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Abstract
Recent theory stresses the role of new job types (‘new work’) in counterbalancing the
erosive effect of task-displacing automation on labor demand. Drawing on a novel
inventory of eight decades of new job titles linked to United States Census micro-
data, we estimate that the majority of contemporary employment is found in new
job tasks added since 1940 but that the locus of new task creation has shifted—from
middle-paid production and clerical occupations in the first four post-WWII decades,
to high-paid professional and, secondarily, low-paid services since 1980. We hypothesize
that new tasks emerge in occupations where new innovations complement their out-
puts (‘augmentation’) or market size expands, while conversely, employment contracts
in occupations where innovations substitute for labor inputs (‘automation’) or market
size contracts. Leveraging proxies for output-augmenting and task-automating inno-
vations built from a century of patent data and harnessing occupational demand shifts
stemming from trade and demographic shocks, we show that new occupational tasks
emerge in response to both positive demand shifts and augmenting innovations, but
not in response to negative demand shifts or automation innovations. We document
that the flow of both augmentation and automation innovations is positively corre-
lated across occupations, yet these two faces of innovation have strongly countervailing
relationships with occupational labor demand.
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1 Introduction

A burgeoning economic literature analyzes how rapidly evolving technologies—information
and communications technologies, artificial intelligence, robotics—affect employment, skill
demands, and earnings levels. Focusing on the substitution of machines for workers in tasks
where automation has rising comparative advantage, this work anticipates and interprets
the decline of middle-skill employment in high income countries (aka, job polarization),
documents the concentrated impact of industrial robotics on labor demand in heavy manu-
facturing industries and in manufacturing-intensive communities, and explores how artificial
intelligence may change the structure of occupations.1

This body of work is however comparatively silent—with key exceptions, discussed below—
on the flip side of the ledger: the augmentation of human labor and the generation of new
work activities that demand this labor. Indeed, research on the impact of technological
change on employment has primarily treated the set of human job tasks as finite and static,
meaning that as automation proceeds, labor is slowly shunted into an ever-narrowing scope of
activities, as in Susskind (2020). But casual observation and historical evidence suggest the
opposite: even as employment in labor-intensive sectors has eroded—in agriculture, textiles,
and mining—the scope and variety of labor-demanding activities has arguably expanded,
e.g., in finance, medicine, software, electronics, healthcare, entertainment, recreation, per-
sonal care, and many other domains—a phenomenon that Acemoglu and Restrepo (2019)
refer to as labor reinstatement.

Though no economic historian would deny the importance of new work creation, for-
mal analysis of this topic has likely lagged because technology-labor complementarity is a
residual force in the widely-applied ‘task framework’ (Acemoglu and Autor, 2011). Tasks
that are not substituted are implicitly complemented—and hence this formulation provides
little conceptual or empirical guidance for exploring this complementarity in practice. Re-
cent work by Acemoglu and Restrepo overcomes this theoretical limitation (Acemoglu and
Restrepo, 2018, 2019), but an empirical challenge remains. While it is relatively straight-

1On job polarization, see Autor et al. (2003), Autor et al. (2006), Goos and Manning (2007), Goos et al.
(2009), Acemoglu and Autor (2011), Autor and Dorn (2013), Goos et al. (2014) Michaels et al. (2014),
Akerman et al. (2015), Arntz et al. (2017), Bárány and Siegel (2018), Dillender and Forsythe (2019), Cortes
et al. (2020), and Harrigan et al. (2021). On industrial robotics, see Graetz and Michaels (2018), Chiacchio
et al. (2018), Humlum (2019), Acemoglu et al. (2020b); Acemoglu and Restrepo (2020), De Vries et al.
(2020), Bonfiglioli et al. (2020), Faber (2020), and Dauth et al. (2021). On the potential impact of artificial
intelligence on jobs, see Brynjolfsson et al. (2018), Felten et al. (2019, 2018), Acemoglu et al. (2020a),
Alekseeva et al. (2020), Babina et al. (2020), Grennan and Michaely (2020), and Webb (2020).
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forward to quantify the set of job tasks and encompassing occupations that are substituted
by automation, there is almost no direct measurement of the emergence of new work tasks
within occupations and industries or over time.

This paper systematically studies the emergence of new work in the United States between
1940 and 2018, building on path-breaking empirical work by Lin (2011) and theoretical
work by Acemoglu and Restrepo (2018). Our objectives are to consistently measure the
evolution of new work over eight decades, document its changing locus and relationship to
the occupational structure of employment, and explore the forces that explain where new
work appears and where old work disappears.

We formalize our main hypotheses in the context of a stylized two-sector task model,
building upon Acemoglu and Restrepo (2018), Acemoglu and Autor (2011) and Autor et al.
(2003), which draws economic linkages between new task creation, task automation, incen-
tives for innovation, and the locus and attendant skill demands of new work. We posit
that new job tasks derive from two primary sources. The first is augmentation, mean-
ing the creation of new production processes (e.g., the Pilkington float glass process, the
semiconductor fabrication system), new technologies (e.g., the internal combustion engine,
the Global Positioning System), and entirely new products or industries (e.g., commercial
aircraft, photovoltaic solar collectors). These sources of innovation create new demands for
expert knowledge and specific competencies that drive occupational specialization and hence
the creation of new work tasks. The second source of new task creation is changes in market
size—stemming for example from trade, demographic shift, immigration, etc.—that increase
or depress the value of occupational outputs. Even absent specific technological advances,
we conjecture that positive demand shocks catalyze specialization and differentiation of the
goods or services produced by an occupation, again spurring new task creation.

Following Acemoglu and Restrepo (2018), we endogenize task creation and task automa-
tion in the model by allowing demand shifts to raise the value of occupational outputs, thus
generating incentives for entrepreneurs to introduce innovations, which demand new tasks. In
this setup, positive demand shocks spur new task creation within occupations while negative
demand shocks slow new task creation. We contrast these new task creating forces theo-
retically and empirically with task automation, which allows for the reallocation of existing
tasks from labor to capital. While positive occupational demand shifts also spur innovations
that automate tasks, the new task creation margin dominates in our framework. A key final
prediction from our conceptual framework is that task-creating and task-displacing forces
have opposing labor demand effects: occupational employment and wagebills unambiguously
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expand with new task creation and contract with task automation.
We develop two unique data sources to test the implications of our framework. Building

on pioneering work by Lin (2011), we first construct a database of new job tasks introduced
during the period of 1940 through 2018. This database is sourced from nearly a century of
internal reference volumes developed and used by U.S. Census Bureau employees to classify
the free-text job descriptions supplied by Census respondents into occupation and industry
categories in each decade. While Census tabulations and public use data sources report
several hundred distinct occupation and industry codes in each Census year (which we call
‘macro-titles’), these titles reflect concatenations of approximately 30,000 occupational and
20,000 industry-level ‘micro-titles’ enumerated in the Census Alphabetical Index of Occupa-
tions and Industries in each decade between 1930 and 2018 (US Census Bureau). Critically,
these indexes are updated during the processing of each decade’s Census to reflect new
write-in titles detected by Census coders. By comparing successive editions of the Census
Alphabetical indexes, we are therefore able to track the emergence of new micro-titles across
decades. For example, the micro-title of “Technician, fingernail” was added to the Census
Alphabetical Index in 2000, and the micro-title of “Solar photovoltaic electrician” was added
in 2018.2

The second novel data source is a comprehensive, quantitative classification of the flow
of patents over nine decades that identifies innovations which, on the one hand, complement
occupational outputs and, on the other, substitute for labor-using occupational inputs. We
construct these innovation measures using natural language processing (NLP) tools to map
the content of U.S. utility patents to the domain of occupations between 1930 and 2018.
Following Kogan et al. (2019), we represent documents as on weighted averages word em-
beddings, which are geometric representations of word meanings, to measure the distance
between patent texts and occupational descriptions.3

With these tools, we develop two conceptually distinct measures of innovation flows. The
first captures innovations that may complement the output of occupations, potentially cre-
ating new demands for occupational expertise or occupational services. We construct this

2Our work extends and expands upon Lin (2011), who constructed a new work inventory over 1980–2000
based on comparisons of Dictionary of Occupational Titles (DOT) records from 1965, 1977, and 1991, and
Census Alphabetical Index of Occupations data from 1990 and 2000.

3Relative to conventional measures of text similarity (for example, the commonly used bag of words ap-
proached outlined by Gentzkow et al. (2019)), the key advantage of word embeddings is that they account
for synonyms—which is crucial in our context since patent texts and occupational descriptions may use
different terminology for similar concepts.

3



index by calculating the overlap between patent texts and the micro-titles from the Census
Alphabetical Index associated with each industry and occupation to identify innovations that
are aligned with occupational outputs. For example, in 1998, the U.S. Patent and Trademark
Office (USPTO) granted patent US5924427A for a “Method of strengthening and repairing
fingernails”. Our algorithm links this patent to the Census macro-occupation of “Miscel-
laneous personal appearance workers,” which encompasses the micro-title of “Technician,
fingernail” which entered the Census Alphabetical Index in the year 2000. Similarly, our
algorithm links the 2014 patent US7605498B2 “Systems for highly efficient solar power con-
version” to the macro-industry of “Electronic component and product manufacturing, not
elsewhere classified”. In turn, this industry links to the micro-occupational title of “Solar
photovoltaic electrician”, which entered the Census Alphabetical Index in the year 2018.

Our second patent-based measure captures innovations that may substitute for the in-
puts of occupations. For this index, we follow Kogan et al. (2019) and Webb (2020) in using
NLP tools to identify the overlap between the content of patents and the tasks that workers
perform, as described by the Dictionary of Occupational Titles (U. S. Department of La-
bor, Employment and Training Administration, 1991).4 For example, in 1977, the USPTO
granted patent US4141082A for a “Wash-and-wear coat”. Our algorithm links this patent to
the macro-occupation of “Laundry and dry cleaning workers.” Similarly, our algorithm links
1976 patent US3938435A, “Automatic mail processing apparatus”, to the macro-occupation
of “Mail and paper handlers.”

Our empirical findings are as follows. First, the majority of contemporary employment
is found in new job tasks added since 1940, and the changing locus of innovative activity
predicts where new tasks emerge. Further, augmentation and automation innovations have
distinct relationships to new task emergence. Augmentation innovations strongly predict the
locus of new task emergence, as measured by job titles, across occupations and over time.
Automation innovations do not predict new title emergence, despite their positive correlation
with augmentation innovations at the level of occupations.

Alongside augmentation innovations, exogenous demand shifts for occupational outputs
also predict when and where new work emerges. Increases in demand favoring a sector lead
to the emergence of new work tasks, while conversely, adverse demand shocks retard the
emergence of new work tasks in exposed sectors. These shifts help account for the emergence

4In related work, Felten et al. (2019, 2018) and Brynjolfsson et al. (2018) develop measures of the exposure
of occupations to advances in artificial intelligence and machine learning.
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of new tasks over the last four decades in lower-paid personal services, an occupational
category which has been relatively unexposed to innovative activity but where new work has
nonetheless emerged.

Lastly, we find robust evidence that labor demand shifts outward with new task creation
and inward with task automation: employment and wagebills expand in occupations exposed
to augmentation innovations and contract in occupations exposed to automation innovations.
Bearing in mind that augmentation and automation innovations are positively correlated,
these countervailing relationships with occupational labor demand are all the more striking.

This work contributes to three economic literatures. A first studies the interplay between
supply, demand, technologies, and institutions in shaping the long-run evolution of skill
demands, occupational structure, and wage inequality (Goldin and Margo 1992, Katz and
Murphy 1992, Katz and Autor 1999, DiNardo et al. 1996, Acemoglu 1998, Autor et al. 1998,
Card and Lemieux 2001, Goldin and Katz 2008, Autor et al. 2020, Haanwinckel 2020). A
foundational assumption of this literature is that technological change shapes the skill bias of
labor demand. Our paper adds nuance and specificity to this idea by linking changes in the
structure of occupational demands to the shifting locus of innovation over eight decades. We
show that new work is a quantitatively large contributor to aggregate employment change,
that it emerges where innovative activity is focused, and that the focus of this activity has
shifted from middle-educated, production-oriented sectors, such as mining, manufacturing
processes, and transportation, to primarily highly-educated sectors, including electricity and
electronics and instruments and information.

Our paper also speaks to a contemporary literature exploring how automation technolo-
gies substitute for existing work, as measured by occupational structure or job tasks (see
citations in footnote 1). We build on Kogan et al. (2019); Mann and Püttmann (2020); Webb
(2020), who devise textual analysis methods to identify innovations recorded in patents that
potentially overlap the tasks performed by occupations, as well as papers by Brynjolfsson
and Mitchell (2017); Brynjolfsson et al. (2018); Felten et al. (2019, 2018) that predict which
occupational tasks can be performed by artificial intelligence. Distinct from this literature,
we develop and empirically verify a method to identify innovations that generate new work
tasks by complementing occupational outputs. Our finding that employment rises in occu-
pations exposed to augmentation innovations is novel to the literature and illustrates the
power of distinguishing among innovations according to their economic content.

Our paper contributes most directly to research assessing the micro- and macroeconomic
origins of new work, including Goldin and Katz (1998), Lin (2011), Acemoglu and Restrepo
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(2018), Acemoglu and Restrepo (2019), Atack et al. (2019), Frey (2019), Atalay et al. (2020),
and Deming and Noray (2020). Conceptually, our approach builds upon Acemoglu and
Restrepo (2018), who model the interplay between automation and new task creation in
shaping labor demand, productivity, and factor shares. Following their approach, we treat
task creation and task automation as endogenous: Entrepreneurs supply innovations to either
complement workers (task creation) or complement capital (task automation) in response
to factor prices. We additionally allow for sectoral demand shifts that influence where
entrepreneurs find it most profitable to innovate, thus altering the set of occupations in
which new tasks emerge.

Lastly, we make empirical contributions to literatures measuring new work and innova-
tion. In measuring new work creation, we extend the ideas pioneered in Lin (2011), while
expanding the scope of the analysis from two to eight decades. Our approach is related to
but distinct from Acemoglu and Restrepo (2019), who develop a set of ingenious proxies
for the appearance of new work based on changes in labor share and in the mix of 3-digit
occupations (what we call ‘macro-occupations’) within industries. In related work, Atalay
et al. (2020); Deming and Noray (2020), measure the appearance of new work by analyz-
ing the text of job advertisements. Our paper complements these approaches by providing
direct, representative, and time-consistent measurement of new task creation across eight
decades. We leverage these task measures by linking both new and existing occupational
titles to innovations recorded in patents, building on recent work by Kogan et al. (2019);
Mann and Püttmann (2020); Webb (2020). Distinct from this work—and all prior work to
our knowledge—we identify innovations that complement occupational outputs, which we
hypothesize (and empirically confirm) spur new task creation. Most notably, our analysis
successfully draws on a unified corpus of patents to distinguish between innovations that
substitute for occupational inputs and those that complement occupational outputs. This
tool, which may be of independent interest, permits us to analyze new task creation and
task automation concurrently, and to show that these forces are positively correlated at the
occupational level and yet have countervailing relationships with occupational employment
growth.5

5We also build on the vast literature, originating with Griliches (1981); Hall et al. (2001); Jaffe et al.
(1993), that uses patents to study knowledge spillovers, innovation networks, the value of innovation and its
relationship to rent creation, public-private R&D complementarities, and innovation responses to taxation,
among many other topics. See Hall and Harhoff (2012); Moser (2016) for recent reviews of (aspects of) this
literature.
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The paper proceeds as follows. Section 2 details our methods for identifying new work
and for linking task-replacing and task-creating innovations to occupations. Section 3 pro-
vides descriptive evidence on the locus of new work over 1940–2018. Section 4 develops
an illustrative theoretical model that motivates and guides our empirical work. Section 5
tests two foundational assumptions of our model: that output-complementary innovations
are associated with new work emergence; and that input-substituting innovations are not as-
sociated with new work emergence. Section 6 examines whether new task creation responds
elastically to negative demand shocks stemming from globalization, and to positive demand
shifts stemming from demographic changes. The final empirical component of the paper,
Section 7, assesses whether augmentation and automation innovations have distinct, coun-
tervailing relationships with occupational employment and wagebill growth, as our model
implies. Section 8 concludes.

2 Data and Measurement

We start by constructing a novel and detailed inventory of new job titles, spanning 1940–2018,
which we link to representative worker data from the U.S. Census and American Community
Survey. To test our hypotheses, we further construct measures of occupations’ exposure to
both augmentation and automation innovations and to demand shifts.

2.1 Measuring new work

Our work leverages Census historical coding volumes for occupations for the years 1930
through 2018 (the Census Alphabetical Index of Occupations) and for industries (the Census
Alphabetical Index of Industries) for 1940 through 2018. For brevity, we refer to these
volumes as the CAI hereafter. Each Census coding volume contains around 35,000 occupation
and 15,000 industry ‘micro’ titles in each year, each classified to a more aggregated (‘macro’)
Census occupation or industry code. These catalogues of micro titles serve as reference
documents for Census coders, who classify individual Census write-ins for job title and
industry of employment.6 This process has been performed consistently since 1900 and is

6In the post-2000 years of our analysis, we use data from the American Community Survey (ACS) rather
than the U.S. Census itself. The ACS is the successor to the Census long form and retains the industry and
occupation coding and processing structure of earlier Census files. The CAI volumes are regularly updated
for processing of the ACS.
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illustrated for occupations in the American Community Survey (ACS) in Figure 1.
When Census coders encounter written-in occupational titles that cannot be linked to

any existing micro title, the Census bureau, after internal review, adds a new micro title to
that decade’s coding volume. For example, the micro occupation title “Artificial Intelligence
Specialist” was added in 2000, since a sufficient number of Census respondents reported this
novel title (or something similar to it) as their main occupation. This new micro title was
then classified to the broader Census (‘macro’) occupational title “Computer Scientists and
Systems Analysts”, which appears in published Census tabulations and public use data sets.7

Although there is not a specific numeric threshold for the number of times that a write-in title
must recur to trigger the addition of a new micro-title, it is apparent that titles are added
only after they draw notice from Census coders. For the purpose of measuring new work, it
is desirable that these new titles are not so esoteric as to be insignificant in the U.S. working
population. This explains why Mental-Health Counselor is a new title in 1970, Artificial
Intelligence Specialist is new in 2000, and Sommelier is new in 2010: Although there were
surely workers performing these job types in earlier decades, the particular specialization was
too rare to warrant inclusion beyond a generic counselor, computer science, or waitstaff title.
Comparing successive editions of the CAI occupation and industry coding volumes across
decades thus allows us to uncover the newly added jobs and activities that are becoming
prevalent enough to register.

The Census does not highlight or separately list newly added titles, and coding volumes
are also revised for other reasons, such as renaming outdated job descriptions, adding dif-
ferently phrased variants of the same title, or removing gendered forms.8 To extract new
titles, we compare title lists across decades using fuzzy matching combined with extensive
manual revision of ‘candidate-new’ titles, discarding false positives that emerge from for
example rewording, reformatting of the index, or other newly added titles which do not re-
flect a discernible modification to their preexisting counterparts.9 Our overarching aim is to
retain newly added titles which reflect truly new work, meaning that they add a particular

7The assignment of micro titles is an intermediate step in the assignment of macro titles to Census records.
While each respondent’s macro title is permanently attached to her Census record, her intermediate micro
title is never recorded.

8The Census does not systematically remove extinct titles from the index, as these titles can still help classify
write-ins for titles that have become relatively uncommon in the U.S. working population.

9For example, we do not count “Software Applications Developer” as a new micro-occupation because “Soft-
ware Developer” was already present when it was added.

8



task specialization, work method or tool, or professional or educational requirement.10 For
example, “Clinical Psychologist” is new in 1950 because it was not present in 1940 and is a
specialization of the preexisting title of Psychologist.

To see the cumulative force of this process, consider the 1940 Census occupation (macro-
title) of Mechanics and Repairmen—Automobile (occupation 332). This occupation encom-
passed 84 distinct micro-titles in 1940, ranging alphabetically from Alignment Man: Auto
Repair Shop to Windshield Man: Auto Repair Shop. In 2018, 78 years later, there were 134
micro-titles in the closely related (though imperfect) successor to the 1940 occupation, Auto-
motive Service Technicians and Mechanics (Census occupation 7200). Of the approximately
50 titles added in the intervening seven decades, many reflect further specialization of exist-
ing activities present in 1940—for example, the number of brake repair micro-occupations
expanded from four in 1940 to nine in 2018. Additionally, numerous micro-titles recorded
in subsequent decades reflect technologies introduced after 1940: Hybrid Car Mechanic,
Fuel Injection Servicer, Remote Control Mirror Installer, and three types of automotive air
conditioning specialists.

Table 1 documents the diversity of micro-titles added to the CAI in each decade from 1940
through 2018.11. The left-hand column of the table reports titles that, akin to automobile
mechanics, specialize around new or evolving technologies: Airplane designers in 1950, En-
gineers of computer applications in 1970, Circuit layout designers in 1990, and Technicians
of wind turbines in 2010. While some new tasks have direct technological origins, others
may emerge in response to changing tastes, income levels, and market size. The right-hand
column of Table 1 reports emerging occupations that have no obvious technological genesis:
Tattooers in 1950, Hypnotherapists in 1980, Conference planners in 1990, and Drama ther-
apists in 2018. Such examples motivate looking beyond exclusively technological forces in
analyzing the sources of new work creation, focusing specifically on demand channels.

Because the CAI is a coding aid rather than a survey instrument, the Census Bureau
does not record or report the count of respondents within micro-titles. We employ Census of
Population and American Community Survey (ACS) public use data files to connect these
micro-titles to representative data for the years 1940 through 2018. The Census public use
files typically report several hundred distinct occupations (‘macro’ titles) in each year. The

10Appendix A.1 provides details.
11New titles emerging in 1940 refer to title added between 1930 and 1940, and similarly for subsequent

decades.

9



average macro-occupation concatenates respondents from approximately one-hundred micro-
titles. Thus, we draw a many-to-one linkage between micro-titles in the CAI and ‘macro’
Census occupations in Census public use data.

From this micro-macro match we construct two measures of new work: (1) the number
of new ‘micro’ titles in each ‘macro’ Census occupation; and (2) the new title share in each
occupation. Following Lin (2011), the new title share is defined as the ratio of new micro
titles to the total number of micro-titles within a Census occupation. As noted above, the
Census data do not allow us to observe which workers within a macro-occupation occupy
which micro-titles, and our analysis does not for the most part require such information.
(Our primary empirical analysis estimates the relationship between new titles, innovation
flows, and employment changes.) For illustrative purposes, however, we make two impu-
tations below regarding the characteristics of ‘new workers’: we impute their demographic
characteristics (e.g. education and earnings) as the average of the characteristics of workers
in their macro occupation by industry cell12; and we impute the share of workers in ‘new
work’ within each macro-occupation as the new title share.13

By matching the cumulative flow of new titles over eight decades to Census data, we
estimate that the majority of contemporary work is found in new tasks added since 1940, as
shown in Figure 2. This figure charts the distribution of employment in 1940 and 2018 in
twelve exhaustive, mutually exclusive broad occupational categories ordered from lowest to
highest-paying, with Farming and Mining occupations on the left-hand side of the scale and
Managerial workers on the right-hand side. In the second set of columns (those for 2018),
we further distinguish between 2018 employment found in occupational titles that existed
in 1940 versus 2018 employment in occupational titles that were added thereafter (i.e., new
tasks).14 Roughly 63 percent of employment in 2018 is found in jobs that did not exist in

12Each Census respondent is classified to a macro-occupation and macro-industry. Using both data points
to assign characteristics to respondents increases the specificity of the imputation.

13The accuracy of the latter approximation is likely to differ over time-horizons. Plausibly, employment in
a micro-title will tend to grow following its introduction, so the new work share may overstate the true
fraction of workers in a given micro-title in the decade of its introduction but then may understate its
fraction one, two, or three decades later. We have explored the validity of this imputation approach using
Census Complete Count data for 1940, which contains both macro-titles and the free text write-in micro-
titles supplied by Census respondents. We estimate that the count of workers in new titles is strongly
increasing in the new title share—though the slope is below one—and that this relationship is more precise
when using ordinal share ranks rather than cardinal shares. Details are given in Appendix A.2.

14Employment in titles is estimated by constructing a cumulative new title share—summing the number of
new titles added over 1940–2018—and dividing this by the total number titles in the 2018 index adjusted
for titles that were removed, separately by broad occupation. Details are reported in Appendix A.2.
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1940. Among Professionals—the occupational category that added the most workers during
these eight decades—this share was 75 percent. Conversely, less than half (48 percent) of
employment in Production occupations in 2018 is found in job categories that were not
present in 1940. Notably, Production had the second lowest employment growth out of these
broad occupational categories during the past eight decades, the other being Farming.

Our primary analyses focus on the distribution of new work added by decade rather than
the absolute numbers of new titles added, which also depends on available resources at the
U.S. Census Bureau for revising the index. By focusing on the distribution of new titles
added in a given decade—representing the flow of new titles between decade t and t−1—we
require only that efforts to keep the index representative within a decade are not biased
towards any particular set of occupations.

2.2 Measuring output-complementary and input-substituting in-
novations

Our second empirical task is to measure the exposure of occupations to innovations that
may complement their outputs or substitute for their inputs. We measure innovation using
patent data, following a large literature. Patent data were obtained by Kelly et al. (2020)
from the USPTO patent search website for patents issued from 1976–2015, and from Google
Patents prior to 1976. We extend the Kelly et al. (2020) sample of patent issued from 2015
to 2018 by scraping the patent text from the Google Patents website. To link these data to
their relevant occupations and industries, we use the entire text of each patent.15

The locus of innovation has shifted strongly across technological categories over decades,
as Figure 3 illustrates by grouping citation-weighted patents into broad technology groups
following Kelly et al. (2020).16 While patenting activity was largely concentrated in Trans-
portation, Manufacturing Processes, and Engineering, Construction, and Mining at the start
of the twentieth century, innovations in Chemistry and Metallurgy gained prominence from
1940 onward. Since 1980, innovative activity has shifted strongly towards digital technolo-
gies, seen in the growing share of patents in Instruments and Information, and Electricity

15After 1976, patent texts are divided into their abstract, description, and claims sections. Prior to that
time, the patent documents come in a single block of text.

16We also follow Kelly et al. (2020) in using data from Berkes (2018) to get citation counts for patents issued
prior to 1976. We compute citation counts from the USPTO PatentsView database (available for download
here) for patents issued 1976 and later.
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and Electronics. Indeed, from 2010 forward, more than half of all new patents are found in
these two classes. This period has additionally seen a marked increase in the importance
of patents in health-related technologies. The fact that the locus of innovation has shifted
technology classes during these decades implies, as we document next, that different types
of jobs are exposed to technological advances in different eras.

We link patent texts to two data sources to identify the two distinct dimensions of in-
novation as they relate to occupations. To identify innovations that complement the output
of occupations and industries, we use the tens of thousands of occupational and industry
micro-titles supplied by each decade’s CAI as a textual corpus characterizing each macro
occupation and industry. We refer to these output-complementary patents as augmentation
innovations. To identify innovations that substitute for the inputs of occupations, we use the
Dictionary of Occupational Titles, Revised Fourth Edition, DOT hereafter (U. S. Depart-
ment of Labor, Employment and Training Administration, 1991), which describes the tasks
accomplished by each occupation.17 We refer to these input-replacing patents as automation
innovations.

Figure 4 provides a schematic overview of this process, which we outline in detail in the
remainder of this section. We stress that this procedure for linking these two data sources
(the CAI and DOT) to patent texts is entirely symmetric and places no structure on the
semantic content of the source documents. The degree to which these exercises identify
different sets of patents with distinct economic content (i.e., augmentation, innovation) is
entirely attributable to differences in the text corpora (CAI vs. DOT).

To link patents to the CAI text corpus, we create a numerical representation of the
textual content of each patent and the set of CAI titles falling under a Census occupation
(and/or industry), and we use these representations to measure textual similarity. A common
approach for comparing textual similarity is to represent documents as vectors that count
the number of times a given word shows up in the document; textual similarities are then
computed by taking the cosine similarity of these vector representations, relying on exact
overlap in terms (what is known as the bag of words approach). As discussed in Kogan et al.
(2019), the bag of words method for determining document similarity neglects synonyms and
is likely to perform poorly in comparing sets of documents that have disparate vocabularies,
as is the case when comparing patent texts with lists of CAI titles. We instead follow

17To avoid capturing occupational outputs, we only use task descriptions from the DOT, purging any occu-
pational titles from these descriptions.
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Kogan et al. (2019) in representing documents as weighted averages of word embeddings,
which overcome the synonym-blindness problem.18 Word embeddings (Mikolov et al., 2013)
are vector representations of word meanings, with highly related words having high cosine
similarities between their word embeddings. To turn each word into its vector representation
we use the pre-estimated set of word embeddings from Pennington et al. (2014).

For each document, we first clean the text by removing common “stop words” with little
informative content, retain all nouns and verbs, and lemmatize each word by converting
verbs to their present tense and nouns to their singular form. We then extract the word
embeddings for each term in the cleaned document and average across them, leaving us
with a vector representation of the document’s meaning. We use term frequency–inverse
document frequency (TF-IDF) scores to weight the averages.19

We call the resulting TF-IDF weighted average of word embeddings a “document vector”,
which we calculate for all CAI industry or occupation titles20 for each Census year in our
sample and for all United States utility patents issued from 1930–2018. We compute the
matrix of cosine similarity scores of patent-occupation pairs. To account for the fact that
some types of patents have naturally low similarity scores (e.g. those using highly technical
terminology such as chemical patents), we normalize these scores by subtracting the median
score across occupations (or industries) for a given patent. For each Census year we restrict
the comparison to the CAI titles from that year and the set of patents to the decade preceding
that particular Census year. We then retain the top 5 percent highest adjusted textual
similarity scores across patent × occupation pairs as matches for patent p and occupation j:

Ip,j = 1 if Xp,j ≥ στ , and zero otherwise.

where Xp,j is cosine similarity between patent p and occupation j, and στ is the 95th per-
centile of the similarity score distribution for period τ .A period τ corresponds to a Census

18A “document” is either the full text of a particular patent or the set of CAI titles falling under a Census
occupation (or industry) for a given Census year.

19TF-IDF weighting of terms is a common approach in textual analysis. The TF-IDF weight of term i in
document k is given by wi,k ≡ TFi,k×IDFk where TFi,k is the number of times term i occurs in document
k divided by the total number of terms in document k, and IDFk = log

(
N documents in sample

N documents that include term k

)
.

Thus TF-IDF weighting down-weights terms that occur frequently across documents and up-weights terms
that occur frequently within a document. We compute TF-IDF weights separately for patent documents
and CAI titles.

20Our results are robust to excluding any new industry and occupation titles from the CAI documents prior
to patent matching.
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year and also the set of patent issue years we consider for that Census year. Typically this
will be the previous 10 issue years (so for the 1940 Census τ will consist of patents issued
1930-1939).21 We find that the method does quite well at identifying matches.22 Lastly,
we take the citation-weighted sum over patents patents issued in period τ to obtain patent
counts by occupation over time:

Npatentsjτ =
∑
p∈τ

ωp × Ip,j with ωp ≡ Ncitesp
AvgNcitesk(p)

where k(p) denotes the issue year cohort of patent p. Thus citation weights ωp are defined as
the number of citations received by each patent divided by the average number of citations
for patents issued in the same year.23 We refer to these patents as ‘occupation-linked’. We
apply the same procedure to construct patent counts by industry i. We further construct
occupational exposure to patents linked to industries by weighting industry by occupational
employment shares:

Npatentsjτ =
∑
iEijτ × Npatentsiτ∑

iEijτ
(1)

where Eijτ denotes employment in occupation j and industry i in the Census year for period
τ . We refer to these linkages as ‘industry-linked’ patents. Lastly, when studying occupation-
by-industry cell-level outcomes such as employment and wagebill, we use patents linked to
both occupation and industry cells: we refer to these linkages as ‘industry-occupation-linked’
patents. An occupation-by-industry cell, (i,j), is linked to a patent p if the average of the
adjusted occupation-patent similarity score (Xip) and industry-patent similarity score (Xjp)
is among the top 5 percent highest adjusted textual similarity scores across all patent ×
occupation × industry cells.24

Summarizing, we have two measures of occupations’ exposure to augmentation: the
number of direct occupation-patent textual matches (‘occupation-linked’ patents), and oc-

21When we do analysis for time-consistent occupation definitions in the post-1980 period we skip Census
year 2010; therefore in this case τ corresponds to patent issue years 2000-2017 for the 2018 Census year.

22Appendix Tables A4 and A3 provide some examples of linked patents for Census occupations and industries.
23Our results are qualitatively identical when we do not use citations weights and simply sum linked patents.
24Due to the large number of (industry × occupation × patent) cells, we use a 5% sample of patents to

approximate the 95th percentile threshold of the average industry-patent and occupation-patent scores.
For example, the 2008-2018 period has over 150 billion (industry × occupation × patent) cells. The 95th
percentile threshold is calculated using only industry-occupation pairs with non-zero employment counts.
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cupational exposure to industry-patent textual matches.25 Additionally, we combine both
sets of textual linkages in ‘industry-occupation-linked’ patents. In our baseline models, we
link patents to occupations and industries over the same time period τ that we measure new
work emergence. For example, we link patents awarded between 1930 and 1940 to micro
industry and occupation titles in 1940, since we measure new titles in 1940 by comparing
Census Alphabetical Indices between 1930 and 1940. As a robustness check, we have also
considered specifications where patents are lagged by ten years relative to when new work
emergence is observed.

We construct an analogous automation exposure measure that identifies technologies
that may automate existing labor-using job tasks. We construct this measure identically to
above, but replacing CAI micro titles with occupational task descriptions from the DOT.
Our procedure for measuring automation innovations follows closely on (Kogan et al., 2019;
Webb, 2020), which use the textual similarity between occupational task content and patent
texts to measure the ability of new technologies to perform the same work done by workers
in particular occupations. Although these augmentation and automation measures are con-
structed using fully parallel procedures, we demonstrate below that they differ substantially
in their predictive relationships with new work emergence and occupational demand shifts.

3 The Shifting Locus of New Work, 1940 – 2018

The occupational distribution of new work has changed markedly over the past eight decades,
and these developments mirror—and we believe contribute to—the changing shape of em-
ployment growth and skill demands during this period.

As Figure 2 reveals, new work creation was in net weighted heavily towards high-skill
occupations (right-hand side of the graph) over the eight decades of our sample. Not evident
from this figure, however, is that the rightward skew of new work emergence is a compar-
atively recent development. This is illustrated in Figure 5, which plots the occupational

25As an alternative we have followed Kogan et al. (2017) by assigning patents to industries directly, using
patent awarded to firms in Center for Research in Security Prices records linked to Compustat data on
the industry of these firms: this eliminates the need for mapping textual similarity. While our results also
hold when using these linkages, this approach is not ideally suited to our aims because 1) it doesn’t allow
us to distinguish between augmentation and automation patents; 2) it restricts patents to those awarded
to publicly traded firms, and 3) it implicitly assumes patents are only relevant for the industry where the
patent originates, rather than for all industries in which the innovation may be applicable.
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distribution of employment in new work separately for 1940–1980 and 1980–2018.26 Be-
tween 1940 and 1980, new worked emerged most strongly in middle-paid production and
clerical occupations. After 1980, new work arose disproportionately in high-paid technical,
professional, and managerial jobs and, to a lesser extent, in low-paid personal and health
services occupations. This observation proves crucial because it links the changing locus
new work creation to evolution of skill (i.e., education) demands across the two halves of our
sample—as well as the shifting locus of innovation across decades, as suggested by Figure 3.

To assess the educational skew of new work, Figure 6 plots the flow of new work and the
stock of preexisting work separately for workers with a high school degree or lower educa-
tion (‘non-college educated’) and for workers with at least some college education (‘college
educated’).27 Among jobs held by non-college workers, there is a sharp divergence in the
flow of new work between the two halves of the sample (Panel A). Between 1940 and 1980,
new non-college work emerged where non-college workers were already concentrated, that
is, in the middle of the occupational pay distribution. Four middle-paid occupations—
construction, transportation, production, and clerical and administrative positions—in par-
ticular accounted for more than 50 percent of both the stock of preexisting non-college work
and the flow of new work in these four decades.

Over the next four decades, the flow of non-college work diverged from the stock of
preexisting work. New non-college work emerged in lower-paid health and personal services,
and to a lesser degree in higher-paid sales and professional occupations, even as the stock of
non-college work remained relatively concentrated in middle-skill occupations. Two examples
illustrate: personal services accounted for 17 percent of the flow of new non-college work
between 1980 and 2018 versus only 8 percent of the stock of non-college work; similarly,
low-paid health services accounted for 8 percent of the flow of new non-college work versus
only 2 percent of the stock of preexisting work. Since over the long run, the flow of new
work becomes the stock of existing work, this pattern implies that new work is drawing
non-college workers towards lower-paid jobs.

26The bars sum to one in each time period.
27We calculate the occupational employment of each education group across all Census macro-occupations

(approximately 300) in each decade, and then allocate employment within each macro-occupation into new
and preexisting work in proportion to the share of titles in that occupation that are newly emergent in that
decade. Aggregating these counts into the 12 broad Census occupation categories that can be consistently
defined over the entire 1940–2018 period provides the distributions plotted in Figure 6, with each set of
bars representing the average occupational distribution by education group during the corresponding time
interval.
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Panel B of Figure 6 presents complementary evidence for college-educated workers. Be-
tween 1940 and 1980, 70 percent of both the stock and the flow of college work was found
in three broad occupations: high-skill professional occupations, high-skill managerial occu-
pations, and middle-skill clerical occupations. From 1980 forward, the flow of new work
employing college-educated workers skewed even further into the high-skill domain: rising
sharply in professional and technical occupations and declining in clerical and administrative
work. This pattern augurs a further concentration of college-educated workers in high-skill
occupations.

These high level patterns offer two insights: First, the emergence of new work over the
last four decades has lead the overall polarization of occupational structure documented by
Autor (2019); Autor et al. (2006); Goos et al. (2014); concretely, the flow of new non-college
work has shifted more rapidly than has the stock of existing work towards traditionally
low-paid low-paid personal service and health-aide occupations, and away from traditionally
middle-paid production, clerical, and administrative support occupations. Second, and by
implication, employment polarization does not merely reflect an erosion of employment in
existing middle-skill work but also a change in the locus of new work creation. As the
emergence of new types of non-college work has slowed in middle-paid occupations and
accelerated in low-paid occupations, the allocation of non-college workers across occupations
has tracked the shifting locus of new work emergence.28

4 Theoretical Framework

To develop intuition about the evolution of new work and guide the empirical analysis, we
offer a model, building on Acemoglu and Restrepo (2018), Acemoglu and Autor (2011) and
Autor et al. (2003), that considers how three forces shape the endogenous creation of new job
tasks and the elimination of old tasks: augmentation, which generates new labor-using job
tasks; automation, which eliminates labor-using tasks; and shifts in consumer demand which
affect task automation and new task creation by changing innovation incentives. This model
provides predictions about when and where new tasks emerge, how the flows of augmentation
and automation innovations correlate across occupations, and how these two distinct faces
of innovation affect (and are jointly determined with) occupational labor demand.

28This pattern is not automatic. Non-college workers could reallocate from middle- to low-paid occupations
without any change in the locus of new work creation.
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4.1 Environment

We begin with two sectors, producing skill-intensive and skill-non-intensive goods or ser-
vices, YS and YU . The subscripts denote the respective sectors. A representative household
consumes goods YU and YS according to:

U(YU , YS) = Y βU
U Y βS

S , (2)

where βU +βS = 1; Pj is the price of good j with j = U, S; P the ideal price index; Y is total
utility; and PUYU+PSYS = PY . Let Y be the numéraire so that P ≡ 1.29 We will later allow
β to be change to reflect demographic forces that shift preferences for consumption between
skill-intensive and skill non-intensive services. We simplify the structure of consumption by
assuming that there is no leisure and hence labor supply is inelastic.

Each sector produces a unique final output by combining a unit measure of tasks i ∈
{Nj − 1, Nj}:

Yj =
[∫ Nj

Nj−1
yj(i)

σ−1
σ di

] σ
σ−1

(4)

where yj(i) is the output of task i in sector j; σ is the elasticity of substitution between tasks
(assumed identical across sectors j ∈ {U, S}); and Aj > 0 is a constant.

Each task is produced by combining labor composite of high- and low-skill types, nj(i),
or capital, kj(i) with a task-specific intermediate qj(i). The production function for task i

is given by:

yj(i) =

Bjqj(i)ηkj(i)1−η if i ∈ [Nj − 1, Ij]

Bjqj(i)η[γj(i)nj(i)]1−η if i ∈ (Ij, Nj]
(5)

where Bj ≡ ψηj [1 − η]η−1η−η for notational convenience; the parameter η ∈ (0, 1) is the
share of output paid to intermediates; γj(i) is the productivity of the labor composite nj(i)
(relative to capital); and Ij and Nj are the equilibrium thresholds for automation and new
task creation, respectively, meaning tasks from N − 1 to Ij are produced by machines and
those from Ij to Nj are produced by labor. We make the following assumption:

29Given that consumption is Cobb-Douglas, P is given by:

P (PU , PS) =
[
PU
βU

]βU
[
PS
βS

]βS

= 1 (3)
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Assumption 1 γj(i) is strictly increasing.

Assumption 1 implies that in each sector, labor has strict comparative advantage in tasks
with a higher index. This assumption guarantees that, in equilibrium, tasks with lower
indices will be automated in each sector, while those with higher indices will be produced
with labor. Due to this strict comparative advantage structure, there is a unique threshold
Ĩj in each sector such that Wj

Rj
= γj

(
Ĩj
)
, where Wj ≡ W

αj
L W

1−αj
H , WL and WH equal the

economy-wide wage for L and H labor, and Rj is the rental rate for sector-specific capital.
Task-specific intermediate qj(i) embodies the technology used either for automation or for

the creation of new labor intensive tasks. We start by assuming that these intermediates are
supplied competitively and that they can be produced using ψj units of the sector-specific
good. Hence, they are also priced at ψj in units of sectoral output. (In section 4.4 we
additionally model endogenous innovation responses.) The measures of high-skill and low-
skill labor are given by H > 0 and L > 0, respectively. The labor composite nj(i) in each
sector is a Cobb-Douglas combination of H and L labor:

nj(i) = lj(i)αjhj(i)1−αj . (6)

Both types of labor are used in each sector, but H labor is used more intensively in the
more skill-intensive S sector, and L labor is used more intensively in the skill-non-intensive
U sector (0 < αS < αU < 1). Let LU , LS, HU , and HS be the equilibrium labor allocations to
each sector. Then, LU + LS = L and HU +HS = S. We define here a wage index reflecting
the price of the sectoral labor composite, Wj ≡ W

αj
L W

1−αj
H , where WL and WH equal the

economy-wide wage for L and H labor, respectively. Finally, capital is sector-specific, with
sectoral capital stocks KU and KS taken as given, and Rj is the capital rental rate for
sector-specific capital.

4.2 Equilibrium

Before characterizing the equilibrium in our model, we simplify with two assumptions.

Assumption 2 We have Kj < K̄j, where K̄j is such that Rj = Wj

γ(Nj) for j ∈ {u, s}.

This ensures that the capital rental rate is sufficiently high in each sector that new tasks
will be adopted immediately and will increase aggregate output. If Assumption 2 were not
satisfied, new tasks would be more expensive to produce than the tasks that they potentially
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displace, i.e., the lowest index tasks, so that new tasks would either reduce productivity or
would simply not be adopted.

The next assumption simplifies the determination of the automation threshold, Ij. Be-
cause labor has a strict comparative advantage in tasks with a higher index, i.e. i, there is
a unique threshold Ĩj in each sector such that

Wj

Rj

= γj(Ĩj) (7)

For all tasks i ≤ Ĩj, we have that Rj ≤ Wj/γj(i), so these tasks are potentially more cheaply
produced with capital. However, if Ij < Ĩj, then the state of automation acts as a constraint
on which tasks are accomplished by capital. In particular, the threshold task that will be
performed by capital is I∗j = min{Ĩj, Ij}. We simplify the set of cases considered by invoking
the following assumption:

Assumption 3 We have that I∗j = Ij ≤ Ĩj, so that the threshold task in each sector is
constrained by the state of automation.

Assumption 3 implies that when a new automation technology is introduced, it is always
adopted. With this assumption and the fact that tasks are competitively supplied, the price
of task i, p(i), is given by:

pj(i) =

R
1−η
j if i ∈ [Nj − 1, Ij]

[Wj/γj(i)]1−η if i ∈ (Ij, Nj]
(8)

Combining equations (2) and (4), the demand for sectoral task output yj(i) is:

yj(i) = [Pj/pj(i)]σ Yj = βjY P
σ−1
j pj(i)−σ (9)

Together with the fact that the supply of yj(i) is a Cobb-Douglas aggregate of labor, capital,
and intermediates, we can obtain the sectoral demands for capital and labor for each task i,
respectively:

kj(i) =

[1− η]βjY P σ−1
j R−σ̂j if i ∈ [Nj − 1, Ij]

0 if i ∈ (Ij, Nj]
(10)
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and

lj(i) =

0 if i ∈ [Nj − 1, Ij]

[1− η]βjY P σ−1
j

1
γj(i)

[
Wj

γj(i)

]−σ̂
if i ∈ (Ij, Nj]

(11)

We can define a static equilibrium in a similar way to Acemoglu and Restrepo (2018):
Given a range of tasks [Nj − 1, Nj], automation technology Ij ∈ (Nj − 1, Nj], and a capital
stock Kj for each sector j, a static equilibrium is summarized by a set of factor prices WL,
WH , and Rj; threshold tasks Ĩ and I∗; employment levels, Lj and Hj; and aggregate output,
Yj, for each sector j, such that

• Ĩj is determined by equation (7) and I∗j = min{Ij, Ĩj}, which is equal to Ij by As-
sumption 3;

• The capital and labor markets clear in each sector, so that
∫ Nj

Nj−1
[1− η]βjY P σ−1

j R−σ̂j di = Kj (12)

∫ Nj

Nj−1
[1− η]βjY P σ−1

j

1
γj(i)

[
Wj

γj(i)

]−σ̂
di = Lj (13)

where ∑j Lj = L;

• Factor prices satisfy the ideal price index condition:

P 1−σ
j = [Ij −Nj + 1]R1−σ̂

j +W 1−σ̂
j

∫ Nj

Ij
γj(i)σ̂−1di. (14)

Proposition 1 In the static equilibrium defined above, aggregate output of sector j is given
by:

[1− η]Yj = P
η

1−η
j

[Ij −Nj + 1]
1
σ̂ K

σ̂−1
σ̂

j +
[∫ Nj

Ij
γj(i)σ̂−1di

] 1
σ̂

L
σ̂−1
σ̂

j


σ̂
σ̂−1

(15)

Proof See Appendix F.
This model generalizes the single-sector setting in Acemoglu and Restrepo (2018) to two

sectors with different skill-intensities. When we consider demand expansions and contrac-
tions below, the interaction of these sectors will be useful.
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4.3 Innovation and Employment

Having laid out the general model above, we can now consider the consequences of changes in
the task structure of labor demand in each sector, specifically, the effects of task automation
and task augmentation. Automation occurs when previously labor-using tasks are taken over
by capital, corresponding to a rise in the sectoral automation threshold, Ij. Augmentation
refers to the introduction of new labor-using tasks in a sector, corresponding to a rise in
Nj. In a single-sector model, the effect of augmentation and automation on labor demand
depend solely on substitution and scale effects in that sector. In our multi-sector setting
with labor mobility and heterogeneous skills, the aggregation of labor and inter-sectoral
labor flows are important for the consequences of automation and augmentation on labor
demand. Augmentation and automation in either sector will affect labor demand in both
sectors and cause labor to reallocate across sectors.

Proposition 2 (Employment effects of automation and augmentation) Automation
in sector U (a rise in IU) increases the range of sector U tasks produced by capital, which
decreases employment of both high-skill and low-skill workers in that sector. These workers
move to sector S. Augmentation in sector U (a rise in NU) has the converse effect: by
introducing new labor-using tasks in sector U , it increases employment of both high-skill and
low-skill workers in that sector, drawing away these workers from sector S. That is,

∂LU
∂IU

, ∂HU
∂IU

< 0, ∂LS
∂IU

, ∂HS
∂IU

> 0
∂LU
∂NU

, ∂HU
∂NU

> 0, ∂LS
∂NU

, ∂HS
∂NU

< 0.

These derivatives have the opposite sign when augmentation or automation occurs in sector
S.

Proof See Appendix F.
This proposition, a main result of the conceptual framework, reveals the direction of labor

flows in response to automation and augmentation. All else equal, automation in a sector
leads to the contraction of that sector by reducing employment of both types of workers,
whereas augmentation in a sector attracts workers of both types.

Three mechanisms jointly underlie the co-movement of low- and high-skill workers across
sectors in response to automation or augmentation. First, tasks are gross substitutes in each
sector (σ > 1), so automation in a given sector implies a fall in that sector’s labor share (and
conversely for augmentation). Second, demand for high- and low-skill labor in each sector
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is Cobb-Douglas, so the wagebill paid to each skill group by a sector is proportional to that
sector’s labor share. Finally, the share of aggregate expenditure devoted to each sector is
fixed by the utility function (equation 2). Hence, automation in a sector spurs a decline in
the sector’s labor share, yielding an inward shift in both high- and low-skill sectoral labor
demand relative to the other sector.

This observation is a key input into our empirical work, implying that a sector’s em-
ployment rises with sector-specific augmentation and falls with sector-specific automation.
We test this implication directly in Section 7, where we equate occupations in the empirical
analysis with sectors in the model.

Naturally, changes in sectoral labor demands alter the economy-wide skill premium,
WH/WL, as explained in the next corollary.

Corollary 1 (Sectoral innovations and the aggregate skill premium) Automation in
the U sector raises the skill premium, WH/WL, by reducing labor demand in the low-skill
intensive sector. Augmentation in the U sector lowers the skill premium by increasing labor
demand in the low-skill intensive sector. Conversely, automation in the S sector lowers the
skill premium while augmentation in the S sector raises the skill premium. Formally,

∂(WH/WL)
∂NU

, ∂(WH/WL)
∂IS

< 0, ∂(WH/WL)
∂IU

, ∂(WH/WL)
∂NS

> 0.

This corollary spells out general equilibrium implications of innovations that reallocate
the distribution of tasks between labor and capital in either sector. Our empirical analysis
does not focus on these general equilibrium empirical implications, and the next corollary
explains why.

Corollary 2 (Changes in sectoral wagebills by skill group) Due to the law of one price
for skill, the effect of innovation on the log sectoral wagebill of a skill group relative to its
wagebill in the non-innovating sector is identical to its effect on the log relative sectoral
employment of that skill group. Formally:

∂ ln(WLLU/WLLS)
∂IU

= ∂ ln(LU/LS)
∂IU

, ∂ ln(WLLU/WLLS)
∂NU

= ∂ ln(LU/LS)
∂NU

∂ ln(WHHU/WHHS)
∂IU

= ∂ ln(HU/HS)
∂IU

, ∂ ln(WHHU/WHHS)
∂NU

= ∂ ln(HU/HS)
∂NU

,

and similarly for innovation in the S sector.

This corollary, which echoes Proposition 3 in Hsieh et al. (2019), follows from the mobility
of labor across sectors and is not specific to the CES structure of task demand or the Cobb-
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Douglas structure of labor demand in each sector. In combination with Proposition 2, this
corollary provides a testable implication, which is that the impact of sectoral innovations—
which we measure using augmentation and automation patents—on the sectoral wagebill by
skill group will mirror those for sectoral employment. We test this implication in Section 7.

4.4 Shifts in Consumer Demand and Innovation

To understand the interaction between shifts in consumer demand and innovation, we work
with a simple, one-period framework, which utilizes the general results above but endogenizes
the supply of intermediates which embody the task-specific technology. At the start of the
period, the parameters determine the equilibrium variables: factor prices and output. A
continuum of firms, given such information, hires entrepreneurs of exogenous supply E,
where E is some large number. These entrepreneurs can be hired to work in four sector-
innovation cells: automation in sector U , new task creation in sector U , automation in
sector S, and new task creation in sector S. We denote the number of entrepreneurs in each
sector-innovation cell EU

I , E
U
N , E

S
I , and ES

N , respectively.
Upon being hired, these entrepreneurs generate new intermediates which embody aug-

mentation and automation technologies according to

∆Ij = Ej
I (16)

∆N j = Ej
N (17)

∆Ij and ∆N j are realized immediately.
Entrepreneurs have utility given by

U j
z,m = max

{m,j}
{wjm + νεjz,m} (18)

where U j
z,m is the (period) utility of entrepreneur z hired to work on innovation m in sector

j. The idiosyncratic preference terms εjz,m are independent Type-I Extreme Value draws
with zero mean, and the parameter ν scales the variance of these idiosyncratic terms. En-
trepreneurs choose the sector and innovation activity that delivers the highest utility.

Under the distributional assumptions above, the share of entrepreneurial labor supplied
to each sector-innovation cell has a closed-form analytical expression. Denote by πjm the
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fraction of entrepreneurs that move to sector j to work on innovation m. Then,

πjm = exp (wjm)1/ν∑
m

∑
j exp (wjm)1/ν

(19)

Thus, 1/ν can be interpreted as a labor supply elasticity, as in Caliendo et al. (2019).
Applying the law of large numbers, the measure of entrepreneurs hired in sector j working
on innovation m is

Ej
m = πjmE (20)

Competition among prospective technology monopolists to hire entrepreneurs implies
wages as follows:

wjm = V j
m (21)

where V j
m is the value of innovation m in sector j.

Demand for intermediate qj(i) is given by:

qj(i) =

ψ
−1
j ηYjP

σ
j R

(1−η)(1−σ)
j if i ∈ [Nj − 1, Ij]

ψ−1
j ηYjP

σ
j

(
Wj

γj(i)

)(1−η)(1−σ)
if i ∈ (Ij, Nj]

(22)

where we can also substitute YjP σ
j = βjY P

σ−1
j . Gross profit from automating task I are

π(I) =

(1− µ)ψjqj(I) = (1− µ)ηYjP σ
j R

(1−η)(1−σ)
j if I is produced with capital

(1− µ)ψjqj(I) = (1− µ)ηYjP σ
j

(
Wj

γj(I)

)(1−η)(1−σ)
if I is produced with labor

(23)
Note that (1− η)(1− σ) ≡ 1− σ̂. Hence the sectoral value of automating task I and N are
given by, respectively:

V I
j = (1− µ)ηYjP σ

j

R1−σ̂
j −

(
Wj

γj(I)

)1−σ̂
 (24)

V N
j = (1− µ)ηYjP σ

j

( Wj

γj(N)

)1−σ̂

−R1−σ̂
j

 (25)

Having determined the sectoral value of automating task I and N , we study how these
incentives for automation and new task creation change in sector j in response to a demand
expansion, i.e., an increase in βj.
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Lemma 1 In equilibrium, we have that V N
j = V I

j .

Lemma 1 implies that entrepreneurs are initially indifferent between creating new automation
or augmentation intermediates: if this were untrue, the allocation of entrepreneurs across
innovation margins is not in equilibrium. Note that in this equilibrium there are still positive
productivity gains from additional task automation and from additional new task creation,
by Assumptions 2 and 3.

As these incentives given by V I
j and V N

j determine wages, the employment share and
changes in I and N for each sector naturally follow by consulting (19) and the innovation
production functions (16) and (17).

Proposition 3 A demand shift towards a given sector unambiguously increases new task
creation relative to automation in that sector, while decreasing new task creation relative to
automation in the other sector.

∂∆Nj
∂βj

> ∂∆Ij
∂βj

∂∆Ñ
∂βj

< ∂∆Ĩ
∂βj

Proof. See Appendix F.
The proposition indicates a positive relationship between demand shifts and new task

creation. When there is a positive demand shift in a given sector j, the incentives for new
task creation in that sector increase as a result of movement on two margins: on the demand
side, both output and price increases, and on the factor side, the price of capital increases
more than that of effective labor as capital supply is inelastic, increasing the price differential
between the two factors. This increased price differential raises the potential returns to new
task creation, which assigns tasks from capital to labor.30 In Section 6 we test an implications
of this Proposition, specifically, that outward demand shifts accelerate new task emergence
whereas inward demand shifts decelerate it.

30This result relies on the fact that tasks are gross substitutes in each sector, σ > 1, so that a change in the
sectoral relative price of capital versus labor increases the profitability of innovations that expand usage
of the factor whose relative price has fallen.
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5 Augmentation exposure and new task creation

Following the logic of the model, this section empirically characterizes the forces that explain
where and when new job tasks emerge by relating the emergence of new occupational tasks
to the exposure of occupations to: (a) augmentation; (b) automation; and (c) demand shifts.
Our focus here is on forces that affect the creation of new job tasks, meaning the emergence
of new titles. We take up the net effects of new work creation on occupational employment
in section 7.

5.1 Where do new tasks emerge?

In our conceptual framework, economic forces that complement occupational outputs lead to
the emergence of new work tasks. One of those forces is augmentation. The first hypothesis
that we test is that new job tasks emerge differentially in occupations that are more exposed
to augmentation innovations—meaning those that may complement occupational outputs.
We estimate models of the following form:

Newtitlesjt = β1AugXjt + β2
Ejt∑
j
Ejt

+Dt (+DJ +DJt) + εjt, (26)

where j indexes Census occupations, and t indexes decades (1930–1940, 1940–1950, .., 2000–
2010, 2010–2018). The dependent variable is a measure of the flow of new work titles
occurring in a Census occupation in a decade, and the independent variable of interest
is AugXjt, measuring occupational exposure to augmentation as revealed by textual links
between utility patents and the Census Alphabetical Index of Industries and Occupations.
Both variables in year t are measured as cumulative flows over the preceding decade: new
work observed in 1940 has emerged over 1930–1940; and similarly, augmentation exposure in
1940 is constructed from patents awarded over 1930–1940. Year fixed effects absorb year-by-
year variation in the total number of new titles. We control for the employment (E) share
of occupation j to remove any mechanical association between new title counts and relative
occupational employment size. In some specifications, we further add fixed effects for the
twelve consistently-defined broad occupational groups, indexed by J , and their interaction
with year fixed effects.

The dependent variable, the count of new titles in a macro-occupation in a decade, con-
tains many zeros. We apply two functional forms that handle these zeros slightly differently.
In Panel A of Table 2, we use as our dependent variable the inverse hyperbolic sine (IHS) of
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new titles and, similarly, use the IHS of the count of augmentation patents as our explana-
tory variable. In Panel B, we instead use year-specific percentiles of both the outcome and
explanatory variables. As we document, our core findings are consistently robust to these
variations.31

It is infeasible to construct a fully balanced panel of detailed occupations over the eight
decades between 1940 – 2018 without sacrificing substantial resolution. We accordingly em-
ploy an unbalanced approach for models that pool these eight decades. (When estimating
models for the second half of our sample, 1980 through 2018, we use a balanced panel ap-
proach based on (Dorn, 2009).) In each decade, we use the full set of occupational categories
available in the corresponding Census, while employing the twelve broad, consistent occu-
pational categories seen in earlier figures. This enables us to compare new title emergence
across all occupations over eight decades, or across all occupations within 12 broad cat-
egories across decades, or across occupations within 12 broad categories in each decade.32

Because our independent and dependent variables capture within-occupation flows—new oc-
cupational titles added during a decade, new occupation-related patents issued during that
decade—each decade of data is implicitly a 10-year occupation-level panel.

Based on our hypotheses and theoretical framework, we expect β1 > 0: more augmentation-
exposed occupations will add more new titles. The first three columns of Table 2 report
estimates of equation (26) using industry-linked patents—meaning patents linked to occupa-
tions according to their distribution across more vs. less augmentation-exposed industries.
The first column estimate of 0.159 (se = 0.034) implies that each 10 percent increment to
augmentation exposure predicts an additional 1.6 percent higher rate of new title emergence
over the course of a decade. In column 2, we add 12 broad occupation dummies, thus com-
paring rates of new title emergence across detailed occupations within broad occupation
categories. The point estimate is 0.115 in this specification, and remains highly precise. The
third column adds interactions between the 12 occupation dummies and decade effects, thus
further limiting the comparison to new title emergence rates across detailed occupations
within broad occupational categories within each decade. These additional controls absorb

31We have also experimented with using a binary measure of new titles (zero/non-zero) and with using the
logarithm of new titles conditional on positive. These approaches qualitatively verify our core results.

32The specificity of Census 3-digit occupational categories (as well as industry categories) generally rises
from decade to decade, with approximately 250 3-digit occupations in 1940 and roughly 500 in 2018.
Occupation and industry categories also merge, split, and recombine, so harmonization comes at a high
cost in foregone resolution.
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significant additional variation in the outcome variable, as seen from R-squared value (0.754
in column 3 versus 0.674 in column 2). The point estimate remains highly similar to the
prior column (0.096, SE = 0.018), nevertheless.

In the second set of three columns in Table 2, we measure augmentation exposure by using
occupation-linked patents rather than patents associated with occupations via their industry
weights. We obtain point estimates that are nearly identical to those for the industry-linked
patents with slightly higher precision. The addition of major occupation dummies (column
2) and occupation-by-decade dummies (column 3) has essentially no effect on the point
estimates.

To check the sensitivity of these estimates to the use of the IHS transformation of the
dependent and independent variables, Panel B of Table 2 re-estimates these models replacing
the IHS with year-specific percentiles of new titles (dependent variable) and patent exposure
(independent variable).33 These models yield quantitatively large and statistically precise
point estimates. For example, the column 3 and column 6 point estimates imply that a 10
percentile increase in augmentation exposure predicts an additional 0.95 to 3.60 percentile
increase in new title emergence per decade. Comparing an occupation at the 75th versus
25th percentile of augmentation exposure in a decade, we would expect the more exposed
occupation to fall 5 to 18 percentiles higher in the new title emergence distribution in that
decade.

5.2 Contrasting automation with augmentation

A second implication of our conceptual framework is that technologies that automate exist-
ing occupational tasks should not spur the emergence of new occupational tasks. We test
this implication by incorporating our measure of occupational exposure to automation inno-
vations alongside the augmentation exposure measure above. Since both measures are built
from the same corpus of patents, we view this as a (joint) test of the capacity of our NLP
procedure to distinguish automation from augmentation patents, and of the model’s impli-
cation that automation technologies do not tend to generate new occupational labor-using
tasks.

Figure 7 previews the substantive content of the automation exposure measure by plotting
the bivariate relationship between percentiles of automation exposure and percentiles of aug-

33Year-specific percentiles account for the fact that the number of patents awarded annually rises across
decades.
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mentation exposure at the level of 303 three-digit (‘macro’) occupations.34 We focus on the
most recent four decades of our sample, 1980–2018, where we can form a consistently defined
panel of of three-digit Census occupations and industries.35 Occupations exposed to more
augmentation are also more exposed to more automation. The employment-weighted cross-
occupation correlation between augmentation and automation exposure is 0.62. This posi-
tive correlation is logical. Many technologies contain both automation and non-automation
components.36 It is also consistent with our theoretical framework, which highlights that
incentives to automate and innovate are in part responding to the same profit opportunities.

Alongside the strong positive correlation, the off-diagonal occupations are instructive.
Typesetters and compositors, Clinical laboratory technologists and technicians, Cabinet-
makers and bench carpenters, and Machinists are four occupations that have a high rate of
automation relative to augmentation. Our conceptual framework predicts that employment
in these occupations would tend to erode. Conversely, Mechanical engineers, Operations
and systems researchers and analysts, and (to a lesser degree) Supervisors of mechanics and
repairers, and Business and promotion agents are occupations where augmentation has out-
paced automation. We would expect these occupations to expand. Finally, the on-diagonal
examples illustrate that occupations may have a relatively ‘balanced’ degree of exposure to
both automation and augmentation either because they are highly subject to both forces
(e.g., Assemblers of electrical equipment) or because they are relatively insulated from both
(e.g., Clergy and religious workers).37

To test whether automation exposure does not spur the emergence of new job tasks,
we report in Table 3 estimates of equation (26) in the 1980–2018 panel, expanded with
measures of both augmentation and automation exposure. Models include year main effects
and control for occupational employment shares to avoid a mechanical relationship between
occupation size and the rate of new title emergence. The first three columns of Panel A

34Both augmentation and automation exposure are averaged over 1980–2018 for each occupation.
35This harmonization adapts the classifications in Dorn (2009) and Deming (2017), further updated to

encompass Census occupations and industries through 2018.
36Indeed, 55 percent of the total occupation-linkages of patents to Alphabetical Index occupation titles are

also linked based on occupational task content
37Appendix Table A9 documents the correlation between these augmentation and automation measures and

task measures commonly used to capture the potential for technology to complement or substitute workers
(Autor and Dorn, 2013; Autor et al., 2003). Occupations’ automation exposure is significantly positively
correlated with routine-task content, whereas the converse holds for augmentation exposure. We jointly
include augmentation and automation in these models, highlighting each has substantial independent
predictive variation for widely-used task measures.
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of Table 3 re-estimate our baseline specifications, which predict new title emergence as a
function of occupational augmentation exposure. Augmentation exposure is measured using
occupation-linked patents for maximum comparability to the automation measure, which is
also based on occupation linkages.

Column 1 contains the basic specification, while columns 2 and 3 add respectively broad
occupation fixed effects and broad occupation-by-year interactions. We obtain a statistically
precise point estimate on AugX of around 0.15 in all three columns (with a standard error
of around SE = 0.02), in line with our previous findings over 1940–2018. Column 4 of Table
3 replaces augmentation exposure with automation exposure, measured as patents linked to
occupational tasks. When not controlling for augmentation exposure (as in this column),
automation exposure is strongly positively associated with new title emergence with a point
estimate of 0.105 (SE = 0.033). However, when both augmentation exposure and automa-
tion exposure are included (columns 5–7), only the augmentation exposure predicts new title
emergence. Conditional on augmentation exposure, automation exposure is not associated
with new title growth: point estimates are small and negative, as well as statistically in-
significant. This pattern is striking since augmentation and automation exposure are close
statistical relatives as show in Figure 7. While a skeptical reading of these results is that
AutomX contains no economic content beyond what is already present in AugX, we show in
Section 7 that both variables have significant independent (and oppositely-signed) predictive
power for occupational employment growth.

We demonstrate the robustness of this pattern in Panel B of Table 3. Here, we re-specify
the independent and dependent variables as occupational percentiles of new title counts, au-
tomation exposure, and augmentation exposure (replacing their IHS counterparts in Panel
A). Columns 1–3 find that the augmentation exposure point estimates for 1980–2018 are
highly comparable to those for 1940–2018. As above, when not controlling for augmenta-
tion exposure (column 4), automation exposure is predictive of new title emergence, with a
point estimate of 0.122 (SE = 0.067). Columns 5–7 show that this positive relationship is
entirely eliminated when AugX is included. A 10 percentile higher augmentation exposure
rank predicts approximately a 4.7 percentile higher new title count rank. The point esti-
mate on automation exposure is negative and statistically insignificant when the control for
augmentation exposure is included.
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6 Demand Shifts and New Task Creation

A central implication of our conceptual framework is that the emergence of new work re-
sponds elastically to market size: positive demand shifts foster the emergence of new labor
tasks by raising the value of occupational outputs and spurring augmentation innovations;
negative demand shifts hinder the emergence of new labor tasks by lowering the value of
occupational outputs, thus deterring augmentation innovations. We construct two demand
shift measures to study these relationships. To isolate negative demand shifts, we exploit an
exogenous decline in industry-level manufacturing demand resulting from rising Chinese im-
port competition over 1990–2018. To isolate positive demand shifts, we leverage changes in
population age structure that indirectly affect employment through patterns of consumption,
following DellaVigna and Pollet (2007).38 In both cases, we measure the differential exposure
of occupations to demand shifts as a function of their distribution across more-exposed ver-
sus less-exposed industries. Although both inward and outward demand shifts are predicted
to affect the arrival rate of new work, we find it useful to apply countervailing tests since new
work never flows in reverse and occupational titles are hardly ever removed from the Census
Index. We therefore test whether negative demand shocks slow the emergence of new titles
rather than whether they spur the elimination of of new or existing titles.39

6.1 Demand contractions and new task deceleration

Starting in the early 1990s, import competition from China generated a sizable negative
demand shock for many labor-intensive domestic manufacturing industries in the U.S. (Autor
et al., 2014; Bernard et al., 2006; Pierce and Schott, 2016).40 We use these industry-level
demand shocks to identify shocks to occupational labor demand. We construct occupation

38Our work is also related to Comin et al. (2020); Leonardi (2015); Mazzolari and Ragusa (2013), who
analyze the causal effects of age, education, and income on employment via consumption. Appendix D.1
details the construction of our demand shift measures.

39Because our two demand measures cover different time intervals at different periodicities, we do not
currently pool them in a single estimating equation.

40Related work maps trade shocks to labor market outcomes in Brazil, Canada, India, Norway, Germany,
Mexico, and other countries (Balsvik et al., 2015; Branstetter et al., 2019; Chiquiar, 2008; Dauth et al.,
2014; Devlin et al., 2021; Kovak, 2013; Topalova, 2010).
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j’s change in exposure to Chinese import competition, ∆CIjt, as follows

∆CIjt =
∑
i

Eij,t−1

Ej,t−1
×

∆MOC
i,t

Yi,88 +Mi,88 −Xi,88
, (27)

where ∆MOC
i,t are changes in industry i’s imports from China by a set of developed countries

other than the United States over the periods 1991–2000 and 2000–2014. Yi,88 +Mi,88−Xi,88

is initial absorption of the U.S. industry, measured as the real value of industry shipments
plus industry imports minus industry exports, all measured in the initial year 1988. By us-
ing China’s industry-level exports to non-U.S. destinations as our predictor of import shocks
to United States industries, we are implicitly using a reduced form approach to measuring
U.S.-facing import competition shocks stemming from China’s rise as an exporter (Acemoglu
et al., 2016; Autor et al., 2014; Jaravel and Sager, 2020). We obtain occupational exposure
by multiplying changes in predicted U.S. industry import shocks by the occupation’s em-
ployment share across US industries in the initial year. While this measure is only available
for 1990 onward (reflecting changes in import competition over 1991–2000 and 2000–2014),
the advantage is that it captures a plausibly exogenous decline in domestic occupational
demand stemming from external forces.41

China trade exposure varies substantially both within and between production and non-
production occupations, as shown in Figure 8, which plots percentiles of occupational expo-
sure to import competition over 1990–2018 for occupations classified into broad occupational
groups. Broad occupations are ordered according to their average China trade exposure on
the y-axis, while variation across detailed occupations within these 12 broad categories is de-
picted along the x-axis. In particular, within production occupations, Power plant operators
have a trade shock exposure of only around the 40th percentile of the average across all occu-
pations, whereas Textile sewing machine operators are the most exposed. In transportation
occupations, Bus drivers are relatively unexposed, as are Insurance adjusters among clerical
occupations, and Primary school teachers among professionals. On the other hand, Machine
feeders and offbearers in transportation occupations; Shipping and receiving clerks in clerical
occupations; and Electrical engineers in professional occupations are more highly exposed
than the average occupation within production.

We test whether this demand shift affects the emergence of new occupational titles using

41We scale these changes to match 1990–2000 and 2000–2018, the time periods we observe in our new title
data.
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the following specification

IHS (newtitlesjt) = β1ImportXjt +Dt + Zjt + εjt, (28)

where ImportXjt are year-specific occupational percentiles of ∆CIjt, and Zjt is a vector of
controls. This vector includes occupational exposure to augmentation and overall occupa-
tional employment shares, as before, but also occupations’ employment shares across all 13
broad industries. This means that β1 is identified by variation in occupation-level trade
exposure stemming from differences in occupations’ distributions across manufacturing and
non-manufacturing industries. In some specifications, we additionally control for broad oc-
cupation fixed effects as well as occupational employment growth to remove any potential
mechanical association between employment contractions and declines in new title emer-
gence. With occupation fixed effects included, identification stems from contrasts across
detailed occupations within the twelve broad occupational categories depicted in Figure 8—
in effect, from variation within rows of Figure 8. Our expectation is that β1 < 0: adverse
occupational demand shifts slow new work creation.

Estimates of equation (28) in Table 4 confirm this expectation. The first three columns
report the relationship between new titles emerging between 1990–2000 and 2000–2018 and
occupational exposure to import competition (defined as above, and multiplied by 100)
in the same time periods.42 Panel A uses the inverse hyperbolic sine of new title counts
as the dependent variable, whereas panel B uses percentiles of new title counts, relating
this to percentiles of import competition. Column 1 presents a basic specification that
controls for year main effects, occupational employment shares, and the share of occupational
employment across a set of 13 broad industries (one of which is the manufacturing industry).
This shows a borderline statistically significant negative effect of demand contractions on new
title emergence. This effect becomes significant in column 2 when controlling for occupations’
exposure to industry-linked augmentation patents: since manufacturing industries which
import from China are relatively innovation-intensive, we underestimate the effect of the
domestic industry demand contraction on new title emergence without this control. Because
100 × the import competition measure has a standard deviation of around 1.43, the point

42Our estimates are reduced-form models, directly using exposure to Chinese imports by other developed
countries. Point estimates are similar when using two-stage least squares (instrumenting exposure to U.S.
imports with exposure to other developed countries’ imports). The first-stage coefficient at the industry
level (Borusyak et al. 2021) is 1.20 for imports from the U.S. onto imports from other countries, with a
t-statistic of 5.82.

34



estimate of −0.118 (SE = 0.051) means that a one standard deviation greater exposure
to import competition predicts a 17 percent reduction in the rate of new title emergence
(−0.118 × 1.43 ≈ −0.17). Column 3 additionally adds dummies for 13 broad occupation
groups. This increases the point estimate to −0.125 and leaves the standard error unaffected.
Column 4 further controls for the contemporaneous log change in occupational employment,
which tests whether the effect of trade exposure on new title emergence is accounted for
by changes in occupational scale. This specification is quite conservative since it arguably
controls for an intermediate outcome that is directly affected by the China trade shock.
Nevertheless, the point estimate is only slightly smaller in this specification and equal to
the column 2 estimate. Notably, the augmentation exposure measure, which is included
in all columns except the first, is a robust positive predictor of new title growth across all
specifications.

Do these results reflect trends in new work creation that are endemic to U.S. manu-
facturing and predate the China trade shock? As a check on this possibility, columns 4
– 6 of Table 4 perform a placebo test where we use as the dependent variable new title
counts from the twenty years prior to the rise of imports from China, 1970–1980 and 1980–
1990 (t = 1980, 1990), and relate this to import exposure over the entire 1990–2018 period.
Consistent with our interpretation of the earlier columns, Chinese import competition expo-
sure has no explanatory power for the emergence of new occupational titles in subsequently
trade-exposed occupations; in all cases, the point estimates are positive and statistically in-
significant. This pattern increases our confidence that the effects identified in the first three
columns reflect the causal impact of demand contractions on the rate of new work emergence.
As a further robustness test, Panel B repeats all of the prior estimates using occupational
percentiles of new title counts in place of the IHS measure. While magnitudes should not
be compared across these columns since the dependent variables are in different units, the
precision of the point estimates is similar across the panels (either slightly higher or slightly
lower, depending on the specification).

Alongside confirming a central tenet of our conceptual framework, these results offer an
additional substantive implication. Much evidence documents that rising import competition
has depressed employment in trade-exposed industries and associated occupations during
the last two decades.43 The findings in Table 4 make clear that these adverse shocks do not
merely reduce employment numerically but also depress the emergence of new categories of

43See Autor et al. (2016) for a summary of this evidence.
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work—new specialties or ‘tasks’—that would otherwise have contributed to labor demand.
Thus, adverse demand shifts not only yield less work in total but also fewer instances of new
work. As we show next, positive demand shifts have the opposite effect.

6.2 Demand expansions and new task emergence

As a second source of demand shifts, we follow DellaVigna and Pollet (2007) in exploiting
changes in the demographic structure of the U.S. population between 1980 and 2018 to pre-
dict movements in industry-level demands, which in turn affect occupation-level demands.44

For this approach, we use Bureau of Labor Statistics Consumer Expenditure Survey data
to obtain predicted consumption across product categories for household members of dif-
ferent ages. We multiply these age-specific coefficients by U.S. Census population data to
construct predicted consumption by product based on the evolution of population age struc-
ture. We crosswalk these consumption patterns to consistent Census industries to obtain
predicted relative demand shifts for consistent industries over 1980–2018.45 We finally mea-
sure occupational exposure to demographically-induced demand shifts, DemandXjt, within
301 consistently defined occupations for 1980–2018 by calculating:

DemandXjt =
∑
i

Eij,t−1

Ej,t−1
× ∆̃ ln demandi,t. (29)

Here ∆̃ ln demandi,t is the predicted log change in demand for output of industry i in time
interval t, Eij,t−1 is the 20-year lag of employment of occupation j in industry i, and Ej,t−1

is the 20-year lag of employment of occupation j across all industries.
Reflecting the sharp changes population age structure induced by the aging of the Baby

Boom cohorts, Figure 9 shows that occupations’ exposure to demographic demand shifts
differed substantially across decades.46 Between 1980 and 2000, when the Baby Boom cohorts
were rapidly expanding the prime-aged population, demographic forces raised demand for
childcare workers, real estate, and sales-related occupations. In the second period, when the
Baby Boom cohorts were entering late working age and retirement, demographic demands

44DellaVigna and Pollet (2007) use population aging to predict long-run stock market price changes for
industries impacted by demand increases from this source.

45These demand measures account for inter-industry input-output linkages, and hence correspond to final
demands. Appendix D.2 provides details.

46Appendix Figure A2 plots these changes in age structure which drive our subsequent estimation.
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shifted towards personal service and health occupations. Education occupations experienced
positive demand shifts throughout, driven by growing cohorts of children and young adults
in the two sub-periods, respectively.

Following our analysis of the China trade shock, we regress new title emergence on the
demographic demand shift measure with the following specification,

IHS (newtitlesjt) = β1DemandXjt +Dt + Zjt + εjt, (30)

where Zjt is a vector of controls, including occupational exposure to augmentation and
overall occupational employment shares. Some specifications additionally control for broad
occupation fixed effects and/or occupations’ employment shares across 13 broad industry
groups. Greater exposure to the demographic demand shock implies rising demand (opposite
to exposure to the China trade shock). Our conceptual framework predicts that β1 > 0:
occupations whose outputs are disproportionately demanded by age groups with increasing
shares in the population are expected to experience more rapid emergence of new titles. We
estimate equation (30) using stacked first differences for 1980–2000 and 2000–2018, matching
the frequency of the new title data.

Table 5 shows that positive demand shifts predict the emergence of new occupational
titles. In Panel A, we report the relationship between the inverse hyperbolic sine of new
occupational titles emerging between 1980–2000 and 2000–2018 and contemporaneous occu-
pational exposure to demographic demand shifts (multiplied by 100 for clarity). Columns
2, 3, 5 and 6 control for occupational augmentation exposure. Models in columns 3 and 6
additionally control for occupations’ employment shares across broad industries, and mod-
els in columns 4, 5 and 6 further control for broad occupation fixed effects. Across all
columns, occupations with higher predicted demand growth stemming from demographic
change exhibit faster new title emergence. These estimates are precise even within broad
occupational groups (columns 4, 5 and 6). The standard deviation of 100 × the demand
shift measure is around 1 in the first time interval and 1.5 in the second interval, implying
that a one standard deviation relative demand shift increases new title emergence by around
21 percent (using the column 5 estimate, 0.171× 1.25 ≈ 0.214). In place of the logarithmic
specifications in Panel A, Panel B parameterizes the independent and dependent variables
in decade-specific percentiles. Demand shifts have a robust relationship with new title emer-
gence in this alternative specification as well, though the units do not in this case have a
direct interpretation.
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Figure 10 shows that a substantially different set of occupations is exposed to demand
shifts than is exposed to augmentation. Using partial predicted effects from the Table 5
models (panel B, column 5), we find that augmentation exposure and demand exposure are
uncorrelated on average over 1980–2018. Logically, not all new work creation is directly
related to technological forces. Demand shifts can especially help account for the emergence
of new titles in lower-paid personal service jobs such as housekeepers, waiters, and food
preparation workers. On the other hand, new title emergence in high-tech jobs such as
electrical engineers and computer systems analysts are primarily predicted by augmentation
exposure. Notably, a subset of occupations, particularly those in healthcare, is exposed to
both positive demand shifts and a high rate of augmentation innovations.

7 Augmentation, Automation, and Employment

Our findings establish that task automation and task augmentation are distinct forces that
occur concurrently, often in the same occupations, and yet have dissimilar relationships with
new title emergence. What does this imply for occupational employment? Our estimates so
far do not answer this question since employment could potentially contract in occupations
where new titles are emerging or expand in occupations where tasks are automated. our con-
ceptual model makes a clear prediction, however (Proposition 2): Because new task creation
is labor-reinstating, it expands employment and wagebill in the sector where it occurs; and,
conversely, because task automation is labor-displacing, it erodes employment and wagebill
in the sector where it occurs. We test those predictions here, noting that both the theoretical
predictions and empirical tests concern relative expansion and contraction of occupational
employment and wagebills. Aggregate employment, which is fixed and inelastically supplied
in our model, is not the object of study.47

Figure 11 motivates our analysis of employment by documenting the striking relationship
between the emergence of new occupational tasks and net changes in (relative) occupational
employment over 1980–2018. The emergence of new occupational tasks is strongly posi-
tively associated with occupational employment growth: a 10 higher emergence rate of new
titles predicts (relative) occupational employment growth of 3.1 percent in the contempora-

47In Acemoglu and Restrepo (2018), task automation has an ambiguous effect on aggregate labor demand
due to countervailing substitution and scale effects. Our model makes unambiguous predictions for relative
changes in employment and wagebill across sectors.

38



neous four decades (t = 6.2, n = 303). Occupations such as Computer software developers;
Physicians; Vocational and education counselors; and Hairdressers and cosmetologists saw
a sizable emergence of new tasks and a large increase in occupational employment. Occu-
pations such as Printing machine operators; Machine feeders and offbearers; and Laundry
and dry cleaning workers saw little growth of occupational tasks and a relative decline in
employment over the period.

The correlation in Figure 11 is in some sense expected since we have previously established
that demand forces that cause occupations to grow also spur the emergence of new occupa-
tional tasks. As a further step, and a novel test of our conceptual framework and empirical
toolkit, we directly measure the relationship between augmentation exposure, automation
exposure, and employment.

7.1 Employment consequences of new task creation and task au-
tomation

We assess the relationship between augmentation and automation exposure and net em-
ployment changes in full-time equivalent employment by estimating models of the form:48

∆Eij,τ = β1AugXij,τ + β2AutomXj,τ +Di +Dτ (+DJ + γZj) + εij,τ. (31)

The dependent variable is the Davis-Haltiwanger-Schuh (‘DHS’, Davis et al. (1998)) em-
ployment change in consistent three-digit industry by occupation cells, defined as ∆Eij,τ ≡
(Eij,t − Eij,t−1) / (0.5× (Eij,t + Eij,t−1)). In contrast to a specification for log employment
changes, the DHS transformation allows occupation-industry cells to emerge when employ-
ment goes from zero to non-zero over a time period, and similarly, to disappear when cell
employment falls to zero. The independent variables of interest are AugXij,τ , quantify-
ing exposure to augmentation in industry-by-occupation cells, and AutomXj,τ , quantifying
exposure to automation in occupation cells. To allow consistent measurement of augmen-
tation, automation, and employment, we analyze the 1980–2018 industry-occupation panel,
as above. The inclusion of a full set of 206 industry dummy variables in the regression
equation means that the coefficients of interest are identified by changes in within-industry

48Full-time equivalent employment is equal to annual hours divided by 1, 750, equal to 35 hours per week
at 50 weeks per year. We document in a reference table in the Online Appendix that results for log
employment changes are highly comparable those for DHS employment changes, despite the exclusion of
occupations that have zero start-of-period or end-of-period employment.
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occupational employment, holding constant overall industry employment shifts. Standard
errors are clustered on industry-by-occupation cells.

Table 6 reports estimates of equation (31) for the relationship between augmentation
exposure, automation exposure, and occupational employment growth, showing results from
both long-differenced (panel A) and stacked first-differenced (panel B) specifications. Jobs
that are more exposed to augmentation experience faster employment growth (column 1),
an effect that is most pronounced across jobs within broad occupational categories (column
2). As shown in column 2, each ten percent increase in augmentation exposure predicts
0.24 percent greater occupational employment growth between 1980 and 2018 (t = 4.10).49

Columns 3 and 4 remove the augmentation exposure measure and replace it with the au-
tomation exposure measure. Opposite to the case for augmentation, automation exposure
predicts statistically significant declines in occupational employment, a relationship that
stems from contrasts both within and between broad occupational categories. In column 4,
the automation coefficient is estimated at −2.29 (t = 2.08), similar in magnitude though
opposite in sign to the corresponding coefficient for augmentation.

The most striking results in Table 6 are found when both the augmentation and automa-
tion exposure variables are included in columns 5 and 6. Here, each variable has a quantita-
tively large and precisely estimated predictive relationship with occupational employment:
10 percent greater augmentation exposure predicts 0.35 percent greater employment growth
(t = 6.16), and 10 percent greater automation exposure predicts 0.29 lower employment
growth (t = 2.70). Reflecting the negative correlation between AugX and AutomX, these
two coefficients are larger (in absolute terms) when estimated jointly rather than when es-
timated individually. These relationships are equally visible in the stacked first-difference
models reported in panel B of the table.50

The Table 6 analysis of occupational employment changes echoes that of recent papers
by Kogan et al. (2019) and Webb (2020) with one crucial difference. Those papers provide
compelling evidence that occupations more exposed to automation patents (Kogan et al.,

49Here, we treat the DHS measure as approximating a log change.
50Point estimates are smaller in the stacked first-difference in models due in part to a quirk of the IHS trans-

formation. The stacked first-difference models (representing two decade changes) logically contain many
more observations with zero patents than the long-difference specifications. Given the outsized role played
by zeros in the IHS transformation, the variance of the automation and augmentation exposure measures
is much larger in the short panels, while the covariance with DHS employment changes is comparable.
The coefficients of interest (and explanatory power) of the stacked first-difference models in Panel B are
accordingly attenuated relative to Panel A, though the standardized effect sizes are comparable.
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2019) or software patents (Webb, 2020) exhibited relative employment contractions in recent
decades. What our analyses uniquely adds to this body of work is evidence of a countervail-
ing augmentation force, also stemming from innovation, that strongly predicts occupational
employment growth. This augmentation force provides independent predictive power for em-
ployment changes, a relationship that is only strengthened when accounting simultaneously
for automation exposure. We regard this as a crucial finding.

We cannot unfortunately estimate a comparable panel analysis for decades prior to 1980
due to incompatibilities in Census occupation and industry classifications across decades.
We can however implement a corresponding exercise for the full sample period using an ap-
proximation to employment in new work. Following Lin (2011), we approximate employment
in new work as the product of two terms: employment in each three-digit Census occupation;
and the fraction of titles in the occupation that have emerged in the most recent decade.51

Using this approximation, we estimate models of the form

IHS
(
Eijt ×

newtitlesjt
alltitlesjt

)
= β1AugXjt +DIt(+Dit +DJt) + εijt (32)

Here, the dependent variable is the inverse hyperbolic sine of the occupational new title share
multiplied by employment in occupation-industry cells. Because equation (32) is estimated
with industry-by-occupation cells, we can also add industry-related controls, including fixed
effects for consistently defined broad industry I, for narrow Census industry i, each interacted
with year indicators.52 Some specifications further add fixed effects for broad occupations
by year. The independent variable of interest is occupational exposure to augmentation.53

Appendix Table A10 presents estimates of equation 32. In all cases, occupations that are
more exposed to augmentation exhibit higher employment in new work: an occupation with a
10 percent greater augmentation exposure exhibits 0.05 to 0.10 percent higher employment in
new work. This is also true for Census occupations within the same Census industry (column

51We do not directly observe employment in new titles in our primary data sets, but write-in occupational
data are available for the no-longer-confidential 1940 Census. As described in Appendix A.2, we apply
machine learning techniques to the 1940 Census Complete Count file to assign micro-titles to free text
occupational write-in data. This exercise validates the exercise pursued here, albeit imperfectly.

52As with occupations, we construct thirteen exhaustive and mutually exclusive broad industries which can
be consistently compared over 1940–2018.

53In this model specification, we use only augmentation measures obtained by direct linkage to the occupation
to avoid measuring a spurious correlation with the dependent variable through occupations’ employment
distribution across industries.
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2), within the same broad occupation group (column 3), within the same broad industry and
broad occupation groups (column 4), and within both the same Census industry and the
same broad occupation group (column 5). Panel B shows that these results are robust to
using year-specific percentiles of employment and augmentation patents in place of the IHS
measures in Panel A.

7.2 Sectoral wagebills vs. sectoral employment

We take the sectoral labor demand analysis one step further by assessing the relationship
between augmentation exposure, automation exposure, and wagebill changes within occupa-
tions (i.e., ‘sectors’ in our model’s terminology). Corollary 2 above makes a clear prediction:
responding to sectoral augmentation or automation, sectoral wagebills—that is, the prod-
uct of wages and employment in an occupation–should rise or fall equiproportionately with
sectoral employment.

Straightforward as this implication is conceptually, testing it presents an empirical chal-
lenge. Because employment grows in augmentation-exposed occupations and contracts in
automation-exposed occupations (Table 6), observed wages in these occupations are likely
to change purely for compositional reasons, even absent any change in composition-constant
wages. As shown by Autor and Dorn (2009); Böhm et al. (2020), the average wage (and more
broadly, the expected earnings level) of workers tends to rise in occupations as they contract
and fall in occupations as they expand. These compositional changes mechanically generate
rising wages in declining occupations and falling wages in expanding occupations. Test-
ing whether augmentation or automation differentially affect composition-constant wages
(i.e., the wage per efficiency unit of labor) therefore requires accounting for these potential
compositional effects.

We proceed in three steps. A first is to estimate cross-sectional log weekly wage regres-
sions in the primary Census and ACS samples to obtain predicted wages:

wnt = αnt + Sn
′β1t + (Sn × An)′ β2t +

(
Sn × A2

n

)′
β3t + ent. (33)

Here, wnt is the log hourly earnings of worker n, Sn is a vector of dummies for completed
schooling categories, and An is years of age. To account flexibly for education-experience
profiles, equation (33) includes a quadratic in age fully interacted with the vector of schooling
levels. This model is fit separately for each of eight demographic groups (male/female ×
white/Black/Hispanic/other) in each time period to form a predicted wage for each worker,
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w̃nt.
We next collapse predicted and observed log wage levels into wage means within con-

sistent industry-by-occupation cells. Combining these estimates with cell-level employment,
we calculate observed (Wij,t), predicted (Ŵij,t), and composition-adjusted (W̃ij,t) wagebills
in each industry-occupation cell, where the composition-adjusted wagebill is equal to the
observed minus the predicted wage in an industry-occupation cell multiplied by observed
cell-level employment.54

We finally estimate the relationship between augmentation exposure, automation expo-
sure, and occupational wagebill changes as

∆Yij,τ = β1AugXij,τ + β2AutomXj,τ +Dτ +Di (+DJ + γZj) + εij. (34)

For these estimates, the dependent variable is the DHS change in one of four variables in
the industry-occupation cell: employment (∆Eij,τ ); wagebill (∆Wij,τ ); expected wagebill
minus employment (∆Ŵij,τ−∆Eij,τ ); and composition-adjusted wagebill minus employment
(∆W̃ij,τ −∆Eij,τ ).

Table 7 presents estimates. To facilitate comparisons between estimated employment
and wagebill effects, the first two columns of the table repeat our preferred specifications
for employment (∆Eij,τ ) from columns 5 and 6 of Table 6. The next two columns report
analogous estimates for the relationship between augmentation exposure, automation expo-
sure, and wagebills (∆Wij,τ ). Consistent with expectations, occupations exposed to greater
augmentation exhibit differential wagebill growth, and conversely, those exposed to more
automation exhibit differential wagebill declines. A comparison of columns 2 and 4 reveals
that both the increase in wagebill associated with augmentation and the decrease in wage-
bill associated with automation are smaller in absolute magnitude than the corresponding
changes in employment. Taken literally, this pattern would imply that relative wages are
falling in augmentation-exposed occupations and rising in automation-exposed occupations.

Columns 5 and 6 clarify the relationship between employment and wagebill changes by
regressing the expected change in the wagebill in an industry-occupation cell net of em-

54An industry-occupation cell with no employment has a zero wagebill. The DHS transformation allows us to
calculate the quasi-log change in the wagebill in an industry-occupation cell provided that it has non-zero
employment at either the start or end of the period (or both). A small subset of industry-occupation cells
have positive employment in the IPUMS samples but no valid wage data, because all workers in the cell
are self-employed or report earnings that are out of scope. We impute the predicted wage for these cells
using fitted values from equation 33.
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ployment change (∆Ŵij,τ −∆Eij,τ ) on augmentation and automation measures. Consistent
with Böhm et al. (2020), we find that shifts in worker composition in augmentation-exposed
cells predict a significant fall in cell-level wages, and conversely, compositional shifts in
automation-exposed cells predict a significant rise in wages. Concretely, augmentation-
exposed occupations gain younger, less-experienced, and somewhat less educated workers as
they expand, while automation-exposed occupations effectively ‘age in place’ as they con-
tract (Autor and Dorn, 2009). These compositional shifts, which are akin to quantity rather
than price changes in an earnings equation, cloud inference on the earnings of workers of
given skill level.

Columns (7) and (8) purge the influence of compositional shifts by taking as its depen-
dent variable the composition-adjusted wagebill change net of employment change (∆W̃ij,τ −
∆Eij,τ ). This variable measures the ‘excess’ (i.e., residual) change in the wagebill in an
industry-occupation cell net of shifts in worker composition. Consistent with the logic of
our model (i.e., Corollary 2), we obtain relatively tightly estimated zeros—finding no statis-
tically or economically significant relationship between augmentation exposure, automation
exposure, and excess changes in industry-occupation wagebills. While aggregate wage levels
are surely affected by sectoral changes in labor demand spurred by automation and aug-
mentation, these wage changes accrue at the level of detailed skill groups and hence are not
captured by cross-sector comparisons that condition on skill. The resulting demands shifts
are, however, visible as sectoral shifts in employment as documented in Table 6.55

In summary, Tables 6 and 7 confirms a central implication of the task framework that mo-
tivates our analysis: despite their positive correlation, augmentation and automation have
opposing implications for sectoral labor demand. These opposite-signed relationships are
especially notable given that both technology measures are derived from the same underly-
ing corpus of patents. In the terminology of Acemoglu and Restrepo (2019), we find that
automation is task-displacing and augmentation is task-reinstating. In conjunction with ev-
idence above that the locus of innovation has shifted across sectors—from middle-educated,
production-oriented sectors, such as mining, manufacturing processes, and transportation, to

55We have confirmed the robustness of the wagebill relationships in Table 7 to a variety of permutations,
including: using log hourly wages of all employees as our wage measure rather than log weekly wages of
full-time full-year workers; using percentile measures of augmentation and automation exposure in place of
their IHS values (see Appendix Tables A11 and A12); and replacing the augmentation exposure measure
with direct counts of new titles. We have also re-estimated our models for occupational employment (Table
6) using data on only the subset of industry-occupation cells where earnings data are also observed. These
results are comparable to, though less precise than, the Table 6 estimates.
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primarily highly-educated ones, including electricity and electronics, instruments and infor-
mation, and healthcare—these results imply that a focus on both automation and new work
creation can help to illuminate the sources of rising demand for highly-educated workers and
the polarization of non-college employment across multiple decades.

8 Conclusion

The majority of jobs performed in 2018 did not exist in 1940. Much recent empirical work
has focused on the displacement of labor from existing job tasks through automation, but is
mostly silent on the countervailing force of labor reinstatement through the creation of new
tasks. Complementing work by Lin (2011); Acemoglu and Restrepo (2018, 2019); Atalay
et al. (2020); Deming and Noray (2020), we construct a novel and detailed inventory of
new labor-using tasks that allows us to study the evolution and origins of new work over
1940–2018 using representative U.S. Census and ACS data.

We document that, compared to preexisting (‘old’) work, new work arises dispropor-
tionately in middle-paid production and office work in the first four post-War decades. By
contrast, new work creation since 1980 has increasingly concentrated in high-education spe-
cialties and, to a lesser extent, low-education personal services. We trace the origins of
new work creation to both augmentation and demand shifts: the changing locus of new
work emergence results from occupations having had different exposures to these over time.
Lastly, we directly contrast new task creation from augmentation with task displacement
from automation, finding that these twin technological forces, while positively correlated,
have strikingly opposing consequences for employment growth.
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Figure 1: Coding Process of Occupation Write-ins in the ACS
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Figure 2: Employment Counts by Broad Occupation in 1940 and 2018, Distinguishing
Between Titles Present in 1940 Versus Those Added Subsequently
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Figure 3: Citation-Weighted Innovation Composition by Broad Technology Class,
1900–2018
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Figure 4: Linking Patents to Occupations and Industries
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Figure 5: Average Occupational Employment Shares of New Work, 1940–1980 and
1980–2018
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Note: Figure shows the average occupational distribution of employment in new work identified in
1940, 1950, 1960, 1970, and 1980; compared to new work identified in 1990, 2000, 2010, and 2018.
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Figure 6: Occupational Employment Distribution of New and Preexisting Work by
Education Group

A. Non-College Educated Workers
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Figure 7: The Relationship between Exposure to Automation and Augmentation Patents
at the Occupation Level, 1980–2018
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Note: Each point corresponds to the average percentile of automation (x−axis) and augmentation
(y−axis) exposure of one 303 consistently defined three-digit Census occupations (n = 303), where
the average is taken over 1980, 1990, 2000, 2010, and 2018. Plotted employment-weighted regression
line has slope of 0.63 (SE = .076) and intercept of 0.24 with R2 = 0.37.
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Figure 8: Percentiles of Occupational Exposure to Import Competition from China, by
Broad Occupation
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2000 and 2000–2018) for consistent Census occupations classified into twelve broad occupation
groups. Occupation groups are ranked by their average exposure percentile across occupations.
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Figure 9: Percentiles of Occupational Exposure to Demand Shifts from Demographic
Change, 1980–2000 and 2000–2018
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Figure 10: Predicted ∆ Occupational New Title Share Percentile From Exposure to
Augmentation vs. Exposure to Demand Shifts, 1980–2000 and 2000–2018
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Figure 11: New Title Count vs. Predicted ∆ Occupational Employment, 1980–2018
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Table 1: Examples of New Titles by Decade, 1940–2018

Year Example Titles Added between Prior Census and Current Year
1940 Automatic welding machine operator Acrobatic dancer
1950 Airplane designer Tattooer
1960 Textile chemist Pageants director
1970 Engineer computer application Mental-health counselor
1980 Controller, remotely-piloted vehicle Hypnotherapist
1990 Circuit layout designer Conference planner
2000 Artificial intelligence specialist Amusement park worker
2010 Technician, wind turbine Sommelier
2018 Cybersecurity analyst Drama therapist

Notes: Examples of new ‘micro’ titles added to Census Alphabetical Index of Occu-
pations by year, 1940–2018.
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Table 2: Occupational New Title Emergence and Augmentation Exposure, 1940–2018

(1) (2) (3) (4) (5) (6)

A. Occupational New Title Count IHS
AugX 0.159*** 0.115*** 0.096***
(Pat Count IHS, Ind-Link) (0.034) (0.023) (0.018)
AugX 0.130*** 0.127*** 0.125***
(Pat Count IHS, Occ-Link) (0.016) (0.012) (0.010)
N 3,668 3,668 3,668 3,668 3,668 3,668
R2 0.634 0.674 0.754 0.679 0.718 0.795

B. Occupational New Title Count Pctl
AugX 0.114** 0.119** 0.095**
(Pat Count Pctl, Ind-Link) (0.041) (0.039) (0.035)
AugX 0.291*** 0.349*** 0.360***
(Pat Count Pctl, Occ-Link) (0.034) (0.038) (0.034)
N 3,668 3,668 3,668 3,668 3,668 3,668
R2 0.331 0.356 0.453 0.376 0.409 0.507

Year FE X X X X
Broad Occ FE X X
Broad Occ × Year FE X X
Occ Emp Shares X X X X X X

Notes: Census occupations over 1940–2018. Models weighted by annual occupational employment shares.
Broad occupations are 12 groups consistently defined over time. Robust standard errors in parentheses.
+p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table 3: Occupational New Title Emergence and Augmentation versus Automation Exposure, 1980–2018

(1) (2) (3) (4) (5) (6) (7)
A. Occupational New Title Count IHS, 1980–2018

AugX 0.146*** 0.158*** 0.144*** 0.154*** 0.159*** 0.151***
(Pat Count IHS, Occ-Link) (0.022) (0.015) (0.015) (0.024) (0.015) (0.014)
AutomX 0.105** -0.016 -0.003 -0.030
(Pat Count IHS) (0.033) (0.030) (0.027) (0.029)
N 1,212 1,212 1,212 1,212 1,212 1,212 1,212
R2 0.59 0.66 0.73 0.52 0.59 0.66 0.73

B. Occupational New Title Count Pctl, 1980–2018
AugX 0.335*** 0.440*** 0.439*** 0.432*** 0.483*** 0.474***
(Pat Count Pctl, Occ-Link) (0.075) (0.053) (0.052) (0.091) (0.054) (0.051)
AutomX 0.122+ -0.157+ -0.124+ -0.115
(Pat Count Pctl) (0.067) (0.082) (0.073) (0.073)
N 1,212 1,212 1,212 1,212 1,212 1,212 1,212
R2 0.24 0.34 0.45 0.17 0.25 0.34 0.45

Year FE X X X X X
Broad Occ FE X X
Broad Occ X Year FE X X
Occ Emp Shares X X X X X X X

Notes: Consistently defined Census occupations over 1980–2018. Models weighted by annual occupational employment
shares. Broad occupations are 12 groups consistently defined over time. Standard errors clustered by occupation in
parentheses. +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table 4: Occupational New Title Emergence and Demand Contractions from Import Competition

Years 2000 & 2018 Years 1980 & 1990 (Placebo Test)
(1) (2) (3) (4) (5) (6) (7) (8)

A. Occupational New Title Count IHS
ImportX 2000 & 2018 -0.089+ -0.118* -0.125* -0.118* 0.071 0.091 0.105 0.103
(100 × ∆ Imports) (0.052) (0.051) (0.051) (0.052) (0.139) (0.086) (0.076) (0.077)
AugX 2000 & 2018 0.270*** 0.328*** 0.325***
(Pat Count IHS, Ind-Link) (0.056) (0.061) (0.060)
AugX 1980 & 1990 0.247** 0.298*** 0.296***
(Pat Count IHS, Ind-Link) (0.080) (0.050) (0.051)
N 606 606 606 606 606 606 606 606
R2 0.368 0.435 0.566 0.568 0.581 0.614 0.658 0.659

B. Occupational New Title Count Pctl
ImportX 2000 & 2018 -0.117 -0.398** -0.210* -0.192+ 0.005 -0.174 0.074 0.063
(∆ Import Pctl) (0.117) (0.127) (0.102) (0.105) (0.158) (0.129) (0.120) (0.125)
AugX 2000 & 2018 0.518*** 0.633*** 0.620***
(Pat Count Pctl, Ind-Link) (0.092) (0.082) (0.084)
AugX 1980 & 1990 0.320+ 0.306* 0.310*
(Pat Count Pctl, Ind-Link) (0.164) (0.125) (0.126)
N 606 606 606 606 606 606 606 606
R2 0.264 0.359 0.493 0.495 0.225 0.246 0.292 0.294

Broad Occ FE X X X X
∆ Log Occ Emp X X
Year FE X X X X X X X X
Occ Emp Shares X X X X X X X X
Broad Ind Emp Shares X X X X X X X X

Notes: Consistently defined Census occupations. Models weighted by the average of start- and end-period occupational employment
shares. Standard errors clustered by occupation in parentheses. +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table 5: Occupational New Title Emergence
and Demand Expansions from Demographic Change

(1) (2) (3) (4) (5) (6)
A. Occupational New Title Count IHS

DemandX 0.141* 0.186*** 0.146*** 0.112* 0.171*** 0.148***
(100 × ∆ Demand) (0.057) (0.043) (0.043) (0.055) (0.041) (0.042)
AugX 0.140** 0.271*** 0.242*** 0.342***
(Pat Count IHS, Ind-Link) (0.049) (0.049) (0.053) (0.053)
N 602 602 602 602 602 602
R2 0.329 0.364 0.464 0.438 0.511 0.572

B. Occupational New Title Count Pctl
DemandX 0.188** 0.185** 0.139* 0.179** 0.166** 0.122*
(∆ Demand Pctl) (0.063) (0.061) (0.063) (0.060) (0.055) (0.058)
AugX 0.122+ 0.320*** 0.320*** 0.498***
(Pat Count Pctl, Ind-Link) (0.067) (0.070) (0.063) (0.065)
N 602 602 602 602 602 602
R2 0.222 0.236 0.333 0.343 0.405 0.470

Broad Ind Emp Shares X X
Broad Occ FE X X X
Year FE X X X X X X
Occ Emp Shares X X X X X X

Notes: Consistently defined Census occupations, 1980–2000 and 2000–2018. Models weighted by the av-
erage of start- and end-period occupational employment shares. Standard errors clustered by occupation
in parentheses. +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table 6: Occupational Employment Growth and Augmentation versus Automation Exposure, 1980–2018

Dependent variable: 100 × DHS Employment Change in Occupation-Industry Cells

(1) (2) (3) (4) (5) (6)
A. 1980–2018 Long Difference

AugX 2.38*** 3.24*** 3.68*** 3.51***
(Pat Count IHS, Ind×Occ-Link) (0.58) (0.57) (0.57) (0.57)
AutomX -7.00*** -2.29* -7.89*** -2.94**
(Pat Count IHS) (0.85) (1.10) (0.84) (1.09)
N 42,055 42,055 42,055 42,055 42,055 42,055
R2 0.43 0.49 0.44 0.48 0.45 0.49

B. 1980–2000 & 2000–2018 Stacked First Differences
AugX 1.05** 1.80*** 1.88*** 1.97***
(Pat Count IHS, Ind×Occ-Link) (0.33) (0.30) (0.31) (0.30)
AutomX -3.63*** -1.21* -4.15*** -1.62**
(Pat Count IHS) (0.46) (0.58) (0.46) (0.58)
N 81,328 81,328 81,328 81,328 81,328 81,328
R2 0.34 0.37 0.35 0.37 0.35 0.37

Broad Occ (× Year) FE X X X
Ind (× Year) FE X X X X X X

Notes: Consistently defined Census occupations and industries over 1980–2018. Models weighted by average
annual occupation-industry cell employment shares at the start and end of the time period. Broad occupations and
industries are 12 and 13 groups consistently defined over time. Standard errors clustered by occupation-by-industry
in parentheses. +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table 7: Occupational Wagebill Growth and Augmentation versus Automation Exposure, 1980–2018

Dependent variable: 100 × DHS Employment and Wagebill Changes in Occupation-Industry Cells

∆ E[Wagebill] ∆ Adj. Wagebill
∆ Employment ∆ Wagebill - ∆ Employment - ∆ Employment
(1) (2) (3) (4) (5) (6) (7) (8)

A. 1980–2018 Long Difference
AugX 3.68*** 3.51*** 3.11*** 3.10*** -0.62*** -0.50*** 0.06 0.11
(Pat Count IHS, Ind×Occ-Link) (0.57) (0.57) (0.57) (0.55) (0.11) (0.09) (0.09) (0.08)
AutomX -7.89*** -2.94** -8.26*** -2.28* -0.14 0.48** -0.22 0.22
(Pat Count IHS) (0.84) (1.09) (0.86) (1.08) (0.14) (0.16) (0.18) (0.20)
N 42,055 42,055 42,055 42,055 42,055 42,055 42,055 42,055
R2 0.45 0.49 0.47 0.52 0.40 0.47 0.40 0.45

B. 1980–2000 & 2000–2018 Stacked First Differences
AugX 1.88*** 1.97*** 1.52*** 1.68*** -0.34*** -0.29*** -0.02 -0.00
(Pat Count IHS, Ind×Occ-Link) (0.31) (0.30) (0.32) (0.30) (0.06) (0.04) (0.05) (0.04)
AutomX -4.15*** -1.62** -4.34*** -1.22* -0.07 0.33*** -0.12 0.07
(Pat Count IHS) (0.46) (0.58) (0.48) (0.58) (0.07) (0.08) (0.09) (0.11)
N 81,328 81,328 81,328 81,328 81,328 81,328 81,328 81,328
R2 0.35 0.37 0.37 0.40 0.44 0.50 0.33 0.37

Broad Occ (× Year) FE X X X X
Ind (× Year) FE X X X X X X X X

Notes: Dependent variable is Davis-Haltiwanger-Schuh (DHS) change in employment (columns 1-2), DHS change in wagebill (columns
3-4), DHS change in expected wagebill net of employment change (columns 5-6), DHS change in composition-adjusted wagebill net of
employment change (columns 7-8). Consistently defined Census occupations and industries over 1980–2018. Broad occupations and
industries are 12 and 13 groups consistently defined over time. Standard errors clustered by occupation-by-industry in parentheses.
+p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Appendix
This supplementary appendix contains additional details on data construction as well as
several robustness checks on our baseline results.

A Measuring new work
Here, we describe in more detail how we identify new occupation titles; and how total
employment in new work is constructed. We also show that occupational new title shares
are informative about the occupational distribution of individual-level employment in new
work, using Census Complete Count data.

A.1 Procedure for identifying new occupation titles

To extract new work added to the Census Alphabetical Index of Occupations (CAIO) be-
tween Census or ACS years t− 1 and t we use the following steps:

1. Clean titles in both t − 1 and t by removing capitalization, punctuation, as well as
certain common synonyms and decade-specific format changes we identify from in-
spection of CAIO volumes. This avoids unnecessarily flagging titles as potentially new
(“candidate-new”) if they are old titles that have been reformatted or reworded in
minor or predictable ways.

(a) Examples of format and wording changes which we discard from is titles like
“Accounting Work, Accountant” and “Ad Writer” being added in t when “Ac-
countant” and “Advertising Writer” already exist in t− 1.

(b) We also unify variations of titles which contain the same terms either in full or
abbreviated form, such as “db” for database, “pt” for physical therapy, “pv” for
photovoltaics, and “qc” for quality control.

(c) Prior to matching, We reduce -man, -person, -work, -er, -or, -ing, -ist etc. titles to
the same word base, e.g. “Salesperson”, ”Salesman” and “Sales work” are changed
to “sales”; “Adviser”, ”Advisor” and ”Advising” are degenerated to “advis”, and
‘Motorist” is degenerated to ”motor”.

(d) We clean plural forms, including those ending in “-s” or “-es”, and other specific
plural forms such as ‘-ies” when it is a plural of “-y”.

(e) We also discard new gender-specific or gender-neutral versions of existing titles,
e.g. we treat the titles “Actor” and “Actress” as one and the same; as we do
“Waiter”, “Waitress”, and “Waitstaff”; and we discard “Chipper Operator” as
new because it replaced “Chipperman”,

(f) We discard word order duplicates that are classified to the same Census occupation
(e.g. out of “Television Station Manager”, and “Manager, Television Station”, we
retain only one): these occur because at the time of its conception the alphabetical

70



index was used in printed form– multiple word orders were included to save coders
time in looking up entries. We retain any title duplicates classified to different
industries or occupations, as this may reflect (increasing) emergence of a type of
job (an example is the prevalence of IT-related titles across many industries).

(g) Examples of words we automatically denote as synonyms are “auto” and “au-
tomobile”; “equipment operator” and “operator”; “sales”, “selling”, and “sales
representative”; “garbage” and “rubbish”; “aide” and “assistant”; “gage” and
“gauge”.

2. Exact-match and fuzzy-match cleaned occupation titles between CAIOt to CAIOt−1.
We drop all exact title duplicates between t− 1 and t, disregarding any spacing differ-
ences in titles. For the remainder, we retain the three most similar t − 1 title match
for each t title. Specifically:

(a) For the exact match, we simply match the cleaned titles in t to t − 1, discard
exact matches, and retain the set of unmatched CAIOt titles as “candidate-new”
titles.

(b) Next, we fuzzy match the CAIOt candidate-new titles to all CAIOt−1 cleaned
titles. We use a fuzzy-matching Jaro-Winkler algorithm which matches based on
letter-swaps, implemented in R as the package stringdist (van der Loo, 2014).
This assigns high similarity (i.e. low distance) scores to titles where a low num-
ber of single-character transpositions are required to change one word into the
other.56 It also gives higher similarity to strings matching from the beginning up
to some specified length: we set the constant scaling factor determining this at
the standard value of 0.1. For example, titles which are identical except for a
hand-keying error (“Mechanotheraplst” and “Mechanotherapist”) receive a high
similarity score.

3. Adjudicate remaining unmatched t+ 1 titles (“candidate-new” titles) by classifying them
as new or not new, using a combination of automated assignment and careful manual
revision. The large majority of candidate-new titles are manually revised, with only
around 1,034 automatically assigned. We observe 273,960 total titles over 1940–2018,
of which we identify 28,315 as new over the whole period.

Our overarching principle for determining whether a candidate-new title reflects new
work is that the title either is a type of job that was entirely nonexistent in the prior pe-
riod, or reflects some differentiation or specialization of existing work. These latter cases
are much more common, and can arise from new or specialized work domains, specialization
in educational or professional requirements, or the use of specialized work methods (e.g.
by hand or using a machine). On the other hand, candidate-new titles are discarded (i.e.

56Note that we have already discarded word order duplicate titles prior to implementing this algorithm.
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marked as not new) when they reflect a renaming, reformatting, or generalization of pre-
viously existing work. This manual revision process is time-consuming because it requires
looking beyond fuzzy-match results and searching the entire t−1 index for comparable work.

We implement these principles into the following specific rules for classifying a candidate-
new title as new or not new – while not exhaustive, these rules capture commonly occurring
cases. A t candidate-new title is:

1. New when it is a differentiation of a t title, e.g. “Clinical Psychologist” is new in 1950 as
a differentiation of “Psychologist”, and “Assembler, Electrical Controls” is new in 1990
as a differentiation of “Assembler, n.s.”. This is by far the most commonly occurring
type of new title.

2. New when it adds specialized work tools to a t − 1 title, most commonly ‘hand’ or
‘machine’; or specializes operators and set-up operators. E.g. “Bookkeeping Clerk,
Machine” is new in 1970 because before only “Bookkeeping Clerk” was listed; and
“Drill-Press Set-Up Operator” is new when it is added to “Drill-Press Operator”.

3. New when it adds some additional educational or professional differentiation to a t− 1
title. E.g. “Licensed Addiction Counselor” is new in 2018 as an addition to “Addiction
Counselor”; and “Health Therapist, Less Than Associate Degree” is new in 1990 as
an addition to “Health Therapist”. This is a type of new title that occurs relatively
infrequently.

4. New when it adds “not specified” or “not elsewhere classified” to a t − 1 title. This
reflects more types of this title are emerging which (for the time being) are listed as
n.s. / n.e.c. For example, “Mechanic, Instrument, n. s.” is added in 1980.

5. New when it bifurcates a t−1 title into two separate types, usually marked with “incl”,
“exc”, or “any other”. E.g. in 1980 the title “Sitter, exc. Child Care” was new since
before only “Sitter” had existed.

6. Not new when it simply reorganizes information across various columns of the index
for the same title. E.g. “Apprentice Dentist” was discarded as new in 1940 because it
already existed in 1930. This is a common reason for discarding candidate-new titles.

7. Not new when it is generalization from previously-specified title, e.g. “Ad Taker” is
not new in 1980 because it simply subsumes the 1970 titles “Classified-Ad Taker” and
“Telephone-Ad Taker”; and “Inspector Agricultural commodities” is not new in 1980
because it subsumes “Inspector Fruit”, “Inspector Food”, and “Inspector Livestock”.

8. Not new when it is the same as a t − 1 title except for filler words. E.g. “Software
Applications Developer” is not new in 2018 because the title “Software Developer”
already existed before.

9. Not new when a title is a combination of two existing titles. E.g. “Inker and opaquer”
is not new in 1980 because both “Inker” and “Opaquer” already existed in 1970.
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A.2 Using new title shares as a measure of employment in new work

A.2.1 Constructing total employment in new work in 2018

We sum the number of new titles added over 1940–2018, nrnew, and divide this by the total
number titles in the 2018 index adjusted for titles that were removed ñr2018, separately by
broad occupation J . The adjustment in the total title count consists of adding in the implied
total number of removed titles nrdead, if this number is positive. That is, the cumulate new
title share over 1940–2018 is nrnew

ñr2018
where ñr2018 ≡ nr2018 +nrdead ≡ nr2018 +nrnew−(nr2018−

nr1940).

A.2.2 Comparison of occupational new title shares to individual-level employ-
ment in new work in 1940

Since we do not observe individual workers employed in new and old micro occupation titles,
we use occupational new title shares as a measure of employment in new work.

Importantly, our analyses relating new work emergence (as well augmentation and au-
tomation exposure) to occupational employment growth do not require making any assump-
tions about employment numbers in new versus old titles. However, it is valuable to explore
the relationship between new titles and employment in new work to contextualize our find-
ings.

We use individual-level data from the 1940 Census Complete Count (CCC) to compare
new title shares and employment in new work. We link 84% of employed, working age
individuals in the CCC to micro titles in the Census Alphabetical Index by implementing
a combination of fuzzy-matching and term-frequency-inverse-document-frequency (TF-IDF)
techniques. Overall, 81% of micro titles in the Census Alphabetical Index are linked to at
least one CCC worker.

Individual employment counts in matched occupation titles are aggregated to the ‘macro’
occupation level to calculate the share of workers employed in each occupation. We also rank
occupations by both the share of new titles and the share of employment in new titles to
explore relationships between relative measures of new title share and new work share. Figure
A1 shows the correlation between new title share and employment share in new titles in the
left panel, and the rank of new titles and rank of employment share in new titles in the right
panel.

We find that the relationship between new title share and employment share in new titles
is highly significant with a p-value of less than 0.01 for both the regression of new title shares
and rank of new title shares. Figure A1 suggests that the rank of new title shares is a better
measure for capturing relationships between new title shares and, employment shares in new
titles, than the underlying new title shares themselves: the coefficient on new title share and
R2 value increases from 0.229 and 0.115 in regressions using new title shares to 0.782 and
0.615 in regressions using ranks of new title shares.

While the slope in the left panel suggests that employment in new titles is substantially
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Figure A1: Comparison of New Title Shares and Employment in New Work, 1940

Note: The left panel shows the relationship between the share of new titles by occupation and the
share of employment in new titles. The right panel compares the rank of new title share and the
rank of employment across macro occupations, where the lowest rank represents the occupation
with the lowest share.

lower than employment in existing titles, there are at least two sources of bias that can gen-
erate an underestimate of the true employment count in new titles. First, new titles often
represent the specialization of an existing title. Census respondents who are employed in
specialized fields may choose to report the more general version of their occupation, while
workers with broad occupational responsibilities are unlikely to report specialized occupa-
tions. This can cause new specialized occupations to be systematically categorized as existing
work, thereby underestimating our estimate of employment in new work. Second, new titles
appear to be more difficult to link to census write-ins than existing titles. We find that
respondents with CCC write-ins that match exactly to titles in the Census Alphabetical
Index have lower rates of employment in new titles compared with workers matched to the
Census Alphabetical Index using more flexible matching procedures. As a result, we expect
the true rates of employment in new titles to be larger than the employment shares reported
in Figure A1.

A.2.3 Characteristics of workers employed in new work and existing work in
1940

Among workers who matched to occupation titles from the Census Alphabetical Index, 1.4%
are employed in new titles. In Table A1 we compare the the earnings and education levels of
workers employed in new work compared to those employed in pre-existing work. Columns
5 shows that, controlling for age, sex, race, geography, and occupation, workers who earned

74



$1000 more in 1940 are 0.1 percentage points more likely to be employed in new work,
corresponding to a 7% increase (= 0.1/1.4). Similarly, the likelihood of employment in new
work increases substantially with the education level: high school graduates and college
graduates are 14% and 36% more likely to be employed in new work relative to a worker
with a less than 9th grade education.

We report the most common new titles by education level in Table A2. While some occu-
pations, such as “foreman” and “driver salesman” are accessible across all education levels,
new titles that require advanced certifications, such as “petroleum engineer”, or “patent
attorney” are limited to those with college degrees.

Table A1: Earnings and Education Level for Workers in New vs. Pre-Existing Titles

Dependent variable: Dummy for being employed in new work
(1) (2) (3) (4) (5)

Earnings 0.002*** 0.001*** 0.001***
(0.00001) (0.00002) (0.00002)

Education level (Reference category: Less than 9th grade education)

Some high school 0.005*** 0.002*** 0.002***
(0.0001) (0.0001) (0.0001)

High school 0.002*** 0.003*** 0.003***
(0.0001) (0.0001) (0.0001)

Some college 0.003*** 0.005*** 0.005***
(0.0001) (0.0001) (0.0001)

College 0.001*** 0.006*** 0.005***
(0.0001) (0.0001) (0.0001)

Occupation FE X X X
Full Controls X
N 28,660,196 28,660,196 28,143,887 28,143,887 28,143,887
R2 0.001 0.130 0.0003 0.130 0.130

Notes: Linear probability models. Education estimates compare the probability of employment in new work with
workers who have a less than 9th grade education level. Columns 3, 4, and 5 include only observations for workers
who are ≥ 25 years old. Column 5 includes controls for occupation, age, sex, race, state, and urban/rural status.
Earnings measured in thousands in 1940 dollars.
+p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table A2: Most Common New Titles by Education Level

Rank Less Than 9th Grade High School At Least Some College
1 c.c.c. foreman driver salesman druggist pharmacist
2 driver salesman c.c.c. foreman c.c.c. foreman
3 pattern maker letterer carrier driver salesman
4 letterer carrier pattern maker job interviewer
5 metal finisher accounting clerk petroleum engineer
6 route salesman recreation attendant naval official
7 c.c.c. worker druggist pharmacist accounting clerk
8 share cropper route salesman research work or worker
9 spot welder nurse aid patent attorney
10 grader operator helper chemist research clerk
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B Patents
B.1 Linking patents to occupations and industries

Table A3 shows examples of linked patents for a number of Census industries; similarly,
Table A4 shows of examples of linked patents for a number of Census occupations.

Table A5 shows the most and least augmentation-exposed consistently defined Census
occupations within each broad occupation group, averaged over 1980–2018, where patents
have been linked to industry titles. Tables A6 and A8 show the analogous information for
occupation-linked augmentation exposure, and automation exposure, respectively.
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Table A3: Examples of Individual Patents Linked to Census Industries

Patent name Linked Industry

A. Examples of Industry Linkages for 1940
Method of cultivating plants Agriculture
Variable speed transmission mechanism Automobile storage, rental, and repair services
Process of making and packaging pie crust dough Bakery products
Bank-check post-card folder Banking and other finance
Chewing gum confection Confectionery
Gypsum lumber Cut-stone and stone products
Apparatus for pasteurizing liquids Dairy products stores and milk retailing
Compartment dish for hors d’oeuvre Eating and drinking places
Wirelessly energized electrical appliance Electric light and power
Protective covering for plants Forestry except logging
Collapsible table and seat Furniture and store fixtures
Knitted stocking foot protector Knit goods
Medicine glass cover and marker Medical and other health services
Process of making abrasive materials Miscellaneous chemical industries
Stapling device Miscellaneous iron and steel industries
Manufacture of color-pictures Paints, varnishes, and colors
Radio amplifying system Radio broadcasting and television
Method of making viewing gratings for relief or stereoscopic pictures Theaters and motion pictures

B. Examples of Industry Linkages for 2018
Mobile phone payment processing methods and systems Accounting, tax preparation, bookkeeping, and payroll services
Methods and compositions for improving plant health Agricultural chemical manufacturing
Portable folding type hairstyling tool Beauty salons
Digital video capture system and method with customizable graphical overlay Computer and peripheral equipment manufacturing
Cropping systems for managing weeds Crop production
Devices and methods for treating pain associated with tonsillectomies Drugs, sundries, chemical and allied products wholesalers
Multi-pronged spear-fishing spear tip Fishing, hunting and trapping
Showerhead mounting to accommodate thermal expansion Household appliance manufacturing
System and method for data publication through web pages Newspaper publishers
Video visitation system and method for a health care location Offices of other health practitioners
Hemoglobin display and patient treatment Outpatient care centers
Abuse-proofed dosage system Pharmacies and drug stores
Suspendable and stackable vertical planter Pottery, ceramics, and plumbing fixture manufacturing
Method and system for securing online identities Securities, commodities, funds, trusts, and other financial investments
Golf club head with adjustable center of gravity Sporting goods, and hobby and toy stores
Document revisions in a collaborative computing environment Software publishers
Controlling power consumption of a mobile device based on gesture recognition telecommunications, except wired telecommunications carriers
Wired, wireless, infrared, and powerline audio entertainment systems Wired telecommunications carriers
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Table A4: Examples of Individual Patents Linked to Census Occupations

Patent name Linked Occupation

A. Examples of Occupation Linkages for 1940
Thermal insulating material Asbestos and insulation workers
Pie making process Bakers
Towing dolly Chauffeurs and drivers, bus, taxi, truck, and tractor
Process for the production of antiseptic agents Chemical engineers
Corn popper Cooks–except private family
Lever locking device Cranemen, hoistmen, and construction machinery operators
Toecap for toe dancing shoes Dancers, dancing teachers, and chorus girls
Spring roller venetian blind Decorators and window dressers
Multiple elevator system Elevator operators
Artificial fish bait Fishermen and oystermen
Fruit squeezer Fruit and vegetable graders and packers–except in cannery
Combination hand weeder and cultivator Gardeners–except farm and groundskeepers
Mail covering Mail carriers
Variable speed power transmission mechanism Mechanics and repairmen–railroad and car shop
Chord finder for tenor banjos Musicians and music teachers
Roof sump or floor drain Plumbers and gas and steam fitters
Guided transmission of ultra high frequency waves Radio and wireless operators
Telephone and telegraph signaling system Telegraph operators

B. Examples of Occupation Linkages for 2018
Systems and methods for unmanned aerial vehicle navigation Aircraft pilots and flight engineers
Stabilised supersaturated solids of lipophilic drugs Chemists and materials scientists
Telepresence robot with a camera boom Communications equipment operators, all other
Systems and methods for detecting malware on mobile platforms Computer programmers
Method of treating Attention Deficit Hyper-Activity Disorder Counselors, all other
Document revisions in a collaborative computing environment Editors
Mobile personal fitness training Exercise trainers and group fitness instructors
Broccoli based nutritional supplements Food cooking machine operators and tenders
Insulation with mixture of fiberglass and cellulose Insulation workers
Determining text to speech pronunciation based on an utterance from a user Interpreters and translators
Rotary drill bit including polycrystalline diamond cutting elements Jewelers and precious stone and metal workers
Method and system for navigating a robotic garden tool Landscaping and groundskeeping workers
Cuticle oil dispensing pen with ceramic stone Manicurists and pedicurists
Adaptive audio conferencing based on participant location Meeting, convention, and event planners
Identification and ranking of news stories of interest News analysts, reporters, and journalists
Fumigation apparatus Pest control workers
Low profile prosthetic foot Podiatrists
Invertible trimmer line spool for a vegetation trimmer apparatus Tree trimmers and pruners
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Table A5: Top and Bottom Augmentation-Exposed Occupations by Broad Occupation Group,
Using Ind-Linked Augmentation Patents

Broad Occupation Consistent Census Occupation Avg AugX Pctl
Farm & Mining Explosives workers 51.8

Farmers (owners and tenants) 9.8
Health Services Health and nursing aides 29.7

Dental Assistants 5.8
Personal Services Personal service occupations, n.e.c 52

Barbers 4
Cleaning & Protective Services Guards and police, except public service 71

Pest control occupations 15.5
Construction Repairers of data processing equipment 94

Plasterers 31.5
Transportation Packers and packagers by hand 85.3

Bus drivers 13.8
Production Assemblers of electrical equipment 99.5

Bakers 19.5
Clerical & Admin Shipping and receiving clerks 91.5

Hotel clerks 1.5
Sales Salespersons, n.e.c. 94.2

Cashiers 34
Technicians Engineering technicians 98.3

Sheriffs, bailiffs, correctional institution officers 4.3
Professionals Electrical engineers 99.8

Primary school teachers 1
Managers Purchasing managers, agents, and buyers, n.e.c. 94

Funeral directors 5.8
Note: Table shows consistent Census occupations with the highest and lowest augmentation exposure percentile
within each broad occupation group, averaged over 1980–2018. Augmentation exposure constructed through in-
dustry linkages.
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Table A6: Top and Bottom Augmentation-Exposed Occupations by Broad Occupation Group,
Using Occ-Linked Augmentation Patents

Broad Occupation Consistent Census Occupation Avg AugX Pctl
Farm & Mining Other mining occupations 83.5

Fishers, marine life cultivators, hunters, and kindred 36.8
Health Services Health and nursing aides 59.5

Dental Assistants 10.5
Personal Services Recreation facility attendants 80

Bartenders 1
Cleaning & Protective Services Laundry and dry cleaning workers 86.5

Supervisors of cleaning and building service 5.5
Construction Misc. construction and related occupations 95.3

Plasterers 4.5
Transportation Machine feeders and offbearers 97.3

Helpers, surveyors 19.8
Production Extruding and forming machine operators 100

Machinists 5.5
Clerical & Admin Office machine operators, n.e.c. 90.5

Proofreaders 4.8
Sales Cashiers 63.8

Sales demonstrators, promoters, and models 22.8
Technicians Engineering technicians 94.8

Drafters 1.8
Professionals Chemical engineers 90.8

Dieticians and nutritionists 1
Managers Management analysts 67

Funeral directors 1
Note: Table shows consistent Census occupations with the highest and lowest augmentation exposure percentile within
each broad occupation group, averaged over 1980–2018. Augmentation exposure constructed through occupation link-
ages.
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Table A7: Top and Bottom Augmentation-Exposed Occupations by Broad Occupation Group,
Using Ind-Occ-Linked Augmentation Patents

Broad Occupation Consistent Census Occupation Avg AugX Pctl
Farm & Mining Other mining occupations 86.5

Fishers, marine life cultivators, hunters, and kindred 57.2
Health Services Health and nursing aides 64.9

Dental Assistants 37.8
Personal Services Recreation facility attendants 81.1

Bartenders 25.2
Cleaning & Protective Services Laundry and dry cleaning workers 70.3

Housekeepers, maids, butlers, and cleaners 29.1
Construction Misc. construction and related occupations 95

Plasterers 37.8
Transportation Construction laborers 96.7

Taxi cab drivers and chauffeurs 50.5
Production Molders and casting machine operators 96.7

Boilermakers 42.3
Clerical & Admin Office machine operators, n.e.c. 86.4

Hotel clerks 29.7
Sales Salespersons, n.e.c. 82.5

Sales demonstrators, promoters, and models 58.2
Technicians Engineering technicians 92

Dental hygienists 25.4
Professionals Chemical engineers 93.6

Physicists and astronomists 12
Managers Management analysts 81.6

Funeral directors 8.3
Note: Table shows consistent Census occupations with the highest and lowest augmentation exposure percentile within
each broad occupation group, averaged over 1980–2018. Augmentation exposure constructed through occupation-
industry linkages.
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Table A8: Top and Bottom Automation-Exposed Occupations by Broad Occupation Group

Broad Occupation Consistent Census Occupation Avg AutomX Pctl
Farm & Mining Drillers of oil wells 83

Fishers, marine life cultivators, hunters, and kindred 32.8
Health Services Health and nursing aides 55.5

Dental Assistants 38.8
Personal Services Recreation facility attendants 45.3

Guides 5.3
Cleaning & Protective Services Laundry and dry cleaning workers 61.5

Supervisors of guards 5.5
Construction Machinery maintenance occupations 98.3

Supervisors of mechanics and repairers 27.5
Transportation Construction laborers 91.5

Parking lot attendants 12.8
Production Production checkers, graders, and sorters in manufacturing 100

Other woodworking machine operators 33
Clerical & Admin Technicians, n.e.c. 77.8

Hotel clerks 4.3
Sales Cashiers 46.8

Sales demonstrators, promoters, and models 15.3
Technicians Chemical technicians 94.5

Sheriffs, bailiffs, correctional institution officers 2
Professionals Chemical engineers 94.8

Sales engineers 1
Managers Purchasing agents and buyers of farm products 47.3

Managers of medicine and health occupations 10
Note: Table shows consistent Census occupations with the highest and lowest automation exposure percentile within each broad
occupation group, averaged over 1980–2018.
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C Relationship between patent linkages and task content
In Table A9, we explore the cross-sectional relationship between automation and augmenta-
tion in an occupation and the task content of the occupation by regressing each task content
measure on patent counts. The measures of “eye-hand-foot coordination”, “finger dexterity”,
“direction, control and planning”, “sets limits, tolerances, and standards” and “GED math”
task content are obtained from Autor et al. (2003). Following Autor and Dorn (2013), “rou-
tine” task content averages “set limits, tolerances, and standards” and “finger dexterity”;
and “abstract” task content averages “direction, control and planning” and “GED math”.
Note that “manual” task content from Autor and Dorn (2013) is identical to “eye-hand-foot
coordination”. Task measures are collapsed from the occ1990dd level to the level of our mod-
ified consistent occupation codes, occ1990dd 18, which allow for extension to 2018. Panel
A uses the inverse hyperbolic sine (IHS) of patent counts and the original ten-point scale
for the task measures. Panel B uses year-specific percentiles of both patent counts and task
content.
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Table A9: Cross-Sectional Relationship between Occupational Augmentation and Automation Exposure and
Occupational Task Content

Direction, Set limits,
Eye-hand-foot Finger control and and tolerances,

Routine Abstract coordination dexterity planning and standards GED math
(1) (2) (3) (4) (5) (6) (7)

A. Occupational task content
AugX -0.206*** 0.027 -0.007 -0.181*** 0.136* -0.230*** -0.082**
(Pat Count IHS, Occ-Link) (0.044) (0.041) (0.020) (0.030) (0.058) (0.063) (0.028)
AutomX 0.556*** -0.256*** 0.095*** 0.292*** -0.431*** 0.820*** -0.080*
(Pat Count IHS) (0.037) (0.055) (0.021) (0.025) (0.082) (0.056) (0.033)
R2 0.344 0.094 0.044 0.280 0.105 0.317 0.074

B. Occupational task content percentile
AugX -0.369*** 0.009 0.033 -0.407*** 0.215** -0.299*** -0.126*
(Pat Count Pctl, Occ-Link) (0.074) (0.064) (0.075) (0.069) (0.069) (0.073) (0.055)
AutomX 0.841*** -0.341*** 0.247*** 0.708*** -0.560*** 0.769*** -0.149**
(Pat Count Pctl) (0.050) (0.063) (0.059) (0.049) (0.065) (0.050) (0.054)
R2 0.377 0.109 0.067 0.267 0.190 0.358 0.071

Notes: Estimates pool patent counts from 1980 to 2018. All models are weighted by year-specific occupational employment share, include year fixed
effects, and have 1,212 observations. Columns 1 and 2 use the routine and abstract task content measures defined in Autor and Dorn (2013) and columns
4-7 use the task measures defined in Autor et al. (2003). +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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D Constructing demand shifts
Here, we outline in more detail how we construct demand shifts relating to changes in import
competition from China, and to population aging.

D.1 Constructing demand shift from Chinese import competition

We obtain import data for manufacturing industries classified by consistent SIC 87 codes
(‘SIC87dd’) over 1991–2014 from Autor et al. (2013). We crosswalk these to consistent
Census industries (‘ind1990ddx’) using 1991 value-added weights obtained from the NBER-
CES Manufacturing Industry Database. Since employment data are observed by a different
consistent Census industry, ‘ind1990dd18’ which is mostly but not entirely compatible with
ind1990ddx codes, we create a new classification (‘ind1990ddx18’) which aggregates man-
ufacturing categories where needed. This gives us a balanced panel of 69 manufacturing
industries.

We retain years 1991, 2000, and 2014, and construct long differences over 1991–2000 and
2000–2014, scaling these up to match the time periods of our other data (1990–2000 and
2000–2018). For each industry, this gives us two changes in import competition, defined as
changes in Chinese imports for other developed countries (∆MOC

i,t ) divided by the industry’s
U.S. market size in 1988 (U.S. industry output plus imports minus exports, Yi,1988 +Mi,1988−
Ei,1988).

Using this, we then construct occupational exposure to these changes in import com-
petition, as seen in equation 27. Note that for non-manufacturing industries, the values
are set to zero, such that an occupation’s exposure depends on exposure to manufacturing
industries as well as exposure to manufacturing industries that have experienced different
amounts of import competition from China. Our regression models control for occupational
employment shares in manufacturing.

D.2 Constructing demand shift from population aging

We use Bureau of Labor Statistics’ Consumption Expenditure (CE) data over 2002–2018
combined with Census population data over 1980–2018 to predict the annual demand for
each Uniform Commercial Code (UCC) product category over 1970–2018 (largely following
DellaVigna and Pollet (2007)), and then crosswalk these predictions to consistent industries
(ind1990dd 18) to obtain predicted consumption by industry. The main text describes how
these consumption levels by industry are then used to construct occupational exposure to
industry demand shifts.

For each UCC category (k), we take the following steps.

1. Annualize consumption. The CE data are an unbalanced panel, because each
consumption unit (CU)– effectively a household– does not occur in every monthly
survey. We therefore use the twelve monthly CE surveys within each calendar year
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and scale up the recorded consumption of the CU by 12/(number of months the CU
appears in the survey).

2. Pool data years. We pool the annualized CE data across 2002–2018 because some
UCC categories are not present in all years – we scale consumption for each UCC by
the number of years they are observed. This yields cik, the average annual consumption
for consumption unit i and UCC product category k.

3. Estimate age-consumption profiles. Next, we estimate the age-consumption pro-
file relating consumption by consumption unit i and product category k to the house-
hold structure observed in the CE data:

cik =
∑
j

βjkHij +
∑
j

γjkSij +
∑
j

δjkOij + εik

where Hij is the dummy indicating whether household i has a head in age bin j, Sij
is a dummy indicating whether household i has a spouse in age bin j, and Oij is the
number of other people (i.e. other than head or spouse) of household i in age bin j,
and εik is the error term. Note that this regression has no intercept, such that the
coefficients can be interpreted as consumption per household member. We estimate
this model separately for each UCC product category and weight models by population
weights. Note that pooling data across years assumes consumption profiles by age are
stable over time: this is supported by DellaVigna and Pollet (2007)’s analysis.

4. Calculate household age shares. We estimate year-averaged shares of head, spouse,
and other people using population weights available in CE data:

hj =
∑
i Nr of heads in CU i in age bin j × CU i’s pop weight∑

i Nr of total members of CU i in age bin j × CU i’s pop weight

sj =
∑
i Nr of spouses in CU i in age bin j × CU i’s pop weight∑

i Nr of total members of CU i in age bin j × CU i’s pop weight

oj =
∑
i Nr of other people in CU i in age bin j × CU i’s pop weight∑
i Nr of total members of CU i in age bin j × CU i’s pop weight

5. Predict consumption. Here we combine the estimated age-consumption coefficients
and household share data (constructed above in steps 3 and 4, respectively) with Census
population data over 1980–2018 to obtain aggregate predictions of consumption:

ĉkt =
∑
j

Njt × (β̂j,khj + γ̂j,ksj + δ̂jkoj),

where Njt is the total U.S. population within the age bin j in year t. As such, ĉkt is
predicted consumption for product category k in year t, based on the changing age
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distribution of the population over 1980–2018.

6. Crosswalk predictions to consistent Census industries. As a final step, we cross-
walk these predictions to consistent Census industries. The crosswalk path is as follows:
CE → PCE 2017 → BEA commodity 2012 → BEA industry 2012 → NAICS 2012 →
NAICS 2007→ CIC 2010→ CIC 1990→ ind1990dd→ ind1990dd 18, where

• CE is the Consumer Expenditure Survey;
• PCE 2017 are 2017 Personal Consumption Expenditures;
• BEA commodity 2012 are 2012 Bureau of Economic Analysis commodity codes;
• BEA industry 2012 are 2012 Bureau of Economic Analysis industry codes;
• NAICS 2012 are 2012 North American Industry Classification System codes;
• NAICS 2007 are 2007 North American Industry Classification System;
• CIC 2010 are 2010 Census industry codes;
• CIC 1990 are 1990 Census industry codes;
• ind1990dd are consistent industry codes constructed by David Dorn; and
• ind1990dd 18 are our modified version of these codes to allow extension of the

panel to 2018.

To link CE to PCE we use the weights indicated by the BLS. PCE categories that
match to multiple BEA commodities are split using weights generated by producer
value. Using producer values allows us to manually include the trade and transporta-
tion margins from the BEA use table when crosswalking PCE to BEA commodity
codes. This adjustment allows us to avoid dropping retail and wholesale commodities.
In all other crosswalks, expenditures are split evenly when one category matches to
multiple categories. In our baseline demand shift results shown in Table 5, we used full
input-output adjustments since industry demands intrinsically have an input-output
component. Our results are robust to using demand shifts without input-output link-
ages, i.e. equating BEA commodity and industry codes.

Figure A2 shows changes in the population by age over 1980–2000 and 2000–2018, high-
lighting the importance of the aging Baby Boom generation. In the first period, this cohort
was prime-aged and having children, also leading to an increase for ages 0 to 10. Over the
subsequent two decades, this cohort entered older age groups, creating a large spike at ages
55 and above, as well as a smaller increase in the number of young adults.
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Figure A2: U.S. Population Change by Age, 1980–2000 and 2000–2018
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E Robustness checks
This Appendix presents several robustness checks on our results: these are referenced and
described in the main text.
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Table A10: Occupational Employment in New Work and Augmentation Exposure, 1940–2018

(1) (2) (3) (4) (5)
A. 100 × IHS Employment in New Work, Occupation-Industry Cells

AugX 6.83*** 7.74*** 4.49* 9.43*** 9.95***
(Pat Count IHS, Occ-Link) (2.02) (1.86) (2.12) (2.06) (1.97)
N 328,715 328,715 328,715 328,715 328,715
R2 0.475 0.572 0.495 0.537 0.623

B. Percentile of Employment in New Work, Occupation-Industry Cells
AugX 0.141*** 0.153*** 0.150*** 0.182*** 0.192***
(Pat Count Pctl, Occ-Link) (0.031) (0.031) (0.032) (0.031) (0.031)
N 328,715 328,715 328,715 328,715 328,715
R2 0.412 0.471 0.443 0.461 0.516

Broad Ind × Year FE X X
Ind × Year FE X X
Broad Occ × Year FE X X X

Notes: Census occupations and industries over 1940–2018. Models weighted by annual occupation-industry em-
ployment shares. Broad industries and occupations are each 12 groups consistently defined over time. Standard
errors clustered by occupation-year in parentheses. +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table A11: Occupational Employment Growth and Augmentation versus Automation Exposure, 1980–2018

Dependent variable: 100 × DHS Employment Change in Occupation-Industry Cells

(1) (2) (3) (4) (5) (6)
A. 1980–2018 Long Difference

AugX 0.26** 0.44*** 0.51*** 0.50***
(Pat Count Pctl, Ind×Occ-Link) (0.08) (0.08) (0.08) (0.08)
AutomX -0.61*** -0.25* -0.71*** -0.33**
(Pat Count Pctl) (0.07) (0.10) (0.07) (0.10)
N 42,055 42,055 42,055 42,055 42,055 42,055
R2 0.43 0.49 0.45 0.48 0.45 0.49

B. 1980–2000 & 2000–2018 Stacked First Differences
AugX 0.15** 0.29*** 0.32*** 0.33***
(Pat Count Pctl, Ind×Occ-Link) (0.06) (0.05) (0.05) (0.05)
AutomX -0.35*** -0.13* -0.41*** -0.19**
(Pat Count Pctl) (0.04) (0.06) (0.04) (0.06)
N 81,328 81,328 81,328 81,328 81,328 81,328
R2 0.34 0.37 0.35 0.37 0.35 0.37

Broad Occ (× Year) FE X X X
Ind (× Year) FE X X X X X X

Notes: Consistently defined Census occupations and industries over 1980–2018. Models weighted by average
annual occupation-industry cell employment shares at the start and end of the time period. Broad occupations and
industries are 12 and 13 groups consistently defined over time. Standard errors clustered by occupation-by-industry
in parentheses. +p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table A12: Occupational Wagebill Growth and Augmentation versus Automation Exposure, 1980–2018

Dependent variable: 100 × DHS Employment/Wagebill Change in Occupation-Industry Cells

∆ E[Wagebill] ∆ Adj. Wagebill
∆ Employment ∆ Wagebill - ∆ Employment - ∆ Employment
(1) (2) (3) (4) (5) (6) (7) (8)

A. 1980–2018 Long Difference
AugX 0.51*** 0.50*** 0.43*** 0.44*** -0.09*** -0.07*** 0.01 0.01
(Pat Count Pctl, Ind×Occ-Link) (0.08) (0.08) (0.08) (0.08) (0.01) (0.01) (0.01) (0.01)
AutomX -0.71*** -0.33** -0.75*** -0.27** -0.01 0.05*** -0.03* 0.01
(Pat Count Pctl) (0.07) (0.10) (0.07) (0.10) (0.01) (0.01) (0.01) (0.02)
N 42,055 42,055 42,055 42,055 42,055 42,055 42,055 42,055
R2 0.45 0.49 0.47 0.52 0.40 0.48 0.40 0.45

B. 1980–2000 & 2000–2018 Stacked First Differences
AugX 0.32*** 0.33*** 0.26*** 0.29*** -0.05*** -0.04*** -0.00 0.00
(Pat Count Pctl, Ind×Occ-Link) (0.05) (0.05) (0.05) (0.05) (0.01) (0.01) (0.01) (0.01)
AutomX -0.41*** -0.19** -0.43*** -0.15* -0.01 0.03*** -0.02* 0.00
(Pat Count Pctl) (0.04) (0.06) (0.05) (0.06) (0.01) (0.01) (0.01) (0.01)
N 81,328 81,328 81,328 81,328 81,328 81,328 81,328 81,328
R2 0.35 0.37 0.37 0.40 0.44 0.50 0.33 0.37

Broad Occ (× Year) FE X X X X
Ind (× Year) FE X X X X X X X X

Notes: Dependent variable is Davis-Haltiwanger-Schuh (DHS) change in employment (columns 1-2), DHS change in wagebill (columns
3-4), expected DHS change in wagebill net of employment change (columns 5-6), expected DHS change in composition-adjusted wagebill
net of employment change (columns 7-8). Consistently defined Census occupations and industries over 1980–2018. Broad occupations
and industries are 12 and 13 groups consistently defined over time. Standard errors clustered by occupation-by-industry in parentheses.
+p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

93



F Proofs to propositions
Proof to Proposition 1

The price index Pj is the minimum cost for buying an additional unit of good j in equi-
librium. Given that equation (4) is CES, the corresponding expression for the marginal cost
of producing Yj is given by:

Pj =
[∫ Nj

Nj−1
pj(i)1−σdi

] 1
1−σ

(A1)

Using equation (8), equation (A1) can be written as:

P 1−σ
j =

∫ Nj

Nj−1
R

[1−η][1−σ]
j di+

∫ Nj

Ij

[
Wj

γj(i)

][1−η][1−σ]

di

= [Ij −Nj + 1]R1−σ̂
j +W 1−σ̂

j

∫ Nj

Ij
γj(i)σ̂−1di (A2)

with [1− η][1− σ] = 1− σ̂ given that σ̂ ≡ [1− η]σ + η.
We can rewrite the factor-market clearing conditions (equations (12) and (13)) to solve

for Wj and Rj in equilibrium:

Wj =
[

[1− η]βjY P σ−1
j

Lj

∫ Nj

Ij
γj(i)σ̂−1di

] 1
σ̂

(A3)

and

Rj =
[

[1− η]βjY P σ−1
j

Kj

[Ij −Nj + 1]
] 1
σ̂

(A4)

Substituting the expressions for Wj and Rj from equations (A3) and (A4) into equation
(A2) gives:

P 1−σ
j =[Ij −Nj + 1]

[
[1− η]βjY P σ−1

j

Kj

[Ij −Nj + 1]
] 1−σ̂

σ̂

(A5)

+
[

[1− η]βjY P σ−1
j

Lj

∫ Nj

Ij
γj(i)σ̂−1di

] 1−σ̂
σ̂ ∫ Nj

Ij
γj(i)σ̂−1di

Bringing the Pj on the left-hand side to the right-hand side and using that 1/[1−η]−1 =
η/[1− η] gives:

[1− η]Yj = P
η

1−η
j

[
[Ij −Nj + 1] 1

σ̂K
σ̂−1
σ̂

j + [
∫ Nj

Ij
γj(i)σ̂−1di] 1

σ̂L
σ̂−1
σ̂

j

] σ̂
σ̂−1

(A6)
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Proof of Proposition 2

The wagebills must satisfy:

WLLU = αUsLUPUYU = αUsLUβY (A7)
WLLS = αSsLSPSYS = αSsLS [1− β]Y (A8)
WHHU = (1− αU)sLUPUYU = (1− αU)sLUβY (A9)
WHHS = (1− αS)sLSPSYS = (1− αS)sLS [1− β]Y (A10)

where WL and WH are the respective wages for low-skilled and high-skilled workers. Ace-
moglu and Restrepo (2019) show that the labor share in sector j is given by:

sLj =
1 +

[
1− Γj

Γj

] 1
σ
[
Kj

Lj

]σ−1
σ

−1

(A11)

with σ the elasticity between tasks in goods production and

Γj ≡
∫Nj
Ij
γL(i)σ−1di

[I −Nj + 1]σ−1 +
∫Nj
Ij
γj(i)σ−1di

. (A12)

In the context of our model, Lj denotes the labor composite Lj = (Lj)αj(Hj)1−αj . Dif-
ferentiating the expression for the labor share,

d ln(sLj ) = 1
σ

1− sLj
1− Γj

d ln(Γj)−
σ − 1
σ

[
1− sLj

]
d ln

(
Kj

Lj

)
(A13)

with d ln(Γj) < 0 for automation (i.e. Ij > 0); d ln(Γj) > 0 for augmentation leading to the
creation of new labor-intensive tasks (i.e. Nj > 0); and Lj is defined as above. Note that
d lnKj = 0 in our model, as capital is sector-specific and its supply is inelastic.

Differentiating (A7), we obtain:

d ln(WL) + d ln(LU) = 1
σ

1− sLU
1− ΓU

d ln(ΓU) (A14)

+ σ − 1
σ

[1− sLU ]
[
αUd ln(LU) + (1− αU)d ln(HU)

]
+ d ln(Y )

with d ln(ΓU) < 0. Note that the term
[
αUd ln(LU) + (1− αU)d ln(HU)

]
is obtained from

the Cobb-Douglas labor aggregate in sector U , LU = (LU)αU (HU)1−αU .
For low-skilled workers in sector S, equation (A8), where no automation is occurring (i.e.,
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d ln(ΓS) = 0):

d ln(WL) + d ln(LS) = σ − 1
σ

[1− sLS ]
[
αSd ln(LS) + (1− αS)d ln(HS)

]
(A15)

+ d ln(Y )

Equating low-skilled worker wage changes across the two sectors and denoting T ≡ 1
σ

1−sLU
1−ΓU d ln(ΓU),

as before,[
1− σ − 1

σ
[1− sLU ]αU

]
d ln(LU)− σ − 1

σ
[1− sLU ]

[
(1− αU)d ln(HU)

]
− T =[

1− σ − 1
σ

[1− sLS ]αS
]
d ln(LS)− σ − 1

σ
[1− sLS ]

[
(1− αS)d ln(HS)

]
We repeat this for high-skilled workers, given by (A9) and (A10). Consolidating our equa-
tions, we have:
[
1− σ − 1

σ
(1− sLU)(1− αU)

]
d lnHU − αU

σ − 1
σ

(1− sLU)d lnLU − T

=
[
1− σ − 1

σ
(1− sLS)(1− αS)

]
d lnHS − αS

σ − 1
σ

(1− sLS)d lnLS (A16)

and[
1− αU σ − 1

σ
(1− sLU)

]
d lnLU −

σ − 1
σ

(1− sLU)(1− αU)d lnHU − T

=
[
1− αS σ − 1

σ
(1− sLS)

]
d lnLS −

σ − 1
σ

(1− sLS)(1− αS)d lnHS (A17)

with dLU = −dLS and dHU = −dHS. Noting the need to change d ln x to dx/x, and solving
the system of four equations with four unknowns, we arrive at expressions for dHU and dLU :

dHU = TL
1
σ

[
L
HU

+ L
H−HU

]
+ σ−1

σ

[
sLU

L
HU

+ sLS
L

H−HU
+
(
LU
HU
− L−LU

H−HU

)
(αU(1− sLU)− αS(1− sLS))

]
(A18)

dLU = TH
1
σ

(
HSL
LULS

+ HUL
LULS

)
+ σ−1

σ

[
sLU

HSL
LULS

+ sLS
HUL
LULS

+
(
HS
LS
− HU

LU

)
(αU(1− sLU)− αS(1− sLS))

]
(A19)

where the relationship between dHU and dLU is given by:

dLU =
1
HU

+ 1
HS

1
LU

+ 1
LS

dHU
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Next, we will characterize the sign of the above equations. First, focus on equation (A18).
As T < 0, the numerator is negative. The first term of the denominator is positive, since
labor quantities and the elasticity of substitution σ are non-negative. The second term of
denominator varies linearly in sLU and sLS . Its derivative with respect to sLU and sLS are given
by:

LU
HU

+ LS
HU

− αU
(
LU
HU

− L− LU
H −HU

)
> 0

L

H −HU

+ αS
(
LU
HU

− L− LU
H −HU

)
> 0

We can then look at the cases of sLU , sLS → 0 and sLU , s
L
S → 1. In the first case, the second

term of the denominator collapses to

σ − 1
σ

(
LU
HU

− L− LU
H −HU

)
(αU − αS) > 0

where the inequality is a consequence of two facts: 1) the ratio of unskilled to skilled workers
in sector U being greater than that ratio in sector S; and 2) αU − αS > 0. In the second
case, the second term of the denominator collapses to

σ − 1
σ

[
L

HU

+ L

H −HU

]
> 0

Using the fact that the second term of the denominator varies linearly in sLU and sLS , the
signs of the two cases implies that the second term of the denominator is positive. Together,
as the denominator is a convex combination of two positive quantities, it too is positive,
implying that dHU < 0. Applying (F) yields dLU < 0.

To prove the final part of the proposition – that the derivatives have the opposite sign
when augmentation or automation occurs in sector S instead of sector U – we differentiate
(A7)-(A10):

d lnWL + d lnLU = σ − 1
σ

(1− sLU)d lnLU + d ln Y (A20)

d lnWH + d lnLS = 1
σ

1− sLS
1− ΓS

d ln ΓS + σ − 1
σ

(1− sLU)d lnLU + d ln Y (A21)

d lnWL + d lnHU = σ − 1
σ

(1− sLU)d lnLU + d ln Y (A22)

d lnWH + d lnHS = 1
σ

1− sLS
1− ΓS

d ln ΓS + σ − 1
σ

(1− sLU)d lnLU + d ln Y (A23)

Noting the differences between (A14)-(A15) and (A20)-(A21) are the switching of subscripts
U and S on the right-hand side, which also extends to (A22) and (A23), there is a symmetry
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between sectors U and S, conveniently allowing us to transfer the results above to the case
in which automation and augmentation occur in sector S.

Proof of Proposition 3

As a first step, note that Assumption 3 implies

Wj

γ(I∗) > R >
Wj

γ(I(N))

so that it is always profitable to automate and create new tasks. In the initial equilibrium, we
will have that V N

j = V I
j (see Lemma 1). Differentiating the value functions of sector j with

respect to βj, we obtain the effect of a positive demand shift on incentives for automation
and new task creation in sector j:

∂V I
j

∂βj
=
∂YjP

σ
j

∂βj︸ ︷︷ ︸
A>0

× (1− µ)η
R1−σ̂

j −
(
Wj

γj(I)

)1−σ̂


︸ ︷︷ ︸
B>0

+
∂
[
R1−σ̂
j −

(
Wj

γj(I)

)1−σ̂
]

∂βj︸ ︷︷ ︸
C<0

× (1− µ)ηYjP σ
j︸ ︷︷ ︸

D>0

(A24)

∂V N
j

∂βj
=
∂YjP

σ
j

∂βj︸ ︷︷ ︸
A>0

× (1− µ)η
( Wj

γj(N)

)1−σ̂

−R1−σ̂
j


︸ ︷︷ ︸

E>0

+
∂
[(

Wj

γj(N)

)1−σ̂
−R1−σ̂

j

]
∂βj︸ ︷︷ ︸
F>0

× (1− µ)ηYjP σ
j︸ ︷︷ ︸

D>0

(A25)

In both equations, A is positive as output and prices increase from the outward demand
shift. For the value of additional task automation, A multiplies a term (B) which is positive
by Assumption 3, as an increase in the range of tasks that are automated increases produc-
tivity. Similarly, for the value of additional augmentation, A multiplies a term (E) which
is positive by Assumption 2, as an increase in new tasks also increases productivity. Since
rental rates rise more strongly than wages do, C is negative, and F is positive; and both
C and F multiply a positive term (D). Therefore, the incentives for new task creation in
the sector with the demand expansion are unambiguously positive and exceed incentives for
task automation in this sector, ∂V Nj

∂βj
>

∂V Ij
∂βj

, if in the initial equilibrium V N
j = V I

j since this
implies B = E.

We can also study incentives for automation and new task creation in the other sector,
denoted by ̃ 6= j, when βj increases. This illuminates the effects of a demand contraction
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in sector ̃. Differentiating,

∂V I
̃

∂βj
=
∂ỸP

σ
̃

∂βj︸ ︷︷ ︸
G<0

× (1− µ)η
R1−σ̂

̃ −
(
W̃

γ̃(I)

)1−σ̂


︸ ︷︷ ︸
H>0

+
∂
[
R1−σ̂
̃ −

(
W̃

γ̃(I)

)1−σ̂
]

∂βj︸ ︷︷ ︸
I>0

× (1− µ)ηỸP σ
̃︸ ︷︷ ︸

J>0

(A26)

∂V N
̃

∂βj
=
∂ỸP

σ
̃

∂βj︸ ︷︷ ︸
G<0

× (1− µ)η
( W̃

γ̃(N)

)1−σ̂

−R1−σ̂
̃


︸ ︷︷ ︸

K>0

+
∂
[(

W̃

γ̃(N)

)1−σ̂
−R1−σ̂

̃

]
∂βj︸ ︷︷ ︸
L<0

× (1− µ)ηỸP σ
̃︸ ︷︷ ︸

J>0

(A27)

Hence in response to a demand contraction, incentives for new task creation in the sector
are reduced: both overall, ∂V Ñ

∂βj
< 0, and relative to automation in the sector ∂V Ñ

∂βj
<

∂V Ĩ
∂βj

. We
can summarize the relative magnitudes of the changes in the value of innovations in response
to changes in demand as follows:

∂V N
j

∂βj
>
∂V I

j

∂βj

∂V N
̃

∂βj
<
∂V I

̃

∂βj

Because entrepreneurs’ wages in a given sector-innovation cell are equal to the value of the
innovations they create intermediates for (wmj = V m

j ), and since ∆Ij = Ej
I and ∆N j = Ej

N ,
we obtain that

∂∆Nj

∂βj
>
∂∆Ij
∂βj

∂∆Ñ

∂βj
<
∂∆Ĩ
∂βj

which corresponds to our proposition.
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