergency medical technician Encephalographer—(831) Environmental health sanitarian Environmental-health technician Environmental-health technicions

Extracorporeal-circulation specialist Food-service technician—831,832,840 Health sanitarian Hospital technician—831 Industrial hygionist

Inspector Sanitarian-840

Laboratory technician, veterinary Laboratory technician, a. e. -030,812 Laboratory technician, n. s. - Medical school 650 Laboratory tester --030,812 Laboratory tester --Medical school 650 Laboratory worker, n. s. --030,812 Laboratory worker, n. s. --030,812

Mechanic Orthopedic

Medical-emergency technician Medical research (less than bachelor's degree) Medical service technician Meditronics technician O.B. technician—831 Occupational therapy technician

Ocular-care technician Ocular-care technologist Operating-room technician-831 Ophthalmic technologist Ophthalmic technologist

Optometric technologist Orthopedic-brace maker Orthopedic technician Orthoptic technician Orthoptist

Orthotist Otometric technician Oxygen-equipment technician Oxygen-therapy technician Para-medic, emergency treatment

Para-medic, n. s. - 401,910 Pediatric associate - 831,832,840 Perfusionist Pharmacy laboratory technician - 812- 840 Pharmacy technician

Physician's aide-831,832,840 Prosthetist Public-health technician Public-health technologist Radiological-health specialist

Radiological-health technician Respiratory therapy technician Respiratory therapy technician Restoration officer – 831 Restoration technician – 831,832,840 Santtarian – 470,471,831,840 Scrub technician – 831

Supervisor Central supply -831 Central supply technician -831 Laboratory - Medical school 850

Surgical-brace maker Surgical technician Surgical technologist

Teachers, exc. elementary & secondary Prosthetic aides - 831,832,840

Technician, health type n. s. Technician, n. s. – Medical school 850 Watch-closed-circuit screen – 831 Water-pollution specialist

Health Technologists & Technicians: Outputs vs. Inputs

Census Index of Occupations, 1990

208 HEALTH TECHNOLOGISTS AND TECHNICIANS, N.E.C.

Ambulance driver, para-medic Animal technician Artificial-limb fitter - (372)

Assistant Anestheticlogist Anesthetic Laboratory, n. s. – Medical school 850 Medical – (812) Occupational therapy

Ophthalmic Optometric Orthopedic Orthotics Pharmacist's

Physical therapist Physical therapy Podiatrist's - 830 Prosthetics Public health Speech correction Speech therapy

Audiometrist Biochemistry technician Biological technician, health Brace maker—372,831,840 Brain-wave technician—(840) C.M.T. (certified medica) technician)

Cardiograph operator – (840) Cardiographer – (840) Cardiopulmonary technician Cardiovascular technologist Certified medical technician

Child-health associate - 831,832,840 Closed circuit screen watcher - 831 Dialysis technician E.e.g. technician - (840) E.e.g. technician - (840) ND E.k.g. technician-(840)

Electrocardiograph operator—(840) Electrocardiograph technician—(840) Electroencephalograph technician— (840)

Emergency medical technician Encephalographer – (831) Environmental health sanitarian Environmental-health technician Environmental-health technologist

Extracorporeal-circulation specialist Food-service technician—831,832,840 Health sanitarian Hospital technician—831 Industrial hygionist

Inspector Sanitarian-840

Laboratory technician, veterinary Laboratory technician, a. e. -030,812 Laboratory technician, n. s. - Medical school 650 Laboratory tester --030,812 Laboratory tester --Medical school 650 Laboratory worker, n. s. --030,812 Laboratory worker, n. s. --030,812

Mechanic Orthopedic

Medical-emergency technician Medical research (less than bachelor's degree) Medical service technician Meditonics technician O.B. technician – 831 Occupational therapy technician

Ocular-care technician Ocular-care technologist Operating-room technician—831 Ophthalmic technician Ophthalmic technologist

Optometric technologist Orthopedic-brace maker Orthopedic technician

Orthoptic technician Orthoptist

Orthotist Otometric technician Oxygen-equipment technician Oxygen-therapy technician Para-medic, emergency treatment

Para-medic, n. s. - 401,910 Pediatric associate - 831,832,840 Perfusionist Pharmacy laboratory technician - 812- 840 Pharmacy technician

Physician's aide -831,832,840 Prosthetist Public-health technician Public-health technologist Radiological-health specialist

Radiological-health technician Respiratory therapy technician Respiratory therapy technician Restoration officer – 831 Restoration technician – 831,832,840 Sanitarian – 470,471,831,840 Scrub technician – 831

Supervisor Central supply --831 Central supply technician --831 Laboratory -- Medical school 850

Surgical-brace maker Surgical technician Surgical technologist

Teachers, exc. elementary & secondary Prosthetic aides-831,832,840

Technician, health type n. s. Technician, n. s. – Medical school 850 Watch-closed-circuit screen – 831 Water-pollution specialist

Dictionary of Occupational Titles, 1991

078.261-038 MEDICAL TECHNOLOGIST (medical ser.)

Performs medical laboratory tests, procedures, experiments, and analyses to provide data for diagnosis, treatment, and prevention of disease: Conducts chemical analyses of body fluids, such as blood, urine, and spinal fluid, to determine presence of normal and abnormal components. Studies blood cells, their numbers, and morphology, using microscopic technique. Performs blood group, type, and compatibility tests for transfusion purposes. Analyzes test results and enters findings in computer.

1

Strip punctuation, remove stop words, retain nouns and verbs lemmatization

Cleaned CAI corpus

Cleaned patent corpus

and the second second

Linking patents to occ/ind inputs and outputs Details Examples Robustness

Linking patents to occ/ind inputs and outputs Details Examples Robustness

Automation vs. augmentation exposure at the occupation level, r = 0.62

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Relating augmentation to new occupation titles, 1940–2018

$$\mathsf{IHS}(\mathsf{newtitles}_{jt}) = \beta_1 \mathsf{AugX}_{jt} + \beta_2 \frac{E_{jt}}{\sum_j E_{jt}} + D_t \left(+D_J + D_{Jt} \right) + \varepsilon_{jt}$$

- IHS(newtitles_{jt}): Inverse hyperbolic sine (IHS) occupational new title count
- AugX_{jt}: Occupational exposure to augmentation (patents linked to industry, or to occupation)
- Controls: Occupational employment shares and fixed effects, where *J* indexes 12 broad occupation groups.

New occupational titles emerge in augmentation-exposed occupations **•** robustness

	(1)	(2)	(3)	(4)	(5)	(6)
Augmentation (Pat Count IHS, Ind-Link)	15.91*** (3.39)	11.47*** (2.25)	9.63*** (1.81)			
Augmentation (Pat Count IHS, Occ-Link)				13.00*** (1.59)	12.74*** (1.21)	12.48*** (0.97)
N R ²	3,668 0.634	3,668 0.674	3,668 0.754	3,668 0.679	3,668 0.718	3,668 0.795
Year FE	Х	Х		Х	Х	
Broad Occ FE		Х			Х	
Broad Occ $ imes$ Year FE			Х			Х
Occ Emp Shares	Х	Х	Х	Х	Х	Х

Dependent variable: 100 × IHS Occupational New Title Count, 1940–2018

Notes: Census occupations over 1940–2018. Models weighted by annual occupational employment shares. Broad occupations are 12 groups consistently defined over time. Robust standard errors in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$.

Augmentation exposure robustly predicts new tasks: 1940–1980, 1980–2018 Newtitles_{*jt*} = $\beta_1 \text{AugX}_{jt} + \beta_2 (E_{jt}/\Sigma_j E_{jt}) + D_t + \varepsilon_{jt}$

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Do augmentation & automation have distinct relationships with new work tasks?

Hypotheses:

- New titles emerge in augmentation-exposed occupations
- 2 New titles do not (differentially) emerge in automation-exposed occupations

Focus on 1980 – 2018 for this and subsequent analyses

- Panel of 303 consistent 3-digit Census occupations (Autor-Dorn '13; Deming '17)
- Automation exposure measure built from 1991 DOT, mapped to consistent occupations for 1980–2018

Unlike augmentation, automation does not predict new title emergence

Dependent variable: 100 × IHS Occupational New Title Count, 1980–2018									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Augmentation (Pat Count IHS, Occ-Link)	14.60*** (2.23)	15.82*** (1.50)	14.44*** (1.49)		15.43*** (2.44)	15.91*** (1.45)	15.08*** (1.43)		
Automation (Pat Count IHS, Task-Link)				10.51** (3.26)	-1.61 (3.04)	-0.29 (2.74)	-3.02 (2.90)		
N R ²	1,212 0.59	1,212 0.66	1,212 0.73	1,212 0.52	1,212 0.59	1,212 0.66	1,212 0.73		
Year FE Broad Occ FE	Х	× ×		Х	Х	× ×			
Broad Occ X Year FE Occ Emp Shares	Х	х	X X	X	х	х	X X		

Notes: Consistently defined Census occupations over 1980–2018. Models weighted by annual occupational employment shares. Broad occupations are 12 groups consistently defined over time. Standard errors clustered by occupation in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{**}p < 0.001$.

Unlike augmentation, automation does not predict new title emergence

Dependent variable: $100 \times IHS$ Occupational New Title Count, 1980–2018								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Augmentation (Pat Count IHS, Occ-Link)	14.60*** (2.23)	15.82*** (1.50)	14.44*** (1.49)		15.43*** (2.44)	15.91*** (1.45)	15.08*** (1.43)	
Automation (Pat Count IHS, Task-Link)				10.51** (3.26)	-1.61 (3.04)	-0.29 (2.74)	-3.02 (2.90)	
N R ²	1,212 0.59	1,212 0.66	1,212 0.73	1,212 0.52	1,212 0.59	1,212 0.66	1,212 0.73	
Year FE Broad Occ FE	Х	× ×		Х	Х	× ×		
Broad Occ X Year FE Occ Emp Shares	Х	х	X X	Х	Х	х	× ×	

Notes: Consistently defined Census occupations over 1980–2018. Models weighted by annual occupational employment shares. Broad occupations are 12 groups consistently defined over time. Standard errors clustered by occupation in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{**}p < 0.001$.

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Do new titles shrink in occupations exposed to negative demand shocks?

Relating new title emergence in consistent occupation cells, 1990–2018, to changes in Chinese import competition, 1991–2014 (Autor-Dorn-Hanson '13)

 $\mathsf{IHS}(\mathsf{newtitles}_{jt}) = \beta_1 \mathsf{ImportX}_{jt} + D_t + \gamma Z_{jt} + \varepsilon_{jt}$

• IHS(newtitles_{jt}): IHS occupational new title count

• ImportX_{jt} =
$$\sum_{i} \frac{E_{ij,t-1}}{E_{j,t-1}} \times \frac{\Delta M_{i,t}^{OC}}{Y_{i,88} + M_{i,88} - X_{i,88}}$$

- $M_{i,t}^{OC}$: industry i's imports from China to developed countries other than the US
- ImportX_{it} captures occupation j's exposure to Chinese import competition
- Z_{jt}: Controls, including occupational employment shares (overall and across broad industries), and exposure to augmentation.

Occupational exposure to China trade shock (pctiles): Not just production occs

Less new title creation in occupations exposed to import competition

Dep	bendent variat	$me: 100 \times 100$	5 Occupati	onal New 1		
	Years 2000 & 2018					
	(1)	(2)	(3)	(4)		
ImportX 2000 & 2018 (100 × Δ Imports)	-8.93+ (5.18)	-11.84* (5.11)	-12.51* (5.10)	-11.83* (5.17)		
Augmentation 2000 & 2018 (Pat Count IHS, Ind-Link)		26.95*** (5.63)	32.77*** (6.06)	32.47*** (6.02)		

Dependent variable:	$100 \times IF$	IS Occupational	New Title	Count (robustness
---------------------	-----------------	-----------------	-----------	---------	--------------------------------

R ²	0.368	0.435	0.566	0.568	
Broad Occ FE			Х	Х	
Δ Log Occ Emp				×	
Year FE	Х	Х	Х	Х	
Occ Emp Shares	X	Х	Х	×	
Broad Ind Emp Shares	Х	Х	Х	×	

Notes: 606 observations, consistent Census occupations over 1990-2000 and 2000-2018, stacked first-differences. Models weighted by the average of start- and end-period occupational employment shares. Standard errors clustered by occupation in parentheses. +p < 0.10, *p < 0.05, $^{**}p < 0.01, \, ^{***}p < 0.001.$

Less new title creation in occupations exposed to import competition

	endente vania	5/0. 100 / H	o occupati		the obtaint			
	Years 2000 & 2018				Years 1980 & 1990 (Placebo Test)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ImportX 2000 & 2018 (100 $\times \Delta$ Imports)	-8.93+ (5.18)	-11.84* (5.11)	-12.51* (5.10)	-11.83* (5.17)	7.08 (13.93)	9.15 (8.64)	10.47 (7.62)	10.26 (7.68)
Augmentation 2000 & 2018 (Pat Count IHS, Ind-Link)		26.95*** (5.63)	32.77*** (6.06)	32.47*** (6.02)				
Augmentation 1980 & 1990 (Pat Count IHS, Ind-Link)						24.75** (7.98)	29.83*** (5.03)	29.59**' (5.13)
R ²	0.368	0.435	0.566	0.568	0.581	0.614	0.658	0.659
Broad Occ FE			Х	Х			Х	Х
Δ Log Occ Emp				Х				Х
Year FE	Х	×	Х	Х	Х	Х	Х	Х
Occ Emp Shares	Х	Х	Х	Х	Х	Х	Х	Х
Broad Ind Emp Shares	Х	Х	Х	Х	Х	Х	Х	Х

Dependent variable: 100 × IHS Occupational New Title Count (robustness)

Notes: 606 observations, consistent Census occupations over 1990–2000 and 2000–2018, stacked first-differences. Models weighted by the average of start- and end-period occupational employment shares. Standard errors clustered by occupation in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{**}p < 0.001$.

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Do new titles emerge in occupations exposed to positive demand shocks?

Relating new title emergence in consistent occupation cells to demographically induced changes in industry demands, 1980–2018 (DellaVigna-Pollet '07)

 $\mathsf{IHS}(\mathsf{newtitles}_{jt}) = \beta_1 \mathsf{DemandX}_{jt} + D_t + \gamma Z_{jt} + \varepsilon_{jt}$

• IHS(newtitles_{jt}): IHS occupational new title count

•
$$\mathsf{DemandX}_{jt} = \sum_{i} \frac{E_{ij,t-1}}{E_{j,t-1}} \times \tilde{\Delta} \mathsf{Indemand}_{it}$$

- $\frac{E_{ij,t-1}}{E_{j,t-1}}$: share of occupation j's employment in industry i at start of decade (t-1)
- $\tilde{\Delta}$ In demand_{*it*}: industry *i*'s predicted change in demand due to Δ pop age structure × matrix of commodity demands (estimated from Consumer Expenditure Survey data)
- Z_{jt}: Controls, including occupational employment shares (overall and across broad industries), and exposure to augmentation.

More new title creation in occupations exposed to positive demand shifts

Dependent variable: $100 \times IHS$ Occupational New Title Count, 1980–2018 (robustness)							
	(1)	(2)	(3)	(4)	(5)	(6)	
DemandX (100 \times Δ Demand)	14.11* (5.72)	18.59*** (4.31)	14.57*** (4.26)	11.18* (5.55)	17.10*** (4.09)	14.83*** (4.20)	
Augmentation (Pat Count IHS, Ind-Link)		14.02** (4.94)	27.13*** (4.92)		24.23*** (5.34)	34.22*** (5.33)	
N R ²	602 0.329	602 0.364	602 0.464	602 0.438	602 0.511	602 0.572	
Broad Ind Emp Shares Broad Occ FE			Х	Х	Х	X X	
Year FE Occ Emp Shares	X X	× ×	X X	X X	X X	X X	
o co Emplomatos							

Notes: Consistently defined Census occupations, 1980–2000 and 2000–2018. Models weighted by the average of startand end-period occupational employment shares. Standard errors clustered by occupation in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{**}p < 0.001$.

Demographic $\Delta's$ vs. augmentation patents predict new work in different occs

Demographic $\Delta's$ vs. augmentation patents predict new work in different occs

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships

Occupational employment growth positively associated with new tasks

Task creation vs. displacement: Opposite impacts on employment growth?

Predict employment growth within 3-digit ind-occ cells, 1980–2018

 $\Delta E_{ij} = \beta_1 \operatorname{Aug} X_{ij} + \beta_2 \operatorname{Autom} X_j + D_i (+D_J) + \varepsilon_{ij}$

- ΔE_{ij} : Davis-Haltiwanger-Schuh (DHS) employment change by consistent Census occupation *j* and industry *i*, long differences over 1980–2018
- AugX_{ij}: Augmentation exposure
- AutomX_i: Automation exposure
- Controls: Fixed effects, where *J* indexes 12 broad occupation groups.

Builds on Kogan et al '19, Webb '20, but with key addition - Augmentation

Employment grows with augmentation exposure, shrinks with task displacement

Dep. var 100 × DH3 Employment Change in Occupation-Industry Cens										
1980–2018 Long Differences • Robustness										
	(1)	(2)	(3)	(4)	(5)	(6)				
Augmentation (Pat Count IHS, Ind×Occ-Link)	2.38*** (0.58)	3.24*** (0.57)			3.68*** (0.57)	3.51*** (0.57)				
Automation (Pat Count IHS)			-7.00*** (0.85)	-2.29* (1.10)	-7.89*** (0.84)	-2.94** (1.09)				
N R ²	42,055 0.43	42,055 0.49	42,055 0.44	42,055 0.48	42,055 0.45	42,055 0.49				
Broad Occ FE Ind FE	х	X X	х	X X	Х	X X				

Dep. var.: 100 × DHS Employment Change in Occupation-Industry Cells

Notes: Consistently defined Census occupations and industries over 1980–2018. Models weighted by average annual occupation-industry cell employment shares at the start and end of the time period. Broad occupations are 12 groups consistently defined over time. Standard errors clustered by occupation×industry in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$.

Employment grows with augmentation exposure, shrinks with task displacement

Dan ware 100 x DUE Employment Change in Occupation Industry Calls

Dep. var. 100 × DHS Employment Change in Occupation-Industry Cens										
1980–2018 Long Differences • Robustness										
	(1)	(2)	(3)	(4)	(5)	(6)				
Augmentation (Pat Count IHS, Ind×Occ-Link)	2.38*** (0.58)	3.24*** (0.57)			3.68*** (0.57)	3.51*** (0.57)				
Automation (Pat Count IHS)			-7.00*** (0.85)	-2.29* (1.10)	-7.89*** (0.84)	-2.94** (1.09)				
N R ²	42,055 0.43	42,055 0.49	42,055 0.44	42,055 0.48	42,055 0.45	42,055 0.49				
Broad Occ FE Ind FE	х	X X	х	X X	Х	× ×				

Notes: Consistently defined Census occupations and industries over 1980–2018. Models weighted by average annual occupation-industry cell employment shares at the start and end of the time period. Broad occupations are 12 groups consistently defined over time. Standard errors clustered by occupation×industry in parentheses. $^+p < 0.10$, $^*p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$.

Employment growth in industry-occupation cells, 1980–2018 Employment \uparrow with augmentation exposure, \downarrow with automation exposure

IHS Patent Count

Evidence from wagebill changes confirms labor demand effects

IHS(augmentation patents) – IHS(automation patents)

Hypotheses

2 Data, measurement, and descriptive evidence

- Measuring new work over eight decades
- Distinguishing augmentation and automation technologies

③ Hypothesis test I: Technological advances and new task creation

- Augmentation: Spurring new tasks
- Automation: Not spurring new tasks

4 Hypothesis test II: Labor demand shifts and new task creation

- Demand contraction: China import competition
- Demand expansion: Demographic shifts

5 Hypothesis test III: Augmentation vs. automation: Employment & wage relationships
New work is quantitatively important: 63% of 2018 employment is in job titles that did not yet exist in 1940

2 Locus of new work has changed differentially for high- and low-educated workers

- Concentrated in blue-collar and office work in first post-War decades
- Concentrated in technical and professional and low-paid svcs after 1980s

Output Augmentation & demand predict where new work emerges

- Augmentation exposure: new work emergence +
- Demand: new work emergence + from outward shift, from inward shift
- Automation exposure: new work emergence 0

Task displacement and new task creation occur simultaneously, with opposing consequences for labor demand

1 New work is quantitatively important: 63% of 2018 employment is in job titles that did not yet exist in 1940

2 Locus of new work has changed differentially for high- and low-educated workers

- · Concentrated in blue-collar and office work in first post-War decades
- Concentrated in technical and professional and low-paid svcs after 1980s
- 3 Augmentation & demand predict where new work emerges
 - Augmentation exposure: new work emergence +
 - Demand: new work emergence + from outward shift, from inward shift
 - Automation exposure: new work emergence 0

Task displacement and new task creation occur simultaneously, with opposing consequences for labor demand

New work is quantitatively important: 63% of 2018 employment is in job titles that did not yet exist in 1940

2 Locus of new work has changed differentially for high- and low-educated workers

- · Concentrated in blue-collar and office work in first post-War decades
- Concentrated in technical and professional and low-paid svcs after 1980s

3 Augmentation & demand predict where new work emerges

- Augmentation exposure: new work emergence +
- Demand: new work emergence + from outward shift, from inward shift
- Automation exposure: new work emergence 0

Task displacement and new task creation occur simultaneously, with opposing consequences for labor demand

New work is quantitatively important: 63% of 2018 employment is in job titles that did not yet exist in 1940

2 Locus of new work has changed differentially for high- and low-educated workers

- · Concentrated in blue-collar and office work in first post-War decades
- Concentrated in technical and professional and low-paid svcs after 1980s

3 Augmentation & demand predict where new work emerges

- Augmentation exposure: new work emergence +
- Demand: new work emergence + from outward shift, from inward shift
- Automation exposure: new work emergence 0
- Task displacement and new task creation occur simultaneously, with opposing consequences for labor demand

Acknowledgments & Thanks

- The U.S. Census Bureau & Lynda Laughlin: Social, Economic and Housing Statistics Division for data access
- Caroline Chin (MIT), Rebecca Jackson (MIT), Fredric Kong (MIT), Pepe Morales (MIT), Ishaana Talesara (MIT) & Sunny Tan (UCLA) for contributions to many aspects of this project
- Fiona Chen (MIT), Grace Chuan (MIT), Edwin Song (MIT), & Whitney Zhang (MIT) for helping to implement new title identification rules
- Sammy Mark, Fredrick Soo, & Mary Wakarindy from Digital Divide Data for digitizing Hathitrust CAI volumes 1910–1990
- The Washington Center for Equitable Growth, the MIT Work of the Future Task Force, the Smith Richardson Foundation, and Instituut Gak for financial support

Thank you