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Abstract

Incoming data in 2020 posed sizable challenges for the use of VARs in economic
analysis: Enormous movements in a number of series have had strong effects on pa-
rameters and forecasts constructed with standard VAR methods. We propose the use
of VAR models with time-varying volatility that include a treatment of the COVID
extremes as outlier observations. Typical VARs with time-varying volatility assume
changes in uncertainty to be highly persistent. Instead, we adopt outlier-adjusted
stochastic volatility (SV) models for VAR residuals that combine transitory and per-
sistent changes in volatility. Evaluating forecast performance over the last few decades
in quasi-real time, we find that outlier-augmented SV schemes do at least as well as
a conventional SV model and outperform standard homoskedastic VARs. Our best-
performing model features stochastic volatility, fat tails, and an occasional outlier state.
Point forecasts made in 2020 from heteroskedastic VARs are much less sensitive to out-
liers in the data, and the outlier-adjusted SV models generate more reasonable gauges
of forecast uncertainty than a standard SV model. In addition, we consider estimation
and forecasting from a VAR with conventional SV that treats outliers in individual
variables as missing data. In historical forecast comparisons, this alternative missing-
data approach performs on par with our outlier-adjusted SV specifications. Over the
limited sample of available data since the onset of the pandemic, treating individual
outliers as missing data also generates particularly well-performing forecasts.
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1 Introduction

Bayesian VARs have a successful track record in point and density forecasting, the mea-

surement of tail risks, and structural analysis. However, incoming data in 2020 posed some

basic challenges for estimation and inference with VARs. The economic turbulence created

by the ongoing COVID-19 pandemic is reflected in extreme realizations for a number of

macroeconomic and financial series for the US, as shown in Figure 1.1 The period yielded

unprecedented changes in many key variables. For example, payroll employment plummeted

by about 15 percent from March to April, a decline nearly 16 times as large as the previous

largest monthly decline, and real income rose by about 12 percent in the month, an increase

3 times larger than the previous record growth rate.2 Since then, real income has continued

to fluctuate strongly, recording further record rates of increase and decline in early 2021.3

Measured by the business conditions index of Aruoba, Diebold, and Scotti (2009), the drop

in real activity recorded in 2020 is more than 5 times as deep as in any other recession since

1960, so that the previous Great Recession of 2007-09 “appears minor by comparison” as

noted by Diebold (2020). These extreme realizations can have strong effects on parameter

estimates and forecasts generated by conventional constant-parameter VARs. In response,

Schorfheide and Song (2020) suggest ignoring the recent data in estimating VAR parameters,

whereas Lenza and Primiceri (2020) propose a specific form of heteroskedasticity, tuned to

the COVID data, to down-weight observations since March 2020 in the estimation.

Prior to the COVID-19 era, heteroskedastic VAR models, in particular models with

stochastic volatility (SV), have been shown to provide more accurate point and density fore-

casts than constant-parameter models (see, e.g., Clark (2011), Clark and Ravazzolo (2015),

1Throughout this paper, we consider US data, but the pandemic led to similar turbulence in other
economies around the world.

2These calculations use log growth rates and data from the April 2021 vintage of FRED-MD. The rise
in measured income from March to April also reflects payouts of government stimulus in that month. In
contrast, over the following month, real income fell by about 4.5 percent, the then second-highest drop in
our data (the largest drop in real income, by about 5 percent, that occurred in January 2013).

3In February and March of 2021, real income registered its strongest relative swings recorded so far,
falling by about 7.5 percent in February and rising by about 18.5 percent in March, after having risen by
about 9.5 percent in January 2021.
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and D’Agostino, Gambetti, and Giannone (2013)). SV models generate time variation in

predictive densities through changes in the variance-covariance matrix of the VAR’s fore-

cast errors over time, with potential benefits for the accuracy of density forecasts (Clark,

McCracken, and Mertens (2020)). In addition, heteroskedasticity affects the estimation of

slope coefficients in each VAR equation (at least in finite samples). As an application of gen-

eralized least squares, observations recorded at times of high volatility are down-weighted

in the estimation of VAR parameters.4 When extreme realizations are modeled as sudden

increases in volatility, heteroskedastic VARs will down-weight the associated observations

when estimating parameters; in the limit, outliers associated with infinite volatility would

be discarded.

A typical SV model assumes changes in volatility to be highly persistent.5 However,

some work in the SV literature has extended the conventional SV model to feature fat-

tailed, instead of normal, errors, as in Jacquier, Polson, and Rossi (2004), henceforth denoted

“SV-t.”6 As we show, these specifications with fat tails accommodate frequent, transitory

changes in volatility. Almost by definition, extreme observations are more reflective of short-

lived spikes in volatility, not permanent increases in forecast uncertainty. Like Schorfheide

and Song (2020) and Lenza and Primiceri (2020), we view the extreme observations of

the COVID period as possible outliers that are characterized by transient and infrequent

increases in volatility, in which case it may be desirable to reduce their influence on model

4For example, when applied to data samples starting in the 1960s or 1970s, VARs with SV tend to discount
data points prior to the onset of the low-volatility period known as the Great Moderation that started in
the mid-1980s (Perez-Quiros and McConnell (2000)). Of course, the distinction between generalized and
ordinary least squares matters only in finite samples, as both converge to the same asymptotic limit (to
which a Bayesian estimate would also converge). But as demonstrated by the COVID-19 episode, common
samples of macroeconomic data are still sufficiently finite for (huge) outliers to matter.

5In typical implementations, such as those following Cogley and Sargent (2005), Stock and Watson
(2007), Justiniano and Primiceri (2008), and Clark (2011), log-variances are assumed to follow random
walks, or highly persistent AR(1) processes, and Clark and Ravazzolo (2015) find relatively similar forecast
performance resulting from either approach in post-war US data.

6Following Jacquier, Polson, and Rossi (2004), t-distributed shocks have been used in BVAR-SV models
by Chiu, Mumtaz, and Pintér (2017) and Clark and Ravazzolo (2015) and estimated DSGE models, with and
without SV, by Cúrdia, Del Negro, and Greenwald (2014) and Chib, Shin, and Tan (2020). Most recently,
Karlsson and Mazur (2020) provide a general treatment of heteroskedasticity in BVAR models with and
without SV and fat-tailed error distributions.
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estimates and forecast distribution. The outlier-augmented SV process used by Stock and

Watson (2016) with unobserved component models of inflation, henceforth denoted “SVO,”

accommodates such transient, sharp, increases in volatility.

In this paper, we introduce a novel combination of (1) an SV model with volatility

outliers with (2) a VAR with fat-tailed errors. The outlier-adjusted volatility model, labeled

SVO, augments the standard SV specification of a highly persistent volatility state with

an outlier volatility state that infrequently and temporarily jumps to values above 1. In

its original form, first considered by Stock and Watson (2016), the model has Gaussian

errors. We combine the outlier-adjusted SV process with VARs that have Gaussian (SVO)

or t-distributed (SVO-t) errors, and also consider the case of t-distributed errors without

volatility outliers (SV-t). In our baseline model, outlier states are variable-specific, and we

also consider a common-outlier specification.

We demonstrate that SVO, SVO-t, and SV-t share the same latent state representation

where residuals are written as the product of a normally distributed shock and a set of

outlier states, but differ in the assumed densities for the outlier states. In particular, SVO

puts more mass on outliers being large events that increase volatility by more than twofold,

SV-t sees outliers as more moderately sized, and SVO-t is a combination of the two. While

we are particularly interested in the performance of SVO and SVO-t during the COVID-19

episode, we also study its versatility outside the pandemic.

Our SVO-t model extends and nests the SVO approach of Stock and Watson (2016),

developed in the context of an unobserved component model with normal errors, and the

fat-tail SV model of Jacquier, Polson, and Rossi (2004). Specifically, we consider BVAR-

SV models — without and with fat tails — and show that SVO(-t) effectively filters the

outliers associated with the unprecedented, temporary volatility induced by the COVID-19

pandemic. In addition, SVO(-t) also detects pre-COVID outliers in macroeconomic and

financial time series, whose existence had been noted by, among others, Stock and Watson

(2002). Furthermore, volatility estimates resulting from our SVO(-t) model are generally less
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persistent than those obtained with the standard SV specification, as part of the volatility

is attributed to non-persistent volatility outliers.

Conventional BVAR-SV procedures can easily be extended to include outlier state esti-

mation via the SVO(-t) approach. Specifically, we show that the standard MCMC algorithm

used for estimation of BVAR-SV models can still be used, but with the addition of two extra

steps. First, realized outlier states need to be drawn from their posterior, conditional on

draws for each variable’s outlier probability. Second, the outlier probability for each variable

is drawn from a (conditional posterior) distribution conditional on the draws of the time

series of outlier states.

Empirically, we consider the effects of adding the SVO(-t) specification to a BVAR during

both the recent COVID-19 period and the post-war sample of US data on macroeconomic

and financial variables. Although at this point we are comfortable viewing the extreme

realizations of the COVID-19 period as outliers, we should emphasize that our approach is

data-based: Our model estimates outliers conditional on the data; we are not simply deeming

(i.e., restricting) recent observations to be outliers.7

The COVID-19 pandemic visibly affected the US economy starting in March 2020. We

confirm the findings of Lenza and Primiceri (2020) and Schorfheide and Song (2020) that

forecasts generated since then from homoskedastic BVARs are often distorted; for example,

the recent outliers cause the forecast paths of some variables to become extreme by his-

torical standards. Instead, we find that BVARs with SV or SVO specifications generated

better-behaved point forecasts. Both SV and SVO estimates register increases in forecast

uncertainty. But, while the SV specification sees all shocks to forecast uncertainty as perma-

nent, the SVO(-t) model explicitly allows for one-off spikes in volatility, resulting in estimates

7Throughout, we stay in the class of (conditionally) linear VAR models with time-invariant transition (i.e.,
coefficient) matrices that remain the workhorse of applied forecasting in policy analysis and a benchmark for
use in research. Beyond linear VARs, Guerrón-Quintana and Zhong (2017) and Huber, et al. (forthcoming)
employ semi- and non-parametric methods to better allow forecasting relationships to adapt to changing
conditions, in particular at times of crisis. Antoĺın-Dı́az, Drechsel, and Petrella (2020) consider a dynamic
factor model with time-varying volatility and shifting means, where outliers are modeled as t-distributed
measurement errors.
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of forecast uncertainty that are still elevated but, in our subjective assessment, appear less

extreme and more reasonable. So, in our assessment, the SVO and SVO-t specifications offer

an effective approach for managing infrequent outliers with BVARs used for forecasting.

In addition, we consider two alternative approaches for treating outliers when their oc-

currence can be identified prior to the VAR’s estimation. First, specifically for handling

COVID-19 outliers, we estimate a BVAR-SV model with separate dummies attached to the

VAR’s mean equation for every month since March 2020. By construction, these dummies

soak up the VAR residuals since March so that the approach is tantamount to ignoring data

since March for the estimation of forecast parameters.8 Empirically, we find that the point

forecasts resulting from the dummy-augmented VAR are similar to those obtained from

standard SV or the outlier-augmented SVO(-t) specifications. But estimates of forecast

uncertainty remain unrealistically stuck at pre-COVID levels.

Second, to guard against outliers affecting the jump-off data, we also consider a standard

BVAR-SV that treats extreme observations as missing data. Most of the methods discussed

so far adjust parameters (including the volatility states) but not the data vector used at

the forecast origin in forming a prediction; treating observations as missing data alters the

jumping-off point of the forecasts. To identify extreme observations as outliers, we use an

ex-ante criterion known from the literature on dynamic factor models that is based on the

distance of a given data point from the time-series median.9 This approach differs from the

SVO approach, which estimates the occurrence of outliers jointly with the VAR, by treating

the dates of outliers as known ex-ante. In the COVID period, this approach also produces

much better-behaved forecasts than a constant-variance BVAR. Empirically, the biggest

8In a related effort, Holston, Laubach, and Williams (2020) augment a trend-cycle decomposition for
output in the US and other economies with an exogenous COVID indicator based on the COVID-19 Govern-
ment Response Stringency Index computer at the Oxford Blavatnik School of Government for each country
or region. In most cases, the stringency index is a slow-moving variable, and the procedure corresponds to
correcting mean effects from COVID with a (time-varying) dummy. Similarly, updates for the uncertainty
measures from Jurado, Ludvigson, and Ng (2015) are computed by these authors based on mean-adjusted
data for the COVID period.

9Following Stock and Watson (2002), applications of dynamic factor models have considered observations
to be outliers when they are some multiple of the inter-quartile range away from the series median; among
others, see Artis, Banerjee, and Marcellino (2005) and McCracken and Ng (2016).
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difference with the outlier-adjusted SV procedures is that conditioning on the incidence of

outliers, while otherwise ignoring any signal from their specific realization, leads to predictive

densities that are considerably tighter than those from SVO(-t) (or SV-t), though not as

implausibly so as the aforementioned dummy approach.

Although to this point we have focused on the efficacy of methods for reducing distortions

to forecast distributions in the presence of outliers, to be broadly effective, it is important

that a given method not only helps reduce such distortions but also performs effectively in

forecasting over long periods of time less affected by outliers. Accordingly, we conduct a

quasi-real-time evaluation of forecast performance using monthly data with an evaluation

window starting in 1985 and ending in 2017, comparing the accuracy of point and density

forecasts from our proposed SVO and SVO-t specifications and the alternatives discussed

above. In all cases, we use a medium-sized data set of 16 monthly variables, motivated by

research that has found that larger BVARs tend to forecast more accurately than smaller

BVARs, while going beyond medium-sized models adds little (e.g., Bańbura, Giannone, and

Reichlin (2010), Carriero, Clark, and Marcellino (2019), and Koop (2013)). Considering

forecast performance over a long sample starting in 1985 (excluding COVID-19 data), the

SVO approach marginally outperforms SV, and both do better than a homoskedastic BVAR

in terms of point and density forecasts. In historical forecast accuracy, the best-performing

model is SVO-t, which features stochastic volatility, fat tails, and the outlier state treatment.

However, the alternative approach of treating outliers as missing data in an otherwise con-

ventional VAR with SV performs about as well in historical forecasting and performs best

in the short sample following the pandemic’s outbreak.

All told, the use of VARs with time-varying volatility, like SV and SVO, broadly mitigates

the drastic effects that outliers can have on forecasts. But only an outlier-adjusted SV

specification, like SVO or SVO-t, or the alternative of treating extreme observations as

missing, prevents the width of predictive densities from blowing up as they would in the SV

case. Importantly, the added value of SVO and SVO-t also holds up over a longer sample
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outside the recent COVID-19 episode.10

The remainder of this paper proceeds as follows: Section 2 introduces the SVO and SVO-

t models and alternative specifications to handle outliers, and describes their estimation.

Section 3 describes the data used. Section 4 provides a forecast comparison between the

various models over a long pre-COVID sample. Section 5 reports details about estimated

outlier states before and during the COVID-19 episode, and Section 6 describes the evolution

of forecasts made over the course of 2020 and early 2021. Section 7 concludes. Additional

results are provided in a supplementary online appendix.

2 BVAR models

We study VAR models of the following form:

yt = Π0 + Π(L)yt−1 + vt , vt ∼ N(0,Σt) (1)

where yt is a vector of N observables, Π(L) =
∑p

i=1 Πi L
i−1 is a p-th order lag polynomial

of VAR coefficients, and vt denotes the VAR’s residuals. We denote the vector of stacked

coefficients contained in {Πi}pi=0 as Π. Building on the methods of Carriero, Clark, and

Marcellino (2019) (henceforth “CCM”) for estimating large BVARs, all models are specified

with non-conjugate priors for Π and Σt.

The models differ mainly in whether the residuals are homoskedastic, or the form of

their heteroskedasticity. We maintain the assumption of time-invariant transition coefficients

Π. Such constant-parameter VARs are commonly and successfully used in forecasting.11

Heteroskedasticity in the VAR residuals has important effects on the estimation of Π, in

10In a companion paper (Carriero, et al. (2020)), we document the effects of SVO for measuring uncertainty
and its effects on the economy during the COVID-19 era, and we find the estimates to be more reasonable
compared to standard SV.

11Although we leave an extension to future research, our proposed approach to outliers could easily be
incorporated into VARs also featuring time-varying regression parameters in the smaller specification and es-
timation approach of D’Agostino, Gambetti, and Giannone (2013) and the larger specification and estimation
approach of Chan (2019).
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particular when there are outliers with large residual volatility. Intuitively, observations with

higher residual volatility receive less weight in the estimation of VAR coefficients. For the

sake of illustration, consider an AR(1) model without intercept: yt = πyt−1+vt, vt ∼ N(0, σ2
t )

with σ2
t known, and a prior conditional on past data π|yt−1 ∼ N(π, ω2). This is a signal

extraction problem where yt serves as a noisy signal about the unknown π, with a signal-

to-noise ratio that is decreasing in σ2
t . Accordingly, the posterior mean for π is a weighted

average of the prior mean, π, and the data-driven OLS estimate, πOLS, with the weight

decreasing in σ2
t . In the case of observing a single observation yt, these are:

E (π|yt, yt−1) = (1− κ) · π + κ · πOLS , with πOLS =
yt yt−1
y2t−1

, and κ =
ω2

ω2 +
σ2
t

y2t−1

.

Recursive application of the above extends the example to multiple periods. In addition,

the logic of down-weighting observations subject to high residual variance carries over to the

multivariate case, as described, for example, in Koop (2003, Chapter 6).

As argued above, time-varying volatility in the VAR residuals, vt, can help to insulate

estimation of the transition coefficients Π from the effects of extreme outliers. However,

density forecasts will crucially depend on the assumed dynamics of the variances in Σt, and

we further consider different forms of persistence in variance changes below.

Down-weighting extreme observations in the estimation of Π will not completely insulate

the resulting forecasts from outliers. Consider again the case of the AR(1) without intercept,

where the h-step-ahead forecast is given by yt+h|t = πh yt and yt was an outlier. Even if the

outlier were excluded from estimation of π, it would still have a direct effect on the forecast

yt+h|t.
12 To address these concerns, we consider a variant of the SV model that treats pre-

specified outliers as missing values. To identify extreme observations as outliers, we use an

ex-ante criterion taken from the literature on dynamic factor models that is based on the

12In VAR (or AR) models with higher lag orders, the forecast would not singularly depend on the outlier
yt but also preceding values that are not necessarily outliers. Nevertheless, outliers in the “jump-off” data
point, yt, may unduly influence the forecast.
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distance between a given data point and the time-series median.13

2.1 Model specification

We consider the following seven variants of the VAR model (1). The first five differ in the

specified process for the residuals vt, whereas the last two variants either treat pre-specified

outliers as missing data or add dummy variables for the pandemic period.

1) CONST: A homoskedastic VAR with vt ∼ N(0,Σ).

2) SV: This is the baseline SV model of CCM, where the VAR residuals can be written as

vt = A−1 Λ0.5
t εt , with εt ∼ N(0, I) , (2)

where A−1 is a unit-lower-triangular matrix, Λ0.5
t is a diagonal matrix of stochastic volatilities,

and the reduced-form variance-covariance matrix of innovations is Σt = A−1 Λt (A−1)′. The

vector of logs of the diagonal elements of Λt, denoted log λt, evolves as a random walk with

correlated errors:

log λt = log λt−1 + et , with et ∼ N(0,Φ). (3)

3) SVO-t: The SVO-t model is intended to capture two kinds of outliers that are both

modeled as transitory changes in volatility: The first kind captures rare jumps in volatility.

The second kind occurs more often, but is less extreme in impact (consistent with draws

from the tails of a fat-tailed distribution). Each kind of outliers enters the model in form of

a diagonal matrix of scale factors, denoted Ot and Qt, with diagonal elements oj,t and qj,t,

respectively, that are mutually iid over all j and t.

13In addition, Section 6 reports results for a model variant where (1) is augmented by additional dummy
terms for months during the COVID-19 period.
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The first kind of outliers, oj,t, has a two-part distribution that distinguishes between

regular observations and outliers. When variable j has a regular observation in period t we

have oj,t = 1, while for an outlier it is oj,t > 1. Outliers in variable j occur with probability

pj and the distribution for oj,t is:

oj,t =


1 with probability 1− pj

U(2, 20) with probability pj

for j = 1, . . . , N and where U(2, 20) denotes a uniform distribution with support between 2

and 20.

The second, less extreme, type of outliers in the SVO-t model is equivalent to having

t-distributed VAR residuals (conditional on Λt and Ot). Following Jacquier, Polson, and

Rossi (2004), we let the squares of the diagonal elements of Qt, qj,t, have inverse-gamma

distributions:

q2j,t ∼ IG

(
dj
2
,
dj
2

)
.

The vector of VAR residuals in the SVO-t model is written as

vt = A−1 Λ0.5
t OtQt εt,

with A−1 and Λ0.5
t specified as before. The jth residual qj,t · εj,t (adjusted for the rotation by

A−1 and scaling by Λ0.5
t Ot), has a student-t distribution with dj degrees of freedom, since

εj,t ∼ N(0, 1) and dj/qj,t ∼ χ2
dj

. Since Ot, Qt, and Λt are diagonal, they commute, and the

time-varying variance-covariance matrix of the VAR residuals can conveniently be expressed

as Σt = A−1OtQt ΛtQ
′
tO
′
t (A−1)′.

We place a beta prior on the outlier probability p that corresponds to 10 years’ worth of

prior data. For the t-component of the SVO-t model, we follow Jacquier, Polson, and Rossi

(2004) and estimate the degrees of freedom dj for each variable using a uniform discrete prior
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with a range of 3 to 40.

4) SVO: We also consider a simplified version of the SVO-t model, denoted SVO, where

Qt = I so that the VAR residuals are Gaussian (conditional on Ot and Λt). In this

case, the time-varying variance-covariance matrix of the VAR residuals is given by Σt =

A−1Ot ΛtO
′
t (A−1)′. The SVO model is similar to the treatment of volatility outliers by

Stock and Watson (2016) in an unobserved component model of inflation.14 As in Stock and

Watson (2016), we place a beta prior on the outlier probability pj so that the prior mean

implies an outlier frequency of once every 4 years in monthly data (and precision consistent

with 10 years’ worth of prior observations). As discussed further below, the prior mean of

pj = 1/(4 · 12) implies about the same variance of oj,t in the SVO model as do our settings

for pj and dj in the SVO-t model for the combined outlier states oj,t · qj,t.

With the COVID-19 pandemic inducing extreme volatility in a number of variables, some

may view it as plausible that the outlier is common to all variables, rather than independent

across variables as in the SVO specification. Some other work, such as Lenza and Primiceri

(2020), has developed models in which the pandemic induces a common shift in volatility

in an otherwise homoskedastic VAR. Accordingly, in a robustness check, we also consider a

specification in which the outlier state is common to all variables, in which case the time-

varying variance-covariance matrix of the VAR residuals is given by Σt = ō2tA
−1 Λt (A−1)′,

where ōt denotes a scalar outlier state.

5) SV-t: The SV model with t-distributed errors, SV-t, is a simplified version of the SVO-

t model where Ot = I, so that the time-varying variance-covariance matrix of the VAR

residuals is given by Σt = A−1Qt ΛtQ
′
t (A−1)′. The SV-t specification corresponds to the

fat-tailed SV model of Jacquier, Polson, and Rossi (2004) where the standard-normal shocks

εt driving the VAR residuals in (2) are replaced by t-distributed shocks. For our estimation,

the degrees of freedom of the t distribution are estimated as in Jacquier, Polson, and Rossi

14In an application to inflation data, Stock and Watson (2016) use a U(2, 10) distribution for oj,t > 1.
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(2004), using a uniform discrete prior with a range of 3 to 40.

Figure 2 illustrates the differences in densities implied for oj,t, qj,t, and oj,t · qj,t in, re-

spectively, the SVO, SV-t and SVO-t models. The densities for the outlier states, oj,t and

qj,t, depend on the outlier probability pj and the t-error degrees of freedom dj. To create

the figure, we set pj equal to our choices of prior mean, and dj equal to our estimated de-

grees of freedom in each model, which imply roughly equal variances Var (oj,t), Var (qj,t), and

Var (oj,t · qj,t) in the SVO, SV-t and SVO model, respectively. 15 The density for the outlier

states peaks at (SVO) or near (SVO-t, SV-t) the value of 1 with a fat right-hand tail. In the

SVO case, there is equal probability on outlier states between 2 and 20, whereas the SV-t

case assigns most probability on values close to 1, albeit with some minimal measure placed

also on values far above 20. SVO-t is in between, with more probability to values higher than

6 than SV-t but less than SVO. Also, while the outlier states in the SVO case cannot take

values below 1, the SV-t and SVO-t cases assign some mass also to values below 1. Overall,

SVO is more geared than SV-t toward generating sizable outliers at a variable-specific rate

of occurrence pj that is directly governed by an explicit prior, and SVO-t adds to that the

flexibility of a fat-tailed error distribution.

6) SV-OutMiss: This model applies the standard SV specification for Σt, but ignores

a given set of outlier observations in the VAR estimation altogether by treating them as

missing data. The approach builds on a practice known from the literature on dynamic

factor models (DFM), in which input data are pruned of extreme observations that are

multiples times the inter-quartile range away from the series median. Typical values for the

15For the SVO model, with pj = 1/(4 · 12) we have Var (oj,t) ≈ 1.54. In the SV-t case with dj = 5 we get
Var (qj,t) ≈ 1.67 and in the SVO-t case, with pj = 1/120 and dj = 9 we obtain Var (oj,t · qj,t) ≈ 1.56. The
variances can be computed from

Var (oj,t) = (1− pj) + pj ·
(20− 2)2

12
, Var (qj,t) =

dj
dj − 2

,

and Var (oj,t · qj,t) = (1− pj) + pj ·
(20− 2)2

12
· dj
dj − 2

.

For the SV-t case, we obtain similar estimates for our paper with dj = 6, which implies Var (qj,t) = 1.5.
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multiple used in the literature vary from 5 to 10, and we adopt a threshold factor of 5 as

a baseline, with very similar results based on a value of 10. Figure 3 provides an overview

of which observations in our data qualify as outliers according to this criterion. Apart from

readings for employment, consumption, income, and stock returns in 2020, and the fairly

frequent occurrence of outliers in income throughout the sample seen also in Panel (a) of

Figure 1, further outliers are recorded in industrial production, inflation, and stock returns

during the recession of 2007-09, as well as exchange rates during the 1970s.

The DFM literature replaces extreme observations by the time-series median or a similar

moment of central tendency. We adopt the same ex-ante criterion for the identification

of outliers, but we instead treat these as missing data in estimation and forecasting. For

each missing value, our Bayesian methods generate a posterior distribution that also informs

the resulting forecasts. Formally, denote the history of yt after pruning from outliers as

zt, and continue the AR(1) example introduced above: Forecasts are then generated by

yt+1|t = πhE(yt|zt) where E(yt|zt) is identical to yt in the no-outlier case. Similarly, forecast

uncertainty is generated based on estimates of SV that condition only on zt, not potential

outliers in the history of yt.

7) SV-Dummy: As a final alternative, we also consider a simple BVAR-SV model with

dummy variables included for each month of the pandemic period.

2.2 Model estimation

Each of our models is estimated with an MCMC sampler, based on the methods of CCM for

large BVAR-SV models, but as corrected in Carriero, et al. (2021a). As in CCM, we use a

Minnesota prior for the VAR coefficients Π and follow their other choices for priors as far as

applicable, too. Throughout, we use p = 12 lags in a monthly data set, which is described

in further detail in Section 3.

Here we briefly explain the algorithm adjustments needed for the version of the model
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with constant variance and the alternative with outlier volatility states. The algorithm

includes all of the same steps given in CCM (corrected as in Carriero, et al. (2021a)), except

for necessary adjustments to account for the two alternative cases. For the constant-volatility

model, an inverse-Wishart prior for Σ, with a (conditionally) conjugate inverse-Wishart

updating step for the MCMC sampler, replaces the SV block of the model.16

For the SVO-t variant, the following extra steps are added to the original BVAR-SV

setup: Realized outlier states oj,t and qj,t need to be drawn from their posteriors. The step

for oj,t conditions on draws for the outlier probability pj and proceeds analogously to the

sampling of the mixture states needed with the Kim, Shephard, and Chib (1998) approach to

the stochastic volatility states log λt. The step for qj,t takes a draw from an inverse Gamma

distribution. A further additional step draws the outlier probability pj for each variable

from a (conditional posterior) beta distribution conditional on the draws of the time series

of outlier states. The algorithms for SVO and SV-t are simplified versions of that for SVO-t.17

For the SV-OutMiss model, which treats pre-specified outliers as missing values, the

MCMC sampler for the standard SV model is augmented by an additional step that draws

the missing values from a state-space representation of the VAR system using the distur-

bance smoothing algorithm of Durbin and Koopman (2002). Computational cost increases

substantially with the SV-OutMiss model, as it requires an additional sequence of Kalman

filtering and smoothing steps.18 In contrast, the added cost of computing SVO-t (or SVO

or SV-t) over standard SV is small, since this model adds only steps for sampling the iid

outlier states.

All results in the paper are based on 1,000 retained draws, obtained by sampling a total of

16The prior for Σ in the constant-variance model is uninformative; that is, we use an improper Wishart
with zero degrees of freedom and scale matrix equal to zero.

17The ordering of steps in our MCMC sampler reflects the recommendations of Del Negro and Primiceri
(2015) as implemented also by Cúrdia, Del Negro, and Greenwald (2014) (for SV-t) and Stock and Watson
(2016) (for SVO). Specifically, the t-error states, qj,t, are sampled before the SV mixture states of Kim,
Shephard, and Chib (1998), while draws from oj,t condition on those mixture states so that oj,t and pj are
sampled after the SV steps known from Kim, Shephard, and Chib.

18In our application, and across different computational settings, the added cost of estimating SV-OutMiss
was a multiple of the computational time used for the original SV model.
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1,200 draws with 200 burn-in draws. Unreported comparisons of posteriors obtained under

different starting values indicate satisfactory convergence of the MCMC algorithms.

3 Data

Our data set consists of monthly observations for 16 macroeconomic and financial variables

for the sample 1959:M3 to 2021:M3, taken from the April 2021 vintage of the FRED-MD

database maintained by the Federal Reserve Bank of St. Louis. The variables and their

transformation to logs or log-differences are listed in Table 1. To avoid issues related to the

effective lower bound (ELB) on nominal interest rates, the data set includes only longer-

term interest rates and omits a policy rate measure, like the federal funds rate, which was

constrained by the ELB from late 2008 to 2016, and then again starting in March 2020.19

A few selected series are shown in Figure 1, with potential outliers marked in red. In the

figure, observations are marked as outliers if their distance from the series median exceeds

5 times the inter-quartile range (IQR), where median and IQR are computed from the pre-

COVID-19 sample. As discussed in the introduction, similar definitions of outliers have been

used in the literature on factor models in macroeconomics. Real personal income, shown

in Panel (a) of the figure, has regularly displayed outliers over the post-war sample. Many

other series, like payroll growth shown in Panel (b), exhibit such outliers only over the recent

COVID-19 period, whereas a few others, like returns on the S&P500, in Panel (c), inflation,

or the exchange rate between the US dollar and pound sterling, displayed large outliers

only on earlier occasions. Some variables, like the unemployment rate shown in Panel (d),

have registered outstanding changes since the pandemic’s outbreak, but without registering

explicit outliers according to this metric. In some cases, outliers may be attributed to unusual

19The related paper by Lenza and Primiceri (2020) does not include any interest rates in its VAR setup.
When simulating forecasts for our longer-rate measures, the 5- and 10-year Treasury yields, individual draws
have fallen below the ELB as well, and the predictive densities were truncated at the ELB in these cases. Due
to the dynamic nature of the forecast simulation, this truncation also has indirect effects on the predictive
densities of other variables. In companion work (Carriero, et al. (2021b)), we focus on the estimation of
VARs that model nominal interest rates as censored variables based on the shadow-rate approach described
by Johannsen and Mertens (2021).
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events. For example, in results not shown, industrial production registers a positive outlier

in December 1959, when production bounced back following a strike in the steel industry

from mid-July through early November. More recently, income transfers from the CARES

Act caused growth in personal income to surge in April 2020.

4 Forecast performance pre-COVID-19

Applicability of the outlier-augmented BVAR-SVO and BVAR-SVO-t models is not nec-

essarily specific to data resulting from the current COVID-19 pandemic. As noted above,

individual data series have exhibited occasional outliers before, leading to some earlier stud-

ies of the potential benefits of modeling fat-tailed error distributions and other forms of

outliers.20 In this section, we evaluate the forecast performance of the alternative BVAR

specifications described in Section 2 when applied to a sample of post-war US data prior to

the onset of COVID-19.

We conduct an out-of-sample forecast evaluation in quasi-real time, where we simulate

forecasts made from 1985:M1 through 2017:M12.21 For every forecast origin, each model is

re-estimated based on growing samples of data that start in 1959:M3. All data are taken

from the April 2021 vintage of FRED-MD; we abstract from issues related to real-time data

collection. The forecast horizons considered extend from 1 to 24 months. We evaluate point

and density forecasts based on root-mean-squared errors (RMSE) and continuous ranked

probability scores (CRPS), respectively, as described in, among others, Clark and Ravazzolo

(2015) and Krüger, et al. (2020). Statistical significance of differences in loss functions is

evaluated using the Diebold and Mariano (1995) and West (1996) test.

Tables 2 and 3 compare point and density forecasts generated by a homoskedastic BVAR

20See, for example, Chiu, Mumtaz, and Pintér (2017), Clark and Ravazzolo (2015), and Cúrdia, Del Negro,
and Greenwald (2014) for the use of SV-t specifications in VARs or DSGE models and Stock and Watson
(2016) for the use of SVO in unobserved component models.

21The end of our evaluation window has been chosen to avoid overlap with COVID-19-related realizations;
however, we obtain very similar results when the evaluation window is extended through the end of our data
sample in 2020.
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and BVARs with SV and SVO-t specifications, taking the SV model as the benchmark. Con-

firming results known from the earlier literature on the use of BVAR-SV models (e.g., Clark

(2011) and Clark and Ravazzolo (2015)), SV outperforms the CONST benchmark for many

variables and forecast horizons. For example, with point forecasts, the SV model improves

on the RMSEs of the CONST specification by 1 to 4 percent in the case of employment

growth and as much as 25 percent in the case of the Baa spread. With density forecast

accuracy as gauged by the CRPS, at shorter horizons the SV specification yields significant

gains for many variables, including consumption, employment, hours, and interest rates.

The SVO-t specification could be expected to capture better the occasional outliers in

pre-COVID-19 data, but possibly also at the expense of overfitting elsewhere. However,

such concerns are not borne out by our forecast evaluation. In terms of both point and

density forecasts, SVO-t typically performs as well as, and at times even better than, SV.

Point forecasts generated by the SVO-t model over the post-war period (and pre-COVID)

are generally on par with those from the SV model, with RMSE ratios in some cases a

little below or above 1 but often very close to 1. With density forecast accuracy as gauged

by the CRPS, at shorter horizons the SVO-t specification performs very similarly to the SV

baseline, with CRPS ratios very close to 1. At longer horizons, particularly at 24 months, the

SVO-t model often yields modestly most accurate density forecasts, for variables including

real income, consumption, industrial production, employment, hours, and stock returns. The

SVO-t gains are largest for real personal income, the variable most prone to outliers. Overall,

the evidence suggests that consistent use of SVO-t over the post-war sample shares similar

benefits over CONST with SV, and marginally improves forecasts even further, in particular

in terms of density forecasts and for those variables more subject to frequent outliers, such

as personal income.

Tables 4 and 5 compare SVO-t against versions of the model that strip out the t-

distributed component (SVO) or the Stock-Watson outlier state (SV-t) as well as the SV-

OutMiss approach, which treats pre-specified outliers as missing data as described in Sec-

17



tion 2. Note that these comparisons take SVO-t as the baseline, so that a ratio less (more)

than 1 means the alternative model is more (less) accurate than the baseline. By and large,

point forecasts from these alternatives are quite similar in accuracy to those from the SVO-t

specification. Differences in relative RMSE are never more than 4 percent and typically just

1 percent or less. In density accuracy, the SV-t and SV-OutMiss models are similar to our

preferred SVO-t specification, with SV-t particularly so. At horizons of 12 months or less,

the SV-OutMiss specification yields density accuracy very similar to the SVO-t baseline;

at 24 months, SV-OutMiss forecasts are sometimes modestly less accurate (e.g., industrial

production and hours) and sometimes a little more accurate (e.g., bond yields). The most

noticeable differences in CRPS accuracy occur with the SVO model. Although at shorter

horizons SVO accuracy is quite similar to SVO-t accuracy, at longer horizons SVO-t pro-

vides the more accurate forecasts, often by a statistically significant margin, reaching 9 to

10 percent for consumption, industrial production, employment, and hourly earnings.

The supplementary online appendix provides results of another robustness check, of treat-

ing the outlier state as common in the SVO specification. Making the outlier common seems

to have no advantages and in some cases makes forecasts slightly less accurate compared to

the SVO specification that models outliers as independent across variables. In point forecast

accuracy, the common outlier specification generally matches the SVO results, with slightly

reduced accuracy for some variables at some horizons. As measured by the CRPS, density

forecasts from the common outlier specification are essentially the same in accuracy as those

from the SVO model at horizons of 12 months or less but consistently less accurate at the

24 months horizon. The common-outlier specification registers virtually no outliers prior

to the COVID-19 pandemic. Instead, the common-outlier specification sees outliers only

in the early stages of the pandemic period, from March through June 2020, when a good

number of variables experienced enormous realizations at the same time, but none in late

2020 or early 2021. Imposing the same outlier on all variables during COVID-19 leads to

some marked differences in width of predictive densities compared to the SVO(-t) models
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that feature variable-specific outliers, but fairly identical performance in point forecasts over

the pandemic period.

5 Outlier estimates in 2020 and before

As described in Section 2, the SVO-t approach extends the baseline SV model by adding

latent outlier states oj,t and qj,t for each variable j = 1, . . . , N , with the former uniformly dis-

tributed and squares of the latter having an inverse Gamma distribution. The outlier states

enrich the dynamics of the time-varying variance-covariance matrix, Σt, so that volatility can

change due to transitory changes in oj,t and qj,t, as well as the persistent variations induced

through the log-SV terms log λt. The SVO model adds just the state oj,t to an SV model,

whereas the SV-t specification adds just the state qj,t. In each case, the additional latent

states serve to pick up on temporary increases in volatility that would be ill-represented by

the more persistent variations modeled via the conventional SV processes for log λt.
22

Here we provide a closer comparison of the outlier estimates obtained from SVO-t, SVO,

and SV-t. In each case, the model estimates permit the computation of the posterior proba-

bilities of an outlier of a selected magnitude. For the SVO-t model, we examine the probabil-

ity of a given value of an outlier in the reduced form innovation that reflects both Ot and Qt

and the connections across variables captured in A−1. Specifically, we compute reduced-form

outlier scales from the ratios between diagonal elements of Σt = A−1OtQt ΛtQ
′
tOtA

−T and

Σ̃t = A−1 ΛtA
−T ; denoting the j-th diagonal elements by σ̃t(j)

2 and σt(j)
2, the outlier scale

for the j-th variable is σt(j)/σ̃t(j). To simulate the posterior distribution for the reduced-

form outlier states, these computations are performed for every MCMC draw. (For SVO

and SV-t, corresponding computations are performed using only Ot and Qt, respectively.)

For each variable, we then examine the probability of a given value of the combined outlier

term for the SVO-t model. For ease of comparison, we focus on three regions for possible

22In our application, log λt follows a multivariate random walk. Similar concerns about leakage from
short-lived volatility spikes into estimates of log λt apply in the case of highly persistent, but stationary,
processes for log λt as used elsewhere as well; see, among others, Clark and Ravazzolo (2015).
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realizations of the outlier states: below 2, between 2 and 5, and above 5, corresponding to

the cases of small (or no) outliers, moderate, and large outliers, respectively.23

Focusing on a few selected variables in the interest of chart readability, Figures 4–7 display

posterior probabilities of the outlier estimate to have fallen in one of the three regions at

a particular point in time. The three regions cover the possible support of the outlier, and

posterior probabilities of a realized outlier to fall in the three regions sum to one.24 Each

figure directly reports probabilities of outliers having fallen between values of 2 and 5 or

having been larger than 5, with the complement being the region of values below 2. To help

distinguish estimates for recent years, the top panel of each figure provides estimates for the

full sample, and the bottom panel reports probabilities for just the 2017:M1-2021:M3 period.

Echoing our discussion of each model’s properties in Section 2, these results show that,

when SVO and SV-t are compared, SV-t sees outliers as being more moderately sized but

occurring also more regularly than SVO, which tends to see outlier states to be larger than

5 (when they occur). For example, in a few months of 2020, both SV-t and SVO yield

high probabilities of outliers in payroll growth, but SVO indicates the outlier to be larger in

magnitude than does SV-t. As may be expected, our preferred SVO-t specification captures

aspects of both SV-t-type outliers and SVO-type outliers. With SVO-t, the probability of a

small outlier is a little lower than in the SV-t case, with some probability mass shifted to a

large outlier. Similarly, with SVO-t, the probability of a large outlier is modestly lower than

in the SVO results, with some probability mass shifted to a small outlier. The results for

payroll growth in 2020 provide an example. The SV-t estimates yield a high probability of

small outliers in 2020, whereas the SVO estimates put a high probability on large outliers.

23As described in Section 2, the support of oj,t in the SVO model is between 1 and 20, and in the SV-t
case the support is given by the positive portion of the real line. In both cases, the priors place most of their
mass on realizations of oj,t and qj,t around 1 as shown in Figure 2. In the SV-t case, the remaining mass of
the prior is largely assigned to values below 5, whereas SVO places equal mass on values between 2 and 20.
In the SVO-t case, for the combined outlier state, oj,t · qj,t, the prior mass blends features of both SVO and
SV-t. In particular, in the upper tail, for realizations of the combined outlier state above 5, the SVO-t prior
has more mass than SV-t but less than SVO.

24Possible realizations of qj,t beyond the maximal value of oj,t attract only negligible density as shown in
Figure 2.

20



The SVO-t estimates yield a mixture of small and large outliers last year.

For selected variables, Figure 8 also reports prior and posterior probability densities of

the outlier probability parameter pj in the SVO-t and SVO models, which describes the

model’s unconditional probability of seeing an outlier state oj,t value of 2 or more (at any

given point in time). In the SVO case, for some variables, like real income in Panel (a) of

the figure, the posterior is shifted somewhat to the right of the prior, reflecting the relatively

more frequent occurrence of outliers in this series discussed before.25 For payroll growth,

the posterior is more concentrated around the prior mean, as seen in Panel (b), whereas the

posteriors of pj for other variables are shifted more to the left. Overall, and as it should be,

the estimated probability of an outlier is quite low, with only negligible mass on values for

pj larger than 5 percent, even in the case of real income, and often below 2 percent for other

variables. A comparison between the SVO and SVO-t estimates (shown in the bottom half

of the figure) reveals that, with the additional outlier state added in the SVO-t model, the

posterior distributions of the outlier probability parameter pj tend to shift a little to the left

and become less dispersed — more evidence that, with the small outlier state also in the

model, the probability of a large outlier is reduced. Of course, as the figure indicates, in

the SVO-t specification, the prior distributions are also shifted to the left and less dispersed

than in the SVO model; as noted above, in SVO-t, we deliberately use a prior that implies

large outliers to be less frequent.

Time variation in Σt affects our forecasts through two channels: first, the estimation

of VAR coefficients Π as discussed in Section 2; and second, the projection of uncertainty

about future shocks vt that arises when simulating forward the dynamics of log (λt), as given

in (2), to construct predictive densities. The forecast results we have seen so far, for 1985

to 2017, seem to suggest that the latter channel is more relevant than the former, as the

RMSE differences between SV and SVO-t are very small, while those in CRPS are sometimes

larger. The outlier states in SVO-t (as well as SVO and SV-t) allow for spikes in volatility

25As in Stock and Watson (2016), the prior for pj is a beta distribution, centered around a mean of about
2 percent, consistent with having observed an outlier once every 4 years in 10 years’ worth of monthly data.
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to occur without having to project a persistent increase in uncertainty into the future as SV

would be required to do. To illustrate the effects of this feature, we compare trajectories of

time-varying volatility in the residuals of different VAR equations as estimated in quasi-real

time over the course of 2020.26

For each variable we report estimates of time variation in the volatility of forecast errors

generated by SV and SVO-t, as well as the persistent components of Σt imputed from SVO-t

when the effects of the outlier states oj,t and qj,t are ignored. For this counterfactual, we

compute Σ̃t = A−1 Λt (A−1)′ based on the SVO-t estimates for Λt and A−1.27 In addition,

we consider the corresponding measures of residual volatility obtained from the SV-OutMiss

model, described in Section 2, that treats pre-specified outliers as missing data. Figure 9

displays estimates for payroll growth; further results are shown in our online appendix.

Over the COVID-19 period, the SVO-t model clearly differentiates between increases in

uncertainty that are short- and longer-lived, which the SV model cannot do. Volatility

estimates from the SV model, shown in Panel (a) of the figure, reflect the impact of COVID-

19 in the spring with a strong increase, which leveled off somewhat over the summer, but

remained substantially elevated in the fall.

In contrast, SVO-t proves more nimble in accounting for the extreme data seen in the

spring with a big jump in volatility in April as shown in Panel (b) of the figure. However,

as revealed by comparison with Panel (d), this jump is largely seen as transitory (both as

it occurred in the spring and with the hindsight of estimates constructed based on data for

the fall). In contrast, the persistent component of volatility in the case of SVO-t is seen to

have risen no more than 8-fold over the course of the year. That is, the SVO-t estimates

yield a much smaller rise in the persistent component of volatility than do the estimates

26The reported trajectories of volatilities in the VAR residuals, vt, reflect smoothed estimates of the square
roots of the diagonal elements of Σt computed from MCMC estimates for different end-points of the data
(that correspond to different forecast origins in our out-of-sample forecast evaluation).

27The full variance-covariance matrix of forecast errors in the SVO-t model is instead given by

Σt = A−1OtQt ΛtQ
′
tO
′
t (A−1)′.
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from the SV model. The SV-OutMiss model yields an even smaller increase in the persistent

component of volatility (the only component of volatility in that model); the estimates from

SV-OutMiss shown in Panel (c) have risen by less than 5 times their level at the beginning

of the year.

The more moderate rise in estimates of the persistent volatility component obtained with

the SVO-t specification yields noticeably narrower (and arguably less extreme) uncertainty

bands around forecasts compared to the SV model. In contrast, forecasts that condition

on knowledge of when outliers occurred, but otherwise ignore any further information from

their realization (as in the SV-OutMiss case), lead to particularly narrow uncertainty bands.28

As discussed next, the aforementioned pattern in volatility estimates shown in Figure 9 is

mirrored in out-of-sample forecast densities generated over the course of 2020.

6 Forecasts made in 2020-2021

As a reference for the pre-COVID situation, Figure 10 reports forecasts generated by the

CONST and SV models in January 2020.29 In January 2020, prior to the onset of COVID-

19’s economic effects, predictive densities generated from the CONST and SV models differ

a little, but not markedly so in most cases. For example, as shown in Panel (d) of the figure,

the CONST model saw the unemployment rate rise back to 4 percent over the course of

2021, consistent with a higher longer-run level of the unemployment rate, whereas the SV

model predicted a modestly shallower path, with the unemployment rate below 4 percent

over the forecast horizon.

Things change dramatically over the course of March and April. The COVID-19 pan-

demic began to affect the US economy most visibly with the introduction of lockdown mea-

sures in the second half of March 2020, resulting in strong swings, particularly among mea-

28A similar conclusion emerges from an approach that adds dummies for each month since March 2020 to
every VAR equation that is discussed in Section 6.

29Forecasts from the other alternatives, notably SVO and SV-t, are similar to those generated by the SV
model in January 2020.
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sures of real activity, in subsequent months. Figures 11–14 display the evolution of forecasts

for real income, payroll growth, stock market returns, and the unemployment rate over the

months of March, April, and June generated from our alternative BVAR models.30 As noted

by Lenza and Primiceri (2020) and Schorfheide and Song (2020), forecasts generated by ho-

moskedastic BVARs, like our CONST specification, can display extreme behavior since the

spring of 2020.31 For example, CONST forecasts for the unemployment rate made in April

run to nearly 35 percent, with a 68 percent uncertainty band of -17 percent to 22 percent in

April 2022; see Panel (b) of Figure 14.

In contrast, the reaction of point and density forecasts generated by the SV and SVO-t

specifications to the incoming data in spring 2020 is much better behaved. Considering again

the unemployment rate forecasts shown in Figure 14, point forecasts from the SV model rise

to about 17 percent by the end of 2020 and then fall back to about 13 percent by the end of

2021.32 Generally, across variables and forecast origins, point forecasts generated by SV and

SVO-t are fairly close, as seen also in our comparison of forecast performance pre-COVID-19

in Table 2.33

However, stark differences emerge considering the uncertainty around forecasts made

with and without outlier adjustments. In keeping with the volatility comparisons provided

above, while the observations of 2020 widen the predictive densities of both SV and SVO-t

forecasts, their impact is much greater for the former than the latter. As indicated in the

top row of each of the figures, SVO-t generates much narrower bands than SV in response to

the particularly large swings in incoming data seen in March and April 2020. Moreover, the

30For brevity, our discussion will abstract from nuances of the real-time data flow, and simply refer to
forecasts being “made” at (or even “in” the month of) a particular forecast origin, even though the underlying
data would have been available in FRED-MD only in a subsequent month.

31Lenza and Primiceri (2020) consider a slightly smaller VAR system (with six variables covering mostly
employment and price data and observations starting only in 1988) where problems related to COVID-19
already become apparent with data for March 2020; in our 16-variable system case estimated from data
starting in 1959, the effects of outliers become most apparent by April.

32These forecasts made in April jump off a reading for the unemployment rate of just under 15 percent.
33For better readability, forecasts generated by SV are displayed on different scales in the top and bottom

rows of panels shown in Figures 11–14. Similarly, the SVO forecast densities shown in the top-row panels of
these figures are also shown in the middle-row panels of each figure.
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SVO-t bands also remain narrower for forecasts made in subsequent months, such as June

2020.

The middle-row panels of Figures 11–14 compare our preferred SVO-t results to those

for the more restrictive SVO and SV-t specifications. As expected, while the point forecasts

of these specifications are difficult to distinguish, bigger differences are evident in the widths

of the predictive densities. Across the variables and forecast origins shown, the predictive

densities are generally the narrowest with the SVO-t forecasts. The SVO model generally

yields wider densities, although in most cases the differences are less stark in June compared

to March and April. Estimates are more varied with the SV-t model. In some cases (e.g.,

for payroll growth at the March 2020 forecast origin), the SV-t forecast intervals are very

similar to the SVO-t estimates. But, in other cases, the SV-t intervals are wider than the

SVO-t estimates; examples include real income and the unemployment rate in the April 2020

forecasts, when incoming data for these variables displayed particularly large jumps.

Critically, SVO-t, SVO, and SV-t incorporate adjustments to random outliers that occur

at unknown times. We also consider two procedures that condition on knowledge of when and

which outliers occurred in the data. One criterion for the ex-ante identification of outliers is

based on the distance from a data point to its sample median; the other reflects the timing

of the COVID-19 pandemic.

When outliers are identified ex-ante, they could be treated as missing data, as we do with

the SV-OutMiss approach in an otherwise standard VAR-SV model. In our application, ob-

servations that are more than 5 times the inter-quartile range away from their sample median

are considered outliers.34 The resulting forecast densities with jump-off points in 2020 are

shown in the bottom-row panels of Figures 11–14. In comparison to forecasts based on SVO

(or SV-t), the forecast densities from SV-OutMiss tend to be narrower, in particular later in

2020, and dependent on the variables considered. For example, as indicated by the circled

data points in Panel (i) of Figure 12, payroll growth data for the months of March, April,

34We obtain similar results with a threshold of 10 times the inter-quartile range.
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May, and June are treated as outliers in our application. The resulting 68 percent bands

generated in June for annualized payroll growth in late 2021 range from −16 to 19 percent,

whereas the corresponding SVO-t band is much wider, ranging from about −25 to 33 per-

cent. SV-OutMiss does not merely omit outlier data from the estimation of parameters and

volatility states; the outliers are also ignored in the data vectors used to simulate predictive

densities at every forecast origin. Ignoring the massive drop in payrolls recorded for April,

by about 15 percent, also leads to some differences between near-term forecasts obtained

from SV-OutMiss and SVO-t during the onset of the COVID-19 recession.35 While the

April forecast generated by SV-OutMiss sees payroll growth turning positive in the fourth

quarter of 2020 and hovering around 4 percent (annualized) for the remainder of the forecast

horizon, SVO-t predicts a protracted slump until mid-2021, followed by a swifter pace of

payrolls than predicted by SV-OutMiss.

As an alternative approach to handling outliers at known dates, we consider a further

VAR specification, where each equation in (1) is augmented with dummies for every month

since March 2020.36 In light of the wild swings in at least some of the data, and for the pur-

pose of soaking up potential outliers (rather than measuring average effects during COVID-

19), separate dummies are added for each month since March, and wide priors are assigned to

each dummy coefficient.37 These dummies are applied to our BVAR model with SV, since the

SV version of the model displayed generally beneficial qualities prior to the onset of the ex-

treme observations of the COVID period. The bottom-row panels of Figures 11–14 compare

the resulting forecasts for the months of March, April, and June. Strikingly, introduction of

35The drop in monthly payrolls of about 15 percent corresponds to an annualized rate of decline of about
85 percent, or an annualized log-change of −180 percent, which is the number shown in Figure 12.

36Our dummy specification matters only for forecasts made in or after March 2020. In March 2020, one
dummy is added to the VAR, two dummies are added in April, and so on.

37Denote the dummy coefficient for each month t ≥ 2020:03 by δt. The prior for each δt is a mean-zero
normal distribution, with a large variance set equal to 1/ε, where ε is a small number chosen as a function of
machine precision (identical to the output of the eps function in MATLAB). For t ≥ 2020:03, only the sum
of δt and the residual vt are identified. In an OLS estimation, designed to minimize squared residuals, the
dummy setup would result in vt = 0 (for t ≥ 2020:03), whereas our Bayesian estimation will form predictions
for these vt identical to the posterior of the February residual, i.e., the last residual before the first non-zero
dummy enters the system.
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the outlier dummies to the BVAR with SV leads to point forecasts that are nearly identical

to those obtained from SVO-t without dummies. However, as the COVID-19 dummies soak

up the residuals from every month since March, the width of the uncertainty bands remains

stuck at levels estimated for the months prior to the economic onset of COVID-19, which

appears to convey an unrealistically tight picture of forecast uncertainty since March.

Figure 15 provides predictive densities for more recent forecast origins, ranging from

September 2020 to March 2021, focusing on the SVO-t specification, the missing data ap-

proach, and the pandemic dummies approach. These latest forecasts display a now familiar

pattern: Even almost a year after the onset of the COVID-19 pandemic impacted economic

data, uncertainty bands from SVO-t remain noticeably wider than before the pandemic (ev-

ident in a comparison of Figure 10 to Figure 15). In most cases, forecast densities obtained

from SV-OutMiss or the dummy approach, which both treat the timing of outliers as known,

remain relatively tight. However, exceptions are evident in the unemployment rate forecasts

provided in the bottom row, with the SV-OutMiss bands wider than those of SVO-t for

forecasts made with data in September and December 2020. Although harder to discern

in the wide scales of the charts necessitated by the extreme realizations of actual data, the

point forecasts produced by the alternative methods tend to be broadly similar at longer

forecast horizons, although more sizable differences can occur at shorter horizons.

To permit some assessment of the recent performance of alternative methods, Tables 6

and 7 provide RMSE and CRPS results for forecast origins from March 2020 through Febru-

ary 2021, taking the SV model as the baseline.38 In light of the very small sample, we focus

on short forecast horizons, of 1, 3, and 6 months, and we don’t assess the statistical signifi-

cance of any differences.39 In these 2020-2021 results, consistent with historical results, the

38In the supplementary online appendix, we also consider forecast performance during the Great Recession
of 2007-09 and its aftermath. As shown there, SV has done generally better than CONST in terms of both
RMSE and, in particular, CRPS during that period. SVO performed comparably, the differences are very
small, as well as those between SVO, SV-t and SV-OutMiss. A likely reason for this pattern is that few
outliers are detected in this period, after properly accounting for volatility spikes.

39The April 2021 vintage of FRED-MD provides realized values through March 2021. Thus, to evaluate
one-step ahead forecasts, the forecast evaluation ends with the forecast origin of February 2021. For longer
forecast horizons, the evaluation window is shortened as needed.
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accuracy of point forecasts are very similar for SV and SVO-t, except for the Baa spread and

longer-term yields (for which SVO-t does better). Point forecasts from SV-dummy also per-

form typically similarly to those from SV except for longer-term yields and the Baa spread,

while point forecasts from SV-OutMiss proved more accurate than SV for many variables,

with gains in one-step ahead forecasts reaching up to 50 percent for the 5-year yield (and

about 40 percent for hourly earnings and PCE inflation). By the CRPS measure of density

accuracy, SVO-t is similar to SV for 1-month-ahead forecasts but becomes better for most

variables for the 3- and 6-month horizons. SV-Dummy is again overall comparable to SVO-t,

while SV-OutMiss is best, with quite some gains over SV for most variables at the 1-month

horizon, and for all variables at the 3- and 6-month horizons.40 On balance, the approach of

treating pre-screened outliers as missing data in a BVAR with SV has worked relatively well

for (near-term) forecast accuracy since early 2020. However, given the yet scarce number

of realized data points since March 2020, the comparison is based only on relatively few

non-overlapping forecast windows (even for near-term forecasts).

To visualize the sensitivity of these results to individual observations, Figure 16 shows

absolute losses of one-step ahead forecasts generated from March 2020 onward for selected

variables by the models covered by Tables 6 and 7.41 For some variables, like capacity

utilization or hourly earnings, the performance of SV-OutMiss accrues mainly in the early

stage of the pandemic period by avoiding singularly large errors. In a few cases, like the 10-

year yield or the Baa spread, SV-OutMiss gains have been a little more consistent, whereas

in other cases, like PCE inflation or housing starts, relative losses have fluctuated quite

unevenly over this short pandemic evaluation window.

40From unreported results, over the 2020-21 period SVO-t is similar to SVO and SV-t in terms of point
forecasts, while for density forecasts SVO-t yields small improvements in accuracy.

41We plot absolute instead of squared errors to provide better visibility of large and small forecast misses.
Corresponding plots for additional variables can be found in the supplementary online appendix.
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7 Conclusion

We study the use of an outlier-augmented stochastic volatility specification for Bayesian

VARs. This SVO approach extends to BVARs the earlier work of Stock and Watson (2016)

in the context of unobserved component models of inflation, and it is related to SV models

with t-distributed errors developed by Jacquier, Polson, and Rossi (2004). Our work is

prompted by the enormous realizations of many macroeconomic time series witnessed over

the course of 2020 as COVID-19 started to impact many economies across the world. As

recognized by other recent studies such as Lenza and Primiceri (2020) and Schorfheide and

Song (2020), these outliers have strong, and sometimes outsized, effects on forecasts made

with standard constant-variance VARs. Instead, as VARs with time-varying volatility tend

to down-weight high-volatility observations in the construction of parameter estimates, the

resulting forecasts can be better insulated from outliers. As shown in Section 6, different

variants of BVARs with time-varying volatility generate point forecasts that are less distorted

than in the constant-variance case.

But, a conventional SV model expects all changes in volatility to be persistent, so that

it extrapolates huge forecast uncertainty from the initial COVID-19 shocks.42 In contrast,

SVO allows the model to fit sharp spikes in current volatility while adapting its uncertainty

forecasts more moderately. Alternatively, dummy variables could be added to the standard

VAR-SV model for every month of the pandemic. By soaking up all information contained in

data since the onset of the pandemic, the dummy approach generates point forecasts compa-

rable to our outlier adjusted SV models. As the dummy approach is conditioned on ex-ante

knowledge that all COVID-19 related data points are highly unusual, its forecast densities

are much tighter than those derived from our more agnostic outlier-adjusted SV models.

The SVO model is related to an SV model with t-distributed errors, with SVO placing more

prior mass on the occurrence of huge outliers. In our data, there are not many instances

42Typical implementations of SV differ, at times, in whether log-variances are modeled as random walks,
or highly persistent though stationary processes. Concerns about undue extrapolation from a short-lived
spike in volatility further into the future arise, however, in either case.
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of such dramatic changes, as indicated by the frequency of observations far in the tails of

the empirical density of the various data series considered in Figure 3. Our preferred model,

SVO-t, puts together the features of SVO and SV-t.

Of course, future data will be needed to assess which of the forecasts made in 2020 and

2021 will end up being closer to the eventually realized data; and even then, the evaluation of

density forecasts made this year will remain restricted to a limited sample of realized values.

Nevertheless, we can take signal from an evaluation of simulated out-of-sample forecasts

over a longer sample of post-1985 US data, described in Section 4. We find that SVO-t

outperforms standard SV, in particular in terms of density forecasts and at longer horizons,

while both display benefits over a constant-variance BVAR. In 2020-2021, point forecasts

generated from SV and SVO-t are very similar. But as SVO-t projections filter out the effects

from short-lived outliers on forecast uncertainty, predictive densities constructed with SVO-t

in 2020 widen by much less than those from SV. The ability of SVO to capture these extreme

events, while otherwise retaining the beneficial performance of SV, is particularly appealing,

and encouraging also for its use in current circumstances. Critically, the SVO-t model (as

well as SVO and SV-t) treats the occurrence of outliers as stochastic events, with unknown

timing. As a result, forecast uncertainty generated from these outlier-adjusted SV approaches

is less compressed than what is obtained from approaches that treat the occurrence of outliers

as known. More broadly, treating outliers as random events makes SVO-t, SVO, and SV-t

attractive for continued use over the yet-unknown course of economic developments related

to the COVID-19 pandemic. That being said, an alternative approach would be to pre-screen

the data to identify outliers in individual variables based on a simple measure of historical

norms, and then treat these variable-specific outliers as missing observations in an otherwise

conventional VAR with SV. This alternative missing-data approach performs about as well

in historical forecasting and does particularly well over the short sample of available data

over which near-term forecasts for 2020-2021 can so far be evaluated.
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Table 1: List of variables

Variable FRED-MD code tcode

Real Income RPI 5
Real Consumption Exp. DPCERA3M086SBEA 5
IP INDPRO 5
Capacity Utilization CUMFNS 1
Unemployment Rate UNRATE 1
Nonfarm payrolls PAYEMS 5
Hours CES0600000007 1
Hourly Earnings CES0600000008 5
PPI: Finished Goods WPSFD49207 5
PCE prices PCEPI 5
Housing Starts HOUST 4
S&P 500 SP 500 5
USD / GBP FX rate EXUSUKx 5
5-Year yield GS5 1
10-Year yield GS10 1
Baa spread BAAFFM 1

Note: Data obtained from the 2021-04 vintage of FRED-MD. Monthly observations from
1959:M03 to 2021:M03. The column tcode denotes the following data transformation for
a series x: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆ log(xt) · 1200; (6)
∆2 log(xt); (7) ∆(xt/xt−1 − 1.0).
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Figure 1: Some selected data series
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Note: Data for selected time series, with data transformations as listed in Table 1. Red dots
denote observations that are more than five times the inter-quartile range away from the
series median.
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Figure 2: Prior densities of outlier states in different models

(a) Full figure
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(b) Zoomed into right tail
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Note: Densities for the outlier state oj,t in the SVO model, qj,t in the SV-t model of
Jacquier, et al. (2004), and oj,t · qj,t in the combined SVO-t model. The densities are cal-
ibrated to generate roughly the same variance of the outlier states. For the SVO model,
outlier probability pj has been set to correspond to one outlier every four years in monthly
data, pj = 1/(4 · 12). The degrees of freedom for the SV-t model have been set equal to five.
For the SVO-t model, the outlier probability has been lowered to correspond to one outlier
every ten years, and the degrees of freedom of the t-component have been set to 9.
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Figure 3: Potential outliers in the data

Note: Occurrence of potential outliers in our 16-variable data set (as described in Table 1). Potential

outliers are identified as observations that are more than five times the inter-quartile range away

from the series median in a given sample. In quasi-real time, the assessment may change, and

the graph above indicates the average occurrence (in percentage points) of an observations being

designated as outlier over all quasi-real-time samples that include a given observation. We consider

growing quasi-real-time samples, all starting in 1959:M3 with the first sample ending in 1985:M1.
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Figure 9: Time-varying volatilities since 2020 of payroll growth
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Note: Quasi-real-time trajectories of time-varying volatility in VAR residuals, measured by
the diagonal elements of Vart (vt) = Σt implied by different models. Medians of (smoothed)
posterior obtained from different data samples ending at forecast origins as indicated in the
figure legend. Panels (b) and (d) display estimates of stochastic volatility for SVO-t that
ignore the contributions from outliers and that are computed from Σ̃t = A−1 ΛtA

−T (i.e.,
neglecting the Ot and Qt components in the computation of the uncertainty measures shown
here, while including these outliers in estimation of A−1, Λt, etc.). Reflecting the sizable
differences in the size of estimates resulting with and without outlier treatment, different
scales are used in upper- and lower-row panels.
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Figure 10: Predictive densities in January 2020 for selected variables
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample
at various forecast origins as indicated in each panel. The solid green line denotes realized
data prior to the forecast origin.
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Figure 11: Predictive densities since March 2020 for real income
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample at various forecast

origins as indicated in each panel. The solid green line denotes realized data prior to the forecast origin.

In panels (g) – (i), observations identified ex-ante as outliers, based on being more than 5 times the inter-

quartile range away from the median, are indicated with a circle, and the corresponding backcast densities

from the SV-OutMiss model are superimposed.
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Figure 12: Predictive densities since March 2020 for payroll growth
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample at various forecast

origins as indicated in each panel. The solid green line denotes realized data prior to the forecast origin.

In panels (g) – (i), observations identified ex-ante as outliers, based on being more than 5 times the inter-

quartile range away from the median, are indicated with a circle, and the corresponding backcast densities

from the SV-OutMiss model are superimposed.
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Figure 13: Predictive densities since March 2020 for S&P 500 returns
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample at various forecast

origins as indicated in each panel. The solid green line denotes realized data prior to the forecast origin.

In panels (g) – (i), observations identified ex-ante as outliers, based on being more than 5 times the inter-

quartile range away from the median, are indicated with a circle, and the corresponding backcast densities

from the SV-OutMiss model are superimposed.
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Figure 14: Predictive densities since March 2020 for the unemployment rate
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample at various forecast

origins as indicated in each panel. The solid green line denotes realized data prior to the forecast origin.

In panels (g) – (i), observations identified ex-ante as outliers, based on being more than 5 times the inter-

quartile range away from the median, are indicated with a circle, and the corresponding backcast densities

from the SV-OutMiss model are superimposed.
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Figure 15: Predictive densities since late 2020
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origins as indicated in each panel. Forecasts generated from the SV-OutMiss approach idenitfy observations

ex-ante as outliers, based on being more than 5 times the inter-quartile range away from the median; these
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Figure 16: Absolute error forecast losses since March 2020
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Table 2: RMSE (baseline comparisons)

Relative to SV . . .

SV CONST SVO-t

Variable / Horizons 1 3 12 24 1 3 12 24 1 3 12 24

Real Income 7.60 7.65 7.72 8.44 1.00 1.01 1.00 0.92∗ 1.01 1.00 1.01∗∗ 0.93∗

Real Consumption 5.38 5.60 5.36 5.05 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01
IP 6.68 7.08 7.80 8.39 1.01 1.00 0.99 0.98 1.00 0.99 1.00 0.96∗∗∗

Capacity Utilization 0.45 0.85 2.79 4.28 1.02∗ 1.00 0.99 0.96 1.00 0.99 1.00 0.97
Unemployment 0.14 0.22 0.73 1.33 0.99 0.97 1.00 1.05 1.00 0.99 0.99 0.99
Nonfarm Payrolls 1.21 1.33 1.86 2.11 1.04∗ 1.02 1.02 1.01 0.99 1.00 1.01 0.98
Hours 0.19 0.23 0.40 0.43 1.04∗∗∗ 1.00 1.04 1.07∗ 1.00 1.00 0.99 1.00
Hourly Earnings 2.48 2.46 2.54 2.73 1.04∗∗ 1.01 1.03 1.06 1.01 1.00 1.01∗∗ 1.03∗

PPI (Fin. Goods) 7.16 7.35 7.58 7.43 1.00 1.02 1.05 1.07 1.00 0.99 1.00 1.00
PCE Prices 2.11 2.42 2.64 2.81 1.01 1.03 1.13∗ 1.19∗∗ 1.00 1.00 1.01 1.03∗

Housing Starts 0.07 0.10 0.23 0.35 0.99 0.99 1.03 1.08∗∗ 0.99 0.99 0.99 1.03∗∗∗

S&P 500 43.71 44.17 44.03 43.28 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.01∗∗

USD / GBP FX Rate 28.35 29.79 28.26 33.35 1.03∗∗ 1.02 1.02 0.86 1.00 1.00 1.00 0.86
5-Year yield 0.25 0.55 1.14 1.43 1.05∗∗∗ 1.06∗∗∗ 1.04 0.92 1.01∗∗ 1.00 1.01 0.97
10-Year yield 0.23 0.51 1.08 1.22 1.03 1.06∗∗ 1.08∗ 1.03 1.01∗∗ 1.00 1.01 0.98
Baa Spread 0.26 0.61 1.33 1.51 1.20∗∗∗ 1.25∗∗ 1.12∗ 1.15 1.00 0.99 0.99 0.97

Note: Comparison of “SV” (baseline, in denominator of relative comparisons) against “CONST” and “SVO-t.” Values below 1
indicate improvement over baseline. Evaluation window from 1985:M01 through 2017:M12. Significance assessed by Diebold-
Mariano-West test using Newey-West standard errors with h+ 1 lags.
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Table 3: Avg CRPS (baseline comparisons)

Relative to SV . . .

SV CONST SVO-t

Variable / Horizons 1 3 12 24 1 3 12 24 1 3 12 24

Real Income 3.17 3.32 3.63 4.19 1.09∗∗∗ 1.00 0.94∗ 0.82∗∗∗ 0.99 0.96∗∗∗ 0.94∗∗∗ 0.86∗∗∗

Real Consumption 2.76 2.88 3.05 3.56 1.04∗∗ 1.04∗∗∗ 0.98 0.82∗∗∗ 1.00 0.99 0.97∗∗∗ 0.91∗∗∗

IP 3.65 3.83 4.50 5.37 1.03∗∗ 1.02 0.95∗∗∗ 0.84∗∗∗ 1.00 0.99∗ 0.96∗∗∗ 0.90∗∗∗

Capacity Utilization 0.26 0.48 1.54 2.57 1.03∗∗ 1.04∗ 0.99 0.90∗∗ 1.00 0.99 1.00 0.96
Unemployment 0.08 0.12 0.38 0.72 0.99 1.00 1.03 1.05 1.00 1.00 1.01 1.00
Nonfarm Payrolls 0.69 0.77 1.12 1.48 1.10∗∗∗ 1.07∗∗∗ 0.99 0.84∗∗∗ 0.99 1.00 0.98∗ 0.93∗∗∗

Hours 0.10 0.13 0.23 0.29 1.07∗∗∗ 1.02 1.02 0.91∗∗ 0.99 0.99 0.98∗ 0.92∗∗∗

Hourly Earnings 1.39 1.41 1.58 2.04 1.07∗∗∗ 1.05∗∗∗ 0.98 0.84∗∗∗ 1.00 0.99∗∗ 0.98∗∗∗ 0.93∗∗∗

PPI (Fin. Goods) 3.75 3.90 4.15 4.58 1.02 1.02 1.02 0.93∗∗ 1.00 0.99∗ 0.98∗∗∗ 0.95∗∗∗

PCE Prices 1.10 1.26 1.47 1.81 1.03∗∗ 1.04∗ 1.07 0.96 1.01∗∗ 1.00 1.00 0.98∗∗∗

Housing Starts 0.04 0.05 0.12 0.19 0.99 1.00 1.05 1.03 1.00 1.00 1.01 1.01∗

S&P 500 22.98 23.44 25.00 28.39 1.00 1.01 0.94∗∗∗ 0.82∗∗∗ 1.00 0.99∗∗ 0.97∗∗∗ 0.92∗∗∗

USD / GBP FX Rate 15.59 16.14 16.53 18.39 1.03∗∗ 1.02 0.96∗∗ 0.86∗∗∗ 0.99 0.99∗ 0.97∗∗∗ 0.92∗∗∗

5-Year yield 0.14 0.30 0.63 0.80 1.06∗∗∗ 1.08∗∗∗ 1.06 0.97 1.01∗∗∗ 1.00 1.01∗ 1.01
10-Year yield 0.13 0.28 0.60 0.75 1.04∗∗∗ 1.06∗∗∗ 1.08∗ 1.00 1.01∗∗∗ 1.01 1.01 1.01∗

Baa Spread 0.14 0.32 0.75 1.01 1.34∗∗∗ 1.30∗∗∗ 1.11∗ 0.99 1.00 0.99 0.99 0.97∗∗

Note: Comparison of “SV” (baseline, in denominator of relative comparisons) against “CONST” and “SVO-t.” Values below 1
indicate improvement over baseline. Evaluation window from 1985:M01 through 2017:M12. Significance assessed by Diebold-
Mariano-West test using Newey-West standard errors with h+ 1 lags.
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Table 4: Relative RMSE (outlier-adjusted models)

SVO SV-t SV-OutMiss

Variable / Horizon 1 3 12 24 1 3 12 24 1 3 12 24

Real Income 0.99 1.00 1.00 1.01∗∗ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02
Real Consumption 0.99∗∗ 1.00 0.99 0.99 1.00 1.00∗∗ 1.00 1.00 0.98 0.98 1.00 1.00
IP 1.00 1.00 1.00 1.02∗ 1.00 1.01∗ 1.00 1.01 1.00 1.01 1.00 1.02∗∗

Capacity Utilization 0.99 1.00 0.99 1.01 1.00 1.01 1.00 0.99 1.00 1.03 0.99 1.00
Unemployment 1.00 1.01 1.00 1.00 1.00 1.00 1.00 0.99∗∗ 0.99 1.00 1.00 1.01
Nonfarm Payrolls 1.01 1.00 0.99 1.00 1.01 1.01 0.99∗∗ 1.00 1.00 1.00 0.98 1.00
Hours 1.00 1.01 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
Hourly Earnings 0.99 1.00 0.98∗∗∗ 0.96∗∗∗ 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.97∗∗

PPI (Fin. Goods) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.00
PCE Prices 0.99 1.00 0.99 0.97∗ 1.00 1.00 1.00 1.00 0.99 1.00 1.01 0.99
Housing Starts 1.00 1.00 1.00 0.98∗ 1.00 1.00 1.00 1.00 1.00 1.01 1.00 0.98∗∗

S&P 500 1.00 1.00 1.00 1.00 1.00 1.00∗∗ 1.00 1.00 1.00 1.00 1.00 0.99
USD / GBP FX Rate 0.99∗∗ 1.00 0.99∗∗ 0.99 1.00 1.00 1.00 1.01 1.01 0.99 1.00 0.98∗∗

5-Year yield 0.99∗ 0.99 0.99∗∗ 1.02 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
10-Year yield 1.00 0.99 0.99∗∗ 1.00 0.99 1.00 1.01 1.00 0.99 0.99 0.99 0.99
Baa Spread 1.00 0.99 0.98 1.02 1.00 1.00 1.01 1.00 1.01 1.00 0.99 1.04

Note: Comparison of “SVO-t” (baseline, in denominator) against “SVO” and “SV-t.” Values below 1 indicate improvement
over baseline. Evaluation window from 1985:M01 through 2017:M12. Significance assessed by Diebold-Mariano-West test using
Newey-West standard errors with h + 1 lags. Due to the close behavior of some of the models compared, and rounding of
the report values, a few comparisons show significant relative RMSE of 1.00. These cases arise from persistent differences in
performance that are, however, too small to be relevant after rounding.
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Table 5: Relative Avg CRPS (outlier-adjusted models)

SVO SV-t SV-OutMiss

Variable / Horizon 1 3 12 24 1 3 12 24 1 3 12 24

Real Income 1.00 1.01∗ 1.03∗∗∗ 1.08∗∗∗ 1.00 1.00 1.00∗∗ 0.99∗∗ 0.99 0.99∗ 1.00 1.01
Real Consumption 0.99 1.01∗∗ 1.05∗∗∗ 1.09∗∗∗ 1.00 1.00 0.99∗∗∗ 0.98∗∗∗ 0.98 0.99 1.01 1.04∗∗∗

IP 0.99 1.02∗∗ 1.05∗∗∗ 1.10∗∗∗ 1.00 1.00 0.99∗∗∗ 0.99∗∗∗ 0.99 1.02∗ 1.02∗∗∗ 1.07∗∗∗

Capacity Utilization 1.00 1.01 1.02 1.05∗ 1.00 1.00 0.99∗∗∗ 0.98∗∗∗ 0.99 1.02 0.99 1.00
Unemployment 1.00 1.01∗∗ 1.01 1.02 1.00 1.00 0.99∗∗∗ 0.99∗∗∗ 0.99 0.99 0.98 1.00
Nonfarm Payrolls 1.02∗∗ 1.02∗∗ 1.04∗∗∗ 1.09∗∗∗ 1.00 1.00 0.98∗∗∗ 0.98∗∗∗ 1.00 1.00 1.00 1.03∗∗

Hours 1.01∗∗ 1.02∗∗∗ 1.02∗∗ 1.07∗∗∗ 1.00 1.00∗ 0.99∗∗∗ 0.98∗∗∗ 1.01 1.02∗ 1.02 1.05∗∗∗

Hourly Earnings 1.00 1.02∗∗∗ 1.05∗∗∗ 1.09∗∗∗ 1.00 1.00 0.98∗∗∗ 0.98∗∗∗ 0.99 1.01 1.01 1.04∗∗∗

PPI (Fin. Goods) 1.00 1.01∗∗ 1.03∗∗∗ 1.06∗∗∗ 1.00 1.00 0.99∗∗ 0.99∗∗∗ 0.99 1.00 1.01∗∗ 1.02∗∗∗

PCE Prices 0.99∗∗ 1.01 1.02∗∗ 1.05∗∗∗ 1.00∗∗ 1.00 0.99∗∗∗ 0.98∗∗∗ 0.98∗∗ 0.99∗∗ 1.00 0.99
Housing Starts 1.00 1.01∗∗ 1.01∗ 1.01 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.98∗∗

S&P 500 1.01 1.02∗∗ 1.04∗∗∗ 1.07∗∗∗ 1.00 1.00 0.99∗∗∗ 0.99∗∗∗ 1.00 1.01 1.01∗∗ 1.05∗∗∗

USD / GBP FX Rate 0.99∗ 1.00 1.01∗∗∗ 1.03∗∗∗ 1.00 1.00 1.00 1.00 1.01 0.99 1.00 1.02
5-Year yield 1.00 0.99 1.00 1.03∗∗∗ 0.99∗ 1.00 1.00 0.98∗∗∗ 0.99 0.99 0.99 0.98∗∗∗

10-Year yield 1.00 1.00 1.01 1.04∗∗∗ 0.99∗∗ 1.00 1.00 0.98∗∗∗ 0.99 0.99 0.99 0.98∗∗∗

Baa Spread 1.00 1.00 1.02 1.07∗∗∗ 1.00 1.00 1.00 0.98∗∗∗ 1.00 0.99 0.99 1.01

Note: Comparison of “SVO-t” (baseline, in denominator) against “SVO” and “SV-t.” Values below 1 indicate improvement
over baseline. Evaluation window from 1985:M01 through 2017:M12. Significance assessed by Diebold-Mariano-West test using
Newey-West standard errors with h + 1 lags. Due to the close behavior of some of the models compared, and rounding of
the report values, a few comparisons show significant relative CRPS of 1.00. These cases arise from persistent differences in
performance that are, however, too small to be relevant after rounding.
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Table 6: Relative RMSE during COVID-19 episode

SVO-t SV-OutMiss SV-dummy

Variable / Horizon 1 3 6 1 3 6 1 3 6

Real Income 1.01 1.00 1.01 0.98 0.99 1.02 1.01 1.01 1.02
Real Consumption 1.01 1.02 1.04 1.01 0.97 0.95 0.99 0.99 1.01
IP 1.03 1.03 1.04 0.99 0.92 1.03 1.02 1.01 0.99
Capacity Utilization 1.02 1.07 1.12 0.88 0.75 0.77 1.01 1.06 1.11
Unemployment 1.02 1.06 1.06 1.03 0.88 0.74 1.00 0.99 1.01
Nonfarm Payrolls 1.01 1.01 1.12 0.97 0.81 0.40 1.00 0.99 1.05
Hours 1.02 1.03 1.09 0.84 0.70 0.75 1.00 1.04 1.07
Hourly Earnings 1.02 1.13 0.93 0.60 0.78 0.79 1.04 1.05 0.94
PPI (Fin. Goods) 1.10 1.04 0.88 0.83 0.71 0.76 1.02 1.06 0.99
PCE Prices 1.07 1.00 0.99 0.63 0.85 0.75 0.98 1.04 0.94
Housing Starts 1.01 1.06 1.01 1.10 1.06 1.02 1.08 1.09 1.03
S&P 500 1.10 0.98 1.09 0.79 0.75 0.65 0.88 0.90 1.05
USD / GBP FX Rate 1.06 1.05 1.16 1.05 1.22 0.75 1.01 0.92 1.00
5-Year yield 0.89 0.78 0.61 0.60 0.77 0.63 1.05 0.68 0.38
10-Year yield 0.93 0.77 0.59 0.50 0.83 0.66 1.02 0.66 0.38
Baa Spread 0.92 1.01 1.07 0.82 0.85 0.96 1.05 1.21 1.34

Note: Comparison of “SV” (baseline, in denominator) against “SVO-t” and “SV-OutMiss.” Values below 1 indicate improvement
over baseline. Evaluation window from 2020:M03 through 2021:M03. Due to the low number of observations in the evaluation
window, significance tests have not been performed.
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Table 7: Relative Avg CRPS during COVID-19 episode

SVO-t SV-OutMiss SV-dummy

Variable / Horizon 1 3 6 1 3 6 1 3 6

Real Income 1.02 0.92 0.89 1.04 0.92 0.98 1.05 0.96 0.93
Real Consumption 1.07 0.85 0.69 1.11 0.78 0.63 1.01 0.78 0.68
IP 1.10 1.02 0.69 1.01 0.90 0.84 1.12 0.94 0.46
Capacity Utilization 1.10 1.18 1.16 0.89 0.84 0.83 1.16 1.23 1.12
Unemployment 1.10 1.28 1.28 1.01 0.93 0.85 1.01 1.17 1.26
Nonfarm Payrolls 1.09 1.00 0.59 0.99 0.72 0.31 1.09 0.95 0.44
Hours 1.06 1.06 0.96 0.92 0.81 0.70 1.06 1.08 0.88
Hourly Earnings 1.04 0.94 0.73 0.70 0.74 0.66 1.04 0.87 0.65
PPI (Fin. Goods) 1.07 0.89 0.72 0.81 0.74 0.70 1.04 0.81 0.59
PCE Prices 1.03 0.94 0.74 0.68 0.73 0.60 0.99 0.96 0.54
Housing Starts 0.97 0.94 0.88 0.98 0.92 0.85 0.97 0.91 0.88
S&P 500 0.98 0.80 0.71 0.70 0.56 0.48 0.79 0.64 0.51
USD / GBP FX Rate 0.99 0.94 0.87 0.93 0.98 0.69 0.95 0.82 0.75
5-Year yield 0.93 0.81 0.65 0.63 0.88 0.74 1.11 0.78 0.46
10-Year yield 1.00 0.90 0.71 0.61 0.92 0.80 1.06 0.83 0.57
Baa Spread 0.95 1.02 0.94 0.78 0.86 0.88 1.04 1.23 1.08

Note: Comparison of “SV” (baseline, in denominator) against “SVO-t” and “SV-OutMiss.” Values below 1 indicate improvement
over baseline. Evaluation window from 2020:M03 through 2021:M03. Due to the low number of observations in the evaluation
window, significance tests have not been performed.
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