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1 Introduction

This paper isolates and quantifies motives that shape optimal government portfolios of financial

assets. We do this for a class of representative household general equilibrium models. This

class of models is quite general and includes popular specifications of households’ risk and

liquidity preferences, sets of tradable securities, as well as restrictions that can limit access

to some markets. We show that despite its generality, the main forces that shape an optimal

portfolio can be summarized in a small number of objects – “sufficient statistics”– that can

be measured in the data directly. We then apply our approach to study the optimal maturity

structure of U.S. government debt.

Our framework consists of domestic households, foreign investors, and a benevolent govern-

ment. Households are identical and derive utility from consumption and leisure; in addition,

they may also derive indirect utility from holdings financial assets. This indirect utility sum-

marizes shadow benefits and costs from holding assets that provide liquidity services, or affect

borrowing constraints or trading frictions. A benevolent government planner uses distortionary

taxes to finance exogenous public expenditures. Households, government and foreign investors

trade an arbitrary set of financial assets. Our specification of household preferences and de-

mand of foreign investors is flexible enough to incorporate a variety of models of asset price

determination studied in the literature, such as recursive utility, discount factor shocks, ambi-

guity aversion, preferred habitat models, closed and open economies, etc.

We isolate key forces that determine optimal portfolio by considering implications of per-

turbing government portfolio at any history in the competitive equilibrium and then simplifying

these expressions by applying a class of small noise expansions. This allows us to express the

optimal portfolio as a function of sufficient statistics. These statistics can be measured directly

in the data, and they do not require us taking a stance on the more primitive forces that drive

asset pricing behavior. This is important since there is considerable disagreement in the asset

pricing literature about the sources of asset price fluctuations in the data.

The key notion that emerges in our analysis is that of a target portfolio. The target

portfolio is a portfolio that the government should choose in the absence of any costs of

rebalancing of its holdings of financial assets. This portfolio captures a trade-off between

hedging risks faced by the government in the future and providing liquidity services in the

present. There are three future risks – interest rates, primary deficits, and liquidity – and

they are summarized by covariances of returns on assets in government portfolios with various

financial and macroeconomic variables. The value of the liquidity services in the present is

summarized by a certain measure of liquidity premium on various assets.
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If rebalancing of government portfolio has no effect on asset prices, as would be in the case

of a small open economy, then it is optimal for the government to set its portfolio to the target

portfolio. More generally, the formula for the optimal portfolio includes costs of rebalancing.

We show that those costs are proportional to the distance between the target portfolio and

the portfolio the government enters a period with, and the price elasticity of various assets.

Our theory is general and can be applied to any set of securities, and all terms in the formulas

we derive have direct empirical counterparts. The target portfolio is a useful measure even in

suboptimal competitive equilibria as it provides a direction in which government portfolio can

be rebalanced to improve welfare.

We then apply our framework to one particular market structure, in which the only se-

curities that government holds are public debts of different maturities. We use data on the

returns of U.S. government and corporate bonds, taxes, and primary deficits to estimate all

components of the target portfolio. We find that only one component – interest rate risk –

accounts for most of the shape of the target portfolio. Because of that, the target portfolio

takes a very simple form, in which portfolio shares of debts decline roughly geometrically in

their maturity, with the rate of decline given by households’ discount factor. Moreover, main-

taining this portfolio requires minimal rebalancing, which implies that the optimal portfolio is

roughly equal to the target portfolio essentially for any price elasticity of assets.

This finding is driven by several observations. U.S. government debts are a poor hedge

against the primary deficit and liquidity risks. Their returns in the data are much more

volatile and not very correlated, with either future primary surpluses or various measures of

future liquidity premium on government bonds. Moreover, primary surpluses are pro-cyclical

while liquidity premium is counter-cyclical, which implies that these two risks have offsetting

effects in the target portfolio. The liquidity premium also appears to be similar across different

maturities of government bonds, which leaves interest rate risk as the only quantitatively

meaningful term in the target portfolio.

Unlike primary surplus and liquidity risks, there exists a simple portfolio that can hedge

interest rate risk quite well. The interest rate risk affects the government only when it needs to

roll over its existing debt. By choosing a maturity structure that matches the duration of debts

to the expected primary surpluses, the government can eliminate all expected debts rollovers,

eliminating a large part of the interest rate risk. A simple back-of-the-envelope calculation

shows that 99% of the composition of the target portfolio is comprised of hedging interest rate

risk. A portfolio structured to minimize interest rate risk also minimizes the amount of rebal-

ancing needed to maintain it. This, in turn, implies that costs of portfolio adjustments have
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little quantitative impact on the optimal portfolio. We illustrate this result both theoretically

and quantitatively using estimates of price elasticities obtained by Greenwood and Vayanos

(2014) and apply them to our formula.

Our paper is related to an extensive Ramsey literature on the optimal composition of gov-

ernment debt, such as Lucas and Stokey (1983), Angeletos (2002), Buera and Nicolini (2004),

Farhi (2010); Faraglia, Marcet, Oikonomou, and Scott (2018); Lustig, Sleet, and Yeltekin

(2008), Bhandari, Evans, Golosov, and Sargent (2017b). All those authors used versions of

standard neoclassical growth models to characterize optimal public portfolios. Nevertheless,

it is well-known that such models fail spectacularly to match empirical relationships between

asset prices, asset supply and macroeconomic variables, which are the main objects that deter-

mine how well different securities can hedge risks. We overcome this problem by considering

a much more general specification of preferences and asset demands that includes multiple

mechanisms that can account for the observed asset pricing behavior.

Realistic asset pricing dynamics dramatically change many insights about optimal public

portfolios that emerge from that earlier literature. For example, in their quantitative model

calibrated to the U.S. economy, Buera and Nicolini (2004) find that the government should

issue long-term debt valued at tens or even hundreds times GDP while simultaneously taking

an offsetting short (i.e., negative) positions in short-term debt of similar magnitudes. They

also find that government holdings of debts of similar maturities may differ by hundreds per-

cent of GDP; that the composition of the optimal portfolio is very sensitive to the menu of

traded maturities; and that relatively small aggregate shocks caused very significant portfolio

rebalancing. In contrast, our portfolio is very stable over time and has simple declining matu-

rity weights qualitatively similar to that observed in the data. The differences in findings are

driven by counterfactual asset pricing implications of the standard neoclassical growth model.

Our paper builds on a large literature in finance that focuses on understanding asset price

determination, such as the work of Ai and Bansal (2018), Bansal and Yaron (2004), Albu-

querque, Eichenbaum, Luo, and Rebelo (2016), Krishnamurthy and Vissing-Jorgensen (2012),

Greenwood and Vayanos (2014). Those authors proposed a number of different mechanisms

to explain the observed behavior of asset prices, and there is no consensus in the literature

on which of those mechanisms is most relevant empirically. By setting up a framework that

incorporates all of these mechanisms and obtaining expressions for the optimal portfolios using

sufficient statistics, we sidestep the need to take a stance on their relative importance.

Work by Bohn (1990) is probably the closest in spirit to our approach. Similar to our work,

he studied a representative agent model with distortionary taxes and obtained the optimal
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public portfolio expression in terms of different covariances that he then estimated in the

U.S. data. However, in Bohn’s model, consumers are risk-neutral, tax distortions are ad-hoc,

financial securities provide no liquidity services, the set of those assets is restrictive, and all

asset prices are exogenous. Our work is also related to a recent paper by Bigio, Nuno, and

Passadore (2019) that studies the optimal composition of government portfolios of bonds of

different maturities. They abstract from the interest rate risk, primary deficit, and liquidity

channels that we emphasize and focus on understanding how price impacts to debt issuance

affect portfolio composition. Furthermore, they impose an exogenous cap on the maturities

that the government can issue, implying that the government needs to rebalance its portfolio

even in the absence of all risks.

The optimal portfolio formulas that we obtain are related to the formulas that appear in

the classical portfolio theory as Samuelson (1970), Merton (1969), Merton (1971), Campbell

and Viceira (1999), Campbell and Viceira (2001), Viceira (2001). While both individual in-

vestors in the classical portfolio theory and the government in our model choose portfolios to

hedge their risks, there are substantial differences in the forces that determine portfolio com-

position. Neither liquidity services nor price impacts feature in the classical portfolio theory

where all investors are measure zero. The trade-off between risks and returns of various assets,

captured by Sharpe ratios and the risk-aversion, that plays the central role in the classical

portfolio theory, is entirely absent in the government problem. This is because the govern-

ment is benevolent and shares the same preferences as agents. This implies that it cannot

improve welfare by simply replicating any trade that households can do themselves. Instead,

the government portfolio depends on a measure that captures additional costs (such as trading

frictions) or benefits (such as liquidity services) that assets provide to agents beyond the pure

transfer of resources across periods. We refer to this measure as a liquidity premium and

provide a way to measure it in the data.

In a series of recent papers, Jiang, Lustig, Nieuwerburgh, and Xiaolan (2019, 2020) doc-

ument a number of puzzling facts concerning the market value of total debt and primary

surpluses in the U.S. These observations are puzzling when debt valuation is viewed from a

lens of an arbitrage-free and frictionless asset pricing framework. Our setting departs from

such a framework by incorporating market segmentation as well as a broad notion of liquidity

services that U.S debts provide, and thus accounting for some of the puzzling observations.

However, our focus in this paper is on how the market value of debt is optimally allocated

across various securities and not much on the level itself.

Methodologically, we are related to two strands of literature. The ideas for the “suffi-

4



cient statistics” approach we borrow from public finance literature, such as Saez (2001) and

Chetty (2009). That literature generally focuses on settings where a government faces no risk.

When applied to our problem directly, this approach yields no clear and transparent insights.

We make progress by augmenting it with a certain class of small-noise approximations. The

small noise approximations have been used frequently both in finance (e.g., Samuelson (1970),

Devereux and Sutherland (2011)) and computational economics (e.g., Guu and Judd (2001),

Schmitt-Grohe and Uribe (2004), Bhandari, Evans, Golosov, and Sargent (2021)). The par-

ticular class of expansions that we use does not require us to assume stationarity or abstract

from heteroskedasticity, which makes it particularly suitable to study portfolio problems in

dynamic stochastic economies.

The rest of the paper is organized as follows. In Section 2 we describe our economy. In

Section 3 we describe the perturbations and approximations we use to study portfolio problems.

In section 4 we focus on a special case of our model, dubbed ”small open economy”, in which we

assume that equilibrium asset prices are unaffected by government policy. This model allows

us to derive target portfolio in the most transparent settings and estimate it using U.S. data.

In Section 5 we consider several models of how government policies affect asset prices, such

as those implied by preferred habitat models in the spirit of Greenwood and Vayanos (2014)

or closed economy models in which all assets are priced by the representative consumer. We

show that the target portfolio continues to play central role in such models and that many

quantitative insights derived in Section 4 continue to hold for realistic models of asset price

behavior.

2 Baseline environment

Timing and shocks. Time is discrete and infinite. Exogenous disturbances in period t are

summarized by state st ⊂ RS , where S is the number of shocks. S is countable but can be finite

or infinite. Each shock takes values in a compact set. The initial state s0 is predetermined.

History of shocks is st = (s0, ...., st). We use Pr
(
st
)

and Pr
(
st|sT

)
for t > T to denote

probabilities of st conditional on information in period 0 and sT respectively. We say st+k � st

if we can write st+k as
(
st, st+1, .., st+k

)
.

Any variable xt described below is a function of st. Most of the time, we omit explicit

reference to the history and simple write xt rather than xt
(
st
)
.We use x to denote

{
xt
(
st
)}

t,st
.

We use interchangeably notations Estxt+k and Etxt+s to denote expectation of xt+k conditional

on history st.

5



Securities. There are three groups of agents in our economy: households, a government,

and foreign investors. There is a fixed, finite or countably-infinite, set of securities that these

agents can trade. Security i is characterized by some exogenous stream of dividends di. The

net supply of security i is exogenous and denoted by Bi ≥ 0.

Securities can be subject to additional constraints that restrict at which histories they can

be traded and the set of agents who can trade them. Government debt is a type of security that

is available in the zero net supply, and that can be held in negative quantity (i.e. “issued”) only

by the government. We use G to denote the set of securities i corresponding to government

debt. We assume that the set of securities includes at least one type of government debt, called

short government bond. The short government bond issued by the government in period t pays

1 unit of consumption good in period t+ 1. We use superscript rf for this security.

Price of security i in period t is denoted by qit. We use convention qit = 0 if security i cannot

be traded in t by any agent. The return on security i that can be traded in period t − 1 is

Rit ≡
(
dit + qit

)
/qit−1. The return on the short government bond is called the short interest rate,

Rrft , and satisfies Rrft = 1/qrft−1. The excess return of security i is rit ≡ Rit −R
rf
t .

Households. There is a unit measure of identical households. Each household has earnings

y, pays taxes τ , trades securities
{
bi
}
i
, and consumes consumption good c. Household’s

budget constraint is

ct +
∑
i

qitb
i
t = (1− τ t) yt +

∑
i

(
qit + dit

)
bit−1, (1)

with some initial portfolio of assets
{
bi−1

}
i
. Household preferences in period t, Vt, are defined

recursively via

Vt = Ut
(
ct, yt,

{
qitb

i
t

}
i

)
+ βWt (Vt+1) , (2)

where Ut is the utility function and Wt is a functional that maps t + 1 measurable random

variables to real numbers. Households choose
(
c,y,

{
bi
}
i

)
to solve

max
c,y,{bi}i

V0 (3)

subject to (1).

Ut is twice continuously differentiable in all arguments, strictly increasing in ct and decreas-

ing in yt.Wt is twice continuously differentiable, strictly increasing, and increasing in the first-

and second-order stochastic dominance.1 Moreover, Wt has a property that Wt (xt+1) = Etxt+1

1In other words, Wt

(
x1t+1

)
≥ Wt

(
x2t+1

)
whenever random variable x1t+1 first- or second-order stochastically

dominates x2t+1.
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for any time-t measurable random variable xt+1. Ut and Wt may be subject to shocks, i.e.

depend on st.

Although problem (3) is written as if households can freely trade all securities, the de-

pendence of Ut on
{
qitb

i
t

}
i

subsumes a variety of asset trading frictions. For example, the

definition of government debt implies that agents must face constraints of the form qitb
i
t ≥ 0

for all i ∈ G. Such constraints are associated with some Lagrange multipliers. One can bring

these constraints with the corresponding Lagrange multipliers under the max operator and

redefine function Ut to represent the household problem with constraints in the form (3). In

the similar fashion, one can incorporate restrictions on household’s ability to trade any security

(e.g., qjt b
j
t = 0 for some j) or borrowing constraints (e.g.,

∑
i q
i
tb
i
t ≥ −a for some a ≥ 0) into

the representation (3) of the household problem.

Similarly, the “bonds in the utility function” specification allows us to capture additional

services that some securities may render to households beyond their role in transferring re-

sources across periods. For example, Krishnamurthy and Vissing-Jorgensen (2012) argue that

government bonds provide additional safety and liquidly services that cannot be provided

by other securities such as private debts, and they model these services as a direct util-

ity benefit. Their model is a special case of ours if we use a utility function of the form

Ut

(
ct − ϕt

({
qitb

i
t

}
i∈G

)
, yt

)
, where ϕt is some convex function. Similarly, other models of

services of government debts, such as “government bonds in advance constraints”, in the spirit

of Andolfatto and Williamson (2015) or Bassetto and Cui (2018), also map into our framework

by bringing these constraints, with appropriate Lagrange multipliers, under the max operator

and redefining Ut.

We say that securities i and j are perfect substitutes if their contribution to household utility

depends on their total market value, i.e., if can write Ut

(
..., qitb

i
t, q

j
t b
j
t

)
as Ut

(
..., qitb

i
t + qjt b

j
t

)
.

Otherwise, securities i and j are imperfect substitutes.

Our analysis will be substantially simplified if we abstract from income effects on labor

supply. To this end, we assume that utility function can be represented as

Ut = Ut

(
ct −

(yt/θt)
1+1/γ

1 + 1/γ
,
{
qitb

i
t

}
i

)
,

where γ is the elasticity of labor supply and θt is a random variable.

Government. The government collects tax revenues Rt = τ tYt, where Yt is the aggregate

output, to finance exogenous stochastic government expenditures Gt. The period government
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budget constraint is

τ tYt −Gt +
∑
i

qitB
i
t =

∑
i

(
qit + dit

)
Bi
t−1. (4)

At this stage, we do not make any assumptions on which securities the government can and

cannot trade, and equation (4) is merely an accounting identity. We use Xt ≡ Gt−Rt to denote

primary deficit. All output is produced by households, so feasibility implies that yt = Yt for all

t. We use Bt ≡
∑

i q
i
tB

i
t to denote the market value of the outstanding government portfolio,

and ωit ≡ qitB
i
t/Bt to denote the share of security i in that portfolio. Budget constraint (4)

uses convention that if the government holds a long position in security i in period t then

Bi
t < 0. We use this convention since the natural benchmark for us to examine is the case

when government issues various debts. This way, all securities corresponding to government

debts are take positive values. We refer to the ratio Bt/Yt as the debt to GDP ratio.

Foreign investors. Foreign investors are a set of time-t measurable, twice continuously

differentiable demand functions
{
Di
t

({
qi
}
i

)}
t
. Di

t may be subject to shocks and depend on

st.

Competitive equilibrium.

Definition 1. For given initial conditions
{
bi−1, B

i
−1

}
i
, and government policy

(
τ ,
{
Bi
}
i

)
a

competitive equilibrium is a collection
(
c,y,Y,

{
bi,qi

}
i

)
such that (i)

(
c,y,

{
bi
}
i

)
solves (3),

(ii)
(
τ ,Y,

{
qi,Bi

}
i

)
satisfies (4), (iii) y = Y and bi + Di = Bi + Bi for all i.

Discussion. Our model incorporates a variety of mechanisms for determining asset prices

that are studied in the literature. The functional Wt is taken from the work of Ai and Bansal

(2018), who show that it incorporates as special cases a large number of models: the recur-

sive utility of Kreps and Porteus (1978) and Epstein and Zin (1989); the variational prefer-

ences of Maccheroni, Marinacci, and Rustichini (2006a), Maccheroni, Marinacci, and Rustichini

(2006b); the multiplier preferences of Hansen and Sargent (2008) and Strzalecki (2011); the

second-order expected utility of Ergin and Gul (2009); the smooth ambiguity preferences of

Klibanoff, Marinacci, and Mukerji (2005), Klibanoff, Marinacci, and Mukerji (2009); the dis-

appointment aversion preference of Gul (1991); the recursive smooth ambiguity preference of

Hayashi and Miao (2011). Moreover, by relaxing the differentiability assumption on Wt, one

can extend them to the maxmin expected utility of Gilboa and Schmeidler (1989), Epstein and

Schneider (2003). Similarly, since function Ut can depend on st, our specification incorporates

discount factor shock model of Albuquerque, Eichenbaum, Luo, and Rebelo (2016).
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Our specification of foreign investors allows us to cover a variety of ways in which changes

in supply of assets (such as issuance of government debts) can affect asset prices. The two

extreme cases are the closed economy (Di
t = 0 for all i, t) and the small open economy (Di

t is

perfectly elastic with respect to qi). Moreover, this formulation also nests various segmented

market models, such as noise traders as in Kyle (1985), or the preferred habitat investors as

in Greenwood and Vayanos (2014) and Vayanos and Vila (2021).

Throughout our analysis we abstract from any default risk and assume that the government

can commit to its policy
(
τ ,
{
Bi
}
i

)
.

3 Techniques and key notions

3.1 Perturbations

In this section, we give a broad overview of our approach. Take any competitive equilibrium

and the associated government policy
(
τ ,
{
Bi
}
i

)
that supports it. Consider a slight pertur-

bation of
(
τ ,
{
Bi
}
i

)
and its impact on welfare. In the following sections, we study specific

perturbations that we describe in details but for now it is useful to keep perturbations abstract

and unspecified. To make the exposition simple, we consider perturbations parameterized by

a scalar ε and study the effect of the perturbation as ε → 0. We use notation ∂εxt to denote

the derivative ∂εxt ≡ limε→0 (xt,ε − xt) /ε for any variable xt and assume that all derivatives

exist.

Any perturbation must be feasible for the government, i.e., satisfy its budget constraint.

This can be written in our notation as

∂ε (τ tYt) +
∑
i

qit∂εB
i
t =

∑
i

∂εq
i
t

(
Bi
t −Bi

t−1

)
+
∑
i

(
qit + dit

)
∂εB

i
t−1. (5)

We are interested in the welfare impact of this perturbation, ∂εV0. Let βt Pr
(
st
)
Mt

(
st
)

be the Lagrange multiplier on the household budget constraint (1) at history st, and let

ait
(
st
)
≡ ∂V0/∂(qitbit)(st)

βt Pr(st)Mt(st)
be the marginal utility of security i normalized by the marginal utility

of consumption. The envelope theorem implies that ∂εV0 is given by

∂εV0 = E0

∞∑
t=0

βtMt

[
−Yt∂ετ t +

∑
i

{
aitb

i
t −
(
bit − bit−1

)}
∂εq

i
t

]
. (6)

Equation (6) shows that households’ welfare does not depend on the perturbation in the gov-

ernment portfolio
{
∂εB

i
}
i

directly, but rather on the impact of this perturbation on taxes ∂ετ

and asset prices
{
∂εq

i
}
i
. The impact of taxes ∂ετ t is proportional to household earnings, and

hence aggregate output, Yt, adjusted by the shadow value of resources for the household, Mt.
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The impact of asset prices ∂εq
i
t consists of two terms. One is the direct utility benefit that

households may derive from holding security i. This benefit is proportional to the households’

holding of security, bit, adjusted by its marginal utility, Mta
i
t. The second effect is related to

what the household does with security i in equilibrium. If the household buys it in period t,(
bit − bit−1

)
> 0, then higher asset prices reduce available resources by

(
bit − bit−1

)
∂εq

i
t, and the

marginal impact of this reduction in resources on household utility is again captured by Mt.

A feasible perturbation increases welfare if ∂εV0 > 0 and lowers it if ∂εV0 < 0. If the

government policy is optimal, then there is no welfare improving perturbation, and we must

have

E0

∞∑
t=0

βtMt

[
−Yt∂ετ t +

∑
i

{
aitb

i
t −
(
bit − bit−1

)}
∂εq

i
t

]
= 0. (7)

In what follows, we use equations (5) and (7), as well as its more general form (6), to charac-

terize the optimal public portfolios
{
Bi
}
i

and the types of perturbations that can improve the

sub optimal portfolios.

3.2 Approximations

The relationship between equations (5) and (7) is, in general, complex and non-linear. To

simplify our analysis, we rely on a certain class of approximations that build on the ideas of

Samuelson (1970), Devereux and Sutherland (2011), Schmitt-Grohe and Uribe (2004), Bhan-

dari, Evans, Golosov, and Sargent (2021). Fix any history sT . Without loss of generality, we

can write vector st for t ≥ T as

st = ET st + εt ≡ s̄t + εt,

where ET εt = 0. Consider a sequence of stochastic processes, parameterized by scalar σ ≥ 0,

defined as

st (σ) = s̄t + σεt.

Here σ = 0 corresponds to a deterministic economy in which all uncertainty is “shut down”

after state sT . Let xt (σ) be any equilibrium variable in the σ-economy. We use second order

Taylor expansions of the equilibrium conditions with respect to σ around σ = 0.

Let x̄t, ∂σxt, ∂σσxt be the zeroth-, first- and second-order terms in expansion. We use signs

“'” and“ ≈” to denote relationships that hold up to order O
(
σ3
)

and O (σ) respectively. In

this notation,

xt (σ) ' x̄t + σ∂σxt +
σ2

2
∂σσxt, xt (σ) ≈ x̄t.
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Throughout our analysis, we assume that the equilibrium we study is sufficiently well-

behaved. In particular, we assume that the equilibrium manifold is smooth in the neighborhood

of policy
(
τ ,
{
Bi
}
i

)
that we consider, so that all derivatives exists for both positive and

negative values of ε. Similarly, we assume that the equilibrium manifold is smooth in σ, in

the neighborhood of σ = 0. Furthermore, we assume that the present value of the government

budget constraint and multipliers Mt are finite at each history st. We call such economies

regular. While it would be interesting to explore sufficient conditions for the existence of

regular equilibria, that would require imposing additional structure on model primitives that

would distract from the main focus of the paper.

3.3 Key notions

Household’s optimality conditions are as follows. The optimal choice of labor satisfies

yt = θ1+γ
t (1− τ t)γ , (8)

and the optimal choice of savings satisfies

1− ait = Et
βMt+1

Mt
Rit+1. (9)

Equation (8) helps to calculate the tax revenue elasticity, ξt ≡ ∂ lnRt/∂ ln τ t. The tax

revenue elasticity will play an important role in our analysis. Using the definition of tax

revenues Rt and equation (8), it is easy to show that

ξt = 1− γ τ t
1− τ t

. (10)

The tax revenue elasticity is a useful measure for several reasons. First, it is easy to verify that if

the government needs to return 1 unit of resources to the households, it would need to decrease

marginal taxes by 1/ (ξtYt) units. Second, this measure is a convenient way to summarize tax

distortions, with ξt = 1 corresponding to no deadweight losses from transferring resources

between households and the government.

We refer to ait, that appears in equation (9), as the liquidity premium or wedge for security

i. If security i can be freely traded by households and does not carry direct utility benefits

then its liquidity premium is zero. Returns on government-issued debts are often lower than

returns on comparable privately-issued debts. Through the lens of our definition, this implies

that public debts have higher liquidity premia than private debts. We use Akt to denote the

liquidity premium on short government bonds form periods t to t+ k, i.e.

1−Akt ≡
(

1− arft
)
× ...×

(
1− arft+k

)
,
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with convention that A0
t = 0.

A useful benchmark to consider is the case when two securities are perfect substitutes.

Applying the definition of perfect substitutes and equation (9) we immediately get that their

liquidity premia must be the same:

Lemma 1. Suppose securities i and j are perfect substitutes. Then ait = ajt for all t.

4 Optimal public portfolios in a small open economy

We showed in the previous section that the welfare impact of any perturbation of government

policy can be summarized by tax and price responses ∂ετ and
{
∂εq

i
}
i
. To study their implica-

tions for the optimal public portfolio, it will be useful at first to abstract from price responses

and consider the case when
{
qi
}
i

are invariant to changes in government policy. We refer

to this case as the small open economy. Focusing on the small open economy allows us to

isolate most of the main forces determining the optimal public portfolio. Moreover, many of

the insights that we obtain in this section continue to hold qualitatively and quantitatively

once we extend our analysis to price effects in section5.

We first consider the following perturbation. Suppose that in some history sT the gov-

ernment sells ε/qjT units of security j (where ε > 0) and then buys it back in period T + 1,

keeping all other holdings of securities unchanged. For concreteness, we assume that security

j is a government bond, so this transaction is equivalent to issuing some government bond j

in history sT and then buying it back in the next period. To make this perturbation feasi-

ble, taxes must be adjusted to satisfy the government budget constraint. It is easy to show

that this tax adjustment satisfies, in the limit as ε → 0, ∂ετT = −1/ (YT ξT ) in history sT ,

∂ετT+1 = RjT+1/ (YT ξT ) in sT+1 � sT , and ∂ετ t = 0 in all other histories. Substitute these

responses in equation (6) to show that

∂εV0

βT Pr (sT )MT (sT )
=

1

ξT
− ET

βMT+1

MT
RjT+1

1

ξT+1

(11)

=

{(
1

ξT
− 1

)
− ET

βMT+1

MT
RjT+1

(
1

ξT+1

− 1

)}
+ ajT .

This equation shows that the welfare impact of this perturbation can be decomposed into

two components: the effect on the intertermporal allocation of the deadweight losses from

taxation (the expression in the curly brackets) and the liquidity premium ajT . To understand

the intuition for this expression and its implications, suppose for a moment that taxes are not

distortionary. In this case, ξt = 1 for all t, and issuing bond j is always welfare improving as

12



long as its liquidity premium is strictly positive. In the absence of tax distortions, there are no

costs in expanding the supply of public debts and it is optimal to issue enough debts to fully

satiate liquidity demands.

When taxes are distortionary, the government needs to trade off liquidity benefits of debts

with deadweight costs of taxation. Taxation has costs both because of the intertemporal

allocation of distortions and the uncertainty about their allocation. To isolate the first effect,

consider the zeroth order approximation of equation (11) when we shut down all the uncertainty

after history sT . Using notation introduced in section 3.2, we can write this approximation as

∂εV0

βT Pr (sT ) M̄T (sT )
=

(
1

ξ̄T
− 1

ξ̄T+1

)
+

ājT
ξ̄T+1

. (12)

This equation implies that in a deterministic economy optimal taxes must be increasing when-

ever any asset that government can trade has a strictly positive liquidity premium. The

intuition for this result is closely related to the back-loading of incentive results derived by

Acemoglu, Golosov, and Tsyvinski (2008) or Albanesi and Armenter (2012) in somewhat dif-

ferent settings. If we start with perfectly smoothed taxes, a slight tilt of the tax profile into

the future has negligible impact on deadweight costs of taxation. However, this tilt allows to

increase the level of government debt that has a non-negligible welfare effect if its liquidity

premium is strictly positive.

Equation (12) holds for all securities that the government can trade. In particular, it

implies that in the optimum, when the right hand side is set to zero, the liquidity premia for

all government bonds must be equalized to the zeroth order, āiT = ārfT for all i ∈ G. Thus,

equation (12) pins down the optimal transition path of government debt and its long-run level,

but not its composition. Since the focus of our paper on the optimal composition of government

debt, it will be convenient to abstract from transition dynamics. In particular, we focus on

competitive equilibria that satisfy the following property

Definition 2. Competitive equilibrium is stationary after period T if it satisfies

ET τT+t ≈ τT , ET
XT+t

YT+t
≈ XT

YT
, ET

YT+t+1

YT+t
≈ Γ, ET qrfT+t ≈ q, (13)

for some Γ, q.

Stationarity assumes that tax rates, and primary deficits as fractions of GDP are approxi-

mately random walks, while the growth rates of output and short interest rates are expected

to be approximately equal to the same values Γ and q in all future dates. We focus on station-

ary competitive equilibria in the body of the paper purely for expositional convenience. All
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our results in the appendix are derived without invoking this assumption, and the insights we

discuss here do not depend on whether the equilibrium is stationary or not.

We now turn to the analysis of the optimal composition of government portfolio. The

easiest starting point is to consider a perturbation in which in period T the government sell

ε/qjT units of any security j that it can trade (where now ε can be positive or negative) and

simultaneously buys ε/qrfT units of the one period bond, and then in period T + 1 unwinds this

transaction. The same arguments used to derive equation (11) now imply that welfare impact

is given by
∂εV0

βT Pr (sT )MT (sT )
= −sign (ε)ET

βMT+1

MT
rjT+1

1

ξT+1

. (14)

This equation can be used to study how a public portfolio can be improved in any equilibrium

as well as to characterize the optimum portfolio. For now, we focus on studying an optimum

equilibrium, that is, the equilibrium in which government policies are set to maximize consumer

welfare and discuss how to use equation (14) to improve an arbitrary portfolio in section 4.3.

Since we restrict attention to regular equilibria, the perturbations we consider are feasible for

both positive and negative small values of ε. No feasible perturbation can improve welfare in

the optimum equilibrium, which implies that ET βMT+1

MT
rjT+1

1
ξT+1

= 0 for any security j that

the government can trade. This condition can be equivalently written as

ajT − a
rf
T = covT

(
βMT+1

MT
riT+1,

(
ξT+1

)−1

ET
(
ξT+1

)−1

)
.

To the second order of approximation, it is equivalent to (see appendix)

covT

(
ln ξT+1, r

j
T+1

)
' −RrfT+1

(
ajT − a

rf
T

)
. (15)

This equation shows the costs and benefits of issuing any bond j (or holding any security)

relative to issuing a one period government bond. The benefits are proportional to the excess

liquidity premium ajT−a
rf
T . The costs are proportional to the return risk rjT+1 that subsequently

requires tax adjustments. If the government adjusts taxes in period T + 1 then these costs are

summarized by covT

(
ln ξT+1, r

j
T+1

)
and is captured by the left hand side of (15).

It will be useful to generalize this pertubation to consider tax adjustments in arbitrary

period T + t. Suppose that instead of returning the excess returns from rjT+1ε the government

invests it into a one period bond that it rolls over for t more periods. Using the same arguments

as before, one can show a generalization of equation (15)

covT

(
ln ξT+t, r

j
T+1

)
' −RrfT+1

(
ajT − a

rf
T

)
− covT

(
At−1
T+1, r

j
T+1

)
for all t ≥ 1. (16)
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The additional term on the right hand side of equation (15) captures liquidity benefits or losses

from the need to adjust debt to roll over excess returns realized in period T + 1.

We are now ready to use these optimality conditions to derive implications for the optimal

public portfolio. Let

QT+t
T+1 ≡ 1× 1

RrfT+2

× ...× 1

RrfT+t

,

QT+t
T+1 ≡ 1× 1∑

i≥1 r
i
T+2ω

i
T+1 +RrfT+2

× ...× 1∑
i≥1 r

i
T+tω

i
T+t−1 +RrfT+t

be two stochatic discount rates between periods T + 1 and T + t, define for all t ≥ 1. The

difference between the two notions is that QT+t
T+1 uses short interest rates while QT+t

T+1 uses

returns on public portfolios. The government budget constraint in period T + 1 can be written

in a present value form as

ET+1

∞∑
t=1

QT+t
T+1XT+t = −BT

RrfT+1 +
∑
i≥1

ωiT r
i
T+1

 , (17)

where
∑

i≥1 denotes a sum over all assets i 6= rf. Multiply equation (17) by a return rjT+1 of

any security j that the government can trade, take expectation at time T, and use the fact

that equation (11) implies that ET rjT+1 = O
(
σ2
)

to write the second-order approximation of

equation (17) as

∞∑
t=2

ETXT+tcovT

(
QT+t
T+1, r

j
T+1

)
+
∞∑
t=1

ETQT+t
T+1covT

(
XT+t, r

j
T+1

)
' −BT

∑
i≥1

ωiT covT

(
riT+1, r

j
T+1

)
.

(18)

This equation shows that any changes in the returns on public portfolio in period T + 1 can

be decomposed in changes in discount rates rates {QT+t
T+1} t≥1 and changes in primary deficits

{XT+t}T≥t . We can multiply this identity by returns on any security j and write it in form

of covariances. The covariance of {QT+t
T+1} t≥1 and rjT+1 consists of the covariances of risk-

free rates, covT

(
QT+t
T+1, r

j
T+1

)
, and covariances of the returns on other securities adjusted by

future portfolio holdings, covT

(
riT+1+tω

i
T+t, r

j
T+1

)
. However, it can be shown that the latter

covariances are of the order O
(
σ3
)

for t ≥ 1 and thus they drop out from the approximated

budget constraint (18).

At this stage, equation (18) is essentially an identify, written in an approximated form, and

it holds irrespective of whether government’s portfolio is optimal or not. In order to characterize

the optimal portfolio, we need to combine this equation with the optimality condition (16). As
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the first step, observe that covT

(
XT+t, r

j
T+1

)
can be decomposed into covariance of returns

rjT+1 with tax rates τT+t (and, therefore, with tax revenue elasticities ξT+t) and covariance

of returns with exogenous shocks to primary surpluses. The following lemma provides such a

decomposition.

Lemma 2. Define X⊥T+t and ζT+t as

X⊥T+t ≡ XT+t + τT+tET
[
ξT+t

]
ET [YT+t] ,

ζT+t ≡ γ−1 (1− (1 + γ) τT+t)
2 .

In the optimum equilibrium for all t, j,

covT

(
XT+t, r

j
T+1

)
' ET ζT+tETYT+tcovT

(
ln ξT+t, r

j
T+1

)
+ covT

(
X⊥T+t, r

j
T+1

)
.

Moreover, covT

(
X⊥T+t, r

j
T+1

)
, to the second order approximation, is a function of covT

(
θT+t, r

j
T+1

)
and covT

(
GT+t, r

j
T+1

)
but not covT

(
τT+t, r

j
T+1

)
.

We are now ready to state the main result of this section. To do so, it will be convenient to

write the present values expressions, such as the one that appears in equation (18), in a compact

matrix form. Let aT and ωT be vectors with elements aT [i] = aiT − a
rf
T , and ωT [i] = ωiT ,

all defined for all securities i ≥ 1 that the government can trade.2 Let w be a vector with

elements w [t] = (qΓ)t for t ≥ 1, and let ΣQ
T , ΣX

T , Σa
T , ΣT be matrices with elements defined

in the following table

ΣQ
T [j, t] = covT

(
lnQT+1+t

T+1 , rjT+1

)
ΣX
T [j, t] = −covT

(
X⊥T+t

ETYT+t
, rjT+1

)
ΣA
T [j, t] = covT

(
AtT+1, r

j
T+1

)
ΣT [j, i] = covT

(
riT+1, r

j
T+1

) .

Combining lemma 2, optimality conditions (15) and (16), and the budget constraint (18),

we obtain the following result.

Theorem 3. In the stationary economy, the optimal portfolio satisfies

ΣTωT '
[
πQΣQ

T + πXT ΣX
T + πATΣA

T

]
w + πaTaT , (19)

where πQ = (1− qΓ) /q, πXT = YT / (qBT ) , πAT = ζTYT /BT , π
a
T =

(
Γ

1−qΓ

)
× ζTYT / (qBT ) .

The right hand side of equation (19) shows the main of objectives that the choice of the

optimum portfolio strives to achieve. The government chooses its portfolio to hedge three

2In other words, we do not require that the government can trade all the securities that exist in the economy.
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risks (the interest rate risk ΣQ
T , primary surplus risk ΣX

T , and liquidity risk ΣA
T ) as well as

to exploit the “excess liquidity curve” aT in choosing most efficient ways to provide liquidity.

Costs of hedging and liquidity provision is captured by the measure of riskiness of different

securities ΣT . Vector w discounts future risk into present portfolio choice, and coefficients

πQ, πXT , π
A
T , π

a
T provides quasi-weights with which different objectives are weighted in the

government portfolio.

Examining equation (19) reveals several insights. All things being equal, bonds with higher

excess liquidity premium have higher share in government portfolio.3 Weights πXT , π
A
T and πaT

are all proportional to the GDP-to-debt ratio YT /BT , but weight πQ is not. Thus, the larger

level of debt, ceterus paribus, implies bigger importance of hedging interest rate risk. The

interest rate risk matters for the government because of the uncertainty it introduces about

costs of future roll over of government debts. The more the debt that needs to be rolled over,

the higher the costs are from any uncertainty about future interest rates. Weights πAT and πaT

are also proportional to ζT . Simple algebra shows that ζT = (1+γ)2

γ

(
1

1+γ − τT
)2
. Coefficient

ζT is decreasing in τT and reaches 0 at τT = 1
1+γ , which corresponds to the peak of the Laffer

curve. To understand why current tax levels affect the importance of hedging liquidity risk, it

is useful to consider the following thought experiment. Suppose that government can borrow

at a cheaper rate than the household. Then the government can help households by borrowing

on their behalf. The benefit from this transaction comes from lower interest rates that the

government faces. The cost comes from distortions that arise from higher taxes that such

borrowing must entail. The closer the taxes are to the peak of the Laffer curve, the larger

is the cost of tax distortions relative to the benefits of liquidity provision. Hence, higher tax

levels implies smaller weight on liquidity provision.

It is instructive to compare formula (19) to the optimal portfolios that emerge in the

classical investment problems analyzed by such authors as Samuelson (1970), Campbell and

Viceira (1999), Viceira (2001). Formula (19) misses the classical risk-return trade-off that

is central to those problems. The relationship between the expected return and risk of any

asset per se bears no implication on government portfolio: as long as households can trade

the same asset, there is no benefit from government’s trading it on their behalf. Instead, this

trade-off is replaced with a term Σ−1
T aT that captures excess liqudity benefits relative to the

returns uncertainty. Similarly, the weight πaT is unrelated to the coefficient of risk aversion,

3One natural case to consider is the one in which the one period government bond has highest liquidity
premium. In this case aT ≤ 0 and equation (19) shows the the vector of weights ωT must be reduced. Since
vector ωT excludes the portfolio weight of the one period bond, and portfolio weights must sum to 1, this implies
that portfolio share of the one period bond must be increased.
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as it would be in the classical portfolio theory, and is determined instead by the level of tax

distortions. Risks ΣQ
T and ΣX

T have analogues in the classical portfolio theory, with primary

deficit risk corresponding to the “nontradable labor income” in Viceira (2001), but are weighted

differently. Finally, the liquidity risk ΣA
T does not appear in the classical problem.

4.1 Optimal portfolio of public debts

Theorem 3 does not take a stance on which securities the government can trade, and character-

izes the optimal portfolio for an arbitrary set of such securities. The most common securities

traded by the government are government debts of various maturities. In this section we

explore the implications of theorem 3 for the optimal debt maturity.

We assume that government debts come in the form of pure discount bonds (that is, a

bond that has no coupon payments and pays 1 unit of resources at some specified maturity

date) and that the government can issue debt in any maturity. For the purposes of applying

theorem 3, security i will correspond to a bond that matures in period T + 1 + i. When we

refer bonds, we use q
(t)
T , r

(t)
T+1 to denote the period T price and period T + 1 excess return of a

pure discount bond that matures in period T +1+ t. In this notation, security (0) and security

rf in period T coincide, so that q
(0)
T and qrfT can be used interchangeably. Also note that this

structure implies that all bonds maturing in the same period are perfect substitutes, that is

there is no difference, from period T point of view, between a 2 period bond issued in period

T − 1 and a 1 period bond issued in period T. In the appendix we show the following theorem.

Theorem 4. Returns on public debts satisfy qrfT ΣT ' ΣQ
T . Therefore, the optimal portfolio of

bonds in the stationary economy satisfies ωT ≈ ω∗T , where

ω∗T = (1− qΓ) w +
[
πXT Σ−1

T ΣX
T + πATΣ−1

T ΣA
T

]
w + πaTΣ−1

T aT . (20)

Portfolio ω∗T defined in equation (20) will play an important role in our subsequent analysis,

when we study the effect of asset price responses to optimal portfolio. We refer to ω∗T as a

target portfolio. Theorem 4 show that if in the small optimal economy, the optimal portfolio

of government debt should be equal to the target portfolio.

The first part of this theorem shows that covariance of bond returns with themselves, ΣT ,

is closely related to the covariance of discount rates
{
QT+t
T+1

}
t

and bond returns, in the sense

that qrfT ΣT is equal, to the second order of approximation, to ΣQ
T . In the economies in which

the expectations hypothesis holds, it follows naturally from the fact that 1/q
(t)
T+1 = ET+1Q

T+t
T+1,

that is the interest rate between periods T and T + 1 + t implied by the long bonds is equal to

the expected product of short interest rates between these periods. Thus, changes in returns
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on bond with maturity in period T + 1 + t is the same as changes in the expected product

of short interest rates between period T + 1 and T + 1 + t. In our economy the expectations

hypothesis does not need to hold, but theorem 3 shows that deviations from it must be of the

higher order of approximation than other effects.

One implication the result that qrfT ΣT ' ΣQ
T is that the government can hedge the interest

rate risk fully, at least to the order of approximation we consider. Recall that the interest rate

risk emerges because the government needs to roll over its maturing debt. This risk can be

greatly diminished if the government matches the maturity of its debts with expected surpluses.

This way, there is no expected debt roll-over, and the interest rate risk has only third-order

effect on welfare. In the stationary economy, expected surplus grow at an approximate rate

Γ, while future periods are discounted at the rate q, and so full hedging of interest rate risk is

achieved if portfolio weights on future maturities decline at a rate qΓ. This is captured by the

term (1− qΓ) w. Portfolio (1− qΓ) w is equivalent to a growth-adjusted consol, i.e. a consol

which coupon payments grows with rate Γ.

How much the government should depart from full hedging of interest rate risk depends on

how well government bonds can hedge primary deficit and liquidity risks (the expression in the

square brackets of equation (20)), and on the shape of the “excess liquidity premium curve”

aT . Recall from lemma 1 that aT is also a measure of how substitutable different bonds are.

Before proceeding with our analysis, it is instructive to evaluate these statistics in the U.S.

data.

4.2 The target portfolio in the U.S. data

In this section, we use U.S. data to provide a rough estimate of the target portfolio ω∗T and

its components. These estimations must necessarily be somewhat tentative. Most government

bonds in the U.S. are nominal and their prices and returns are available for select maturities,

while formulas in (20) are derived for real debts of all maturities. Thus, one needs to make some

adjustments and interpolations in order to apply formula (20). That being said, this exercise

allows us to highlight some salient features of the data that have important implications on

the portfolio.

For almost all data, we use quarterly series from 1952 to 2017. The only exception is yields

on high quality corporate bonds, that are available from 1984. Data on GDP, that we use as

our measure of Yt, and inflation is from national income and product accounts (BEA). The

series for tax rates τ t are from Barro and Redlick (2011). To measure returns on government

bonds we use Fama Maturity Portfolios published by CRSP. There are 11 such portfolios, out
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of which ten portfolios correspond to maturities of 6 to 60 months in 6 months intervals, and a

final portfolio for maturities between 60 and 120 months. We add a twelveth portfolio, returns

on a 3-Month Treasury Bill, published by the Federal Reserve Board of Governors. Returns on

high quality corporate bonds are obtained from High Quality Market (HQM) Corporate Bond

Yield Curve computed by the U.S. Treasury. Table 1 gives summary statistics of the nominal

returns on U.S. treasuries and HQM bonds for different maturities.

Table 1: Summary Statistics for Returns

maturity US Treasuries HQM bonds

(months) mean std mean std

3 1.08 0.77 1.02 0.83
6 1.16 0.85 1.08 0.80
12 1.22 1.03 1.20 0.78
18 1.28 1.30 1.32 0.83
24 1.31 1.51 1.44 0.92
30 1.34 1.79 1.56 1.03
36 1.38 2.00 1.67 1.15
42 1.41 2.17 1.78 1.28
48 1.41 2.37 1.88 1.40
54 1.44 2.51 1.98 1.51
60 1.37 2.81 2.07 1.61
120 1.52 3.21 2.40 2.04

Notes: This table records the number of observations, mean, standard deviation for holding period returns on

US Treasuries and High Quality Corporate bonds. The sample for US Treasuries is 1952-2017 and the sample

for HQM bonds is 1984-2017. The units of the returns are quarterly and in percents and the unit of maturity

is month.

It is relatively straightforward to see how one can construct empirical counterparts of

covT

(
r

(i)
T+1, r

(j)
T+1

)
and covT

(
X⊥T+t

ETYT+t
, r

(j)
T+1

)
. It is less immediate how one can obtain a measure

of liquidity premium aiT that is defined by equation (9). The shadow cost of resources Mt is

not directly observable, and thus needs to be inferred somehow. Our approach to measuring

a
(i)
T is based on the following idea. Suppose we had a set of securities that households can

trade, and that do not carry additional utility benefits such as liquidity services. Then returns

on such securities would satisfy

1 = Et
βMt+1

Mt
Rit+1.

We can use this relationship to back out Mt, which we then can use together with observed
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returns on government bonds R
(i)
t+1 to estimate a

(i)
t using (25).

In order to implement this procedure we use returns on high quality U.S. corporate bonds

of different maturities. Such bonds seem to fit our requirements. They are issues by private

sector, their default risk is extremely small, and they are hard to use as a collateral. They also

allow a very simple and transparent way to estimate liquidity premium on government bonds.

Let R
(j),AAA
T+1 be a period T + 1 return on high quality corporate bond that matures in period

T + 1 + j. Then the liquidity premium on the one period government bond is simply

a
(0)
T = 1−

q
(0),AAA
T

q
(0)
T

=
R

(0),AAA
T+1 −R(0)

T+1

R
(0),AAA
T+1

. (21)

The liquidity premia on other maturities satisfies

a
(i)
T =

ET
[
R

(i),AAA
T+1 −R(i)

T+1

]
R

(0),AAA
T+1

+ covT

(
βMT+1

MT
, R

(i),AAA
T+1 −R(i)

T+1

)
. (22)

In Table 2 we present summary statistics of contemporary covariances and autocorrelations

of the our data series that show up in our expressions. To convert nominal returns to real, we

subtract expected inflation (see online appendix for all details about empirical implementations

used in this section). Table 2 shows a number of salient features of the U.S. data. The returns

on government bonds are much more volatile than primary surpluses, tax rates, or liquidity

premia. Moreover, primary surpluses and liquidity premia have negative comovement. This

negative comovement captures the fact to primary surpluses are pro-cyclical while liquidity

premia are couter-cyclical. Expected returns on HQM are higher than on Treasuries, but they

do not vary very systematically across different maturities.
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Table 2: Covariance Matrix for Real Holding Period Excess Returns and Deficits

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m X/GDP 100τ 100arf

6m 0.17 0.38 0.53 0.61 0.69 0.74 0.77 0.79 0.82 0.85 0.90 -0.03 0.01 0.35

12m 0.91 1.28 1.50 1.71 1.85 1.94 2.01 2.08 2.19 2.34 0.00 -0.02 0.88

18m 1.85 2.19 2.52 2.75 2.91 3.03 3.15 3.35 3.59 0.04 -0.02 1.37

24m 2.66 3.07 3.38 3.61 3.78 3.96 4.24 4.58 0.11 -0.04 1.64

30m 3.67 4.02 4.32 4.56 4.77 5.18 5.64 0.15 -0.05 1.98

36m 4.53 4.85 5.14 5.39 5.83 6.42 0.24 -0.03 2.18

42m 5.31 5.65 5.93 6.42 7.13 0.30 -0.07 2.39

48m 6.15 6.39 6.95 7.79 0.35 -0.08 2.46

54m 6.90 7.40 8.29 0.40 -0.04 2.70

60m 8.45 9.18 0.50 -0.07 2.73

120m 10.69 0.60 -0.07 3.07

X/GDP 3.99 -0.25 0.43

100τ 0.58 0.28

100arf 16.60

Autocorr -0.16 -0.19 -0.2 -0.2 -0.19 -0.17 -0.17 -0.14 -0.15 -0.17 -0.13 0.96 0.76

Difference in returns between HMQ and Treasury bonds, for different maturities

Mean 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.059 0.064

Std 0.036 0.032 0.031 0.031 0.032 0.032 0.031 0.031 0.03 0.03 0.027

Notes: This table records the covariances of holding period excess returns, liquidity premium on the risk-free

debt, and deficits normalized by GDP. The sample for US Treasuries is 1952-2017 and the sample for liquidity

premium on the short bond is 1984-2017. All returns are quarterly and in percents. Deficits relative to GDP

and tax rates are measured in percents.

We use this data to evaluate the target portfolio ω∗T the expression for which is given in

formula (20). This formula requires parameters γ, τT , YT /BT , q and Γ. We set γ = 1
2 , which

is consistent with common calibrations of the elasticity of labor supply. We consider quarterly

frequencies for our analysis and set YT /BT = 1
4 and τT = 1

3 to be roughly in line with current

use debt levels (relative to quarterly GDP) and tax rates. Any reasonable value for q and Γ

must be close to 1. What matters for our quantitative analysis is not the values of q and Γ per

se, but their product qΓ. Recall from the definition of q in equation (13) that it is the price of

a one period bond in the zeroth order approximation of our economy, e.g. in the absence of

any risk. It can be shown that it satisfies

q =

βUc

(
c̄t+1 −

(Ȳt+1/θ̄t+1)
1+1/γ

1+1/γ , ...

)
Uc

(
c̄t −

(Ȳt/θ̄t)
1+1/γ

1+1/γ , ...

) .
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In the stationary economy, consumption aggregator c̄t −
(
Ȳt/θ̄t

)1+1/γ
/

(1 + 1/γ) grows at a

rate Γ, so this expression can equivalently be written as

q = βΓ−IES , (23)

where IES is the elasticity of the intertemporal substitution.4 If we set IES = 1, to be in

line with common parameterization of asset pricing models, this formula implies that qΓ = β.

Common parameterizations of annual discount factor are in the range of 0.94 to 0.97. We pick

the value of 0.96, so that at quarterly frequencies it implies β = 0.99. As long as we target

qΓ = 0.99, the exact values of q and Γ play no substantial role, but for concreteness we set

Γ = 1.005 (so that the annual GDP growth is 2 percent) and q = 0.985.

With these conventions, formula (20) can be written approximately as

ω∗T =

[
0.01 +

1

4
Σ−1
T ΣX

T +
1

8
Σ−1
T ΣA

T

]
w +

100

8
Σ−1
T aT . (24)

Thus, the optimal composition of the target portfolio depends on the values of Σ−1
T ΣX

T , Σ−1
T ΣA

T ,

Σ−1
T aT . We provide a more careful estimation of these objects below, but as a first pass it will

be instructive to construct crude measures of these three objects using only the raw data we

report in Table 2. The advantage of this back of the envelope approach is that it is very

transparent and one can immediately see how the features of the data presented in Table 2

lead to the conclusion about optimal portfolio that we obtain below with more sophisticated

techniques.

Each raw of vector aT consists of the difference a
(i)
T − a

(0)
T and can be written as

aT [i] = q(0),AAA
{
ET
[
R

(i),AAA
T −R(i)

T

]
− ET

[
R

(0),AAA
T −R(0)

T

]}
(25)

+covT

(
βMT+1

MT
, R

(i),AAA
T −R(i)

T

)
− covT

(
βMT+1

MT
, R

(0),AAA
T −R(0)

T

)
.

For our back of the envelope exercise we ignore covariances in the second line of this expression.

In this case, aT [i] is proportional to the difference of returns on i+ 1 and 1 period corporate

bonds, adjusted by returns on corresponding government maturities. From the last rows of

Table 2 we can see that the time average of R
(i),AAA
T −R(i)

T is not significantly different across

4 This is just a slight generalization of a textbook equation familiar to many readers. For example, in many
asset pricing models, the expression for the risk free interest rate is written as (see, e.g. equation (A26) in
Bansal and Yaron (2004), equation (8) in Campbell and Cochrane (1999), or Chapter 14 in Ljungqvist and
Sargent (2012))

lnRrf = − lnβ +
1

IES
ln Γ + terms that depend on risk.

Take exponents of both sides of this equation, drop the risk terms, and use the fact that q = 1/Rrf to obtain
equation (23).
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maturities, which suggests that aT should be close to 0, and that government bonds are fairly

good substitutes.

Expressions Σ−1
T ΣX

T and Σ−1
T ΣA

T are essentially a sophisticated way of taking ratios of

different matrices. We crudely evaluate the magnitude of these ratios by computing in our

sample

average
{
−cov

(
XT+k

YT+k
, r

(j)
T+1

)}
k,(j)

average
{
cov

(
r

(k)
T+1, r

(j)
T+1

)}
(k),(j)

= −0.008,

average
{
cov

(
AT+k, r

(j)
T+1

)}
k,(j)

average
{
cov

(
r

(k)
T+1, r

(j)
T+1

)}
(k),(j)

= 0.013,

(26)

where averages are taken over different k and j. In these computations,
XT+k

YT+k
is simply a

primary deficit to GDP ratio, and AT+k = 1−ρka
1−ρa

a
(0)
T , where a

(0)
T is computed from (21) and ρa

is autocorrelation of a
(0)
T taking from Table 2. Plugging these numbers, we obtain a back of

the envelope expression for the target portfolio

ω∗T = [0.01− 0.002 + 0.001] w = [0.01− 0.001] w.

These calculations suggest that 99% of the composition of the target portfolio is determined by

hedging interest rate risk and only 1% on hedging other risks. Moreover, since w itself takes

a very simply form, this implies that the target portfolio ω∗T in a stationary economy should

put weight βi on bonds of maturity i.

The advantage of the back of the envelope exercise is that it makes it very transparent the

quantitative effect of some key salient features of the data. Table 2 shows that returns are

an order of magnitude more volatile than primary deficits or liquidity premia. Thus, out of

the three main risks for the government – interest rate, primary deficits, and liquidity – the

interest rate risk is the most important one. Moreover, liquidity premium and primary surplus

covary negatively in the data, which implies that target portfolio hedges almost exclusively

interest rate risk. While returns on government debts are lower than returns on equivalent

corporate bonds, these “liquidy premia” does not vary significantly across maturities, so that

gains from exploiting the “excess liquidity curve” are small.

Our crude calculations abstracted from a number of important details emphasized by for-

mula (20): we computed unconditional rather than conditional moments and ignored cross-

correlations in equation (26); we did not take out fluctuations in tax rates necessary for proper

computation of ΣX
T ; and we ignored covariances that appear in the second line of equation

(25). While these details will play some role in calculations of the target portfolio, the stark

implications that emerge from our back of the envelope exercise will change only if properly

24



adjusted series look significantly different from the raw ones that we used. As we show next,

we find no evidence for that.

4.2.1 Estimations of risks and excess liquidity premia

It is easiest to estimate Σ−1
T ΣX

T , Σ−1
T ΣA

T , aT assuming that all variables are homoscedastic, and

we focus on this case first. We then extend our analysis to estimating time-varying volatility.

Excess liquidity curve. The excess liquidity curve is obtained from equation (22). The first

term on the right hand side of (22) can be measured directly from prices of the treasury bonds

and high quality corporate bonds. To measure the second term, we follow Fama and MacBeth

(1973) and posit a linear factor model for the inter temporal marginal rate of substitution as

βMt+1

Mt
= c0 + c′1Ft+1,

where Ft+1 is m dimensional vector of factors. Denote the vector of excess holding period

returns on the high quality corporate bonds as rAAAt+1 ≡ RAAA
T+1 − 1.R

(0),AAA
T+1 . The coefficients

c0 and c1 are obtained by minimizing the pricing errors. In particular,

min
c0,c′1

‖E
[
c0 + c′1Ft+1

]
rAAAt+1 ‖2.

It is easy to show that minimization leads to the following closed form solutions for the coeffi-

cients of interest with

c0 =
(
ER

(0),AAA
T+1

)−1
,

c′1 = −c0E
(
rAAAt+1

)ᵀ (E [rAAAt+1

]
F ᵀ
t+1

) ([
EFt+1

([
rAAAt+1

])ᵀ] [E [rAAAt+1

]
F ᵀ
t+1

])−1
.

To implement the above formulas, we need to take a stand on the factors Ft+1. There

is a large literature on factor selection (see Jagannathan, Skoulakis, and Wang (2010) and

Ludvigson and Ng (2009)). Motivated by this literature, we set the factors to the principal

components extracted from rAAAt+1 . For our purposes, the first two principal components suffice

as they capture almost all of the variation in returns and produce small pricing errors. We

obtain the value of the intercept c0 = 1.01 and two factor loadings c1 are [0.18,−0.01]. We

find that the values aj vary little by maturity and equal to 0.3% per quarter.

Primary deficit and liquidity risks. We now turn to estimating Σ−1
T ΣX

T and Σ−1
T ΣA

T .

Matrix ΣX
T contains covariances of ZT+t ≡

X⊥T+t

ETYT+t
with returns r

(j)
T+1. In the stationary econ-

omy,

ZT+t =
(1 + Γ)−tXT+t

YT
+ τT+t

(
1− γ τT

1− τT

)
.
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Thus, Zt is a variable which fluctuations depends on detrended primary deficits (1 + Γ)−tXT+t

and tax rates τT+t.

One approach to calculating Σ−1
T ΣX

T and Σ−1
T ΣA

T is to estimate the covariance matrices

ΣT , ΣX
T and ΣA

T separately and then to take the inverse of ΣT . However, it is well-known that

this approach is problematic. Returns are highly correlated in the data and taking inverses

of their estimated covariance matrices is prone to large errors (see, e.g., Jagannathan and

Ma (2003), DeMiguel, Garlappi, and Uppal (2007), Senneret, Malevergne, Abry, Perrin, and

Jaffres (2016) for discussion). To overcome this problem, we follow the approach developed

by Jagannathan and Ma (2003) and estimate a factor model of returns. For our baseline

specification, we use a simple one factor specification

Xt = α+ ρXt−1 + δft + εt, (27)

where Xt is a stacked vector that consists of returns r
(j)
t for different maturities j as well as

a
(0)
t and Zt, ft is the factor, εt is a vector of errors. Vectors α and δ and a diagonal matrix ρ

are the coefficients that we want to estimate. We use δ(i), δZ , δa to correspond to the elements

in δ corresponding to the i-th maturity, Z and a. Analogous conventions apply to ρ and δ(r)

denote a part of vector δ that corresponds to only returns data.

The factor model (27) provides a simple way to express covariances that appear in for-

mula (20). Since our baseline specification is homoscedastic, matrices ΣT ,Σ
X
T , and ΣA

T are

independent of T and can be written as

Σ [i, j] = cov
(
r

(i)
T+1, r

(j)
T+1

)
= δ(i)δ(j)var (ft) + I{i=j}var

(
r

(i)
t

)
,

ΣX [j, t] = cov
(
ZT+t, r

(j)
T+1

)
= ρkZδZδ(j)var (ft) ,

ΣA [j, t] = cov
(
AtT+1, r

j
T+1

)
= δaδ(j)

1− ρka
1− ρa

var (ft) .

If ∆ is a diagonal matrix with elements
{
var

(
r

(i)
t

)}
t

then the inverse Σ−1 can be written as

Σ−1 = ∆−1 −
(
∆−1δ(r)

)
·
(
∆−1δ(r)

)ᵀ
[var (ft)]

−1 + δᵀ(r)∆
−1δ(r)

. (28)

We set ft to be the first principal component extracted out of all the observed excess

returns, and estimate (27) using ordinary least squares using the set of bond maturities that

we have data on. We then extrapolate our estimates for other maturities, use that to construct

Σ−1 using equation (28), and compute Σ−1ΣX and Σ−1ΣA.
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Target portfolio. We use constructed a, Σ−1ΣX , Σ−1ΣA and Σ−1a to calculate the target

portfolio using formula (24). We also plot for comparison the portfolio that hedges only interest

rate risk, (1− qΓ) w =
[
β β2 ...

]ᵀ
. As one can see, the target portfolio ω∗T is very similar to

this simple portfolio, consistent with our back of the envelope calculations.

Figure 1: Portfolio shares of securities with maturities from 2 quarters to 121 quarters. The red line plots the
target portfolio and the green line plots the portfolio that hedges interest rate risk.

Our conclusions remain unchanged if we extend model (27) to allow for time variation in

the first moment αt or second moments, that is, the variance of the innovation εt.

4.3 Comparison with the U.S. portfolio and normative implications

It is instructive to compare the target portfolio we computed above to the current U.S. portfolio

of government bonds. We use CRSP to get the amount outstanding and Macaulay duration

for all federally issued (marketable) debt. For a few bonds where the duration is absent, we

set duration equal to maturity date minus current quotation date. Then for each date, we

split the outstanding debt in bins indexed by maturities (at quarterly intervals). In Figure

2, we overlay the time-averaged US debt profile with the target portfolio profile. The CRSP

database does not have outstanding amounts for bills. To address this, we supplement the
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CRSP data with data from Monthly Statements of Public Debt issued by the US Treasury and

fill in the amount outstanding in bills.

Figure 2: Portfolio shares of securities with maturities from 2 quarters to 121 quarters. The red line is the
optimal portfolio and the blue line is the time-averaged US debt profile.

The U.S. debt profile starts above the optimal and curves cross each other at around 25

quarters. We find that the US overweights short maturities relative to the optimal. In terms

of Macaulay duration, the optimal portfolio has a duration of about 13 years which is much

larger than the range 5 years that we found for the U.S. debt profiles.

We now turn to the normative implications of this finding. Recall that we introduced the

target portfolio in Theorem 4, where we showed that the optimal portfolio ωT should be equal

to the target one, ω∗T . Importantly, the moments Σ−1ΣX , Σ−1ΣA and Σ−1a that appear in

that formula are evaluated at the optimum equilibrium. Our empirical approach estimated

Σ−1
T ΣX

T , Σ−1
T ΣA

T and aT in the U.S. data, and therefore the target portfolio computed above,

which we refer to as ωdataT , is evaluated at the equilibrium corresponding to current policies.

Since U.S. portfolio differs from ωdataT , this suggests, at the very least, the the current U.S.

portfolio is suboptimal.

More can be said about how portfolio ωdataT can be adjusted to improve welfare. Firstly, if
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Σ−1
T ΣX

T , Σ−1
T ΣA

T and aT are approximately policy invariant then choosing portfolio ωdataT rather

than current portfolio ωT will improve welfare. Although the condition that these covariances

are policy invariance may appear stringent a-priori, it would holds in many asset pricing models

where a combination of specifically chosen exogenous shocks and preferences serve as a device to

match asset pricing moments. In such models, changes in taxes that are induced by switching

from portfolio ωT to portfolio ωdataT do not materially affect stochastic properties of asset

returns and risk premia. We verified this point in our paper Bhandari, Evans, Golosov, and

Sargent (2017a), where we calibrated the bond pricing model of Albuquerque, Eichenbaum,

Luo, and Rebelo (2016) under a stylized U.S. tax and portfolio policy, solved numerically the

optimal portfolio, and showed that ωdataT in the calibrated equilibrium and the target portfolio

ω∗T in the optimum are essentially the same.

Secondly, even without taking any stance on how Σ−1
T ΣX

T , Σ−1
T ΣA

T and aT are related to

government policies, the target portfolio ωdataT computed above provides are useful information

about a direction in which public portfolio should be reformed.

Theorem 5. Consider a stationary competitive equilibrium in which government portfolio

consists of pure discount bonds of various maturities. Let ωT be the government portfolio and

ωdataT be the value of target portfolio evaluated at that competitive equilibrium values. Then

portfolio ωT + ε
(
ωdataT − ωT

)
is welfare improving for sufficiently small ε > 0.

This theorem shows that a small perturbation of the current portfolio ωT in the direction

of the portfolio ωdataT (hence, the reason for us referring to it as a “target portfolio”) is always

welfare improving. The proof is essentially identical to the proofs of Theorems 3 and 4, except

we do not impose that ∂εV0 = 0 but rather back out the implied value of ∂εV0 from this

perturbation.

5 Optimal portfolios with price impacts

In the previous section, we focused on the formation of the optimal public portfolio in a small

open economy, when asset prices do not respond to changes in the composition of that portfolio.

In this section, we drop this assumption. Our approach will follow the same steps as in the

previous section: we consider a portfolio swap of a one period government bond for another

security in some history sT , and subsequent smoothing of realized excess returns over future

periods. In most applications we consider, the other security is a government bond of longer

maturity, and so the portfolio swap closely resembles Quantitative Easing (QE) operations

practices by several central banks around the world.
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Without further restrictions, equilibrium prices
{
qiT
}
i

at any history sT are essentially an

arbitrary function of government policies
(
τ ,
{
Bi
}
i

)
and its exact form depends on specification

of the demands by foreign investors
{
Di
}
i
. In principle, such functions

{
qi
(
τ ,
{
Bi
}
i

)}
i

can

be estimated empirically, in which case one can compute price responses
{
∂εq

i
T

(
τ ,
{
Bi
}
i

)}
i

directly for any perturbation ε, and use this responses in the optimality condition (6) to find the

target portfolio. In practice, data limitations make this approach impractical and additional

structure must be imposed on the form of
{
qiT
(
τ ,
{
Bi
}
i

)}
i
.

In this section, we explore two models of asset price determination. First, we assume that

asset prices in period T are only a (potentially stochastic) function of asset supply in period T.

Since supply of assets available to households and foreign investors are proportional to govern-

ment’s asset holdings
{
Bi
T

}
i
, the asset prices can then be represented as

{
qiT
({
Bi
T

}
i

)}
i
. This

is a popular specification used both in theoretical work and empirical work. See for instance

the literature on non-Walrasian markets for securities as in Kyle (1985), Duffie, Garleanu,

and Pedersen (2005, 2007), Lagos and Rocheteau (2009), and Bigio, Nuno, and Passadore

(2019); segmented markets such as Greenwood and Vayanos (2014), Vayanos and Vila (2021),

Gopinath and Stein (Forthcoming) with empirical applications as in Hamilton and Wu (2012),

Allen, Kastl, and Wittwer (2020), and Gagnon, Raskin, Remache, and Sack (2011); and special

cases of factor demand models for securities such as Koijen and Yogo (2019). We broadly refer

to such models as ”preferred habitat” models of asset prices.

Secondly, we assume that economy is closed, so that demand by foreign investors is always

0, and study the function
{
qi
(
τ ,
{
Bi
}
i

)}
i

implied by the competitive equilibrium of such

economy. This is the approach that has been used in much of the Ramsey models of optimal

public portfolios, such as Lucas and Stokey (1983), Angeletos (2002), Buera and Nicolini

(2004), Faraglia, Marcet, Oikonomou, and Scott (2018). We show that in both cases similar

forces shape the optimal public portfolios. The closed economy model, however, implies price

responses to QE type perturbations that seem at odds with empirical data.

5.1 Preferred habitat models

The simplest and most transparent model of prices determination is the one where prices of

asset i depends only on supply of that asset, qiT
(
Bi
T

)
. Since our analysis is local, there is no

loss from further assuming that qiT
(
Bi
T

)
has a convenient log-linear relationship

ln qit = λi0,t − λitBi
t, (29)

where λi0,t, λ
i
t are some exogenous and potentially stochastic parameters. One limitation of

this specification as that it does not allow cross-price effects, e.g. the possibility that prices of
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10 year bonds change if the government issues additional quantity of 11 year bonds. A more

general version of this equation can be written as

ln qt = λ0,t − ΛtBt, (30)

where λ0,t and Λt are a vector and a matrix of coefficients, and qt is a vector of asset prices

and Bt is a vector of government holdings of securities. Let λijt = Λt [i, j] be elements of Λt.

For concreteness, in the discussion we will treat matrix Λt as being non-negative, although

none of our results require that.

In this subsection, we assume that the relationship between prices and quantities of bonds

is given by equation (29) or its generalization (30).5 For now, we impose two more restrictions

on function Λt : we assume that the row of matrix Λt corresponding to a one period government

bond Brf
t , is zero, and that the other rows are of the order O

(
σ2
)
. While these assumptions

are not necessary for our analysis, they substantially streamline exposition. In the end of this

subsection, in Section 5.1.3, we explain why this is a natural benchmark to consider and how

the optimal portfolio looks like without these restrictions.

To build the intuition for our results, we first consider a simple perturbation when in some

state sT the government issues a small additional quantity of bond j that it them buys it back

in the next period. Let φit ≡ bit/B
i
t be the fraction of government debt i held by households

prior in the original, unperturbed equilibrium. Using equation (30) and the envelope condition

(5), one can show that the welfare effect from this perturbation is

∂εV0

βT Pr (sT )MT (sT )
=

{(
1

ξT
− 1

)
− ET

βMT+1

MT
RjT+1

(
1

ξT+1

− 1

)}
+ ajT (31)

−
∑
i≥1

aiTλ
ji
T φ

i
TB

i
T +

∑
i≥1

λjiT q
i
T

[(
1

ξT
− φiT

)
Bi
T −

(
1

ξT
− φiT−1

)
Bi
T−1

]
.

The first line of this expression is identical equation (11). The second line captures two

additional effects that arise due to price adjustments. The first term on the second line cap-

ture direct household utility costs. When the government issues more bonds, their prices fall

(provided that Λt is non-negative), which decreases the market value of any security i held by

household by λjiT b
i
T = λjiT φ

i
TB

i
T . The marginal fall in utility from this decrease is proportional

5The simplest way to rationalize the downward sloping relationship (29) is to assume that for each security
i there is a short-lived foreign investor with (potentially stochastic) demand for that security, and that the
demand of domestic households for securities is either sufficiently small or sufficiently inelastic relative to the
foreign demand. Greenwood and Vayanos (2014) developed a generalized version of such a model, in which such
short lived investors solve a portfolio problem (“arbitrageurs” in their terminology) that in equilibrium gives
raise to equation (30).
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to the liquidity premium aiT , and so the total effect is given by
∑

i≥1 a
i
Tλ

ji
T φ

i
TB

i
T . The term in

the second line of (31) captures the effect on government revenues from changes in asset prices.

Note that one can write(
1

ξT
− φiT

)
Bi
T =

[
φiT

(
1

ξT
− 1

)
+
(
1− φiT

) 1

ξT

]
Bi
T .

Fraction φiT of government debt is held by domestic households. For such bonds, a dollar

gain from the price impact for the government is a dollar loss for the households. The net

welfare effect is not zero, however, since this extra dollar of revenues allows the government to

decrease tax rates and lower distortions. Therefore, the welfare effect from the price impact on

domestically held bond is proportional to the deadweight loss from taxes, (1/ξT − 1). Fraction(
1− φiT

)
of government debt is held by foreign investors. Since the government does not

value income in the hand of the foreign investors, the welfare effect from the price impact

on bonds held by foreigners is proportional to 1/ξT . Analogous arguments apply to the term(
1/ξT − φiT−1

)
Bi
T−1.

To study the optimal portfolio, we consider the same perturbation as in Section 4, when

the government sells ε/qjT units of any security j and simultaneously purchases ε/qrfT units

of a one period bond, and then in period T + 1 unwinds this transaction and rolls over the

realized excess returns for additional k ≥ 0 periods. As in Section 4, we focus on the stationary

economy in the main text, and present the extension to non-stationary model in the appendix.

It would be useful to define a vector ω+
T−1 to have elements ω+

T−1 [i] = qiTB
i
T−1/BT . Thus,

ω+
T−1 [i] is a portfolio share of period T − 1 holdings of security i at period T prices. We have

the following result

Lemma 6. In the optimal stationary equilibrium, the following condition holds

covT
(
ln ξT+t, rT+1

)
+ covT

(
At−1
T+1, rT+1

)
' −1

q
aT − ξTBTΦT Λ̃T

(
ωT − ω+

T−1

)
, (32)

where ΦT is a diagonal matrix with elements ΦT [i, i] = 1/ξT − φiT and Λ̃T is a matrix with

elements Λ̃T = YT

(
ΛT [i, j] qit/q

j
t − ΛT [i, rf ] qit/q

rf
t

)
Equation (32) is the analogue of optimality condition (16) written in the matrix form. This

equation shows that price responses add one extra term that is proportional to ωT −ω+
T−1. To

understanding this term, observe that ωT [i]−ω+
T−1 [i] =

(
Bi
T −Bi

T−1

)
qiT /BT , that it captures

the effect of rebalancing of public portfolio in period T. If government does not change holdings

of its security i in period T, change in the price of that security does not redistribute resources

between government and other agent. The redistribution happens only if the government buys
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or sells additional securities, which is the effect proportional to
(
Bi
T −Bi

T−1

)
. The rebalancing

term is adjusted by a matrix of price responses Λ̃T and ΦT .

Using this result, we can characterize the optimal public portfolio in this economy

Theorem 7. In the stationary economy with the price effects considered in this section, the

optimal portfolio satisfies

ΣTωT '
[
πQΣQ

T + πXT ΣX
T + πATΣA

T

]
w + πaTaT + πqTΦT Λ̃T

(
ωT − ω+

T−1

)
, (33)

where πqT = q−2ζT ξT qΓ/ (1− qΓ) .

The formula for the optimal portfolio derived in this theorem is the same as the analogous

formula for the small open economy, equation (19), except it has an additional term that is

proportional to the amount of rebalancing,
(
ωT − ω+

T−1

)
. Stronger price effects, captured by

matrix Λ̃T , implies higher costs of rebalancing. We now turn to the portfolio of debts to further

characterize the implications.

5.1.1 Optimal portfolios of public debts

We now apply this approach to reevaluate the optimal portfolio of public debts that we studied

in Section 4.1. It will be more convenient to change the convention about how securities are

arranged in vector ωT and ωT−1. In the previous section, we indexed all securities by i in period

T, and maintained the same indices both in vector ωT and ωT−1. This approach introduces

many redundancies when we apply it to study bonds of different maturities, since it treats a

3 period bond issued in T − 2 and a 4 period bond issued in T − 3 as different securities. It

is natural to assume that those securities are perfect substitutes for both domestic households

and foreign investors and thus treat them as one. In this case, the only relevant variable in

the total number of securities that mature in any period T + t, but not the period in which

they were issued.

For the purposes of this section, let an element ωt [i] be the period t portfolio share of

securities that mature in period t+ 1 + i. In period t+ 1, the index of these securities declines

by 1. Define vector ω#
T−1 by ω#

T−1 [i] = q
(i)
T B

(i+1)
T−1 /BT , which is the analogue of ω+

T−1. We

have the following result

Corollary 8. The optimal portfolio of public debts in a stationary economy satisfies

ωT − ω∗T ≈ π
q
TΣ−1

T ΦT Λ̃T

(
ωT − ω#

T−1

)
. (34)

In particular, in stationary economy if ω∗T−1 ≈ (1− qΓ) w and RrfT = 1/q then ω#
T−1 ≈

(1− qΓ) w and, therefore,

ωT ≈ ω∗T .
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The first part of this corollary simply combines insights of Theorems 4 and 7 and adjusts

the result for the differences in indexing conventions. Equation (34) gives the law of motion

for the optimal portfolio. In each period the government would like to set its portfolio ωT

to the target portfolio ω∗T that we characterized in the previous section. However, portfolio

rebalancing ωT −ω#
T−1 is costly due to price changes captured by Λ̃T . Therefore, the optimal

portfolio ωT is a weighted average between the target portfolio ω∗T and the value of the portfolio

inherited from the previous period, ω#
T−1.

We showed in Section 4.2 that in the U.S. data, target portfolio ω∗T is approximately equal

to (1− qΓ) w. The second part of Corollary 8 shows that in this case the distinction between

target and optimal portfolio disappears and the two portfolios coincide. The intuition for this

result is simple. The portfolio (1− qΓ) w is such that it minimizes the need for rebalancing,

and thus it remains optimal for any adjustment costs.

5.1.2 Greenwood-Vayanos price effects

In this section we consider the implications of price effects implied by the work of Greenwood

and Vayanos (2014). Those authors developed a framework to account for observed price

responses to changes in the composition of government debt and estimated their key parameters

using U.S. data. In their model, government debt is prices by “arbitrageurs” that are equivalent

to our foreign investors. Those arbitrageurs are the marginal investors who purchase debts of

different maturities to maximize their mean-variance utility. “Other investors” can hold some

of government debt but trading frictions prevent them from pricing debt on the margin. Those

are equivalent to our households with trading frictions causing non-zero liquidity wedge.

Greenwood and Vayanos show that in their model price of each debt is a function of

the overall duration of government portfolio, and in the empirical work they consider price

functions of the form

ln q
(t+1)
T = λGV0,T + λ

GV (t+1)
T

( ∞∑
k=0

kB
(k)
T

)
(35)

where the expression in the brackets is the duration of outstanding portfolio of government

bonds.

It is easy to verify that in their model λ
GV,(t)
T satisfy the restrictions we impose in section

5.1, that is, λ
GV,(t)
T are of the order O

(
σ2
)

and the shortest maturity is price insensitive,

corresponding to λ
GV,(0)
T = 0 in our discrete time model. Our analysis from section 5.1 extends

with minimal changes to these settings. Consider the portfolio swap we discussed above,

whereas the government buys ε units of bond of maturity t+ 1 and decreases holding of a one
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period bond by −q(1+t)
T /q

(0)
T ε. Verify that this increases duration, by

∂εDT =

[
1 + t

q
(t)
T

− 1

q
(0)
T

]
q

(t)
T .

and hence prices of each security change by

Λ̃T [i, j] = q
(i)
T

(
1 + j

q
(j)
T

− 1

q
(0)
T

)
λ

(j)
T YT .

We use estimates of a set of regressions of yields on duration of public debt that are reported

in Greenwood and Vayanos (2014) to measure Λ̃T [i, j] . More specifically, they regress

ln yieldnt = an + bnDt − cn ln yield1
t + noise

where Dt is the duration of public debt normalized by GDP. Using the equation (35), we get

that YTλ
(n)
T = −n× bn. While point estimates of bn vary across maturities, they are not that

different statistically. We set all bns equal to 0.003, which is the mean across all maturities

that they report.

Expression (33) can be expressed as a law of motion for ωT

ωT ' ωno,peT + πqTΣ−1
T ΦT Λ̃T

(
ωT − L+ωT−1

)
(36)

where ωno,peT is the portfolio when there are no price effects and the matrix L+ is given by 0 1
Γq 0 ...

0 0 1
Γq ...

.. ... ... ...

. This gives us a mapping from an arbitrary portfolio at T − 1 to the

portfolio at T .

To describe how the price effects affect the optimal portfolio, we compute a “steady-state”

of equation (36). The optimal steady state portfolio satisfies the previous equation when ωno,peT

,
{
πqT ,ΦT , Λ̃T

}
and ΣT are independent of T . We set ωno,peT+k = ωno,peT that we computed in

section (4.2). Under the factor model ΣT+k = Σ when shocks are homoskedastic. We then

assume that tax rates are stationary and ζT+k = ζT and ξT+k = ξT . We also need to take a

stand on how the debt is split between domestic and foreign holders to estimate the matrix

ΦT . We assume that the ratio domestically held debt is 70% of the total debt and this fraction

is constant for all maturities and dates. Under these assumptions,

ωpe =
(
I − πqΣ−1ΦΛ̃

)−1
[ωno,pe]

In figure 3, we plot ωpe and compare it to the no price effects formula ωno,pe. We find that the

two are very similar to each other. This follows from proposition 8 and our earlier finding that

the portfolio without price effects mirrors the portfolio that hedges the interest rate risk.
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Figure 3: Portfolio shares of securities with maturities from 2 quarters to 121 quarters. The red line is the
optimal portfolio without price effects, the orangel line is the optimal portfolio with price effects, and the blue
line is the time-averaged US debt profile.

5.1.3 Further discussions

In Section 5.1 we made two simplifying assumptions about matrix Λt. The first assumption

was that prices of the one period government bond do not depend on the perturbation we

considered. This assumption was motivated in part by the empirical findings by Krishnamurthy

and Vissing-Jorgensen (2012) and Greenwood and Vayanos (2014) that prices of short bonds

appeared to be largely unaffected by QE programs in the U.S. None of our derivations required

this assumption. Consider, for example, how our results would change in Section 5.1.1 if we

drop this assumption. Let λ
(0),(i)
T = ∂ ln q

(0)
T /∂B

(i)
T be the price semi-elasticity of a one period

bond with respect to changes in supply of i + 1 period bonds, let ϕT ≡
(

1/ξT − φ
(0)
T

)
and

let λ̃T be a vector with elements λ̃T [j] = λ
(0),(j)
T q

(0)
T /q

(j)
T − λ

(0),(0)
T . It is easy to verify that

equation (34) becomes

ωT − ω∗T ≈ π
q
T

{
ΦT Λ̃T

(
ωT − ω#

T−1

)
+ ϕT λ̃T

(
ω

(0)
T − ω

(1),#
T−1

)}
,
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where ω
(0)
T = 1− 1′ωT . While this expression is slightly more complicated than equation (34),

it convey the same message that rebalacing, this time also proportional to the rebalancing of

a one period bond, ω
(0)
T − ω

(1),#
T−1 , determines how closely the portfolio should be adjusted to

the target portfolio. Moreover, the second part of Corollary 8 continues to hold.

The second assumption we used is that all coefficients of matrix Λt are of the order O
(
σ2
)
.

We did it for two reasons. If price impact is of an order lower than σ2 then the composition of

the optimal public portfolio is determined, to the first order, exclusively by price responses.6

More importantly, many commonly used models of asset price determination imply the price

impact from QE-style asset swap should be zero to the zeroth and first order approximations.

For example, this is true both in Greenwood and Vayanos (2014) model and in closed economy

that we analyze in Section 5.2. The intution for this is as follows. To the zeroth order, there

is no risk, and to the first order all risk is price by risk-neutral agents, so in both cases the

transaction we consider involves swapping to assets with identical expected returns, and all

economic agents are indifferent about such swaps.

5.2 Closed economy

In this section, we study price effects in a closed economy version of our model by impos-

ing the resource constraint that every period, the sum of household consumption and public

consumption equals total output. Unlike the simple price effects, a swap of securities at a

particular history can affect asset prices at all other histories—past and future—due to general

equilibrium effects on the stochastic discount factor, which now directly depends on the tax

rates. To gain tractability in such a setting, we impose a few assumptions.

We analyze preferences such that the period utility is given by

Ut

(
ct+1 −

(Yt+1/θt+1)1+1/γ

1 + 1/γ
, ...

)
= exp

(
ψ

[
ct −

(Yt+1/θt+1)1+1/γ

1 + 1/γ

]
; st

)
.

Thus we abstract from liquidity services and use a CARA aggregator for the period utility.

We specialize the market structure such that a “consol” – a security that pays one unit of

consumption in all future histories – can be replicated. This is clearly satisfied if the government

has access to zero-coupon bonds of all maturities. We use the existence of a consol to make

the discussion transparent. In the appendix, we show that all the results continue to hold if

the government can only invest in a one period risk-free bond. We use the index i = ∞ to

6 It is easy to study this case by simply omitting all the second order terms – covariances and excess liquidity
premium – from equation (33) or (34). This analysis would be closely related to that in Bigio, Nuno, and
Passadore (2019), except that those authors further impose an exogenous cap on the maximum bond maturity
that the government can issue.
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denote the consol. Finally, we assume that tax rates in the optimal allocation are stationary

from date t = 0.

We study a modified version perturbation that ensures that the government can smooth out

the excess returns over time using the consol. At date T, history sT , the government reduces

the market value of securities held in the risk free bond by ε and increases the market value of

assets held in security j by ε. The direct effect of this perturbation generates stochastic return[
ε

qjT

(
qjT+1

(
sT+1

)
+ djT+1

(
sT+1

))
− ε

qrfT

]
= rjT+1ε in period T + 1 which has to be returned to

the households. Given a consol-replicating portfolio is available, it buys
rjT+1

1+q∞T+1
ε units of consol

in period T + 1 at price q∞T+1. This portfolio insures that the direct effect of perturbation on

tax revenues is completely smoothed for all k ≥ 1, sT+k � sT .

Asset prices are forward looking and depend on the future path of consumption. Thus our

perturbation in the closed economy can change asset prices at all histories even if the direct

effect of the perturbation affects consumption only in sT+k � sT . The government in turn

has to change tax rates at all histories to satisfy the budget constraint. To take into account

all the welfare effects arising from price changes, we analyze the perturbation by applying our

section 3.2 approximations from the perspective of history s0. In the appendix, we provide a

full description of the the changes in taxes and debts following the perturbation.

To state our main result and connect it to the discussion in section 5.1.1 we introduce a

new object: “anticipation” effects, A0, that keeps track of the new forces that arise in the

closed economy. Define Γjε,t
(
st
)

as the price effects on government portfolio at history st as

follows

Γjε,t ≡ Bt
∑
i≥1

E0ω
#
t−1[i]

(
1

E0ξt
− φit

)
[
∂σσ∂

j
ε ln qit − ∂σσ∂jε ln qit−1 −

(
dit
qit

)
ln ∂jε q

i
t

]
︸ ︷︷ ︸

∂σσ∂
j
εR

i
t


− qrft−1E0B

rf
t−1

(
1

E0ξt
− φrf

)[
1

qrft−1

]
∂σσ∂

j
ε ln qrft−1.

The first line captures the price effects coming from the holdings of risky securities: the product

of the portfolio shares E0ω
#
t−1[i], adjusted by the deadweight losses

(
1

E0ξt
− φit

)
and how the

perturbation affects returns at st. The second line captures the price effects coming from how

the perturbation affects the risk-free rate. The anticipation effects for a swap at history sT

with security j are price effects Γjε,t
(
st
)

for all histories other than those occurring between sT
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and sT+1 � sT . Let S ≡
{
sT
}
∪
{
sT+1 � sT

}
. We define A0

(
j, sT

)
as

A0

(
j, sT

)
≡

E0
∑

tMtΓ
j
ε,tI{st /∈S}

Pr0 (sT )MT (sT )
.

We use A0,T without the argument j to denote the column vector of anticipation effects for

swaps of all risky securities. The next proposition states the optimal formula in the closed

economy.

Theorem 9. The optimal portfolio in closed economy is given by

ωT − ω∗T ≈ π
q
TΣ−1

T

{
ΦT Λ̃T

(
ωT − ω#

T−1

)
+ ϕT λ̃T

(
ω

(0)
T − ω

(1),#
T−1

)
−A0,T

}
The overall structure of the formula and the insights are similar to section 5.1.1 with two

exceptions. First, there is a new term A0,T that shows up due to the general equilibrium effects.

With CARA preferences, a large part of what drives the anticipation effect is the windfall in

t = 0 from holding long-maturity debt. These forces arise because the government can commit

to future tax policies and are well-studied in tax smoothing literature. Since that is not a focus

of our paper, we can abstract from those forces if we additionally assume that initial debt is

held in risk-free securities.

Theorem 10. If Bi
−1 = bi−1 = 0 for all i > 0, then A0,T = 0.

The second difference from section 5.1.1 is that closed economy model imposes tight re-

strictions on the matrix Λ̃T which are inconsistent with the empirical QE literature. In the

closed economy, we can show that

ET∂σσ∂jε riT+1 = 2ψ

(
ξ − 1

ξ

)
1

1 + q∞T+1︸ ︷︷ ︸
>0

covT

(
riT+1, r

j
T+1

)
> 0.

Thus a QE-type swap results in higher excess returns. In the closed economy, aggregate

consumption moves roughly proportional to excess returns as the government returns the

excess returns from the QE-swap via taxes. This makes the all risky assets worth lower and

household demand a higher risk-premia. This is inconsistent with segmented market literature

that finds the opposite, that is, excess returns on long maturity debt are lower after QE To see

this use equation (30). As we discussed in section 5.1.1, the empirical literature on QE finds

∂jε q
rf
T ≈ 0 ∂jε qit > 0, and estimate λi,jt > 0 for j > 0 and λi,rft ≈ 0. This gives

ET∂σσ∂jε riT+1 = −RrfT+1λ
i,j
T

qiT
qjT

< 0.

39



6 Conclusion

In this paper, we developed a methodology that combines sufficient statistics approach with

small noise approximations to study the portfolio problem of a Ramsey planner. We found

that the optimal portfolio is remarkably simple and stable over time, roughly replicating a

growth-adjusted consol.

This conclusion stands in stark contrast with previous Ramsey models of government port-

folios. For example, Angeletos (2002) showed theoretically that in standard neoclassical models

the government can replicate complete market allocations by trading pure discount bonds of

various maturities. Buera and Nicolini (2004) numerically characterized such portfolios and

found that they take an extreme form: debts holdings of similar maturities may differ by thou-

sands percent of GDP and even by sign, and small shock may lead to very large rebalancing.

It is useful to trace the sources of the differences in the conclusions. A small number of

shocks drives all fluctuations in macroeconomic variables and financial returns in the standard

neoclassical growth model. This implies that returns of various assets and shocks that affect

primary deficits are highly correlated in such environments, and one can construct portfolios

of pure discount bonds that replicate returns on Arrow-Debreu securities. The volatility of

returns in such models is low, so in order to generate a sufficient income flow that hedges shocks

to its primary surplus, the government needs to have very large quantities of securities. The net

liability of the government can be low because those large debt positions have different signs

and offset each other. The government in those models essentially runs a massive leveraged

hedge fund, but the small number of shocks in the model implies that government portfolios

can be fine-tuned to avoid any unintended risk.

In the data, the relationship between returns on government bonds and macroeconomic

variables is quite different. Returns are very volatile and not very correlated with macroe-

conomic variables. This implies that they are a poor hedge against shocks to government

revenues and expenditures. Large, unbalanced portfolios, such as the ones prescribed by the

models of Angeletos (2002) and Buera and Nicolini (2004), thereby carry large risks.

Our approach also has implications about appropriate numerical methods needed to solve

portfolio problems in Ramsey settings. The sufficient statistics we derive emphasize that

second moments – such as conditional covariances – play a central role in determining such

portfolios. One popular method of solving macroeconomic models is to discretize shocks by

applying Tauchen algorithm. While such algorithm is designed to approximate well first-order

moments of stochastic processes, it typically would not capture important second moments

well. Alternative numerical methods, such as those based on small noise expansions, would be
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preferable.

References

Acemoglu, D., M. Golosov, and A. Tsyvinski (2008): “Political Economy of Mecha-

nisms,” Econometrica, 76(3), 619–641.

Ai, H., and R. Bansal (2018): “Risk Preferences and the Macroeconomic Announcement

Premium,” Econometrica, 86(4), 1383–1430.

Albanesi, S., and R. Armenter (2012): “Intertemporal Distortions in the Second Best,”

Review of Economic Studies, 79(4), 1271–1307.

Albuquerque, R., M. Eichenbaum, V. Luo, and S. Rebelo (2016): “Valuation Risk and

Asset Pricing,” Journal of Finance, 71(6), 2861–2904.

Allen, J., J. Kastl, and M. Wittwer (2020): “Primary Dealers and the Demand for

Government Debt,” Staff working papers, Bank of Canada.

Andolfatto, D., and S. Williamson (2015): “Scarcity of safe assets, inflation, and the

policy trap,” Journal of Monetary Economics, 73(C), 70–92.

Angeletos, G.-M. (2002): “Fiscal Policy with Noncontingent Debt and the Optimal Matu-

rity Structure,” Quarterly Journal of Economics, 117(3), 1105–1131.

Bansal, R., and A. Yaron (2004): “Risks for the Long Run: a Potential Resolution of Asset

Pricing Puzzles,” Journal of Finance, 59(4), 1481–1509.

Barro, R. J., and C. J. Redlick (2011): “Macroeconomic Effects from Government Pur-

chases and Taxes,” Quarterly Journal of Economics, 126(1), 51–102.

Bassetto, M., and W. Cui (2018): “The fiscal theory of the price level in a world of low

interest rates,” Journal of Economic Dynamics and Control, 89(C), 5–22.

Bhandari, A., D. Evans, M. Golosov, and T. Sargent (2017a): “The Optimal Maturity

of Government Debt,” Working paper.

(2021): “Inequality, Business Cycles, and Monetary-Fiscal Policy,” Working paper.

Bhandari, A., D. Evans, M. Golosov, and T. J. Sargent (2017b): “Fiscal Policy and

Debt Management with Incomplete Markets,” Quarterly Journal of Economics, 132(2), 617–

663.

41



Bigio, S., G. Nuno, and J. Passadore (2019): “A Framework for Debt-Maturity Manage-

ment,” Working Paper 25808, National Bureau of Economic Research.

Bohn, H. (1990): “Tax Smoothing with Financial Instruments,” American Economic Review,

80(5), 1217–1230.

Buera, F., and J. P. Nicolini (2004): “Optimal Maturity of Government Debt without

State Contingent Bonds,” Journal of Monetary Economics, 51(3), 531–554.

Campbell, J. Y., and J. Cochrane (1999): “Force of Habit: a Consumption-Based Expla-

nation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107(2), 205–251.

Campbell, J. Y., and L. M. Viceira (1999): “Consumption and Portfolio Decisions when

Expected Returns Are Time Varying,” Quarterly Journal of Economics, 114(2), 433–495.

(2001): “Who Should Buy Long-Term Bonds?,” American Economic Review, 91(1),

99–127.

Chetty, R. (2009): “Sufficient Statistics for Welfare Analysis: a Bridge Between Structural

and Reduced-Form Methods,” Annual Review of Economics, 1(1), 451–488.

DeMiguel, V., L. Garlappi, and R. Uppal (2007): “Optimal versus Naive Diversification:

How Inefficient Is the 1/N Portfolio Strategy?,” Review of Financial Studies, 22(5), 1915–

1953.

Devereux, M. B., and A. Sutherland (2011): “Country Portfolios in Open Economy

Macro-Models,” Journal of the European Economic Association, 9(2), 337–369.

Duffie, D., N. Garleanu, and L. H. Pedersen (2005): “Over-the-Counter Markets,”

Econometrica, 73(6), 1815–1847.

(2007): “Valuation in Over-the-Counter Markets,” The Review of Financial Studies,

20(6), 1865–1900.

Epstein, L. G., and M. Schneider (2003): “Recursive Multiple-Priors,” Journal of Eco-

nomic Theory, 113(1), 1–31.

Epstein, L. G., and S. E. Zin (1989): “Substitution, Risk Aversion, and the Temporal

Behavior of Consumption and Asset Returns: a Theoretical Framework,” Econometrica,

57(4), 937–969.

42



Ergin, H., and F. Gul (2009): “A Theory of Subjective Compound Lotteries,” Journal of

Economic Theory, 144(3), 899–929.

Fama, E. F., and J. D. MacBeth (1973): “Risk, Return, and Equilibrium: Empirical

Tests,” Journal of Political Economy, 81(3), 607–636.

Faraglia, E., A. Marcet, R. Oikonomou, and A. Scott (2018): “Government Debt

Management: the Long and the Short of It,” Review of Economic Studies, pp. 2554–2604.

Farhi, E. (2010): “Capital Taxation and Ownership when Markets Are Incomplete,” Journal

of Political Economy, 118(5), 908–948.

Gagnon, J., M. Raskin, J. Remache, and B. P. Sack (2011): “Large-scale asset purchases

by the Federal Reserve: did they work?,” Economic Policy Review, 17(May), 41–59.

Gilboa, I., and D. Schmeidler (1989): “Maxmin Expected Utility With Non-Unique Prior,”

Journal of Mathematical Economics, 18(2), 141–153.

Gopinath, G., and J. Stein (Forthcoming): “Banking, Trade, and the Making of a Dominant

Currency,” Quarterly Journal of Economics.

Greenwood, R., and D. Vayanos (2014): “Bond Supply and Excess Bond Returns,” Review

of Financial Studies, 27(3), 663–713.

Gul, F. (1991): “A Theory of Disappointment Aversion,” Econometrica, 59(3), 667–686.

Guu, S.-M., and K. L. Judd (2001): “Asymptotic Methods for Asset Market Equilibrium

Analysis,” Economic Theory, 18(1), 127–157.

Hamilton, J. D., and J. C. Wu (2012): “The Effectiveness of Alternative Monetary Policy

Tools in a Zero Lower Bound Environment,” Journal of Money, Credit and Banking, 44(s1),

3–46.

Hansen, L. P., and T. J. Sargent (2008): Robustness. Princeton University Press.

Hayashi, T., and J. Miao (2011): “Intertemporal Substitution and Recursive Smooth Am-

biguity Preferences,” Theoretical Economics, 6(3).

Jagannathan, R., and T. Ma (2003): “Risk Reduction in Large Portfolios: Why Imposing

the Wrong Constraints Helps,” Journal of Finance, 58(4), 1651–1683.

43



Jagannathan, R., G. Skoulakis, and Z. Wang (2010): “The Analysis of the Cross-Section

of Security Returns,” in Handbook of Financial Econometrics: Applications, ed. by Y. Ait-

Sahalia, and L. P. Hansen, vol. 2 of Handbooks in Finance, pp. 73–134. Elsevier, San Diego.

Jiang, Z., H. Lustig, S. V. Nieuwerburgh, and M. Z. Xiaolan (2019): “The U.S.

Public Debt Valuation Puzzle,” NBER Working Papers 26583, National Bureau of Economic

Research, Inc.

(2020): “Manufacturing Risk-free Government Debt,” NBER Working Papers 27786,

National Bureau of Economic Research, Inc.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005): “A Smooth Model of Decision

Making under Ambiguity,” Econometrica, 73(6), 1849–1892.

(2009): “Recursive smooth ambiguity preferences,” Journal of Economic Theory,

144(3), 930–976.

Koijen, R. S. J., and M. Yogo (2019): “A Demand System Approach to Asset Pricing,”

Journal of Political Economy, 127(4), 1475–1515.

Kreps, D. M., and E. L. Porteus (1978): “Temporal Resolution of Uncertainty and Dy-

namic Choice Theory,” Econometrica, 46(1), 185–200.

Krishnamurthy, A., and A. Vissing-Jorgensen (2012): “The Aggregate Demand for

Treasury Debt,” Journal of Political Economy, 120(2), 233–267.

Kyle, A. S. (1985): “Continuous Auctions and Insider Trading,” Econometrica, 53(6), 1315–

1335.

Lagos, R., and G. Rocheteau (2009): “Liquidity in Asset Markets With Search Frictions,”

Econometrica, 77(2), 403–426.

Ljungqvist, L., and T. J. Sargent (2012): Recursive Macroeconomic Theory, Third Edi-

tion. MIT Press.

Lucas, R. E., and N. L. Stokey (1983): “Optimal Fiscal and Monetary Policy in an

Economy without Capital,” Journal of Monetary Economics, 12(1), 55–93.

Ludvigson, S. C., and S. Ng (2009): “Macro Factors in Bond Risk Premia,” Review of

Financial Studies, 22(12), 5027–5067.

44



Lustig, H., C. Sleet, and S. Yeltekin (2008): “Fiscal Hedging with Nominal Assets,”

Journal of Monetary Economics, 55(4), 710 – 727.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006a): “Ambiguity Aversion, Ro-

bustness, and the Variational Representation of Preferences,” Econometrica, 74(6), 1447–

1498.

(2006b): “Dynamic Variational Preferences,” Journal of Economic Theory, 128(1),

4–44.

Merton, R. (1969): “Lifetime Portfolio Selection under Uncertainty: The Continuous-Time

Case,” The Review of Economics and Statistics, 51(3), 247–57.

Merton, R. C. (1971): “Optimum consumption and portfolio rules in a continuous-time

model,” Journal of Economic Theory, 3(4), 373–413.

Saez, E. (2001): “Using Elasticities to Derive Optimal Income Tax Rates,” The Review of

Economic Studies, 68(1), 205–229.

Samuelson, P. A. (1970): “the Fundamental Approximation Theorem of Portfolio Analysis

in terms of Means, Variances and Higher Moments,” Review of Economic Studies, 37(4),

537–542.

Schmitt-Grohe, S., and M. Uribe (2004): “Optimal Fiscal and Monetary Policy under

Sticky Prices,” Journal of Economic Theory, 114(2), 198–230.

Senneret, M., Y. Malevergne, P. Abry, G. Perrin, and L. Jaffres (2016): “Covari-

ance Versus Precision Matrix Estimation for Efficient Asset Allocation,” IEEE Journal of

Selected Topics in Signal Processing, 10(6), 982–993.

Strzalecki, T. (2011): “Axiomatic Foundations of Multiplier Preferences,” Econometrica,

79(1), 47–73.

Vayanos, D., and J.-L. Vila (2021): “A Preferred-Habitat Model of the Term Structure of

Interest Rates,” Econometrica, 89(1), 77–112.

Viceira, L. M. (2001): “Optimal Portfolio Choice for Long Horizon Investors with Nontrad-

able Labor Income,” Journal of Finance, 56(2), 433–470.

45



Online Appendix

Preliminary and Incomplete

7 Appendix: theoretical analysis

7.1 Proofs for section 4

We start with the following useful result

Lemma 11. In the optimum equilibrium, ET rjT+1 = O
(
σ2
)

for all j, T.

Proof. Consider a perturbation that simultaneously buys security j and sells equal amount

of security rf in period T, which is is then unwound in period T + 1. The effect of these

transactions on welfare can be obtained by subtracting (11) for security rf from the equation

(11) for security j. In the optimum equilibrium the welfare effect of this transaction should be

zero, i.e.

ET
βMT+1

MT

rjT+1

ξT+1

= 0. (37)

To the zeroth order, this equation reads

βM̄T+1

M̄T

r̄jT+1

ξ̄T+1

= 0. (38)

Since function τ
1−τ is strictly increasing on (−∞, 1) interval and has range (−1,∞), we must

have ξ̄T+1 = 1 − γ τ̄T+1

1−τ̄T+1
∈ (0, 1 + γ) . In the regular equilibrium M̄T is positive and finite.

Therefore, equation (38) implies that r̄jT+1 = 0. Therefore, the first order approximation of

(37) is
βM̄T+1

M̄T

1

ξ̄T+1

ET∂σrjT+1 = 0,

which implies that ET∂σrjT+1 = 0. This establishes the result of the lemma.

This lemma directly implies a number of corollaries that we will use extensively throughout

our analysis. The proofs of the first two are obvious and they are omitted.

Corollary 12. In the optimum equilibrium, arfT = ajT + O
(
σ2
)

for all j, T. Moreover, in the

stationary optimum equilibrium, aiT = O (σ) for all i, T.
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Corollary 13. In the optimum equilibrium, for all T, t

Q̄T+t
T+1 =

1

R̄rfT+2

× ...× 1

R̄rfT+t

= Q̄T+t
T+1, ET+1∂σQT+t

T+1 = ET+1∂σQ
T+t
T+1 for t > 1.

Corollary 14. For any equilibrium variables xt, z
′
t,z
′′
t , in the optimum equilibrium for any T, j

we have

ET
[
z′T+1z

′′
T+1

]
covT

(
xT+1, r

j
T+1

)
' ET

[
z′T+1

]
ET
[
z′′T+1

]
covT

(
xT+1, r

j
T+1

)
' z̄′T+1z̄

′′
T+1ET∂σxT+1∂σr

j
T+1.

Proof. We have

ETxT+1r
j
T+1 ' ET

[
∂σxT+1∂σr

j
T+1 +

1

2
x̄T+1∂σσr

j
T+1

]
, ETxT+1ET rjT+1 ' ET

[
1

2
x̄T+1∂σσr

j
T+1

]
,

and, therefore,

covT

(
xT+1, r

j
T+1

)
=
[
ETxT+1r

j
T+1 − ETxT+1ET rjT+1

]
' ET∂σxT+1∂σr

j
T+1.

Since covT

(
xT+1, r

j
T+1

)
= 0, we obtain

ET
[
z′T+1z

′′
T+1

]
covT

(
xT+1, r

j
T+1

)
' z̄′T+1z̄

′′
T+1ET∂σxT+1∂σr

j
T+1,

ET
[
z′T+1

]
ET
[
z′′T+1

]
covT

(
xT+1, r

j
T+1

)
' z̄′T+1z̄

′′
T+1ET∂σxT+1∂σr

j
T+1.

We are now ready to characterize the optimality conditions.

Lemma 15. In the optimum equilibrium, for all T, j, k

ET∂σ ln ξT+1∂σr
j
T+1 =

R̄rfT+1

1− ārfT

∂σσa
rf
T − ∂σσa

j
T

2
,

ET∂σ ln ξT+1+k∂σr
j
T+1 =

R̄rfT+1

1− ārfT

∂σσa
rf
T − ∂σσa

j
T

2
+

R̄rfT+1

1− ārfT
ET∂σAk

T+1∂σr
j
T+1.

Proof. The second order expansion of (37) is

2ET∂σ
(
βMT+1

MT

)
∂σr

j
T+1+2

(
βMT+1

MT

)
1(

ξ−1
T+1

)ET∂σξ−1
T+1∂σr

j
T+1+

(
βMT+1

MT

)
ET∂σσrjT+1 = 0.

(39)

Applying these results to expansions of equation (9), we have

∂σσa
rf
T − ∂σσa

j
T = 2ET∂σ

(
βMT+1

MT

)
∂σr

j
T+1 +

(
βMT+1

MT

)
ET∂σσrjT+1.
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Combine with (39) and observe that
∂σξ
−1
T+1(

ξ−1
T+1

) = −∂σ ln ξT+1 to get

∂σσa
rf
T − ∂σσa

j
T = 2

(
βMT+1

MT

)
ET∂σ ln ξT+1∂σr

j
T+1 = 2

(
1− arfT
RrfT+1

)
ET∂σ ln ξT+1∂σr

j
T+1.

This yields the first equation.

When the government rolls over excess returns for additional k periods, the optimality

condition reads

ET
βMT+1

MT

rjT+1

ξT+1

[(
βMT+2

MT+1
RrfT+2

)
× ...

(
βMT+1+k

MT+k
RrfT+1+k

)]
= 0.

Relative to equation (39), its second order approximation has an additional term can be written

as

2
k∑
t=1

ETET+t∂σ ln

(
βMT+1+t

MT+t
RrfT+1+t

)
∂σr

j
T+1 = 2

k∑
t=1

ET∂σ ln
(

1− arfT+t

)
∂σr

j
T+1 = 2ET∂σAk

T+1∂σr
j
T+1.

Therefore

(
∂σσa

rf
T − ∂σσa

j
T

)
+ 2ET∂σAk

T+1∂σr
j
T+1 =

(
1− arfT
RrfT+1

)
ET∂σ ln ξT+1∂σr

j
T+1.

Re-arrange to get the second equation.

Corollary 16. In the stationary optimum equilibrium, equations (15) and (16) hold.

Proof. In the stationary optimum equilibrium, ārfT = 0 by corollary 12. Combine this with

lemma 15 and corollary 14 to show the result.

Lemma 17. Equation (18) holds.

Proof. Lemma 11 and corollary 13 imply that the zeroth order approximation of (17) is

∞∑
t=1

Q̄T+t
T+1X̄T+t = −B̄T R̄rfT+1. (40)

Multiply equation (17) by rjT+1 and take expectations at time T. The Law of the Iterated

Expectations then implies that

ET
∞∑
t=1

QT+t
T+1XT+tr

j
T+1 = −ETBT

RrfT+1 +
∑
i≥1

ωiT r
i
T+1

 rjT+1.
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Take the second order expansion of this expressions, note that the terms multiplying ∂σσr
j
T+1

cancel out due to (40) and that ET∂σQT+t
T+1∂σr

j
T+1 = ET

(
ET+1∂σQT+t

T+1

)
∂σr

j
T+1 = ET∂σQT+t

T+1∂σr
j
T+1

by corollary 13 to obtain

ET
∞∑
t=1

X̄T+t∂σQ
T+t
T+1∂σr

j
T+1 + ET

∞∑
t=1

Q̄T+t
T+1∂σXT+t∂σr

j
T+1 = −B̄TET

∑
i≥1

ω̄iT∂σr
i
T+1∂σr

j
T+1

 .
(41)

Finally, note that QT+1
T+1 = 1 and therefore ∂σQ

T+1
T+1 = 0. This, together with corollary 14,

establishes equation (18).

Lemma 18. Lemma 2 holds.

Proof. Direct calculations show that ∂σ ln ξt = − γ̄

ξ̄t(1−τ̄ t)
2∂στ t and therefore we have

ET∂σ ln ξT+t∂σr
j
T+1 = − γ

ξ̄T+t (1− τ̄T+t)
2ET∂στT+t∂σr

j
T+1. (42)

Define function X as X (τ , θ,G) ≡ G − τ (1− τ)γ θ1+γ . It is easy to verify that Xt =

X (τ t, θt, Gt) . Let Xτ ,t, Xθ,t and XG,t be the first derivatives of X evaluated at a stochastic

point (τ t, θt, Gt) . It is easy to verify that Xτ ,t = −ξtYt. Therefore, using expressions for X and

X⊥, we have

ET∂σXT+t∂σr
j
T+1 = X̄θ,T+tET∂σθT+t∂σr

j
T+1 + X̄G,T+tET∂σGT+t∂σr

j
T+1 − ξ̄T+tȲT+tET∂στT+1∂σr

j
T+1,

ET∂σX⊥T+t∂σr
j
T+1 = X̄θ,T+tET∂σθT+t∂σr

j
T+1 + X̄G,T+tET∂σGT+t∂σr

j
T+1.

Combine these expressions with (42) to show that

ET∂σXT+t∂σr
j
T+1 = ET∂σX⊥T+t∂σr

j
T+1 −

(1− τ̄T+t)
2 ξ̄

2
T+t

γ
ȲT+tET∂σ ln ξT+t∂σr

j
T+1(43)

= ET∂σX⊥T+t∂σr
j
T+1 + ζT+tȲT+t∂σ ln ξT+t, ∂σr

j
T+1.

Apply corollary 14 to prove lemma 2.

We now prove a generalized version of Theorem 3, which does not assume stationarity.

Define diagonal matrices ΠQ
T , ΠX

T , ΠA
T , Πa

T with coefficients

ΠQ
T [t, t] = ET

qrfT+tXT+1+t

YT+t
ΠX
T [t, t] = YT /

(
BT q

rf
T

)
ΠA
T [t, t] =

ET qrfT+tET
YT+1+t
YT+t

ET ζT+1+t(
1−arfT

)
qrfT

Πa
T [t, t] =

ET ζT+t(
1−arfT

)
qrfT

.

Furthermore, let vector w be defined as wT [t] = ET qrfT Q
T+t
T+1

YT+t

YT
. We have
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Theorem 19. The optimal portfolio ω∗T satisfies

ΣTω
∗
T '

[
ΠQ
T ΣQ

T + ΠX
T ΣX

T + ΠA
TΣA

T

]
wT + Πa

TaT . (44)

Proof. Combine the optimality conditions derived in lemma 15 with equation (43) to show

that in the optimum

ETσXT+t∂σr
j
T+1 = ET∂σX⊥T+t∂σr

j
T+1+ζ̄T+tȲT+t

[
R̄rfT+1

1− ārfT

∂σσa
rf
T − ∂σσa

j
T

2
+

R̄rfT+1

1− ārfT
ET∂σAk

T+1∂σr
j
T+1

]
.

Substitute that into the budget constraint (41) and re-arrange terms to obtain

∞∑
t=1

w̄T+t

[
q̄rfT+tXT+1+t

ȲT+t

]
ET∂σrjT+1∂σ lnQT+1+t

T+1 (45)

+

∞∑
t=1

w̄T+tET∂σrjT+1

∂σX
⊥
T+t

ȲT+t
+

1

1− ārfT

(
1

q̄rfT

∞∑
t=1

w̄T+t

[
ζ̄T+t

]) ∂σσa
rf
T − ∂σσa

j
T

2

+
1

1− ārfT

∞∑
t=1

w̄T+t

[
q̄rfT+t

q̄rfT

ȲT+1+t

ȲT+t
ζ̄T+1+t

]
ET∂σAt

T+1∂σr
j
T+1

= −

∑
i≥1

ET∂σriT+1∂σr
j
T+1ω

i
T

 q̄rfT
BT

ȲT
.

Divide it by q̄rfT
BT
ȲT
, apply corollary 14 and write it in the matrix form to prove (44).

Corollary 20. In stationary economy, equation (19) holds.

Proof. The definition of stationarity implies that

ξ̄T+t = ξ̄T , ζ̄T+t = ζ̄T ,
ȲT+t

ȲT
= Γt, q̄rfT = q, Q

T+t
T+1 = qt−1, w̄t = (qΓ)t ,

X̄T+t

ȲT+t
=
X̄T

ȲT
.

Furthermore, corollary 12 implies that āiT = 0 for all i, T. Therefore, equation (45) becomes

qΓ
X̄T

ȲT

∞∑
t=1

(qΓ)t ET∂σ lnQT+1+t
T+1 ∂σr

j
T+1 +

∞∑
t=1

(qΓ)t ET
∂σX

⊥
T+t

ȲT+t
∂σr

j
T+1

+
ζ̄T

1− ārfT

(
1

q

∞∑
t=1

(qΓ)t
)
∂σσa

rf
T − ∂σσa

j
T

2
+ ζ̄TΓ

∞∑
t=1

(qΓ)t ET∂σAt
T+1∂σr

j
T+1

= −

∑
i≥1

ET∂σriT+1∂σr
j
T+1ω

i
T

 q
BT

ȲT
.

The zeroth order government budget constraint can be written as
∑∞

t=1 q
t ȲT+t

ȲT

X̄T+t

ȲT+t
= − B̄T

ȲT
.

Applying stationarity conditions, we obtain qΓ X̄T
ȲT

= − (1− qΓ) B̄T
ȲT
. Substitute this into the

previous equation, apply corollary 14 and write it in the matrix form to show (19).
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Corollary ?? follows from the following lemma.

Lemma 21. Let q
(t)
T , r

(t)
T be the period-T price and excess return of a pure discount bond that

expires in period t. Then q
(T+1)
T covT (r

(T+1+t)
T+1 , rjT+1) ' covT

(
QT+1+t
T+1 , rjT+1

)
for any security j

that the government can trade. In particular, if the government can only trade pure discount

bonds of all maturities and matrix ΣT is arranged so that its ith column corresponds to bonds

expiring in period T + i, then qrfT ΣT ' ΣQ
T .

Proof. We show that

q̄
(T+1)
T ET∂σr

(T+1+t)
T+1 ∂σr

j
T+1 = ET∂σ lnQT+1+t

T+1 ∂σr
j
T+1, (46)

which is equivalent to q̄rfT ET∂σriT+1∂σr
j
T+1 = ET∂σ lnQT+1+t

T+1 ∂σr
j
T+1 in the notation used in

body of the paper. The latter equation implies that qrfT ΣT ' ΣQ
T due to corollary 14.

Step 1. q̄
(T+1)
T ET∂σr

(T+1+t)
T+1 ∂σr

j
T+1 = ET

[
∂σ ln

βtMT+1+t

MT+1
−
∑t

k=1 ∂σ ln
(

1− a(T+1+t)
T+k

)]
∂σr

j
T+1.

The definition of returns and liquidity premium imply that

q
(T+1+t)
T = ET

βMT+1

MT
q

(T+1+t)
T+1

1

1− a(T+1+t)
T

= ET

[
β1+tMT+1+t

MT

1

1− a(T+1+t)
T

× ...× 1

1− a(T+1+t)
T+t

]
.

Therefore, the excess return is

r
(T+1+t)
T+1 =

q
(T+1+t)
T+1

q
(T+1+t)
T

− 1

q
(T+1)
T

=
1
1

1−a(T+1+t)
T

ET+1

[
βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
ET
[
βMT+1

MT

βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

] − 1

ET
[
βMT+1

MT

1

1−a(T+1)
T

] .
Its first order approximation terms can be written as

∂σr
(T+1+t)
T+1 =

(
1− ā(T+1+t)

T

) M̄T

βM̄T+1

ET+1∂σ

[
βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
[
βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

] + t.m.T

=
M̄T

βM̄T+1

1

1− ā(T+1+t)
T

ET+1

[
∂σ ln

βtMT+1+t

MT+1
−

t∑
k=1

∂σ ln
(

1− a(T+1+t)
T+k

)]
+ t.m.T,

where ”t.m.T” denotes ”terms measurable with respect to time T”. Since ā
(T+1+t)
T = ā

(T+1)
T

and ET∂σrjT+1 = 0 for any j by lemma 11, this equation imply that

ET∂σr
(T+1+t)
T+1 ∂σr

j
T+1 =

1

q̄
(T+1)
T

ET+1

[
∂σ ln

βtMT+1+t

MT+1
−

t∑
k=1

∂σ ln
(

1− a(T+1+t)
T+k

)]
∂σr

j
T+1.
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This proves Step 1.

Step 2. ET∂σ lnQT+1+t
T+1 ∂σr

j
T+1 = ET

[
∂σ ln

βtMT+1+t

MT+1
−
∑t

k=1 ∂σ ln
(

1− a(T+1+k)
T+k

)]
∂σr

j
T+1.

By definition of QT+1+t
T+1 we have

QT+1+t
T+1 = ET+1

βMT+2

MT+1

1

1− a(T+2)
T+1

× ET+2
βMT+3

MT+2

1

1− a(T+3)
T+2

× ...× ET+t
βMT+1+t

MT+t

1

1− a(T+1+t)
T+t

= ET+1
βtMT+1+t

MT+1

1

1− a(T+2)
T+1

× ...× 1

1− a(T+1+t)
T+t

.

Therefore,

ET∂σ lnQT+1+t
T+1 ∂σr

j
T+1 =

ET∂σ
[
βtMT+1+t

MT+1

1

1−a(T+2)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
∂rjT+1[

βtMT+1+t

MT+1

1

1−a(T+2)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
= ET

[
∂σ ln

βtMT+1+t

MT+1
−

t∑
k=1

∂σ ln
(

1− a(T+1+k)
T+k

)]
∂σr

j
T+1.

Step 3. Equation (46) holds.

Note that

ET∂σ ln
(

1− a(T+1+t)
T+k

)
∂σr

j
T+1 = ET

{
ET+k∂σ ln

(
1− a(T+1+t)

T+k

)}
∂σr

j
T+1

= ET
{
ET+k∂σ ln

(
1− a(T+1+k)

T+k

)}
∂σr

j
T+1 = ET∂σ ln

(
1− a(T+1+k)

T+k

)
∂σr

j
T+1,

where we applied the law of iterated expectations in the first and third equations, and lemma

11 in the second equations. This implies that the right hand sides of equations obtained in

Step 1 and 2 are the same, proving (46).
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