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Abstract

Should optimal income taxation change when firms have market power? The recent rise of market

power has led to an increase in income inequality and a deterioration in efficiency and welfare. We

analyze how the planner can optimally set taxes on the labor income of workers and on the profits

of entrepreneurs to induce a constrained efficient allocation. Our results show that optimal taxation

in the presence of market power can substantially increase welfare, but it also highlights the severe

constraints that the Planner faces to correct the negative externality from market power, using the

income tax as a Pigouvian taxes. Pigouvian taxes compete with Mirrleesian incentive concerns, which

generally leads to opposing forces in profit tax design. Overall, we find that market power tends to

lower marginal tax rates on workers, whereas it increases the marginal tax rate on entrepreneurs.
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1 Introduction

Market power has an impact on both inequality and efficiency. As market power increases, the share

of output accrues disproportionately to owners of monopolistic firms and less to workers. In addition,

market power creates inefficiencies in the allocation of resources as prices are too high which leads to

deadweight loss and a reduction in welfare. Therefore, we ask whether taxes should reflect the extent

of market power, and if so, how? In this paper, we aim to answer the question by investigating optimal

taxation in conjunction with market power. Starting with Mirrlees (1971), an extensive and influential

literature on optimal taxation has analyzed what determines the properties of income tax schedules.

Given that market power changes both efficiency and inequality, understanding the effect of market

power on optimal tax rates is an important objective, especially in light of the rise of market power

in recent years. We, therefore, contribute to the existing literature by embedding market power in an

otherwise canonical setting of optimal income taxation.

The most obvious way to address the distortionary effect of market power is to eradicate the root

cause of market power itself with antitrust policy. But the optimal antitrust policy may not be achiev-

able,1 so instead we ask what optimal policy should be when we can rely on income and goods taxation

only. The Mirrleesian tax provides the correct incentives that trade-off efficient effort supply with in-

equality. In addition, now the optimal tax system simultaneously corrects the externalities that derive

from market power in the goods market. The income tax thus also plays the role of a Pigouvian tax:

a tax that corrects a market failure, whether it be pollution or in this case, market power. An impor-

tant insight of our analysis is how to optimally trade-off different objectives: inequality, efficiency, and

correcting externalities from market power.

Our contribution is twofold. First, in an otherwise canonical Mirrlees (1971) taxation framework,

we embed endogenous market power as well as a clear distinction between wage-earning workers and

profit-earning entrepreneurs. The novelty in the setup is that we add the inefficiency of market power in

the hands of entrepreneurs which interacts with the unobservable effort supply of heterogeneity agents.

We do this in a setting that allows for oligopolistic competition between a finite number of firms. We

show that this model captures a number of empirically relevant features that link inequality to market

power, in particular, how market power creates inequality. Even under Laissez-faire, our model gen-

erates novel predictions regarding the effect of market power on equilibrium allocation and inequality.

Second, we derive the optimal taxation policy to implement the planner’s second-best allocation. The

optimal tax scheme now combines a Pigouvian correction of the externality due to market power with

the design of the Mirrleesian incentive problem.

The main result of our analysis can be divided into two parts: the Laissez-faire economy and the

1Antitrust policy faces many challenges, not least because the determinants of market power have multiple origins that can
often not easily be corrected: those origins based in technology such as entry barriers, returns to scale and the heterogeneity in
productivity between firms; and those based on the market such Mergers and Acquisitions. See amongst others Sutton (1991,
2001) and De Loecker, Eeckhout, and Mongey (2019).
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economy under optimal taxation. In the absence of taxes, the Laissez-faire equilibrium predicts an in-

crease in inequality as aggregate markups increase. The labor income of workers decreases due to the

decline in the general equilibrium wage rate as well as the decline in their hours worked in response

to the lower wage rate. At the same time, entrepreneurs see an increase in their income. This is con-

sistent with the decline in the labor share that has been documented and that coincides with the rise

of market power.2 The rise of market power also results in a decrease in output and social welfare. In

addition, inequality within the pool of heterogenous entrepreneurs increases while inequality within

the pool of workers remains constant. Because each entrepreneur owns a different firm, rising markups

lead to higher dispersion in productivity and profits between firms, yet the inequality between workers

within the firm remains unchanged. This feature of our model where inequality between firms increases

is consistent with the facts on increasing between-firm inequality.

In the presence of market power, the optimal taxation policy has the following properties.3 First,

when all agents are identical, the government only needs to address the incentives to provide effort

without concern for heterogeneous abilities. Then the marginal tax rate is negative and declines as

markups increase. In the absence of market power, the marginal tax rate would be zero. While markups

create a distortion, they also lower the incentives to work. The workers work less because the wages

are lower, and the entrepreneurs work less because they price higher and thus sell and produce less.

The Planner, therefore, offers incentives through negative marginal tax rates to both workers and en-

trepreneurs. Second, when agents are heterogeneous, the marginal tax rate for all agents now reflects

the motive for redistribution and depends on the type of agent, with lower tax rates for low earners

and higher tax rates for high earners. Interestingly, for any two types of entrepreneurs and workers and

under monopolistic competition, the net marginal tax rate of entrepreneurs is now higher (less negative)

relative to that of workers because the Planner takes into account also the effect of market power in the

incentive constraint. Intuitively, raising market power expands the skill premium within the pool of

entrepreneurs, which requires higher marginal profit tax rates to narrow the income inequality within

the group of entrepreneurs. Third, when there is oligopolistic competition, because of strategic interac-

tion between competitors in the same market, the marginal tax rate for entrepreneurs decreases again

(becomes more negative). This is because a decreasing profit tax raises the output of firms which in

turn decreases the price of firm-level output and relaxes the entrepreneurs’ incentive constraint. And

fourth and finally, once markups are heterogeneous, the marginal tax rate of entrepreneurs changes de-

pending on the entrepreneurs’ productivity. The marginal tax rate is now lower for high-productivity

entrepreneurs. The Planner wants to use the tax incentives to induce more productive entrepreneurs to

2See Karabarbounis and Neiman (2014), De Loecker et al. (2020), and Autor et al. (2020).
3We allow for taxes on the income of workers and entrepreneurs, and also on the sales of consumer goods. However, we

show that we can focus attention exclusively on the tax on entrepreneurs and workers, and not on the sales tax. It is well-known
in the literature (see for example Chari and Kehoe (1999) and Golosov et al. (2003)) that multiple tax policies can implement
the same second-best allocation. In our setting, because the entrepreneurs are the residual claimants of output, a sales tax can
without further distortions equivalently be substituted by a levy on the entrepreneurs’ profits. Therefore, we assume sales
taxes are zero.
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produce more, which it does with lower marginal tax rates.

In sum, the optimal marginal tax rates are a delicate balancing act trading off incentives to produce

output with the distortions from market power as well as the desire to restore equity. The effect of cor-

recting the externality from market power is, somewhat surprisingly, a decrease of marginal tax rates

for both workers and firms as market power goes up. However, there are also several indirect effects

from market power that affect the entrepreneur only. Two channels decrease the marginal tax rate (in-

direct redistribution and reallocation) while one channel generally increases the tax rate (technological

differences across sectors that affect markups and hence the skill premium of entrepreneurs).

Of course, the average taxes paid and the tax burden are not necessarily evolving in the same direc-

tion as the marginal tax rates. After all, we know that market power has a general equilibrium effect

that lowers the wage rate, which increases inequality between workers and entrepreneurs. Whereas the

marginal tax rates ensure an optimal allocation of resources and production through optimal incentive

provision, the tax burden determines the optimal redistribution of income for a given social welfare func-

tion. Because we cannot analytically solve for the tax burden in our model, we simulate the economy

and map the full implications of optimal taxation.

Our simulations show that as market power increases, the wage rate, output, and welfare decrease.

At the same time, profits increase and the labor share declines. Both entrepreneurs and workers sup-

ply less labor as market power increases. Entrepreneurs are better off in consumption and utility, and

workers are worse off. The planner’s optimal taxation response is as follows. In our simulated econ-

omy, the marginal tax rate is positive on average for both workers and entrepreneurs, and it increases

market power for entrepreneurs while it decreases for workers. The lump-sum tax for entrepreneurs is

substantially higher than for workers, which means there is a lump-sum transfer from the entrepreneur

to the workers. For entrepreneurs, the average tax rate and the total tax burden are positive and in-

crease in market power, for workers it is negative and decreases. Across types within an occupation,

higher-skilled agents (both for entrepreneurs and workers) face lower marginal tax rates (as is the case

for superstars, Scheuer and Werning (2017)), but the tax burden is non-monotonic. Comparing the opti-

mal taxation allocation with Laissez-faire, optimal taxation increases welfare (trivially), but output and

the wage rate are lower, and markups increase. With taxes, inequality decreases substantially, especially

for entrepreneurs.

Related Literature. There is a growing policy literature on the relation between markups and inequal-

ity (e.g., see Stiglitz (2012); Atkinson (2015); Baker and Salop (2015); Khan and Vaheesan (2017)), yet

existing optimal tax papers with market power generally focus on indirect taxes, which abstracts from

distribution concerns (Stern (1987); Myles (1989), Cremer and Thisse (1994); Anderson, Palma, and Krei-

der (2001); Colciago (2016); Atesagaoglu and Yazici (2021)). These papers generally assume that lump-

sum tax is not enforceable and study how can the government raise revenue efficiently. In a recent

paper, Atesagaoglu and Yazici (2021) analyze the effect of optimal taxation on the labor share in a Ram-
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sey problem with capital. They ask a different but related question, namely whether it is optimal to tax

capital rather than labor when there is pure profit and the planner cannot distinguish capital income

from profits.

We embed a Mirrleesian tax problem into an economy with market power.4 To model the economy

with imperfect competition, we introduce market power in a market framework similar to Atkeson and

Burstein (2008) where a finite number of oligopolistic firms have market power in their local market.5

This setting allows us to model the influence of market structure on the optimal design of the tax sys-

tem, which is often ambiguous in the literature. The technology that an entrepreneur employs is as

in Lucas (1978), where a skilled entrepreneur chooses the optimal amount of labor as an input to pro-

duce output. Unlike Lucas (1978), the entrepreneur has market power and chooses prices strategically

when reporting their types. Therefore the presence of market power in the principal-agent problem is

notably distinct from the existing literature on optimal taxation with market power (e.g., see Kaplow

(2019), Kushnir and Zubrickas (2019), Jaravel and Olivi (2019) and Boar and Midrigan (2021)).6 In this

literature, Boar and Midrigan (2021) is the only paper that also introduces entrepreneurs. They consider

an alternative incentive problem between the planner and the entrepreneur where a profit tax does not

affect the entrepreneur’s incentive constraint. As a result, their optimal policy prescription is quantity

regulation instead of a profit tax.7 In addition, we consider different production technologies and market

structures. The source of market power in our model is the number of firms that are in oligopolistic com-

petition, instead of preferences via the Kimball aggregator in monopolistic competition. These different

modeling choices have implications for the policy conclusions. Because in our setup the markup en-

ters the entrepreneur’s incentive constraint, it affects the optimal policy not only through the Pigouvian

channel (correcting the market power externality), but the optimal profit tax depends also on the markup

through the Mirrleesian (redistribution), and the Mirrleesian channel leads to an increase of the marginal

tax rate as markups increase. This is at the heart of the role that Mirrleesian taxes play as opposing forces

of Pigouvian taxes. By considering different modeling choices and the resulting differences in findings

and policy prescriptions, our paper and Boar and Midrigan (2021) offer complementary insights into the

problem of taxation in the presence of market power.

Our paper is also related to the literature on optimal taxation with endogenous prices or wages (e.g.,

see Stiglitz (1982); Naito (1999) and Naito (2004); Saez (2004); Scheuer (2014); Sachs, Tsyvinski, and

4The taxation is Mirrleesian in the sense that both labor income and profit taxes are allowed to be arbitrarily nonlinear and
lump-sum taxes (or transfers) are enforceable.

5We have a nested CES structure in inputs of production, instead of in preferences over consumption goods.
6Agents in Kaplow (2019), Kushnir and Zubrickas (2019) and Jaravel and Olivi (2019) treat prices and profits as given. Thus,

the strategic actions of agents are not dependent on the market power in these papers. Moreover, the share of profits received
by the agents in their models are either zero or determined by exogenous functions of individual ability or labor income. Thus,
if profit tax is introduced in their models, it acts as lump-sum taxes. While these papers study optimal labor income taxes, they
do not analyze optimal profit taxes. Specifically, Kaplow (2019) and Jaravel and Olivi (2019) abstract the problem from profit
tax and Kushnir and Zubrickas (2019) considers an exogenous profit tax.

7In our model entrepreneurial effort is endogenous. Thus, the entrepreneur can manipulate the output and profits either
by adjusting labor inputs or their effort. While the planner can also use quantity regulation, given their importance in the
corporate world, we focus on profit taxes.
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Werquin (2020); Cui, Gong, and Li (2021)). This literature emphasizes the general equilibrium effect

of tax on prices of factors, which brings an indirect redistribution between agents providing different

factors. While most of these papers treat agents as price takers, agents in our model have price-setting

power. We show that the indirect redistribution effect of tax now is dependent on the market structure.

In particular, a reduction in profit tax encourages entrepreneurial effort and output. It thereby decreases

the price of the competitor’s product in the same submarket and hence achieves redistribution indirectly.

Interestingly, when there is no competitor in the submarket, i.e., entrepreneurs have monopoly power

over their own products, this effect of taxation disappears. This is because the strategic interaction

between agents is absent under monopoly, which, together with the entrepreneur’s price-setting action,

eliminates the tax policy’s first-order effect on prices.

The paper also contributes to the literature on optimal taxation and technology (e.g., see Ales, Kur-

naz, and Sleet (2015); Ales and Sleet (2016); Scheuer and Werning (2017); Ales, Bellofatto, and Wang

(2017)). Diamond and Mirrlees (1971) and Scheuer and Werning (2017) observed that the parametric

optimal tax rate is not dependent on the curvature of technology. Our results extend their findings to

an economy with market power: the curvature of firm-level production technology (with respect to la-

bor inputs) does not affect the optimal labor income and profit tax rates. On the other hand, we find

a novel route for the technology to affect the optimal tax rate. Since the markup is dependent on the

elasticity of substitution between products and the skill premiums of entrepreneurs are determined by

the technology as well as the markup, markup affects optimal taxation together with the technology.

Lastly, our paper belongs to the literature on optimal taxation with externality (e.g., Sandmo (1975);

Ng (1980); Bovenberg and van der Ploeg (1994); Kopczuk (2003); Farhi and Gabaix (2020)). As suggested

by Kopczuk (2003), one of the main results of this literature is the “additivity property”:8 optimal taxa-

tion under the presence of an externality can be expressed additively by some Pigouvian taxes and the

optimal taxes in a circumstance otherwise the same without externality. However, we find that the ad-

ditivity property generally does not hold in an economy with heterogeneous agents and market power.

Not only the Pigouvian tax (the tax used to restore efficiency) but also the redistributive tax change with

the externality induced by market power. For one thing, social welfare weights, which are crucial to

tax design, change with the extent of market power. For another, even if the social welfare weights are

exogenous, the redistributive tax changes because of the skill premium, especially of the entrepreneurs,

changes with the markup.

2 The Model Setup

Environment. The economy is static. Production of the final consumption good needs the composite

input of an intermediate good produced by an entrepreneur (idea), and the effort of workers.

8The additivity property can be treated as a special case of the “principle of targeting“proposed by Dixit (1985).
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Agents and Preferences. Agents belong to one of two occupations o ∈ {e, w}, entrepreneur or worker.

The occupational types are fixed. Within each occupation, agents are heterogeneous in their productivity.

Denote the type of an agent by θo, distributed according to the cumulative density function Fo(θo) with

density fo(θo). The measure of entrepreneurs is Ne = N; the measure of workers is normalized to

Nw = 1. There is a representative firm producing final goods in a competitive market and making zero

profits.

Both worker and entrepreneur have a preference over consumption and effort. We denote by Uo(θo) =

co − φo(lo) the utility function of an agent of type o (worker or entrepreneur), where lo refers to working

hours.9 The cost of effort functions −φo(·) are twice continuously differentiable and strictly concave.

To make the analysis transparent and in the simulations, we will consider utility function with constant

elasticity of labor supply, i.e., εo ≡ φ′o(lo)
loφ′′o (lo)

is constant. We denote by Vo(θo) the optimal utility of an agent

of type θo.

Market Structure. The labor and final good markets are perfectly competitive. Instead, the intermedi-

ate goods market exhibits market power. There are two levels of production: intermediate inputs and

final goods. The market structure in the intermediate goods market is a variation of the structure in

Atkeson and Burstein (2008), but with product differentiation in production rather than in preferences.

At the intermediate goods level, identical entrepreneurs of type θe compete producing differentiated

inputs, that consist of a small number of close substitutes (say Coke and Pepsi, or Toyota and Ford), and

a continuum of less substitutable input goods (say soft drinks and cars). The most granular market is

small, where a finite number of I entrepreneurs (with I ≥ 1) of equal type θe produce a differentiated

input good under imperfect competition. In this market, an entrepreneur i = 1, ..., I Cournot competes

against I− 1 competitors. The number of competitors I determines the degree of market power. The out-

put produced within this market is differentiated with a common elasticity of substitution η(θe) across

all I goods. There are a continuum of these imperfectly competitive markets, denoted by j with measure

J(θe) = N f (θe)
I . Each of those markets j has I goods (with elasticity of substitution within the market

η (θe) and produced by identical entrepreneurs θe), and the elasticity of substitution σ across markets

(between soft drinks and cars) is smaller than within markets (between Coke and Pepsi): σ < η(θe).

At the final goods level, the inputs produced in markets i, j by heterogeneous entrepreneurs θe is

aggregated to a final output good with the same elasticity of substitution σ. Thus, one individual firm i

in a market j that produces an intermediate with entrepreneurs θe is fully identified by the triple (i, j, θe).

9Our utility function is separable between consumption and labor, and we eliminate income effects. The assumption is cru-
cial for the tractability of the optimal tax problem, and it is not crucial to the economic implication of this paper. The empirical
literature using detailed micro data sets has typically not rejected a zero income elasticity on labor supply or found very small
effects (e.g., see Gruber and Saez (2002); Kleven and Schultz (2014)). Readers who are interested in how the complementarity
and substitution between consumption and labor can refer to Atkinson and Stiglitz (1976), Mirrlees (1976) and Christiansen
(1984).
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Technology. Heterogeneous agents supply efficiency units of labor: an agent of type θo who works

lo hours supplies xo(θo)lo efficiency units of labor.10 Because in general, the equilibrium labor inputs

depends on the firm (i, j, θe), we denote the efficiency units of labor demand and entrepreneurial effort

by Lw,ij (θe) and xe(θe)le,ij(θe) respectively, where le,ij(θe) is the working hours of entrepreneur.

The firm level production technology of the intermediate good is as in Lucas (1978), with one het-

erogeneous entrepreneur hiring an endogenous number of workers to maximize profits. Because the

productivity of entrepreneurs and workers is expressed in efficiency units, the technology takes effi-

ciency units as inputs instead of bodies. The quantity of output of a θe entrepreneur is therefore:

Qij(θe) = xe(θe)le,ij (θe) · Lw,ij (θe)
ξ , (1)

where Lw,ij (θe) is the quantity of labor in efficiency units the entrepreneur hires to work in the firm and

0 < ξ ≤ 1.11 Note that because of the efficiency units assumption, output Qij(θe) does not depend on

the worker types θw that are employed.

There is no capital in our model. Therefore we assume that, as in Lucas (1978) or Prescott and Visscher

(1980), the entrepreneur is the residual claimant of output, i.e., they “own” the technology θe. Therefore,

the entrepreneur hires labor to maximize profits.

Given the technology, we can aggregate the firm-level output first within the market with I close

substitutes (with elasticity η (θe)) to Qj (θe), then across all J (θe) markets (with elasticity σ) to Q (θe),

and finally from aggregated inputs (with the same elasticity σ)12 to output goods Q:

Qj(θe) =

[
I−

1
η(θe)

I

∑
i=1

Qij (θe)
η(θe)−1

η(θe)

] η(θe)
η(θe)−1

(2)

Q(θe) =

[
J(θe)

− 1
σ

∫
j
Qj (θe)

σ−1
σ dj

] σ
σ−1

(3)

Q = A
[∫

θe

χ(θe)Q (θe)
σ−1

σ dθe

] σ
σ−1

(4)

where χ(θe) is a distribution parameter. As illustrated by Ales et al. (2015), variations in χ(θe) captures

10The assumption of efficiency units drastically simplifies the solution of the model but it is not innocuous. The efficiency
units assumption rules out sorting because firms are indifferent across worker types as long as they provide exactly the same
efficiency units. See amongst others Sattinger (1975a), Sattinger (1993) and Eeckhout and Kircher (2018) how the assumption of
efficiency implies an absence of sorting. To date, we know of no way how to solve the optimal taxation problem with market
power in the presence of sorting.

11The case where ξ = 1, is common in the literature that models imperfect competition through imperfect substitutes
(see e.g. Melitz (2003), Atkeson and Burstein (2008), De Loecker et al. (2019)). The linear technology considerably simplifies
the derivations, and in addition, there is no indeterminacy in the firm size because all goods are imperfect substitutes that
determine the boundaries of the firm.

12For notational simplicity and without loss, we assume the elasticity of substitution between intermediate inputs θe is the
same as the the elasticity of substitution between inputs in different markets j as there is no market power at both levels of
aggregation. The Key is that the elasticity within the small markets η (θe) where firms have market power is different from the
elasticity across markets where there is a continuum of other products and hence 0 market power.
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the technological or preference-based variations in demand for different skills and intermediate goods.

To abstract from the love-of-variety effect related to I, we require ζ = − 1
σ and ζ (θe) = − 1

η(θe)
in the

following analysis.

Prices, Wages and Market Clearing. Denote the price of intermediate goods produced by firm (i, j, θe)

by Pij(θe) and the income of a worker by y(θw) and the profits of an entrepreneur by π(θe). The profits

of the entrepreneurs are determined by the fact that the entrepreneur is the residual claimant of revenue

after paying for wages to the workers. The workers’ wages are determined in a competitive labor market,

subject to market clearing. Denote by W the competitive wage any firm pays for an efficient unit of labor.

Because of the efficiency wage assumption and competitive labor markets, there is a unique equilib-

rium wage W that solves market clearing for workers, given optimal labor supply lw and optimal labor

demand Lij(θe). Obviously, labor supply increases in W and labor demand decreases in W. In the next

equation we equating aggregate labor demand (left hand side) and aggregate labor supply (right hand

side) to solve for equilibrium wages W:

∫
θe

∫
j

I

∑
i=1

Lw,ij(θe; W)djdθe =
∫

θw

xw (θw) lw(θw; W) fw(θw)dθw (5)

Note that in equilibrium lw,ij(θe) = lw(θw) for all θw because we assume labor markets are perfectly

competitive and all firms pay the same W for one efficiency unit. Therefore, y(θw) = Wxw (θw) lw(θw).13

Policy, Taxation, and the Planner’s Objective. We now specify how the government intervenes in

the economy. Government uses taxation as an instrument to affect the equilibrium allocation in this

economy. In the tradition of the taxation literature, we assume the government levies taxes to collect an

exogenous amount of revenue R. Given R, the government objective is to choose tax policies to maximize

the social welfare:

∑
o∈{w,e}

No

∫
θo

G (Vo(θo)) f̃o (θo) dθo, (6)

where G : R+ 7−→ R+ is a twice differentiable social welfare function. We assume that both G(·) and

G′(·) are strictly positive and G′′(·) ≤ 0. The PDF f̃θ (·) is a Pareto weights schedule, which is assumed

to be continuous (e.g., see Saez and Stantcheva (2016)).

In the tradition of Mirrleesian taxation, we assume that types θo are not observable, while labor

income y(θw) ∈ R+ and profits of the entrepreneur π(θe) ∈ R+ are observable. This assumption is

equivalent to say that direct taxes can only depend on labor incomes and entrepreneurial profits. Besides,

we assume that the government can levy a linear sales tax or a linear tax on labor inputs (such as salary

tax), which is usually used in the real economy.

13Throughout this paper we assume that labor factors supplied by workers of different abilities are perfectly substituable.
For readers who are interested in imperfectly substitutable labor factors, please refer to Sachs et al. (2020) and Cui et al. (2021).
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The planner, therefore, solves for the constrained optimal allocation, or second best. The first best al-

location is unattainable given workers and entrepreneurs have private information over their type θo.

Specifically, we consider that the government can use profit and labor income taxes Te : π 7→ R and

Tw : y 7→ R to be arbitrarily nonlinear in the Mirrlees tradition. These direct taxes together with a sales

tax ts ∈ R compose the tax policy system T ≡ {Te, Tw, ts} that we consider in our benchmark model.14

Equilibrium. We formally define equilibrium below once we have solved for the equilibrium best re-

sponses of all agents. We now give an informal definition of equilibrium. Given the tax regime T , a

competitive tax equilibrium allocation and price system are such that the resulting allocation maximizes

the final good producer’s profit, maximizes the entrepreneur’s utility subject to the budget constraint

and maximizes the worker’s utility subject to the budget constraint. In addition, the price system sat-

isfies Cournot equilibrium, wages are set competitively, all markets clear, and the government’s budget

constraint is satisfied, which, given other budget constraints, is equivalent to say that the social resource

constraint is satisfied.

3 Solution

3.1 The Cournot Competitive Tax Equilibrium

Final Goods Market Solution. We start with the final goods market where we normalize the price of

final good to one. The final good producer chooses the inputs of intermediate goods to maximize its

profit. The demand Qij (θe) for the intermediate input solves:

Π = max
Qij(θe)

Q−
∫

θe

∫
j

[
I

∑
i=1

QD
ij (θe) Pij (θe)

]
djdθe, (7)

where Pij (θe) is the price and QD
ij (θe) is the quantity demanded from firm (i, j, θe).

Entrepreneur’s Solution. In our benchmark model, we consider the Cournot Competitive Tax Equi-

librium in intermediate goods market j between I firms. Because there are a continuum of intermediate

good markets j and θe, there is only strategic interaction within a market j and all firms treat the output

decisions in other intermediate goods markets as given.

All firms treat others’ outputs as given. We denote by Pij
(
Qij(θe), θe

)
the inverse-demand function

14Both the linear sales tax and linear tax on the salary pay act as tax wedges between the marginal cost and income of labor
inputs Lw,ij. Since the prediction of optimal taxation is about tax wedges while not about specific tax policies (e.g., see Chari
and Kehoe (1999); Golosov et al. (2003); Salanié (2003), pages 64-66), there is no need to introduce both of these indirect taxes.
To see this, consider equation (10) below, where if we levy an additional tax tl on the labor cost of the firm, the ratio of the
marginal income of Lw,ij to the marginal cost of Lw,ij is 1+tl

1−ts
, which means the role of τl as a tax wedge can be replaced by ts.

Later in section 3.2, we will introduce the tax wedges considered in this paper.
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faced by the entrepreneur with firm (i, j, θe), whose problem is:

Ve (θe) ≡ max
le,Lw,ij

ce − φe (le) (8)

s.t. ce = πij − Te
(
πij
)

(9)

πij = Pij
(
Qij(θe), θe

)
Qij(θe) (1− ts)−WLw,ij(θe), (10)

where Qij(θe) is the quantity supplied of the intermediate good as defined in equation (1). Denote by

le,ij (θe) , ce,ij (θe) , πij (θe), and Lw,ij (θe) the solution to the above problem.

Worker’s Solution. Type θw workers choose labor supply and consumption to maximize their utility,

given the wage rate W:

Vw (θw) ≡ max
lw

cw − φw (lw) (11)

s.t. cw = Wxw (θw) lw − Tw (Wxw (θw) lw) . (12)

We denote by cw (θw), and lw (θw) the solution to (11). Besides, we denote by yw (θw) = Wxw (θw) lw (θw)

the labor income of θw-type worker.

Market Clearing. Commodity and labor markets clearing require that for any (i, j, θe), the quantity

demanded in the output sector QD
ij (θe) from equation (7) equals the quantity supplied QS

ij (θe) from

equation (8):

QD
ij (θe) = QS

ij (θe) (13)

and

Q =
∫

θw

cw(θw) fw(θw)dθw +
∫

θe

∫
j

[
I

∑
i=1

ce,ij (θe)

]
djdθe + R, (14)

and ∫
θw

xw (θw) lw (θw) fw(θw)dθw =
∫

θe

∫
j

[
I

∑
i=1

Lw,ij (θe)

]
djdθe, (15)

where R is the exogenous government revenue.

Solving individuals and final good producer’s problems gives the following equilibrium conditions:

Pij (θe) =
∂Q

∂Qij (θe)
, (16)

and
W

1− ts
=

∂
[
Pij
(
Qij (θe) , θe

)
Qij (θe)

]
∂Lw,ij (θe)

, (17)
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and

Wκw (θw)
[
1− T′w (Wκw (θw) lw (θw))

]
= φ′w (lw (θw)) , (18)

and
Pij (θe)

µij (θe)

∂Qij (θe)

∂le,ij (θe)
(1− ts)

[
1− T′e

(
πij (θe)

)]
= φ′e

(
le,ij (θe)

)
. (19)

When first-order conditions are both necessary and sufficient to individuals’ and final good producer’s

problems, the equilibrium allocations are determined by (13) to (19) and individuals’ budget constraints.

Equilibrium. Throughout this paper we will consider the following symmetric Cournot competitive

tax equilibrium, where we refer to the allocation setA = {Lw, lw, le, cw, ce} as a combination of consump-

tion schedules co : Θo 7−→ R+, labor supply schedules lo : Θo 7−→ R+ and labor demand schedule

Lw : Θw → R+ which are independent on (i, j). Prices P = {P, W} in the equilibrium is a combination

of wage rate W and price schedule P : Θe 7−→ R+ that independent on (i, j). Formally, we consider the

following symmetric Cournot tax equilibrium:

Definition 1 A Symmetric Cournot Competitive Tax Equilibrium (SCCTE) is a combination of tax system T ,

symmetric allocation A, and symmetric price system P , such that given the policy and price system, the resulting

allocation maximize the final good producer’s profit (7); maximize entrepreneurs’ utilities (8) subject to the budget

constraint (9); maximize workers’ utilities (11) subject to the budget constraint (12); the price system satisfies (17)

and (16); and labor and commodity markets are cleared, i.e., (13) to (15) are satisfied.

Note that we do not need to impose the government’s budget constraint in our definition of SC-

CTE, since under the Walras’s law, given the agent’s budget constraints, and commodity market clear

condition, the government’s budget constraint must be satisfied.

We now make some common restrictions on the equilibria that we consider throughout the paper.

First, we assume that the mechanisms (tax policies) are sufficiently differentiable. Second, we assume

that:

Assumption 1 In a Symmetric Cournot Competitive Tax Equilibrium:

1. y(θw) is differentiable, strictly positive, and strictly increasing in θw;

2. π (θe) is differentiable, strictly positive, and positive increasing in θe;

3. µij (θe)
∂ ln P(Qij(θe),θe)

∂θe
+ x′e(θe)

xe(θe)
is strictly positive.

An incentive compatible allocation under the Spence-Mirrlees condition requires labor income to

be non-decreasing in wage.15 For simplicity, we assume that y (θw) is strictly increasing in θw. With
15See e.g., see Salanié (2003), p. 87. When the Spence-Mirrlees condition is not satisfied, the analysis becomes much more

complicated as local incentive compatibility becomes insufficient for global incentive compatibility (see, e.g., Schottmüller
(2015)). These assumptions can be relaxed when considering free entry in the intermediate goods market, where individuals
choose their occupations.
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Assumption 1, we can define Fy (y(θw)) = fw(θw) and fy (y(θw)) = F′y (y(θw)) as the CDF and PDF of

labor incomes. Besides, Assumption 1 excludes cases with mass points. Similar to the assumption on

monotonicity of labor income, we assume monotonicity on π (θe). We define the distribution function of

profits as Fπ (π(θe)) = Fe(θe) with PDF fπ (π(θe)) = F′π (π(θe)).

Part 3 of Assumption 1 is used to guarantee that to obtain a certain amount of profit, the amount of

effort invested by a higher-skilled entrepreneur is lower than that of a lower-skilled entrepreneur.16 This

assumption is needed to identify individuals of heterogeneous skills when prices or wages of factors are

endogenous (e.g., see Sachs et al. (2020) and Cui et al. (2021)).

Notation. In what follows, where there is no confusion, we will drop the subscript ij. For example,

in the symmetric equilibrium the markup in each market {i, j, θe} is the same for all entrepreneurs with

types θe. Therefore, we often denote the markup µij(θe) by µ(θe) and the labor demand Lw,ij (θe) by

Lw (θe).

Markups. Following the literature on market power, we define the markup as the ratio of price to

marginal cost

µ(θe) ≡
P (θe)

MC(θe)
=

P (θe)
W

∂Qij(θe)

∂Lw(θe)
(1−ts)

. (20)

The firm’s first order condition delivers a relationship, known as the Lerner Rule, between the inverse-

demand elasticity εQij(θe) ≡
∂ ln P(Qij(θe),θe)

∂ ln Qij(θe)
and markups µ(θe).17 As in Atkeson and Burstein (2008),

under the benchmark technology with nested CES preferences, the inverse-demand elasticity can be

written in weighted form18

εQij(θe) = −
[

1
η (θe)

(
1− sij

)
+

1
σ

sij

]
≥ − 1

σ
, (21)

where sij is the sales share of firm i in market j. The markup is thus related to the demand elasticity:

µij(θe) =
1

1 + εQij(θe)
≤ σ

σ− 1
(22)

The higher the demand elasticity (the lower the inverse demand elasticity), the higher the markup.

Therefore, the markup depends on the weighted sum of the elasticity of substitution between inter-

mediate goods, and the intensity of competition in the submarket. The lower the η(θe) and σ, the less

substitutable the goods are within and between markets, and the higher the markup. Most crucially,

the markup increases as the sales share sij, and hence the number of competitors I, decreases within a

16See (B5) in Lemma B.1 for details.
17This follows from profit maximization, in equation (17), which implies W = Pij

(
Qij (θe) , θe

)
[1 + γ (θe)]

∂Qij(θe)
∂Lw,ij(θe)

(1− ts) .
18See Appendix A.6.3 for details.
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market. The smaller the number of competitors I, the smaller the weight on the within market elasticity

higher the weight on 1
η(θe)

and the higher the weight on 1
σ . Firms that face little competition face little

substitution and hence markups.19

In our results, we will also use the economy-wide aggregate markup defined as:

µ ≡
∫

θe
µ (θe) Lw (θe) fe (θe) dθe∫

θe
Lw (θe) fe (θe) dθe

. (24)

It is the employment weighted (by Lw(θe)) sum of the firm level markups.

The Labor Share. In our model, the firm’s labor share is simply the ratio of the firm’s total wage bill

to its revenue. In the absence of capital, the residual therefore is the income to the entrepreneur, i.e., the

profit share. Denote by νij(θe) the labor share which can be defined as

νij(θe) ≡
WLw,ij(θe)

Pij (θe) Qij (θe) (1− ts)
. (25)

While superficially this expression hints at an apparent positive relation between the sales tax rate ts (an

increase in ts increases the labor share), taxes also affect the other variables such Lw,ij, Pij and Qij, all of

which are endogenous. When we use the firm’s first order condition, we can rewrite the labor share as

νij(θe) =
ξ

µij(θe)
. (26)

Although the firm-level labor share is exogenous, the aggregate labor share is endogenous. Denote the

aggregate labor share by

ν ≡
W
∫

xw (θw) lw (θw) fw (θw) dθw

Q
. (27)

Then we summarize the results on the equilibrium labor share in the following Proposition 1:

Proposition 1 (i) The firm labor share νij(θe) is independent of taxes and is decreasing in the markup µij(θe);

(ii) In the Laissez-faire economy,20 the aggregate labor share ν is decreasing in market power (decrease in I) when

1
εw

+ 1− ξ (εe + 1) > 0, (28)

19We can derive the equivalent inverse demand elasticity under Bertrand competition which is different from the residual
demand elasticity under Cournot:

εQij (θe) = −
[(

1− sij

)
η (θe) + sijσ

]−1
. (23)

In fact, all our results go through under Bertrand and are similar to Cournot once we adjust equation (21).
20See the following section 3.1 for details about the Laissez-faire economy.
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and
1

εe + 1
+

1
σ− 1

> ξ. (29)

Proof. See Appendix A.3.

Part (i) of Proposition 1 already hints at the fact that taxes cannot “solve” the effect that market power

has on both efficiency and inequality. To achieve the first best, which we define below, the planner needs

to tackle the problem at its root cause, either through antitrust enforcement or regulation of firms and

industries. The objective of this paper is to show that optimal taxation can nonetheless restore second-

best efficiency and most importantly, we show that the optimal policy varies with market power.

This result also confirms a well-known theoretical property, namely that firms with higher individual

markups have a lower labor share. This result is an immediate consequence of the firm’s first-order

condition. Higher markups mean that the firm sells and produces fewer units, even though sales are

higher. Therefore, the firm lowers needs fewer labor inputs, and the labor share falls. De Loecker et al.

(2020) and Autor et al. (2020) show that negative relation at the firm level between markups and the

labor share is borne out in the data.

Part (ii) of Proposition 1 is strong in the sense that it is not dependent on the assumptions on η(θe).

The two restrictions on the parameters are weak and are generally satisfied for the range of parameter

values used in the quantitative literature.21 In addition, the parameter restrictions have intuitive eco-

nomic interpretations. Condition (28) guarantees that the equilibrium wage is increasing in TFP (e.g.,

see (A20)), while condition (29) ensures the labor demand is decreasing in W (e.g., see (A10)).

The Laissez-faire Economy. We further analyze the properties of the model economy that we just laid

out without government intervention: the government revenue R is zero and no taxes are levied. We

ask what the effect is of market power on the equilibrium allocation. This serves as a benchmark to

understand the workings of the model before we introduce the role of optimal taxation. In the Laissez-

faire economy, we consider the comparative statics effect of a rise in the markup. We consider an increase

in markups economy-wide by changing the number of competing firms I in all markets simultaneously.

This comparative statics effect economy-wide affects individual firm outcomes, as well as aggregates.

We summarize the results in the following proposition.

Proposition 2 Let conditions (28) and (29) hold and let η(θe) be constant. When the number of firms I decreases

in all markets, the markup µij(θe) increases in all markets. Then:

(i) At the individual level, the labor share νij(θe), the quantity Qij(θe), sales Pij(θe)Qij(θe), entrepreneurial

effort le,ij(θe), worker effort lw(θw), income yw(θw) and utility Vw(θw) decrease; The price Pij(θe) remains

unchanged; The effects on entrepreneur utility Vij,e(θe) and entrepreneur profits πij(θe) are ambiguous;

21The literature typically uses parameters in the range η ∈ [3, 10], σ ∈ (1, 4], ξ ∈ [0.7, 1]εw, εe ∈ [0.1, 0.5]. See amongst others
Atkeson and Burstein (2008), Hendel and Nevo (2006), Broda and Weinstein (2006), Lucas (1978), Chetty et al. (2011).
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(ii) At the aggregate level, the wage rate W, the aggregate labor share ν, output Q, aggregate worker con-

sumption Cw and aggregate worker utility Vw decline. The effects on aggregate entrepreneur profits Π and

aggregate entrepreneur utility Ve are ambiguous.

Individual and aggregate entrepreneur profits increase if and only if

µ(θe) ≤
ξ

εe
1+εe

+ εw
εw+1 ξ

, (30)

and individual and aggregate entrepreneur utility increase if and only if

µ(θe) ≤
ξ + εe

εe+1
εe

εe+1 +
εw

1+εw
ξ

. (31)

Proof. See Appendix A.4.

Overall, the effect of the rise of market power is negative for workers and, under the conditions,

positive for entrepreneurs. Market power lowers the income and the utility of workers and it increases

the profits and the utility of entrepreneurs. In addition, the rise of market power has a negative impact

on the aggregate economy: the wage rate declines, and aggregate output, sales, and labor share decline.

The restrictions for increasing profits (30) and increasing utility (31) are satisfied for typical values

used in quantitative studies. For example, with εe = εw = 0.25 and ξ = 0.85, the condition for increasing

profits is satisfied for all firms with markup µij(θe) < 2.3 and the second is condition for increasing

utility is satisfied for µij(θe) < 2.8.

3.2 The Planner’s Problem

The planner’s problem can be treated in a number of different ways. In the heuristic argument that fol-

lows, the planner adopts feasible direct truthful mechanisms {cw(θw), y(θw)} for workers and similarly

adopts {ce(θe), π(θe)} for entrepreneurs to implement allocation rules that maximize social welfare un-

der other information and resource constraints. Specifically, the planner asks each of the entrepreneurs

and workers to report their types and assigns a reward contingent based on the announced type. A

worker who reports θ′w obtains y (θ′w) in labor income, which results in cw(θ′w) of after-tax income. Simi-

larly, an entrepreneur who reports θ′e obtains π(θ′e) in profit and ce(θ′e) in after-tax profit.

Key to the planner’s problem is the fact that it takes the agents’ private information as given and can

only induce truth-telling if it satisfies the agents’ incentive compatibility constraints.

Incentive Compatibility of the Worker. Workers are atomistic and take the offered mechanisms as

given. They report their types to maximize their gross utility Vw(θw):

Vw (θw) ≡ max
θ′w∈Θw

cw
(
θ′w
)
− φw

(
y(θ′w)

xw (θw)W

)
. (32)
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Denote Vw(θ′w|θw) = cw (θ′w)− φw

(
y(θ′w)

xw(θw)W

)
as the utility of θw worker who reports θ′w. Using envelope

theory, we obtain

V ′w(θw) = lw(θw)φ
′
w (lw(θw))

x′w (θw)

xw (θw)
. (33)

Under our monotonicity assumption on y (θw), (33) is not only a necessary but also a sufficient con-

dition to the worker’s problem (see Mirrlees (1971)).

Incentive Compatibility of the Entrepreneur. Entrepreneurs report a type θ′e to maximize their gross

utility

Ve (θe) = max
θ′∈Θe

Ve(θ
′
e|θe), (34)

where Ve(θ′e|θe) = ce (θ′e)− φe (le (θ′e|θe)) is the utility of the θe entrepreneur who reports θ′e and le (θ′e|θe)

is the entrepreneurial labor supply needed to finish the task, which is given by

le
(
θ′e|θe

)
= min

Lw,le
le

s.t. P
(
Qij, θe

)
Qij (1− ts)−WLw = π

(
θ′e
)

.

The first-order necessary incentive condition requires the following: ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe = 0. In the Appendix,

we prove that

Lemma 1 The first-order necessary incentive condition ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe = 0 is (i) not only a necessary but also a

sufficient condition to the entrepreneur’s problem, and (ii) given the definition of Ve(θ) and the inverse demand

function in the SCCTE, the first-order necessary incentive condition is equivalent to

V ′e (θe) = φ′e (le (θe)) le (θe)

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
x′e (θe)

xe (θe)

]
, (35)

where
∂ ln P

(
Qij (θe) , θe

)
∂θe

=
χ′ (θe)

χ (θe)
+ εQ−ij(θe)

Q′ij (θe)

Qij (θe)
, (36)

and εQ−ij(θe) ≡
[

1
η(θe)
− 1

σ

]
I−1

I < 0 is the cross inverse-demand elasticity,22 θe ∈ Θe.

Proof. See Appendix B.1 and Appendix A.6.3.

Lemma 1 is useful because it demonstrates that the incentive- compatible constraint of the entrepreneur

boils down to condition (35), which has an intuitive economic explanation. For future reference, we call
x′w(θw)
xw(θw)

= d ln xw(θw)
dθw

the worker’s skill premium, which is the percentage change of the individual wage

rate with respect to skill θw. More importantly, it determines V ′w(θw) given labor supply lw (θw). Analo-

gously, we call µ (θe)
∂ ln P(Qij(θe),θe)

∂θe
+ x′e(θe)

xe(θe)
the entrepreneurial skill premium since it determines V ′e (θe)

22The elasticity of the inverse demand with respect to the output of a competitor in the same submarket.
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given entrepreneurial effort le (θe). Our incentive constraints thus highlight the interaction between tech-

nology and market power in determining skill premiums. Now we explain the incentive condition in

two different situations:

(i) When I = 1, the entrepreneurial skill premium is µ (θe)
χ′(θe)
χ(θe)

+ x′e(θe)
xe(θe)

. It is increasing in market

power µ (θe) when χ′(θe)
χ(θe)

> 0. This is because, other things being equal, the disutility induced by obtain-

ing one extra unit of profit is lower for entrepreneurs with higher production efficiency or higher pricing

powers.

A key feature of the incentive condition is that the price component is multiplied by the markup,

which suggests that xe (θe) and χ (θe) affect the gross utility in different ways. More specifically, given

inputs, raising χ (θe) increases the price directly. With the increase of price, the effort needed to finish a

task becomes lower, and since the price goes up with the reduction of effort, there is a multiplier effect

from raising χ (θe), which is in terms of markup. On the other hand, increasing xe (θe) raises output and

lowers the price. Therefore, in order to obtain the same growth in profit, xe (θe) should be increased at a

higher rate compared to χ (θe).

(ii) When I > 1, the sign of
∂ ln P(Qij(θe),θe)

∂θe
is ambiguous. In particular, if χ′(θe)

χ(θe)
= 0,

∂ ln P(Qij(θe),θe)
∂θe

is generally negative, becauseQij (θe) is generally increasing in the skill of the entrepreneur. One may

now think that when χ′(θe)
χ(θe)

= 0, rising markup loosens the incentive constraint instead of tightening it.

This is not necessarily true, though, because εQ−ij(θe)
Q′ij(θe)

Qij(θe)
also changes when the markup increases. In

Appendix A.2.1, we show that under condition (29), the entrepreneurial skill premium of θe increases

with µ (θe) when d ln a(θe)
dθe

> 0. a(θe) ≡ xe(θe)
σ−1

σ χ(θe) is a composite productivity of the entrepreneur.

Moreover, we show that the entrepreneurial skill premium generally grows with the introduction of

markup inequality.

One interesting feature of the incentive condition is that it depends on
∂ ln P(Qij(θe),θe)

∂θe
instead of

d ln P(θe)
dθe

. This is because entrepreneurs can change the price by changing their own output Qij. As a

result, a tax reform has no first-order effect on the relative price through its effect on a firm’s own output

Qij. There are two interesting findings with the incentive condition:

(i) Taking I = 1 as an illustration, one can see that the indirect redistribution route present in a

competitive economy is closed in our economy since
∂ ln P(Qij(θe),θe)

∂θe
is exogenous. Intuitively, when tax

policy is changed, entrepreneurs react to the tax reform by changing prices until any marginal change in

price has no first-order effect on entrepreneurial gross utilities. Thus, tax has no first-order effect on the

gross utility of entrepreneurs through its effect on the prices of products.

(ii) When I > 1, the indirect redistribution effect emerges. It is dependent on the strategic interaction

between competitors in a submarket, which is shown by the last term on the right side of equation (36).

Specifically, an increase in the competitors’ outputs decreases the price of goods in the submarket, which

is caught in the incentive constraint by the cross inverse-demand elasticity εQ−ij(θe). Without strategic

interaction between competitors in a submarket, the inverse demand of the firm is not dependent on
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the outputs of other firms in the same submarket (because εQ−ij(θe) = 0), and the indirect redistribution

route is closed.

Tax Wedges. In the second-best allocation, marginal distortions in agents’ choices can be described

with wedges. Entrepreneurs have three possible choices (consumption, working hours, and hiring work-

ers), while workers have two possible choices (consumption and working hours). In total, there are three

tax wedges: (i) the tax wedge τs (θe) between the marginal cost and marginal income of labor inputs

Lw (θe), (ii) the tax wedge τw(θw) between the marginal disutility and income of the labor supply lw, and

(iii) the tax wedge τe(θe) between the marginal disutility and income of the entrepreneur’s labor supply

le. Specifically, we shall define the three types of tax wedges as

τs (θe) = 1− W
P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)

, τw (θw) = 1− φ′w (lw (θw))

Wxw (θw)
, and τe (θe) = 1− φ′e (le (θe))

P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)
[1− τs (θe)]

.

Due to the policy constraint, the government cannot levy firm-specific or nonlinear sales tax, which

means τs (θe) is restricted to be uniform. Then these tax wedges can be implemented by the tax system

previously introduced (i.e., T ). From the FOCs of the workers, the entrepreneurs, and the final good

producer, we obtain τs = ts, τw (θw) = 1− [1− T′w (y (θw))] and τe (θe) = 1− [1− T′e (π (θe))].23 Observe

that the sales tax enforces a uniform tax on both labor factors. Thus, the effective tax rates on labor

factors are captured by 1− [1− T′w (y (θw))] (1− ts) and 1− [1− T′e (π (θe))] (1− ts).

As is known from the optimal tax literature, generally there are multiple tax systems that can imple-

ment the second-best allocation (e.g., see Chari and Kehoe (1999); Golosov et al. (2003)). In our model, as

long as τs (θe) is restricted to be uniform and income taxes are free, there is no need to enforce a sales tax.

Hence, in the following analysis, we will assume ts = 0, where τw (θw) and τe (θe) are the effective tax

rates on labor factors. In the model extension, we loosen the policy constraint and provide the optimal

tax wedges including τs (θe).

Implementability. In this subsection we show how the second-best allocation can be implemented by

the tax system studied in this paper. In addition, we demonstrate that ts is redundant.

Lemma 2 Suppose that the FOCs of the agents and the final good producer are both necessary and sufficient.

Suppose ts = 0. A symmetric Cournot competitive tax equilibrium {A, T ,P} with ts = 0 satisfies the following

conditions jointly:

1. Incentive conditions (33) and (35) are satisfied;

2. Prices and wage satisfy (16) and (17);

23The FOCs imply ts = 1− W
P(θe )
µ(θe )

∂Qij (θe )

∂Lw (θe )

, T′w (y (θw)) = 1− φ′w(lw(θw))
Wθw

and T′e (π (θe)) = 1− φ′e(le(θe))
P(θe )
µ(θe )

∂Qij (θe )

∂le (θe )
(1−ts)

.
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3. Market clearing conditions (13) to (15) are satisfied.

Conversely, suppose ts = 0 and the allocation A and price P satisfy the properties in parts 1šC3 above. Then

there exists a tax system T with ts = 0 such that the allocation A can be implemented at the prices P by the tax

system T .

Proof. See Appendix B.2.

Lemma 2 establishes that if sales tax is restricted to be uniform, we can focus on a tax system where

sales tax is zero. Under this tax system, τo (θo) captures the effective tax rate on the labor factor.24 Intu-

itively, the effective tax rates on the labor factors can be manipulated by the labor and profit tax rates.

Thus, the sales tax is redundant when labor income and profit taxes are free.25

Reformulating the Planner’s Problem. We can treat the planner’s problem in a number of different

ways. In the heuristic argument that follows, the planner adopts feasible direct, truthful mechanisms

{π(θe), ce(θe)}θe∈Θe
and {y(θw), cw(θw)}θw∈Θw

to implement an allocation that maximizes the social wel-

fare function under the feasibility conditions and information constraints.

This turns out to be easier if we take as the planner’s control variables Vo (θo) instead of co(θo). To

this end, we reformulate the planner’s problem so that the planner now chooses the control variables

{Vw(θw), lw (θw) , Ve(θe), Lw(θe), le (θe)}θo∈Θo
to maximize the social welfare (6), subject to the incentive

conditions (33) and (35); the feasibility conditions (13)šC(15); and condition (17) with ts = 0. Condition

(17) can be treated as a policy constraint in the planner’s problem. Since the planner cannot levy a firm-

specific sales tax or differential tax on the labor inputs of firms, the marginal revenue of labor inputs

must be equal for firms. We define

v (θe) ≡
P (θe)

µ (θe)

∂Qij (θe)

∂Lw (θe)
(37)

as the marginal revenue of labor inputs since
∂[P(Qij,θe)Qij]

∂Lw(θe)
= P(θe)

µ(θe)

∂Qij(θe)

∂Lw(θe)
. Thus, the policy constraint can

be written as d ln v(θe)
dθe

= 0.

In this reformulated planner’s problem, we can now introduce some shorthand notation for the social

welfare weights and the elasticities that appear in the solution to the planner’s problem. We denote

go(θo) and ḡo(θo) as the marginal and weighted social welfare weights, respectively:

go(θo) ≡
G′(Vo(θo)) f̃o (θo)

λ fo (θo)
and ḡo(θo) ≡

∫ θo
θo

g(x) f̃o (x) dx
1− Fo(θo)

,

24In our model, we allow profit and labor income tax to be different, which governs the wage rate, so that there is no need to
use the sales tax to manipulate W to achieve indirect redistribution between the entrepreneur and worker. However, the sales
tax is needed if income taxes are restricted to be uniform (e.g., see Scheuer (2014)).

25To see this, suppose that {Tw (y) , Te (π) , ts} is the optimal tax that implements the second-best allocation and that there
exists another optimal tax system

{
T#

w (y) , T#
e (π) , t#

s
}

that can implement the second-best allocation with t#
s = 0. Then the tax

system can be constructed such that 1− T#
o (x) = [1− T′o (x)] (1− ts) , x ∈ R+.
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where λ =
∫

θo
G′(Vo(θo)) f̃o(θo)dθo is the shadow price (Lagrange multiplier) of government revenue.

We denote εv
Lw
(θe) and εv

le (θ) as the own elasticities of wage with respect to labor inputs and effort,

respectively. These wage elasticities under our technology are given by

εv
Lw
(θe) = ξ

(
1− 1

σ

)
− 1, εv

le (θ) = 1− 1
σ

. (38)

See Appendix A.6.4 for details about these wage elasticities. We define a nonlinear elasticity of profit

with respect to net-tax income rate by (39):

επ
1−τe

(π (θe)) ≡
1

1+εe
εe

[µ (θe)− ξ]−
[
1− π(θe)T′′e (π(θe))

1−T′e(π(θe))

] . (39)

This elasticity captures θe firm’s reaction to the net-tax income rate when it is taking others’ actions as

given (see Appendix A.6.2 for detail). Notably, the elasticity is generally decreasing when the markup is

increasing, which is clear when the profit tax is linear (so that T′′e = 0).

4 Main Results

We now analyze the properties of the economy that we have laid out under optimal taxation by the

planner to solve for the second-best economy. We start by enunciating the most general result on the

tax formula in Theorem 1. Because of the complexity of the expression of the main result, we then show

a series of results that pertain to special cases: (i) homogeneous agents, (ii) monopolistic competition

(I = 1), (iii) oligopolistic competition with uniform markups, and (iv) the general case of oligopolistic

competition with heterogeneous markups. Each of these special cases gradually reveal the different

components of the optimal tax wedges.

Theorem 1 For any θe ∈ Θe, when τs = 0, the optimal tax wedges satisfy the following:

1
1− τw (θw)

=
1 + [1− ḡw(θw)]

1+εw
εw

1−Fw(θw)
fw (θw)

x′w(θw)
xw(θw)

µ
, (40)

1
1− τe (θe)

=
[1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
+ 1 + µ (θe) IRE (θe)

[
1 + ξ

σ
σ−1−ξ

]
µ (θe)

[
1− RE (θe)

ξ
σ

σ−1−ξ

] ,

(41)

where 1
σ

σ−1−ξ = − εv
le (θe)

εv
Lw (θe)

< 0. The Reallocation Effect RE (θe) and Indirect Redistribution Effect IRE (θe) are

20



defined as

RE (θe) ≡
µ

µ (θe)
− 1 (42)

IRE (θe) ≡ εQ−ij(θe)

[1− ge(θe)]−
[1− ḡe(θe)] [1− Fe(θe)]

fe (θe)

1 + εe

εe

l′e (θe)

le (θe)
+

d ln
[
µ(θe)εQ−ij(θe)

]
dθe

 .

(43)

Proof. See Appendix C.2

The term RE (θe) captures the reallocation effect of taxes. When the markup of θe firm is higher than

the modified average markup µ, the RE (θe) of tax decreases τe (θe), and vice versa. This is because

the labor demand of a high-markup firm is inefficiently lower than that of a low-markup firm. Thus,

interventions in the product market should reallocate labor factors to the high-markup firms.

The term IRE (θe) captures the indirect redistribution effect of the profit tax through prices. As an

explanation to IRE (θe), suppose that tax rates and markups are constant within an interval (θ∗e , θ
∗
e ) ∈ Θ2

e .

Then we have
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

= 0 and 1+εe
εe

l′e(θe)
le(θe)

= π′e(θe)
πe(θe)

(e.g., see Lemma 3). Thus26

IRE (θe) ≡ εQ−ij(θe)

[
[ge(θe)− 1] + [1− ḡe(θe)]

1− Fπ(π (θe))

fπ (π (θe))π (θe)

]
, ∀(θ∗e , θ

∗
e ) ∈ Θ2

e . (44)

IRE (θe) contains two redistribution effects caused by the tax: a local redistribution effect captured by

εQ−ij(θe) [1− ge(θe)] and a cumulative redistribution effect captured by εQ−ij(θe) [1− ḡe(θe)]
1−Fπ(π(θe))

fπ(π(θe))π(θe)
.

Intuitively, decreasing τe (θe) increases the output of firms in θe submarket (i.e., Q−ij(θe)), which in turn

decreases the price of products in θe submarket (P (θe)). Meanwhile, a decrease of price P (θe) reduces the

after-tax income of θe entrepreneur, which promotes equality and social welfare if and only if ge(θe) < 1.

This decrease in price triggers an incentive-compatible redistribution between the government and all

the entrepreneurs with skills higher than θe. Since ḡe(θe) ≤ 1, this cumulative indirect redistribution

effect induced by the decrease of price always requires a lower τe (θe).

To make the results more transparent, we first study the optimal tax with homogeneous agents and

then introduce heterogeneity. Introducing heterogeneous agents brings two additional elements to tax

design: (i) a taxation motive for redistribution induced by within-occupation income differences and (ii)

a taxation motive to increase efficiency, induced by the interfirm allocation of factors.

(i) Homogeneous Agents

First, we analyze the optimal taxation formulas when workers and entrepreneurs are homogeneous.

26(C45) suggests that L′w(θe)
Lw(θe)

= 1+εe
εe

l′e(θe)
le(θe)

, ∀(θ∗e , θ
∗
e ) ∈ Θ2

e . As a result, the hazard ratio of profit (i.e., 1−Fπ(π(θe))
fπ(π(θe))π(θe)

) in the
above formula can be replaced by a hazard ratio of labor inputs.
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Proposition 3 When worker and entrepreneur types are homogeneous, the optimal tax wedges satisfy the follow-

ing:

τw = τe = 1− µ. (45)

Proof. When worker and entrepreneur types are homogeneous, ḡo = go = 1, and the optimal tax

formulas (40) and (41) can be simplified to (45).

A few aspects of this finding deserve mention. First, note that since all entrepreneurs are identical,

the firm-level markup µ(θe) is equal to the average weighted markup µ, and the optimal tax wedge is

independent of the firm type. Second, this result holds irrespective of the number of competitors I in

each market and includes cases of monopolistic competition and oligopolistic competition. Third, the

optimal tax rate is negative because the markup is larger than one.

The interpretation of the optimal tax formula is straightforward. When agents are identical, the in-

centive constraints are muted because they are trivially satisfied. As a result, the optimal tax wedge

exactly offsets the distortion due to the markup. This may seem surprising, but it affects both workers

and entrepreneurs equally because the planner can only impact output by affecting their incentives to

produce and provide effort. The planner would also be able to achieve this outcome with a sales tax

wedge τs, but as we have shown above, the outcome of a sales tax can always be mimicked with appro-

priate income taxes. Because at the margin the contribution of effort from the workers and entrepreneurs

to the output is the same, the income tax wedges τw and τe are identical.

The tax rate is negative in order to incentivize workers and entrepreneurs to supply labor in order

to offset the distortion from market power. Because there is no heterogeneity within groups (workers

and entrepreneurs), the only role the planner bestows on the income tax system is to correct the markup

distortion and transfer between groups. As a result, we can think of the tax here playing the role of a

Pigouvian tax that corrects an externality or distortion in the output market. In fact, when the output

market is competitive and markups are equal to one, the marginal tax rate is zero, and there is no role

for efficiency-enhancing taxes. In that case, the economy is Pareto efficient.

Even though the tax wedges are the same, that does not mean workers and entrepreneurs will face the

same tax burdens. The tax burden of each occupation depends on the social welfare function. Under a

utilitarian social welfare function, the burden is indeterminate, whereas it is determinate under a concave

social welfare function. Here market power and the level of the markup µ play a key role in determining

the tax burden. As we have seen from Proposition 2, a rise in market power accompanied by an increase

in µ leads to a redistribution of income from workers to firms (mainly through a lower wage rate W) as

well as a decrease in welfare. Therefore, with nonlinear welfare weights, the tax burden will change as

markups change.
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(ii) Monopolistic Competition and Uniform Markups

We now turn to an economy without strategic interaction within each market j, that is, with a monopo-

listic producer in each market where I = 1. In addition, we assume that markups are uniform; that is,

the residual demand elasticity is constant, η(θe) = η. Entrepreneurs are heterogeneous in productivity

θe, but their markets all face the same demand. Under monopolistic competition and uniform markups,

the solution to the planner’s problem yields the following optimal taxation policy:

Proposition 4 When I = 1, optimal tax wedges satisfy the following:

1
1− τw (θw)

=
1 + [1− ḡw(θw)]

1+εw
εw

1−Fw(θw)
fw (θw)

x′w(θw)
xw(θw)

µ
, (46)

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1+εe
εe

1−Fe(θe)
fe(θe)

[
µ

χ′(θe)
χ(θe)

+ x′e(θe)
xe(θe)

]
µ

. (47)

Proof. When I = 1, one has εQ−ij(θe) = 0 and µ (θe) = µ, and (40) and (41) are reduced to be (46) and

(47), respectively.

Comparing the optimal tax rates under heterogeneous and homogeneous agents establishes that

the heterogeneity between agents calls for a higher tax wedge. The numerators on the right sides of

the optimal tax formulas immediately stem from the incentive constraint for both the worker and the

entrepreneur. The numerators are larger than one, and thus, the marginal tax is lower than in the case

of homogeneous agents and identical markups. When the government has a preference for equality, it

will raise the tax rate to generate tax revenue from high-income individuals and transfer the revenue

to low-income individuals. However, the government should also take tax’s distortion on effort into

consideration. In the end the trade-off between deadweight loss and the redistribution of benefits is

captured by the numerator.

For both workers and entrepreneurs, the extent to which the marginal tax rate is higher depends on

the Pareto weight ḡo(θo), the elasticity of labor supply εo, and the hazard ratio of the skills 1−Fo(θo)
fo(θo)

x′o(θo)
xo(θo)

,

which captures the trade-off between efficiency and equality. As the product of productivity and the

population of xo (θo)-skilled agents (i.e., xo (θo) fo(θo)/x′o (θo)) increase, the tax wedge decreases in order

to reduce distortion. As the population of agents with skills higher than xo (θo) (i.e., 1− Fo(θo)) increases,

the tax wedge increases to enhance the redistribution.

While there is a lot of similarity in the expression of the tax wedge for the workers and the en-

trepreneurs, market power induces one marked difference between the two. The tax wedge between the

worker and the entrepreneur differs through the term µ
∂ ln P(Q(θe),θe)

∂θe
, which is equal to µ

χ′(θe)
χ(θe)

when I = 1.

This term is only present for entrepreneurs, not workers. It captures the two key forces. First, it depends

on the technology and how different sectors differ in productivity χ(θe), and second, it is influenced by

how big the markup is. This difference in the numerator on the right side of (47) goes to the heart of one

23



of the main findings of this paper. It highlights the interaction between market power and technology

and how this interaction affects optimal taxation by changing the skill premium of the entrepreneur.

Relative Net-tax Income Rate between Groups. Two interesting findings are presented as follows: (i)

The relative net-tax income rates of profit to labor income will decrease with the markup (i.e., 1−τe(θe)
1−τw(θw)

is

decreasing in µ), which can be easily seen from

1− τe (θe)

1− τw (θw)
=

1 + [1− ḡw(θw)]
1+εw

εw

1−Fw(θw)
fw (θw)

x′w(θw)
xw(θw)

1 + [1− ḡe(θe)]
1+εe

εe

1−Fe(θe)
fe(θe)

[
µ

χ′(θe)
χ(θe)

+ x′e(θe)
xe(θe)

] , θo ∈ Θo.

(ii) Optimal tax reform is dependent on the technology. Specifically, under uniform xe and heterogenous

χ, the policy implication of the above equation is decreasing the net-tax income rate of profit relative

to the net-tax income rate of labor income when the markup increases. While under uniform χ and

heterogenous xe, the policy implication is that there is no need to change the relative rate of net-tax

income rate of profit to the net-tax income rate of labor income.

In addition to the above results, we have the following outcomes:27 When χ′(θe)
χ(θe)

= 0, τe (θe) > τw (θw)

is a sufficient and necessary condition for d[τe(θe)−τw(θw)]
dµ > 0; when χ′(θe)

χ(θe)
> 0, τe (θe) > τw (θw) is a

sufficient but not necessary condition for d[τe(θe)−τw(θw)]
dµ > 0 . Again, one can see that the optimal tax

wedges on skill are dependent on the technology.

Relative Net-tax Income Rate within Groups. Now we will try to figure out how markup shapes the

optimal profit tax rate. Whether marginal tax rates for entrepreneurs increase or decrease with mar-

ket power µ therefore depends on technology χ. To see this, consider the case where productivity for

workers and entrepreneurs xo(θ) is invariant of type; that is, x′o = 0. Then we have

1− τe (θ′e)

1− τe (θe)
=

1 + [1− ḡe(θe)]
1−Fe(θe)

fe(θe)
1+εe

εe
µ

χ′(θe)
χ(θe)

1 + [1− ḡe(θ′e)]
1−Fe(θ′e)

fe(θ′e)
1+εe

εe
µ

χ′(θ′e)
χ(θ′e)

,

which is increasing in µ if and only if

[1− ḡe(θe)]
1− Fe(θe)

fe(θe)

χ′ (θe)

χ (θe)
>
[
1− ḡe(θ

′
e)
] 1− Fe(θ′e)

fe(θ′e)

χ′ (θ′e)

χ (θ′e)
.

Notice that

1− τe (θe) =
µ

1 + [1− ḡe(θe)]
1+εe

εe

1−Fe(θe)
fe(θe)

µ
χ′(θe)
χ(θe)

,

27After a simple calculation, one has d[τe(θe)−τw(θw)]
dµ = 1

µ
1−τw (θw )

−
1+[1−ḡe(θe)]

1+εe
εe

1−Fe (θe )
fe (θe )

x′e (θe )
xe (θe )[

µ
1−τe (θe )

]2 . It equals 1
µ

1−τw (θw )

− 1
µ

1−τe (θe )
when

χ′(θe)
χ(θe)

= 0 and is larger than 1
µ

1−τw (θw )

− 1
µ

1−τe (θe )
when χ′(θe)

χ(θe)
> 0. Thus, we have the following results.
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and as a result, 1−τe(θ′e)
1−τe(θe)

is increasing in µ if and only if 1 − τe (θ′e) > 1 − τe (θe). This suggests that

an increase in µ generally widens the relative difference between the net-tax income rates of different

entrepreneur types.

The two components (χ (θe) and xe (θe)) that play a crucial role in pinning down the optimal tax

formula are both determinants of the productivity of a firm. In fact, we can show that the χ (θe) and

xe (θe) are substitute parameters in the sense that the equilibrium labor supply and sales income are only

dependent on the composite productivity term a(θe) =xe(θe)
σ−1

σ χ(θe). However, χ (θe) and xe (θe) are

not perfect substitutes in the sense that the equilibrium prices are dependent on the specific values of

χ (θe) and xe (θe).28 Since the entrepreneurial skill premium is directly related to the markups and prices

and the prices are dependent on the specific technology characterized by χ (θe) and xe (θe), the influence

of markup on optimal taxation is dependent on the technology.

Technology, Monopoly Power, and Optimal Tax. It is of interest to see how technology affects the

optimal tax rate, and we present the top tax rate as an illustration. Top tax rate is crucial because top

earners account for the vast majority of income. Moreover, current changes in technology are biased

toward top-income individuals; thus, it’s important to see how technologies affect the top tax rates.

Specifically, we will focus on the influence of µ and ξ (the concavity of firm-level production technology

with respect to the labor inputs, e.g., see equation (1)). Note that when I = 1, markup is determined by

the technology. Also note that ξ is a mirror of the superstar effect considered by Scheuer and Werning

(2017).

Denote π0 and µ0 as the profit and markup in the initial economy and Fπ0 (π0) and fπ0 (π0) as the

corresponding CDF and PDF, respectively. Assume that there exists θ∗e ∈
(
θe, θe

)
such that initial profit

tax rates on π0 ≥ π0 (θ∗e ) are constant and that
1−Fπ0 (π0(θe))

π0(θe) fπ0 (π0(θe))
= Hinitial is constant on

(
θ∗e , θe

)
.29 As a

result, we can establish Corollary 1:

Corollary 1 Suppose that there exists θ?e ∈
(
θe, θe

)
such that for any θe ≥ θ?e , τe (θe) = τe and ḡe(θe) = ge are

constants. When I = 1, there exists π such that for profits higher than π, the optimal profit tax rate is constant

and equal to τe:

1
1− τe

=
1 + (1− ge) Hinitial

(
1+εe

εe
[µ− ξ]− 1

)
µ

. (48)

Proof. See Appendix C.3.

Corollary 1 is powerful because it suggests that under reasonable assumptions, one can use original

observable statistics including Hinitial to derive the optimal top profit tax rate. It is worth noting that

28See Appendix A.5 for details about the influence of χ and xe on equilibrium.
29Suppose that the profit is distributed to a Pareto distribution when profit is high enough, and let Π > 1 denote the Pareto

coefficient of the tail of the income distribution. That is, 1− Fπo (πo) ∼ cπ−Π
o as πo → ∞ for some constant c. Then Htop

πo = 1
Π .
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Hinitial is the hazard ratio under the initial tax policy. It won’t change with the tax policies under the

preconditions of Corollary 1, but it is dependent on the markup.

Formula (48) generalizes the familiar top tax rate result of Saez (2001) (in which ξ = 0 and µ = 1)

to a CES production function under a monopoly competitive economy. When we compare our result

to Corollary 5 of Sachs et al. (2020), we see how market structure and technology affect the top tax rate

given the hazard ratio of profit. However, while these statistics-based optimal tax formulas facilitate tax

design (they are robust tax formulas in the sense of their independence from technology), one should

note that profit distribution is endogenous to the markup, and when analyzing how profit tax changes

with the increasing markup, we see that both the effects of markups on the elasticity of profit and on

profit distribution should be taken into consideration.

Combining Corollary 1 and Proposition 2 delivers interesting insights in the light of the findings by

Scheuer and Werning (2017). When we look into the defined elasticity of profit, one can see that an in-

crease in ξ (a superstar effect) increases the elasticity of profit (39), while an increase in µ (a markup)

decreases the elasticity of profit. When χ is constant, Proposition 2 suggests that 1−τe(θe)
1−τw(θw)

won’t change

with the markup for any θe. Thus, 1−τe
1−τw(θw)

must not change with the markup, which suggests that an

increase in the markup decreases the profit elasticity as well as the hazard ratio of profit distribution.

Moreover, these two effects will cancel each other out such that the relative net-tax income rate is un-

changed. However, when χ varies with type while xe is constant, the influence of the hazard ratio will

be relatively stronger such that 1−τe
1−τw(θw)

will decrease with the increase of the markup.

The above findings show how the optimal taxation changes with the markup and suggest that it is

important to take both x and χ into consideration. What should be noted is that till now market power

has been determined by the elasticity of substitution. In cases (iii) and (iv), we will investigate how

market power determined by the market structure affects optimal taxation.

(iii) Oligopolistic Competition with Uniform Markups

We now consider cases with I > 1 but still restrict the markup to be uniform; that is, η (θe) is constant.

This setting introduces interfirm strategic action but still abstracts from the effect of markup inequality

between firms.

A planner who intends to take advantage of the general equilibrium price effect and ease the incen-

tive constraint would like to decrease the relative price of goods produced by high-skilled entrepreneurs.

However, whether the planner should encourage the factor inputs of high-skilled entrepreneurs remains

ambiguous because there are two opposing forces. On the one hand, raising the labor inputs of competi-

tors in the same submarket reduces the relative price of goods in the submarket; on the other hand,

raising the labor inputs increases entrepreneurial effort’s marginal productivity.

To ascertain the optimal policy, we rewrite the general tax formula for the entrepreneurs in equation
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(41) for the case with uniform markups.

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ (θe)

+ IRE (θe)
σ

σ−1
σ

σ−1 − ξ
(49)

Compared to the tax formula under monopolistic competition (47), there is now an additional term,

IRE (θe)
σ

σ−1
σ

σ−1−ξ , that captures the indirect redistribution effect of profit tax.
σ

σ−1
σ

σ−1−ξ = 1− ξ
εv

le (θe)

εv
Lw (θe)

is the percentage change of Qij (θe) with one percentage increase of le(θe). To

see this, note that one percentage increase of le(θe) induces one percentage increase of Qij (θe) directly.

In addition, the labor demand Lw(θe) will increase by −ξ
εv

le (θe)

εv
Lw (θe)

= ξ
σ

σ−1−ξ percent as a result of a one

percent increase in le(θe). This ensures that the marginal productivity of Lw is uniform between firms.

This crowding in effect of le(θe on Lw(θe) induces a ξ
σ

σ−1−ξ percentage increase in Qij (θe). In sum, under

general equilibrium, a one percentage increase of le(θe) triggers a 1 + ξ
σ

σ−1−ξ > 1 percentage increase of

Qij (θe). On the other hand, as explained before, IRE (θe) is a marginal redistribution effect of Qij (θe).

Thus,
σ

σ−1
σ

σ−1−ξ IRE (θe) is the indirect redistribution effect induced by one percentage increase of le(θe).

Our optimal tax formula suggests that the optimal profit tax rate increases in the IRE(θe). Since

IRE (θe) is generally positive for a low θe and negative for a high θe, it raises tax rates on low skills

and decreases tax rates on high skills.30 Intuitively, decreasing the profit tax rate on high-skilled en-

trepreneurs can enhance the output of intermediate goods in the submarket, which in turn reduces the

price of intermediate goods and improves the predistribution.

Market Structure, Indirect Redistribution, and Optimal Tax. One interesting finding of this paper is

that the market structure is crucial to the IRE (or supply-side effect) of taxation, which has been omitted

by previous studies. In previous studies with endogenous prices or wages, the direct tax has a first-

order effect, and adjusting relative prices thus can be used to ease the incentive constraint (e.g., see

Naito (1999); Sachs et al. (2020)). Specifically, when the marginal productivity of the labor factor (wage)

decreases with labor inputs, the planner can compress the wage distribution by reducing the marginal

tax rate of high-skilled agents and enhance the high-skilled agents’ labor supply.

However, the agent’s pricing action counteracts this IRE. In particular, when I = 1,
∂ ln P(Q(θe),θe)

∂θe
is

exogenous, and as a result, the incentive constraint cannot be eased through the tax’s effect on prices.

Thus, the IRE of a profit tax disappears. This is because in a monopolistic market, the entrepreneur

can choose a price at the intensive margin, which cancels out a tax’s first-order effect on the price. This

finding supports the argument of Saez (2004)¡athe indirect distribution use of a tax may fail¡awith a novel

reason.

30In Theorem 2, we illustrate that the indirect redistribution effect can be split into the local and cumulative indirect redis-
tribution effects. Actually, the local effect generally dominates the cumulative effect (e.g., see the numerical analysis in Cui
et al. (2021)). Then one can see that the sign of IRE (θe) is mainly determined by εQ−ij (θe) [1− ge (θe)], which is positive when
ge (θe) > 1.
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Our result suggests that IRE does matter when there are competitors in the submarket; that is, I ≥
2. This result thus supports Naito (1999) and Naito (2004), who argue that IRE is important even if

the agent can endogenously change the wage (price). Our setup provides a novel reason for why IRE

matters, namely, imperfect competition in the output market. Our finding thus contributes to the debate

on whether IRE is important in tax design by suggesting that its importance is dependent on the market

structure.

(iv) Oligopolistic Competition with Heterogeneous Markups

Finally, we get to the full-blown tax formulas with both oligopolistic competition and heterogeneous

markups from Theorem 1. Now the planner faces firms with heterogeneous markups and hence can use

taxes to implement an efficiency-enhancing reallocation of factors.

For the workers, the tax formula (40) remains unchanged compared to the case with uniform markups.

The introduction of heterogenous markups introduces the last change in the tax formula for the en-

trepreneurs (41), which is captured by the denominator on the right side of (41):

µ (θe)

[
1− RE (θe)

ξ
σ

σ−1 − ξ

]
= µ (θe) + [µ (θe)− µ]

ξ
σ

σ−1 − ξ

Notice that

µ (θe)W = P (θe)
∂Qij (θe)

∂Lw (θe)
and µW =

∫
θe

P
(
θ′e
) ∂Qij (θ

′
e)

∂Lw (θ′e)

Lw (θ′e) fe (θ′e)∫
Lw (θe) fe (θe) dθe

dθ′e.

One can see that [µ (θe)− µ]W is the increase in the total output of transferring Lw(θ′e)∫
Lw(θe) fe(θe)dθe

units of

labor factors from a type θ′e firm to a type θe firm. As a result, the labor input in each type of firm is

decreased by 1∫
Lw(θe) fe(θe)dθe

percent, and the marginal productivities of the labor inputs of different firms

are still uniform. On the other hand, ξ
σ

σ−1−ξ = −ξ
εv

le (θe)

εv
Lw (θe)

is the percentage increase of labor demand

Lw(θe) that ensures the marginal productivities of labor inputs are uniform between firms when le(θe) is

increased by one percent.

In conclusion, [µ (θe)− µ] ξ
σ

σ−1−ξ captures the aggregate output (in terms of labor inputs) that in-

creases with a one percent increase of le(θe) and the resulting interfirm reallocation of workers’ labor

inputs. Our optimal tax formula suggests that the reallocation effect requires a lower (higher) tax rate

on firms with a markup higher (lower) than the average markup since the labor inputs in firms with a

higher markup is relatively inefficiently low. In the following analysis, we provide two special case to

further explain the optimal profit tax: (i) optimal tax under a utilitarian social welfare function and (ii)

the top tax rate.
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Utilitarianism To make the impact of the reallocation effect more transparent, we now analyze a special

case where the social welfare function is utilitarian. That is, we assume that G(Vo(θo)) = Vo(θo) and

f̃o (θo) = 1, and as a result, λ = 1 and go(θo) = ḡo(θo) = 1. Under the above assumptions, we have

Corollary 2 Denote τU
w and τU

e as the optimal labor income and profit tax rates under the utilitarian social welfare

function, respectively. Then the optimal tax wedges satisfy the following:

1− τU
w (θw) = µ, (50)

1− τU
e (θe) = µ (θe) + [µ (θe)− µ]

ξ
σ

σ−1 − ξ
, (51)

Proof. The above results can be derived by substituting the social welfare weights for the utilitarian

social welfare function into the general optimal tax formulas (40) and (41).

First, the optimal labor income tax rate is constant and negative, as in the case of homogenous agents.

Intuitively, the labor income tax is now only used to enhance production efficiency and correct the

markup distortion; thus, the optimal tax rate is only dependent on the average markup.

Second, (51) suggests τU
e (θe) increases with the average markup µ and decreases with the firm-

level markup µ (θe). Furthermore, when µ (θe) is large enough (for example, µ (θe) ≥ µ), τU
e (θe) must

be negative. Interestingly, τ′e (θe) = −µ′ (θe)
σ

σ−1
σ

σ−1−ξ is negative when The markup increases with θe.

The above findings provide a novel explanation (i.e., markup inequality) for why profit tax in the real

economy is less progressive than labor income tax (e.g., see Scheuer (2014)). The results show that the

optimal profit tax will generally become more regressive with an increase in markup inequality.

In addition, we find that τU
e (θe) > τU

w (θw) if and only if µ > µ (θe):

τU
e (θe)− τU

w = [µ− µ (θe)]
σ

σ−1
σ

σ−1 − ξ
.

This suggests that there exists θ∗e such that for any θe < θ∗e , τU
e (θe) > τU

w ; and for any θe ≥ θ∗e , τU
e (θe) ≤

τU
w . Therefore, this finding adds an explanation about why the effective tax rate on larger firms may be

lower than the effective tax rate on workers.

There are two things worth noting. First, a decreasing marginal profit tax rate on a high-skilled

entrepreneur does not necessarily mean that the average tax rate and tax burden on a high-income en-

trepreneur is decreasing. To see this, define τU
π (π (θe)) = τU

e (θe). One has

Te (π (θe)) = Te (π (θe)) +
∫ π(θe)

π(θe)
τU

π (π) dπ,

where Te (π (θe)) can be treated as a lump-sum tax (transfer if it is negative) since it is the same for any

entrepreneur. The tax burden of θe not only depends on the marginal tax rate τU
π (π (θe)) but also on the

lump-sum tax and the marginal tax rates on profit below π (θe). Second, when social welfare weights
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are endogenous, whether the profit tax should decrease with the markup depends on the planner’s

preference for equality. The markup will shape the distribution of gross utilities and thus the social

welfare weights.31

The utilitarian social welfare function suggests that in the absence of a preference for equality, in-

creased markup inequality will generally make the profit tax more regressive. This highlights the dilemma

of tax design in a market exhibiting market power: production enhancement versus redistribution. Since

using taxes to enhance factor inputs means a lower marginal tax rate, the total number of lump-sum

transfers generally becomes lower with higher markups. Moreover, since large firms generally have

higher market power, the dilemma also makes the redistribution within the group more expensive. This

dilemma faced by tax design is more pronounced when there is market power rather than under perfect

competition.

Lastly, with the definition of τU
e , we have

1
1− τe (θe)

=

 [1− ḡe(θe)]
1−Fe(θe)

fe(θe)
1+εe

εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
+1 + µ (θe) IRE (θe)

σ
σ−1
σ

σ−1−ξ


1− τU

e (θe)

where 1− τU
e captures the Pigouvian part of optimal tax wedges.

Top Tax Rate. The general optimal profit tax formula is quite complex. As we have done above, under

additional assumptions, we can deliver a simpler top tax formula:

Corollary 3 Suppose that there exists θ?e ∈
(
θe, θe

)
such that for any θe ≥ θ?e , τe (θe) = τe, ḡe(θe) = ge, and

µ (θe) = µ are constants. Then for θe ≥ max {θ∗e , θ?e }, we have32

1
1− τe

=
1 + [1− ḡe] Hinitial

[
1+εe

εe
(µ− ξ)− 1

]
µ

(52)

+ [1− ḡe]
[
1− Hinitial

] σ
σ−1

σ
σ−1 − ξ

εQ−ij(θe)−
ξ
(

1− µ
µ

)
σ

σ−1 − ξ

1
1− τe

.

31Note that when income (profit) or skill is finite, τU
o (θo) and τU

o
(
θo
)

are also the optimal tax rates on the boundary under
the most general case. We can see that both τU

w (θw) and τU
w
(
θw
)

are negative. τU
e
(
θe
)

is negative, while τU
e (θe) may be either

positive or negative. Whether raising markup affects the optimal tax on the boundary is dependent on both the firm-level
markup and average markup, which is ambiguous.

32Alternatively, we can say that there exists π such that for profits higher than π, the optimal profit tax rate is constant and

equal to τe: 1− τe =
1+
(

1− µ
µ

)
ξ

σ
σ−1 −ξ

1+(1−ḡe )Hinitial [ 1+εe
εe (µ−ξ)−1]

µ +
1− σ

σ−1
1
µ

σ
σ−1 −ξ

[1−ḡe ][1−Hinitial ]
, where we substitute the elasticities with specific parameters.

Provided Hinitial , the first term in the denominator (i.e.,
1+(1−ḡ)Hinitial [ 1+εe

εe (µ−ξ)−1]
µ ) decreases with µ. Provided Hinitial , the

second term in the denominator (i.e.,
1− σ

σ−1
1
µ

σ
σ−1−ξ [1− ḡ]

[
1− Hinitial

]
) generally increases with µ because the empirical Hinitial is

generally lower than one. The numerator is larger than one if µ > µ. It decreases in µ and increases in µ.
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Proof. See Appendix C.5.

When I = 1, µ
µ = σ

σ−1
1
µ = 1, and the formula in Corollary 3 can be reduced to the formula in Corollary

1. How the top profit tax rate changes with I is dependent on how the average markup µ, top markup µ,

and hazard ratio of profit Hinitial change with I. Note that the second and third terms on the right side of

(52) capture the IRE and RE, respectively. Since
σ

σ−1
σ

σ−1−ξ > 0, IRE decreases the top profit tax rate when

Hinitial < 1, which is empirically true for the United States (e.g., see Saez and Stantcheva (2018)). Since
ξ

σ
σ−1−ξ > 0, the introduction of RE decreases the top profit tax rate if and only if µ > µ.

5 Discussion and Robustness

We consider three alternative specifications of our benchmark model and show that our main findings

are still robust in these settings.

5.1 Nonlinear Sales Taxes

In our benchmark model, we consider an environment with uniform linear sales tax, which restricts

τs (θe) to be constant. In this section we remove this policy constraint.

To do this, we allow the planner to contract with entrepreneurs on sales income P (θe) Qij (θe) in

addition to π(θe) and ce(θe). An entrepreneur reports θ′e obtains π(θ′e) in profit, S(θ′e) in sales income,

and ce(θ′e) in after-tax profit. The worker’s problem remains the same as before. Therefore, all incentive-

compatible allocations satisfying (33) and (35) are feasible as long as the resource constraints are also

satisfied. The planner’s problem is similar to the one that we introduced before, except that the policy

constraint d ln v(θe)
dθe

= 0 is now relaxed. We use superscript E to denote values without a policy constraint.

Theorem 2 The optimal tax wedges without policy constraint (τs is free) satisfy the following:

τE
w (θw)

1− τE
w (θw)

=
1− µ̃ + [1− ḡw(θw)]

1−Fw(θw)
fw(θw)

x′w(θw)
xw(θw)

1+εw
εw

µ̃
, (53)

τE
e (θe)

1− τE
e (θe)

=
1− µ̃ + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ̃

, (54)

τE
s (θe)

1− τE
s (θe)

=

RE(θe)︷ ︸︸ ︷[
µ̃

µ (θe)
− 1
]
+ [1− τe (θe)]

IRE(θe)︷ ︸︸ ︷
εQ−ij(θe)

 [1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]
fe(θe)

×
[

1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

] . (55)

RE (θe) and IRE (θe) are the generalized reallocation and indirect redistribution effects defined in Theorem 1,
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where

µ̃ ≡

∫
θe

µ(θe)
1−τE

s (θe)
Lw (θe) fe (θe) dθe∫

θe
Lw (θe) fe (θe) dθe

(56)

is a modified average markup.33

Proof. See Appendix D.1

Comparing Theorem 2 and 1, one can see that without τE
s (θe), labor income and profit taxes are

modified to mimic the role of τE
s (θe). Specifically, RE (θe) ξ

εv
le (θe)

εv
Lw (θe)

and IRE (θe)
[
1− ξ

εv
le (θe)

εv
Lw (θe)

]
in (41)

capture the reallocation effect and indirect reallocation effect of the profit tax, respectively. We now turn

to the special cases to gradually build up our understanding of the optimal tax wedges in the most

general case.

In the above analysis, we actually assume that the government has sufficient tax policies that can be

used to intervene in the product market so as to implement the τE
s (θe). However, it is hard to enforce

the optimal product market intervention in the real economy. Thus, in the benchmark analysis, we focus

on optimal taxation without such product market interventions (only linear sales tax is allowed) to see

how other tax policies can be modified to mimic the role of τE
s (θe). Another advantage of the benchmark

analysis is that τo (θo) reflects the effective (aggregate) tax rate on labor factors.

5.2 Capital Investment

We do not explicitly model capital in our benchmark model. However, the problem can be modeled

parallel with capital in place of entrepreneurial effort. The most relevant assumption is that part of the

cost (or benefit) from factor inputs cannot be deducted before the profit tax (either because the cost is

unobservable or legally excluded from the deductible costs).

Formally, consider an economy where the entrepreneur chooses labor inputs Lw and capital invest-

ment K, instead of effort, to maximize the utility:

max
K,Lw

P
(
Qij (K, Lw) , θe

)
Qij (K, Lw)−WLw − rK− φK (K, θe)− Te (π)

Qij (K, Lw) is a firm-level production function of capital and labor inputs, and r is the market price of

capital,34 and φK (K, θe) is the unobservable cost of investment, which may be dependent on the type of
33µ̃ is equal to µ if for any θe ∈ Θe, τE

s (θe) = 0.
34The model can easily be extended to be dynamic, where the introduction of K and r will be more intuitive (e.g., see Cui

et al. (2021)). Alternatively, one can consider a small open economy, where r is exogenous, or one can introduce a technology
for the production of capital, which will also fix r. In the latter case, we can assume that the final goods can be used as either
consumption goods or investments and that the conversion rate between consumption and investment is one. Then r = 1, and
the social resource constraint is transformed to be

Q− Ne

∫
θe

K(θe) fe(θe)dθe − ∑
o∈{e,w}

No

∫
θo

co(θe) fo(θe)dθe − R ≥ 0,

where K (θe) is the investment of θe firms.
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entrepreneur.

In the real economy, although the market price of capital (i.e., r) can be observed, the total oppor-

tunity costs of investments generally cannot be observed. The unobservable part of cost is captured by

φK (K, θe), which may include the cost of raising and managing funds.35 An alternative explanation for

φK (K, θe) is the preference for asset (wealth). Under this case, φK (K, θe) can be negative, which means

investment directly generates positive utility. The common ground of the above situations is that the

elasticity of investment may be finite, which is the key point of Saez and Stantcheva (2018). In the above

cases, π = P
(
Qij (K, Lw) , θe

)
Qij (K, Lw)−WLw − rK.

From another perspective, in the real economy, not all costs of investment are deductible before the

profit tax. For example, while debt interest can be deducted before tax, the investment raised by issue of

shares and options cannot be deducted before the tax, although it occupies the case flow of shareholders

and thus generates costs. Under this case, even if φK (K, θe) = 0, there are capital costs that cannot be

deducted before the tax. Moreover, π = P
(
Qij (K, Lw) , θe

)
Qij (K, Lw)−WLw. It is worth nothing that in

all the cases above, our main results will still hold.

5.3 Quantity Regulation

In our benchmark model, we consider profit tax as the policy instrument to incentivize entrepreneurs. In

this subsection we consider an alternative problem by using quantity regulation as described in Boar and

Midrigan (2021). A natural question is whether there is any difference when considering two different

policy instruments. Interestingly, the answer is no. Formally, the government designs the following

mechanism: an entrepreneur who reports θ′e should produce Qij (θ
′
e) units of goods and pay Te (θ′e) units

of tax (a subsidy, if negative). Thus, the entrepreneur’s problem is formulated as below:

Ve (θe) ≡ max
θ′e

Ve
(
θ′e|θe

)
where

Ve
(
θ′e|θe

)
= max

Lw,le
P
(
Qij
(
θ′e
)

, θe
)

Qij
(
θ′e
)
−WLw − Te

(
θ′e
)
− φe (le)

s.t. Qij
(
θ′e
)

= Qij (xe (θe) le, Lw) .

Solving the above problem, one has the following incentive condition:

V ′e (θe) =
∂Ve (θ′e|θe)

∂θe
|θ′e=θe =

∂P
(
Qij (θe) , θe

)
∂θe

Qij (θe) + φ′e (le (θe)) le (θe)
x′e (θe)

xe (θe)
.

35Under this illustration, φK (K, θe) can still be treated as the utility cost of entrepreneurial effort, where the entrepreneurs
use their knowledge to manage the factor inputs (more generally, one can take φK (K, Lw, θe)).
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The above incentive condition is equal to the original one if and only if

P (θe) Qij (θe) = φ′e (le (θe)) le (θe) µ (θe) .

Since φ′e (le (θe)) le (θe) = WLw(θe)
ξ ,36, the above condition naturally holds as the definition of a markup

(e.g., see (22)) and implies P (θe) Qij (θe) = WLw(θe)µ(θe)
ξ because φ′e (le (θe)) le (θe) = WLw(θe)

ξ . Also, note

that in line with the first-order conditions of the above incentive problem, W
∂Qij(θe)

∂Lw(θe)
P(θe)
µ(θe)

must be a constant,

which implies the policy constraint in our benchmark model. Therefore, the constraints faced by the gov-

ernment under these two different incentive problems are exactly the same. The above finding suggests

that our main finding is independent of the policy instrument and that a quantity regulation generally

can be replaced by a profit tax.

6 Numerical Analysis

Our general results depend on the social preferences for redistribution. To see the overall impact of

market power on optimal taxation, we numerically analyze an economy with concave social welfare

functions with G (V) = V1−k

1−k . The parameter k governs the concavity of the social welfare function and,

therefore, the desire for redistribution by the planner. We provide the optimal tax rates for k = 1 (as is

in Sachs, Tsyvinski, and Werquin (2020)). Our objective is to measure the variation in the equilibrium

allocation and the optimal tax policy as market power, measured by the number of competitors I within

each market. The fewer competitors I, the more market power firms have.

We maintain the following assumptions for the numerical analysis as follow. We treat θe and θw as

the quantiles of π (θe) and y (θw), which means fo = 1 is uniform on Θo = [0, 1]. Since the functions

xo (θo) and χ (θe) are used to govern the heterogeneity, there is no loss to assume that the distribution is

uniform. The full parameterization is detailed in Table 1.

Laissez-faire Economy. To benchmark our taxation results, we first summarize the properties of the

competitive equilibrium allocation without taxation. Figure 1 summarizes the effect of a change in mar-

ket power in all submarkets. We plot the number of competitors on the horizontal axis in decreasing

order, to indicate increasing market power. The number of competitors within a market varies between

I = 10 (competitive) and I = 2, duopoly. Most striking is the massive decline in the wage rate W by

70% (Figure 1a). Output drops by 18% and welfare by 6%. The welfare effect is mitigated due to the

decline in labor supply by 11% (Figure 1b). Also, entrepreneurs decrease their labor supply despite the

fact that they get higher profits and higher consumption. The reason is that with the Lucas (1978) span-

of-control technology, the effort of entrepreneurs and workers are complements. Consumption (Figure

1c) and utility (Figure 1d) is increasing for entrepreneurs and decreasing for workers. This is the main

36This equation can be derived by the first-order conditions of the entrepreneur’s problem.
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Table 1: Parameterization

G (V) = V1−k

1−k social welfare function
k ∈ {1, 3} concavity of the social welfare function; k = 1 is benchmark
fo(θo) = 1 PDF of skills
Ne = 0.2 measure of entrepreneurs
A = 104 the TFP of final good production technology Q
ξ = 0.85 concavity of technology Qij
σ = 1.5 elasticity of substitution between submarkets
η (θe) = 10− 8θe elasticity of substitution within submarkets
xo (θo) = θo individual-level productivity
χ (θe) = θe distribution parameter
εo = 0.33 the elasticity of labor supply (Chetty (2012))

inequality generating force of markups: the division of output between profits and labor income. This is

consistent with the increase in the aggregate markup and the decrease in the average labor share (Figure

1e). Finally, inequality within entrepreneurs is increasing while inequality within workers is decreasing

(Figure 1f). The latter stems from the labor supply response of the workers to a lower wage rate W.

(a) Output, wage rate, social welfare (b) Average Labor Supply (c) Average Consumption

(d) Average Utility (e) Average markup and labor share (f) Variance of Utility

Figure 1: Laissez-faire economy: Effect of market Power (number of competitors I); normalize to 1 when
I = 10

In Figure 2, we report how the equilibrium outcomes vary by skill. The labor supply of all agents is
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increasing in skill for most types, except at the very top of the entrepreneur’s type distribution. Finally,

markups are increasing and the labor share is decreasing in entrepreneur type.

(a) Labor Supply (b) Utility (c) Markups and Labor Share

Figure 2: Laissez-faire economy: Variation by skill θ
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Optimal Taxation. Next, we analyze how optimal taxation policy varies with market power. To set the

stage, in Table 2 we summarize the different tax measures that we use in the numerical analysis.

Table 2: Summary of Tax Measures

to Lump-sum tax (depends on occupation, not on incomes)
τo (θo) Marginal tax rate
To (y(θo)) Tax burden
ATRo (θo) =

To(y(θo))
y(θo)

Average tax rate

AVTRo (θo) =
To(y(θo))−to

y(θo)
Average variable tax rate

TTo = No
∫

θo
To (y (θo)) fθo (θo) dθo Total tax burden

MMTRo =
∫

θo
τo (θo) fθo (θo) dθo Mean marginal tax rate

MATRo =
TTo

No
∫

θo
y(θo) fθo (θo)dθo

Mean average tax rate

MAVTRo =
TTo−to∗No

No
∫

θo
y(θo) fθo (θo)dθo

Mean average variable tax rate

Mto =
to∫

θo
y(θo) fθo (θo)dθo

Mean lump-sum tax share

Note: we denote profits by π(θe) = y(θe).

Figure 3 graphically represents how optimal taxation changes as market power increases. In this

exercise, we set the tax revenue to be collected by the government equal to zero: R = 0. First, we

find that the lump sum taxes increase in market power for both workers and entrepreneurs (Figure

3a). Lump-sum taxes are negative because the marginal tax rate is on average positive. Over the entire

distribution, Figure 3b shows that the mean of the marginal tax rate is increasing in market power for the

entrepreneurs and decreasing for workers. The same is true for the mean of the average tax rate (Figure

3c). This tells us that the optimal tax acts as a Pigouvian tax to correct the inefficiency (externality)

due to market power: the higher profits that the entrepreneurs earn and the lower labor income that

the workers earn are due to an inefficiency that the tax system corrects. The variable component of the

average tax rate is increasing for entrepreneurs and decreasing for workers (Figure 3d), while the lump-

sum component is constant for entrepreneurs and decreasing for workers (Figure 3e). In line with this,

the total tax burden for the entrepreneurs is increasing while it is decreasing for the workers (Figure 3f).

Next, in Figure 3, we report how optimal taxes vary by skill. The marginal tax rate is decreasing in

skill, in order to provide incentives to exert effort (Figure 4a). This is the standard Mirrleesian incentive

property. To provide incentives to the top entrepreneurs, a sharp decline until negative in the marginal

rate is needed. Because the incomes are large, the total tax burden is mostly increasing, but it decreases

at the top entrepreneurs (Figure 4b). The average variable tax rate and the average tax rates are inverted

U-shaped because the marginal tax rate is generally decreasing in skills, which is higher than the average

tax rate at the beginning and lower than the average tax after a certain income level.
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(a) Lump sum tax (b) Mean Marginal Tax Rate (c) Mean Average Tax Rate

(d) Mean Average Variable Tax Rate (e) Mean Lump-sum Tax Share (f) Total Tax Burden

Figure 3: Optimal Taxation: Effect of market Power (number of competitors I)

(a) Marginal Tax Rate (b) Tax Burden

(c) Average Variable Tax Rate (d) Average Tax Rate

Figure 4: Optimal Taxation: Variation by skill θ
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Comparing economies with and without taxes. Next, in Figure 5 we compare the equilibrium outcome

of the Laissez-faire economy with the optimal taxation economy.37 Not surprisingly, social welfare is

higher under optimal taxation than in Laissez-faire (Figure 5a). However, the output is lower (Figure 5b),

where the output decline is lowest under high market power. This is due to the fact that under optimal

taxes, there is a decline in effort (Figure 5c). Note that although the average labor supply decreases

after the tax, the labor supplies of high-skill entrepreneurs actually increase. Also, the firm-level labor

supply suggests that although before tax labor supplies of entrepreneurs may decrease with the skill, it

is increasing with the skill after the tax.

(a) Social Welfare (b) Output (c) Effort

(d) Equilibrium wage rate W (e) Markup and Labor Share (f) Variance of Utility

Figure 5: Comparing variables under zero tax and optimal tax

As a result of the lower output produced and hence the lower aggregate demand for labor, there is

a decline in the equilibrium wage rate W (Figure 5d). In equilibrium, optimal taxation has an adverse

effect. It increases the markup and decreases the labor share (Figure 5e). Though the effect is small, it

is important to see how taxation of income has adverse effects on market power and labor share. This

adverse effect also shows up in the before-tax profit rates that are higher under optimal taxation. Due

to the Reallocation Effect, the regressive tax reallocates factors from the low-markup firms to the high-

markup firms. Finally, taxes sharply reduce inequality. The variance of gross utility is lower for both

entrepreneurs and workers (Figure 5f), but remarkably more so for entrepreneurs.

37Figure E2 in the Appendix reports the same results in ratios.
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7 Conclusion

The best way to address market power is to cut out the root cause with an antitrust policy. In its absence,

we ask what the role is for income taxation to address the inefficiency and inequality that market power

creates. In a standard partial equilibrium setting, taxing profits redistributes resources but does not affect

optimal production. In a Mirrleesian setting, income and profit taxes do affect optimal production due

to the incentive constraint and endogenous labor supply and general equilibrium wages.

We show in the Laissez-faire economy that market power increases profits, lowers the equilibrium

wage rate and that it leads to lower effort, output and welfare. In response, optimal taxation can help

correct the externality caused by market power, and the income tax plays a Pigouvian role. Typically,

higher market power leads to higher marginal tax rates on entrepreneurs and lower marginal rates on

workers.
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APPENDIX

A Environment

A.1 The Cournot Competitive Tax Equilibrium

When first-order conditions are both necessary and sufficient to both the individuals’ and final good

producer’s problems, the equilibrium allocations are determined by (13) to (19) and the individuals’

budget constraints. Under the technology considered in this paper and φo (lo) = l
1+ 1

εo
o

1+ 1
εo

, we have the

following conditions in the symmetric equilibrium:

1.First-order conditions

P(θe) = |Ne fe(θe)|−
1
σ χ(θe)A

σ−1
σ Qij (θe)

− 1
σ Q

1
σ , (A1)

and

WLw(θe) =
ξ (1− ts)

µ (θe)
P(θe)Qij(θe), (A2)

and

Wxw (θw)
[
1− T′w (Wxw (θw) lw (θw))

]
= lw (θw)

1
εw , (A3)

and
P(θe)Qij(θe) (1− ts)

µ (θe)

[
1− T′e (π (θe))

]
= le (θe)

1+ 1
εe , θo ∈ Θo. (A4)

2. Inverse demand function

P(Qij, θe) = χ(θe)A
σ−1

σ Q
− 1

η(θe)
ij I−

[
1

η(θe)
− 1

σ

]
η(θe)

η(θe)−1

 (I − 1) Qij (θe)
η(θe)−1

η(θe)

+Q
η(θe)−1

η(θe)
ij


[

1
η(θe)
− 1

σ

]
η(θe)

η(θe)−1 [
Q

Ne fe(θe)

] 1
σ

, (A5)

3. Labor market clear condition

Nw

∫
θw

xw (θw) lw (θw) fw(θw)dθw = Nw [W]εw

∫
θw

[κ (θw)]
εw+1 [1− tw (θw)]

εw fw(θw)dθw (A6)

4. Meanwhile, in the equilibrium, we have

Q =
∫

θe

Ne fe (θe)
[
P(θe)Qij(θe)

]
dθe. (A7)

The above parts 1 to 4 solve the symmetric equilibrium allocation {Lw(θe), le (θe) ,lw (θw)}, price sys-

tem {P(θe),W}, and total output Q. Lastly, one can derive other allocations with individuals’ budget



constraints.

A.2 Laissez-faire Economy

Combining (A2), (A4), and (A1) gives

le (θe) =

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σεe
εe+σ

Lw (θe)
ξ(σ−1)εe

εe+σ

[
Q

Ne fe(θe)

] εe
εe+σ

(A8)

Substituting P(θe) and Qij (θe) in (A2) with (A1) and Qij (θe) = [xe (θe) le (θe)] Lw (θe)
ξ , respectively, we

have

Lw(θe) =
ξ

Wµ (θe)
χ(θe)

[
xe(θe)le (θe) Lw (θe)

ξ
]1− 1

σ

[
Q

Ne fe(θe)

] 1
σ

(A9)

=
ξ

W

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σ(εe+1)
εe+σ

Lw (θe)
ξ(σ−1)(εe+1)

σ+εe

[
Q

Ne fe(θe)

] εe+1
σ+εe

,

where we substitute le (θe) with (A8) in the second equation.

Rearranging the above equation gives

Lw(θe) =

(
ξ

W

) σ+εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σ(εe+1)
σ+εe−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+1
σ+εe−ξ(σ−1)(εe+1)

. (A10)

Substituting the above equation into (A8), we have

P(θe)Qij(θe) = µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ χ2(θe)

σ−1
σ χ1(θe)

µ (θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+1
εe+σ−ξ(σ−1)(εe+1)

(A11)

and

le (θe) =

(
ξ

W

) ξ(σ−1)εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σεe
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe
σ+εe−ξ(σ−1)(εe+1)

. (A12)

Equation (A3) gives

lw (θw) = [Wxw (θw)]
εw . (A13)

The three equations above together with (A6) and (A7) solve the symmetric equilibrium allocation

{Lw(θe), le (θe) ,lw (θw)}, price system {P(θe),W}, and total output Q. Lastly, one can derive other alloca-

tions with individuals’ budget constraints. See below for details.



For later use, we define

A1 =
∫

θe

Ne fe (θe) µ (θe)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe) [Ne fe (θe)]
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe, (A14)

A2 =
∫

Ne fe(θe)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe) [Ne fe (θe)]
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe,

A3 = Nwξεw

∫
θw

x (θw)
εw+1 fw(θw)dθw.

Substituting Lw(θe) in (A2) with (A10), we have

P(θe)Qij(θe) = µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ χ2(θe)

σ−1
σ χ1(θe)

µ (θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+1
εe+σ−ξ(σ−1)(εe+1)

(A15)

Substituting P(θe)Qij(θe) in (A7) with (A15), we have

Q =
∫

θe

Ne fe (θe) µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe) [Ne fe (θe)]
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

Q
εe+1

εe+σ−ξ(σ−1)(εe+1) dθe,

which gives the following equation by the definition of A1:

Q =

(
ξ

W

) ξ(εe+1)
1−ξ(εe+1)

A
σ+εe−ξ(σ−1)(εe+1)

1−ξ(εe+1)
1

σ−1

1 . (A16)

Similarly, substituting Lw(θe) in (A6) with (A10), we have the aggregate labor demand

LD ≡
(

ξ

W

) 1
1−ξ(εe+1)

(A1)
εe+1

(σ−1)[1−ξ(εe+1)] A2. (A17)

On the other hand, according to (A6) and (A13), we have the aggregate labor supply

LS ≡ Nw [W]εw

∫
θw

x (θw)
εw+1 fw(θw)dθw =

[
W
ξ

]εw

A3. (A18)

Combining (A17) and (A18) gives

[
W
ξ

]εw+
1

1−ξ(εe+1)

= (A1)
εe+1

(σ−1)[1−ξ(εe+1)]
A2

A3
, (A19)

that is,

W = ξ

[
(A1)

εe+1
(σ−1)[1−ξ(εe+1)]

A2

A3

] 1
εw+ 1

1−ξ(εe+1) . (A20)



Lastly, substituting W in (A16) with (A20), we have

Q =

 A3

A2A
εe+1

(σ−1)[1−ξ(εe+1)]
1

 1
εw+ 1

1−ξ(εe+1)

ξ(εe+1)
1−ξ(εe+1)

A
εe+σ−ξ(σ−1)(εe+1)
(σ−1)[1−ξ(εe+1)]

1 . (A21)

Then we can derive lw(θw), Lw(θe), and le (θe) by substituting Q and W into (A10), (A12), and (A13).

Moreover, by definition, we have

ce(θe) = [µ (θe)− ξ]

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+1
εe+σ−ξ(σ−1)(εe+1)

,

(A22)

and

Qij (θe) = xe(θe)

(
ξ

W

) ξσ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σ(εe+1)ξ+σεe
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] ξ(εe+1)+εe
εe+σ−ξ(σ−1)(εe+1)

, (A23)

and

P(θe) =
µ (θe)

xe(θe)

(
ξ

W

) −ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

] σ−σ(εe+1)ξ
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] 1−ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

, θe ∈ Θ.

(A24)

In addition, we have

V(θe) = ce(θe)− le(θe)
εe+1

εe =

[
µ (θe)− ξ − εe

εe + 1

]
le(θe)

εe+1
εe , θe ∈ Θ. (A25)

A.2.1 Gross Utility

Notice that

Ve (θe) ≡ max
le(θe),Lw(θe)

P(Qij(θe), θe)Qij(θe)−WLw(θe)−
[
le,ij(θe)

]1+ 1
εe

1 + 1
εe

,

we have the following equation based on envelope theory:

V ′e (θe) =

[
P(Qij(θe), θe)Qij(θe)

µ (θe)

x′e(θe)

xe(θe)
+

∂P(Qij(θe), θe)

∂θe
Qij(θe)

]
=

P(Qij(θe), θe)Qij(θe)

µ (θe)

[
µ (θe)

∂ ln P(Qij(θe), θe)

∂θe
+

x′e(θe)

xe(θe)

]
,

where according to the first-order condition (A4),

P(Qij(θe), θe)Qij(θe)

µ (θe)
= le (θe) φ′ (le (θe)) .



It can be seen that the gross utility under the equilibrium is consistent with the one we derived through

the mechanism design method; that is,

V ′e (θe) = le(θe)
εe+1

εe

[
µ (θe)

∂ ln P(Qij(θe), θe)

∂θe
+

x′e(θe)

xe(θe)

]
, ∀θe ∈ Θe. (A26)

Also, note that by (A5), we have

∂ ln P(Qij, θe)

∂θe
=

χ′(θe)

χ(θe)
+

[
σ− 1

σ
− 1

µ (θe)

]
d ln Qij (θe)

dθe
− 1

σ

d ln fe(θe)

dθe
,

where, by definition,

d ln Qij (θe)

dθe
=

d ln xe(θe)

dθe
+

d ln le(θe)

dθe
+ ξ

d ln Lw(θe)

dθe

=
d ln xe(θe)

dθe
+

σ (εe + 1) ξ + σεe

εe + σ− ξ (σ− 1) (εe + 1)

[
d ln χ(θe)

dθe
− d ln µ(θe)

dθe

+ σ−1
σ

d ln xe(θe)
dθe

]

− εe + ξεe + ξ

σ + εe − ξ (σ− 1) (εe + 1)
d ln fe(θe)

dθe
.

Thus,

x′e(θe)

xe(θe)
+ µ (θe)

∂ ln P(Qij, θe)

∂θe
=

σ (εe + 1) [µ (θe)− ξ]− σεe

εe + σ− ξ (σ− 1) (εe + 1)
d ln a(θe)

dθe
(A27)

+
(σ− 1) [ εe + ξ (εe + 1)]

[
σ

σ−1 − µ (θe)
]

εe + σ− ξ (σ− 1) (εe + 1)
d ln µ (θe)

dθe

− [µ (θe)− ξ] [1 + εe]− εe

σ + εe − ξ (σ− 1) (εe + 1)
d ln fe(θe)

dθe
.

where a(θe) = xe(θe)
σ−1

σ χ(θe).

Notice that εe + σ − ξ (σ− 1) (εe + 1) is positive under condition (29), so we can see that the en-

trepreneurial skill premium is increasing with µ (θe) when d ln a(θe)
dθe

> 0.

Moreover, we can see that markup inequality increases entrepreneurial skill premiums. Note that

µ (θe) ≤ σ
σ−1 and that εe + σ − ξ (σ− 1) (εe + 1) is positive under condition (29). Thus, the coefficient

of d ln µ(θe)
dθe

on the right side of (A27) is positive under condition (29), which suggests that with the intro-

duction of markup inequality ( d ln µ(θe)
dθe

> 0), the entrepreneurial skill premium increases.



A.3 Proof of Proposition 1

Part 1 of Proposition 1 can be derived by (17) and (22). We now prove part 2. By (A21), (A20), and (A18),

we have

ν(I) ,
WL
ξQ

=
A2

A1
, (A28)

where L is the aggregate labor inputs. Substituting A1 and A2 by (A14), we have

ν(I) =

∫
fe(θe)

[
xe(θe)

σ−1
σ χ(θe)

µ(θe)[ fe(θe)]
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe

∫
θe

fe (θe) µ (θe)

[
xe(θe)

σ−1
σ χ(θe)

µ(θe)[ fe(θe)]
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe

. (A29)

For the convenience of analysis, define

h (θe) ≡ fe (θe)

[
xe(θe)

σ−1
σ χ(θe)

[ fe (θe)]
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

,

g(I, θe) ≡
[

1
µ (θe)

](σ−1) εe+ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

,

fs(θe, I) ≡ g(I, θe)h (θe)∫
θe

g(I, θe)h (θe) dθe
, ∀θe ∈ Θe.

Then we have

ν (I) =
∫

θe

fs(θe, I)
µ (θe)

dθe. (A30)

In addition,

dν(I)
d ln I

∝
∫

θe

fs(θe, I)

[( σ

σ− 1

)
1

µ (θe)
− ν (I)

(
εe

εe + 1
+ ξ

)] d ln
[

1
µ(θe)

]
d ln I

 dθ

=

(
σ

σ− 1
− εe

εe + 1
+ ξ

) ∫
θe

fs(θe, I)
1

µ (θe)

d ln
[

1
µ(θe)

]
d ln I

+

(
εe

εe + 1
+ ξ

) ∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθ.

Since
(

σ
σ−1 −

εe
εe+1 + ξ

)
> 0 and

d ln
[

1
µ(θe)

]
d ln I > 0, we have

(
σ

σ− 1
− εe

εe + 1
+ ξ

) ∫
θe

fs(θe, I)
1

µ (θe)

d ln
[

1
µ(θe)

]
d ln I

dθe > 0.



On the other hand, notice that

d ln
[

1
µ(θe)

]
d ln I

=

[
1− σ− 1

σ
µ (θe)

]
I

I − 1

is decreasing in µ (θe), so we now try to prove that

∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe ≥ 0.

To do this, note that by (A30), we have

∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe = 0

where fs(θe, I)
[

1
µ(θe)
− ν (I)

]
is positive if and only if 1

µ(θe)
− ν (I) is positive. Define

Ω ≡
{

θe|µ (θe) <
1

ν (I)

}

such that fs(θe, I)
[

1
µ(θe)
− ν (I)

]
> 0 if and only if θe ∈ Ω.

Notice that∫
θe∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe +
∫

θe /∈Ω∗
fs(θe, I)

[
1

µ (θe)
− ν (I)

]
dθe = 0,∫

θe∈Ω∗
fs(θe, I)

[
1

µ (θe)
− ν (I)

]
dθe > 0

and that
d ln
[

1
µ(θe)

]
d ln I < 0. One can see that for any θe ∈ Ω,

d ln
[

1
µ(θe)

]
d ln I

≥
d ln

[
1

µ(θe)

]
d ln I

|µ(θe)=ν(I)=

[
1− σ− 1

σ
ν (I)

]
I

I − 1
.

Thus,

∫
θe∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe (A31)

≥
[

1− σ− 1
σ

ν (I)
]

I
I − 1

∫
θe∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe.



On the other hand, for any θe /∈ Ω, one has

d ln
[

1
µ(θe)

]
d ln I

≤
[

1− σ− 1
σ

ν (I)
]

I
I − 1

, fs(θe, I)
[

1
µ (θe)

− ν (I)
]
≤ 0.

Thus,

∫
θe /∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe (A32)

≥
[

1− σ− 1
σ

ν (I)
]

I
I − 1

∫
θe /∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe.

Combining (A31) and (A32) gives

∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe ≥ 0,

which suggests dν(I)
d ln I ≥ 0.�

A.4 Proof of Proposition 2

Assume that markups are constant. (A20) and (A21) give

W
ξ

=

[
(A1)

εe+1
(σ−1)[1−ξ(εe+1)]

A2

A3

] 1−ξ(εe+1)
εw [1−ξ(εe+1)]+1

∝
[

1
µ

] (εe+1)
εw [1−ξ(εe+1)]+1

Q ∝
[

1
µ

]− ξ(εe+1)
εw [1−ξ(εe+1)]+1

(εe+1)
1−ξ(εe+1)

µ

(
1
µ

) (εe+1)
1−ξ(εe+1)

=

[
1
µ

] (εw+1)εe+εwξ(εe+1)
εw [1−ξ(εe+1)]+1

.

Substituting W and Q in (A10) with the above equations, we have

Lw(θe) ∝
[

1
µ

] (σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
1
µ

] εw(εe+1)−σ+1
εw [1−ξ(εe+1)]+1

εe+1
εe+σ−ξ(σ−1)(εe+1)

=

[
1
µ

] (εe+1)εw
εw [1−ξ(εe+1)]+1

, ∀θe ∈ Θe.



Similarly, we have

S(θe) ∝
[

1
µ

] εe(εw+1)+εwξ(εe+1)
εw [1−ξ(εe+1)]+1

,

le(θe) ∝
[

1
µ

] (εw+1)εe
εw [1−ξ(εe+1)]+1

,

Q(θe) ∝
[

1
µ

] (εe+1)εwξ+(εw+1)εe
εw [1−ξ(εe+1)]+1

,

P(θe) ∝
[

1
µ

]0

,

ce(θe) ∝ [µ− ξ]

[
1
µ

] (εw+1)(εe+1)
εw [1−ξ(εe+1)]+1

,

Ve(θe) ∝
[

µ− ξ − εe

εe + 1

] [
1
µ

] (εw+1)(εe+1)
εw [1−ξ(εe+1)]+1

, ∀θe ∈ Θe.

It’s easy to see that under the conditions (28) and (29), Lw(θe), S(θe), le(θe), Q(θe), and P(θe) go down

with the decrease of I. Moreover, since the markup is uniform, firm-level labor shares must go down

too. Changes of ce(θe) and Ve(θe) are ambiguous.

Notice that
d ln cij(θe)

d ln µ
≥ 0⇔ µ− ξ

µ
≤ εw + 1− εwξ (εe + 1)

(εw + 1) (εe + 1)
.

One can see that

µ ≤ ξ
εe

εe+1 +
εw

εw+1 ξ

is the condition for d ln cij(θe)
d ln µ ≥ 0.

On the other hand,
dVe(θe)

d ln µ
∝
[

ξ +
εe

εe + 1

]
−
[

εw

1 + εw
ξ +

εe

εe + 1

]
µ,

thus,

µ ≤
ξ + εe

εe+1
εe

εe+1 +
εw

1+εw
ξ

is a condition for dVe(θe)
d ln µ ≥ 0.�

A.5 Technology and Equilibrium

xe and χ have different economic meanings. They can refer to quantity-augmenting and quality-augmenting

(Rosen (1981)), ability and talent (Sattinger (1975b)), and effort-augmenting and total-productivity-augmenting

(non-effort-augmenting) elements (Ales et al. (2017)), all of which catch the difference between an en-

trepreneur and a worker.



The expressions for allocations and prices in Appendix A.1 show that Qij(θe) and P(θe) are generally

dependent on the specific values of xe(θe) and χ(θe) instead of being only dependent on the value of

a(θe) = xe(θe)
σ−1

σ χ(θe). Specifically, according to (A23) and (A24), we have

Qij(θe) = xe(θe)

(
ξ

W

) ξσ(εe+1)
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ a(θe)

µ (θe)

] σεe+ξσ(εe+1)
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+ξ(εe+1)
σ+εe−ξ(σ−1)(εe+1)

,

and

P(θe) = Aχ(θe)
σ

σ−1

(
W
ξ

) ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
Q

Ne fe(θe)

] 1−ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

×
[

µ (θe)

A
σ−1

σ a(θe)

] (εe+1)
εe+σ−ξ(σ−1)(εe+1)

σ
σ−1 [ 1

µ (θe)

] 1
σ−1

.

On the other hand, given a(θe), we see that P(θe)Qij(θe), Lw(θe), le(θe), and Ve(θe) are independent

of the specific values of χ(θe) and xe(θe). According to (A10) to (A12), and (A25), we have the following

results:

Lw(θe) =

(
ξ

W

) σ+εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ a(θe)

µ (θe)

] σ(εe+1)
σ+εe−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+1
σ+εe−ξ(σ−1)(εe+1)

,

P(θe)Qij(θe) = µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ a(θe)

µ (θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe+1
εe+σ−ξ(σ−1)(εe+1)

,

le (θe) =

(
ξ

W

) ξ(σ−1)εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ a(θe)

µ (θe)

] σεe
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] εe
σ+εe−ξ(σ−1)(εe+1)

,

and

V(θe) =

[
µ (θe)− ξ − εe

εe + 1

] (
ξ

W

) ξ(σ−1)(εe+1)
σ+εe−ξ(σ−1)(εe+1)

×
[

A
σ−1

σ a(θe)

µ (θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1) [ Q

Ne fe(θe)

] (εe+1)
σ+εe−ξ(σ−1)(εe+1)

.

Similarly, one can see that W, lw (θw), and Vw (θw) are also only dependent on a(θe).

Lastly, we find that given d ln a(θe)
dθe

, V′(θe)
V(θe)

is independent of the specific values of χ(θe) and xe(θe).



Combining (A26) and (A27) gives

V ′(θe) =
[
lij,e(θe)

] εe+1
εe


σ(εe+1)µ(θe)−σεe−ξσ(εe+1)

εe+σ−ξ(σ−1)(εe+1)
d ln a(θe)

dθe

− (σ−1)[εe+ξ(εe+1)][µ(θe)− σ
σ−1 ]

εe+σ−ξ(σ−1)(εe+1)
d ln µ(θe)

dθe

− [µ(θe)−ξ][1+εe]−εe
σ+εe−ξ(σ−1)(εe+1)

d ln fe(θe)
dθe

 , ∀θe ∈ Θe.

Combining (A25) and (A26) gives

V ′(θe)

V(θe)
=

1
µ (θe)− ξ − εe

εe+1

d ln χ(θe)

dθe
+ µ (θe)

∂ ln P(Qij

(
∂ ln P(Qij,θe)

∂θe

)
, θe)

∂θe

 (A33)

=
σ (εe + 1)

εe + σ− ξ (σ− 1) (εe + 1)
d ln a(θe)

dθe
−

[µ(θe)−ξ][1+εe]−εe
σ+εe−ξ(σ−1)(εe+1)

µ (θe)− ξ − εe
εe+1

d ln fe(θe)

dθe

−
(σ− 1) [ εe + ξ (εe + 1)]

[
µ (θe)− σ

σ−1

][
µ (θe)− ξ − εe

εe+1

]
[εe + σ− ξ (σ− 1) (εe + 1)]

d ln µ (θe)

dθe

where the second equation is derived by (A27) and (A26). Specially, when the markup and distribution

function are constant, we have

V ′(θe)

V(θe)
=

σ (εe + 1)
εe + σ− ξ (σ− 1) (εe + 1)

d ln a(θe)

dθe
, ∀θe ∈ Θe. (A34)

Note that the coefficient of d ln a(θe)
dθe

on the right side of (A33) is positive under condition (29).

A.6 Elasticities

A.6.1 Worker

By keeping the wage constant, the labor income elasticity with respect to the net-of-tax rate along the

linearized budget constraint (linear labor elasticity) is38

εw ≡
φ′w(lw(θw))

lw(θw)φ′′w(lw(θw))
. (A35)

To compute the elasticities along the nonlinear budget constraint (named as nonlinear elasticity), we

introduce

ψ(y, xw (θw)W, dτ) =
[
1− T′w(y)− dτ

]
xw (θw)W − φ′w

(
y

xw (θw)W

)
,

where ψ(y, xw (θw)W, 0) = 0 is exactly the first-order condition to the labor supply.39 For the sake of

38See, e.g., Saez (2001); Golosov, Tsyvinski, and Werquin (2014); Lehmann, Simula, and Trannoy (2014); and Sachs, Tsyvinski,
and Werquin (2016).

39See, e.g., Jacquet and Lehmann (2016); Scheuer and Werning (2016).



convenience, we give the following terms:

ψy(y, xw (θw)W, 0) = −Tw′′(y)θwW −
φ′′w

(
y

xw(θw)W

)
xw (θw)W

,

ψw(y, xw (θw)W, 0) = 1− T′w(y) + y
φ′′w

(
y

xw(θw)W

)
(xw (θw)W)2 ,

ψτ(y, xw (θw)W, 0) = −xw (θw)W.

Under our utility function, which satisfies the single cross condition, Assumption 1 ensures that the first-

order condition corresponds to a unique global maximum. Applying the implicit function theorem to

ψ(y (θw) , xw (θw)W, 0) = 0 yields the nonlinear elasticities of labor income with respect to the net-of-tax

rate and wage in the equilibrium:

ε
y
1−τ (θw) ≡

ψτ(y(θw), xw (θw)W, 0)
ψy(y(θw), xw (θw)W, 0)

1− T′w(y(θw))

y(θw)
(A36)

=
εw (θw)

T′′w(y(θw))
1−T′w(y(θw))

y(θw)εw (θw) + 1

and

ε
y
w (θw) ≡

d ln y(θw)

d ln [xw (θw)W]
= −ψw(y(θw), xw (θw)W, 0)

ψy(y(θw), xw (θw)W, 0)
xw (θw)W

y(θw)
(A37)

=
1 + εw (θw)

Tw′′(y(θw))
1−T′w(y(θw))

y(θw)εw (θw) + 1

= ε
y
1−τ (θw)

[
1 +

1
εw (θw)

]
,

respectively, where φ′′w

(
y(θw)

xw(θw)W

)
is substituted with εw (θw) = φ′w(lw(θw))

lw(θw)φ′′(lw(θw))
. Note that given the tax

policies, the nonlinear elasticities of labor income with respect to the wage in the equilibrium is the

percentage change in an individual’s labor income with respect to the 1% increase in wages in the equi-

librium. Thus, ε
y
w (y(θw)) is equal to d ln y(θw)

d ln[xw(θw)W]
.

A.6.2 Entrepreneur

We define the linear entrepreneurial effort elasticity as

εe ≡
φ′e(le(θ))

le(θ)φ′′e (le(θ))
. (A38)

Note that we have assumed that the linear elasticity is constant in the model setup to simplify the no-

tation. We define the nonlinear elasticity of profit with respect to the net-tax income rate as (39). To



understand the elasticity, consider the following tax reform.

Again, consider a small increase (i.e., dτ) in the marginal tax rate faced by θe agent, which has no first-

order effects on the aggregate values and the actions of other types. Then, based on the firm’s problem,

we have the following first-order conditions:

WLw = PQij
ξ

µ (θe)
,

and

φ′e (le(θ)) =
[
1− T′e(S (θe)−WLw (θe))− dτ

] P
(
Qij (θ) , θ

)
Qij (θ)

µ (θ)

1
le(θ)

=

[
1− T′e

((
µ (θe)

ξ
− 1
)

WLw (θe)

)
− dτ

]
WLw (θe)

ξ

1
le(θ)

,

where the second equation is derived by WLw = PQij
ξ

µ(θe)
. Assumption 1 ensures that the first-order

condition corresponds to a unique global maximum; thus, we can apply the implicit function group

theorem to derive the elasticities of effort and factor demand according to the net profit tax rate.

Suppose that a θ type firm treats µ (θ), W, and other firms’ outputs (i.e., outputs other than Qij (θ))

as given. In such a scenario, its reaction to the tax reform can be described by differential equations of

the first-order conditions. On the one hand,

φ′′e (le) dle =
[
1− T′e(π)

] [WdLw

ξ

1
le
− WLw

ξ

dle

le

1
le

]
−
[

T′′e (π)

(
µ (θe)

ξ
− 1
)

WdLw

]
WLw

ξ

1
le
− dτ

WLw

ξ

1
le

.

Divide both sides of the above equation by φ′e (le) or [1− T′e (π)] WLw
ξ

1
le , and we have

φ′′e (le) le

φ′e (le)

dle

le
=

[
dLw

Lw
− dle

le

]
−
[

πT′′e (π)

1− T′e(π)

dLw

Lw

]
− dτ

1− T′e(π)
.

That is,
1 + εe

εe

dle

le
=

dLw

Lw

[
1− πT′′e (π)

1− T′e(π)

]
− dτ

1− T′e(π)
. (A39)

On the other hand, based on WLw = PQij
ξ

µ(θe)
, we have

WdLw = PQij
ξ

µ (θe)
2

[
dle

le
+ ξ

dLw

Lw

]
.



Dividing both sides of the above equation by WLw or PQij
ξ

µ(θe)
gives

dLw

Lw
=

1
µ (θe)

[
dle

le
+ ξ

dLw

Lw

]
. (A40)

Combining (A39) and (A40) gives

dLw

Lw
=

− dτ
1−T′e(π)

1+εe
εe

[µ (θe)− ξ]−
[
1− πT′′e (π)

1−T′e(π)

] . (A41)

Lastly, based on π = PQij −WLw and WLw = PQij
ξ

µ(θe)
, we have dπ = P

µ(θe)
dQ
dLw

dLw + P
µ(θ)

dQ
dle dle −

WdLw. Thus,

dπ

π
=

PQij

π

ξ

µ (θe)

dLw

Lw
+

PQij

π

1
µ (θe)

dle

le
− WLw

π

dLw

Lw
(A42)

=

 ξ
µ(θe)

1− ξ
µ(θe)

−
ξ

µ(θe)

1− ξ
µ(θe)

 dLw

Lw
+

1
µ(θe)

1− ξ
µ(θe)

dle

le

=

1
µ(θe)

1− ξ
µ(θe)

dle

le

=
dLw

Lw

where the last equation is derived by (A40). Moreover, we can also obtain the above equation through

WLw = (π + WLw)
ξ

µ(θe)
, which is a combination of π = PQij −WLw and WLw = PQij

ξ
µ(θe)

.

Combining (A41) and (A42) gives

dπ(θe)
π(θe)

− dτ
1−T′e(π(θe))

=
1

1+εe
εe

[µ (θe)− ξ]−
[
1− π(θe)T′′e (π(θe))

1−T′e(π(θe))

] = επ
1−τe

(π (θe)) , (A43)

where the last equation is derived by a definition. Since the left side of the above equation reflects the

elasticity of profit with respect to the tax reform, we create the definition of the nonlinear labor supply

based on (39).

A.6.3 Price Elasticity

To make the expression more compact, we denote P
(
Qij, θe

)
as the short form of the inverse demand

function and P (θe) as the price. Solving the final good producer’s problem, we immediately find the



following in the equilibrium for any θe ∈ Θe:

P(θe) = χ(θe)A
σ−1

σ Qij (θe)
− 1

σ Q
1
σ , (A44)

and the inverse demand function

P(Qij, θe) = χ(θe)A
σ−1

σ Q
− 1

η(θe)
ij I−

[
1

η(θe)
− 1

σ

]
η(θe)

η(θe)−1

 (I − 1) Qij (θe)
η(θe)−1

η(θe)

+Q
η(θe)−1

η(θe)
ij


[

1
η(θe)
− 1

σ

]
η(θe)

η(θe)−1

Q
1
σ . (A45)

For later use, we define the own price elasticity, own inverse-demand elasticity, and cross inverse-

demand elasticity as

εP
Qij

(θe) ≡
∂ ln P (θe)

∂ ln Qij (θe)
= − 1

σ
, (A46)

εQij(θe) ≡
∂ ln P

(
Qij, θe

)
∂ ln Qij

|Qij=Qij(θe) = −
[

1
η (θe)

I − 1
I

+
1
σ

1
I

]
,

εQ−ij(θe) ≡
∂ ln P

(
Qij, θe

)
∂ ln Qij (θe)

|Qij=Qij(θe) =

[
1

η (θe)
− 1

σ

]
I − 1

I
, θe ∈ Θe.

Under our production technology, we have

εQij(θe) = εP
Qij

(θe)− εQ−ij(θe),

and

∂ ln P(Qij, θe)

∂θe
|Qij=Qij(θe) =

d ln P(θe, Qij (θe))

dθe
−

∂ ln P(θe, Qij (θe))

∂ ln Qij (θe)

d ln Qij (θe)

dθe
(A47)

=
χ(θe)

χ(θe)
− 1

σ

Q′ij (θe)

Qij (θe)
−
[
− 1

η (θe)
+

1
I

(
1

η (θe)
− 1

σ

)] Q′ij (θe)

Qij (θe)

=
χ(θe)

χ(θe)
+

[
1

η (θe)
− 1

σ

] (
1− 1

I

) Q′ij (θe)

Qij (θe)

=
χ(θe)

χ(θe)
+

[
σ− 1

σ
− 1

µ (θe)

]
d ln Qij (θe)

dθe
,

Specially, when I = 1, we have
∂ ln P(Qij,θe)

∂θe
= χ′(θe)

χ(θe)
.



A.6.4 Wage Elasticity

We have defined v (θe) =
P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)
. In addition, we define

εv
Lw
(θe) =

∂ ln v(θe)

∂ ln Lw(θe)
− εv

Lw
(θe, θe), and εv

le (θe) =
∂ ln v(θe)

∂ ln le(θe)
− εv

le (θe, θe) (A48)

as the own elasticity of wage with respect to labor inputs and effort, respectively, where

εv
Lw
(θ′e, θe) =


∂ ln v(θ′e)
∂ ln Lw(θe)

, θ′e 6= θe,

limθ′e→θe
∂ ln v(θ′e)
∂ ln Lw(θe)

, θ′e = θe
and (A49)

εv
le (θ
′
e, θe) =


∂ ln v(θ′e)
∂ ln Le(θe)

, θ′e 6= θe,

limθ′e→θe
∂ ln v(θ′e)
∂ ln le(θe)

, θ′e = θe;
(A50)

are the cross elasticity of wage with respect to labor and capital inputs, respectively, (θe, θ′e) ∈ Θ2
e .

Observe that under the assumptions on the technology, εv
Lw
(θ′e, θe) and εv

le (θ
′
e, θe) are not dependent

on θ′e. Specifically, we have

Pij(θe) = χ(θe)A
σ−1

σ Qij (θe)
− 1

σ Q
1
σ ,

Qij (θe) = xe (θe) le (θe) Lw (θe)
ξ ,

v (θe) =
χ(θe)A

σ−1
σ Qij (θe)

− 1
σ Q

1
σ

µ (θe)
ξxe (θe) le (θe) Lw (θ)ξ−1 .

Then by definition, we have

εv
Lw
(θe) = ξ

(
1− 1

σ

)
− 1 < 0, and εv

le (θ) = 1− 1
σ
> 0. (A51)

Note that both εv
Lw
(θe) and εv

le (θ) are constants.



B Solution

B.1 Proof of Lemma 1

(i) According to the definition of Ve(θ′e|θe), we have

∂Ve(θ′e|θe)

∂θ′e
= c′e

(
θ′e
)
− φ′e

(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e
(B2)

According to the first-order incentive condition, we have limθe→θ′e
∂Ve(θ′e|θe)

∂θ′e
= 0. That is,

0 =

[
c′e
(
θ′e
)
− φ′e

(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e

]
|θe=θ′e , (B3)

Adding (B2) into (B3), we have

∂Ve(θ′e|θe)

∂θ′e
=

[
φ′e
(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e

]
|θe=θ′e − φ′e

(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e

Using the mean value theorem, the sign of the right-hand side is given by

d
[
φ′e (le (θ′e|θ∗e ))

∂le(θ′e|θ∗e )
∂θ′e

]
dθ∗

(
θ′e − θe

)

for some θ∗e that lies between θ′e and θe. If one has
d
[

φ′e(le(θ′e|θ∗e ))
∂le(θ′e |θ∗e )

∂θ′e

]
dθ∗ < 0 for any (θ∗e , θ′e) ∈ Θ2, the

function Ve(θ′e|θe) will increase with θ′e until θ′e = θe and then decreases with θ′e. In conclusion, there is a

unique local maximum point that is also the global maximizer of Ve(θ′e|θe). Thus under Assumption 1,

the first-order incentive condition is not only necessary but also sufficient for the agent’s problem.

Notice that

d
[
φ′e (le (θ′e|θ∗e ))

∂le(θ′e|θ∗e )
∂θ′e

]
dθ∗

= φ′′e
(
le
(
θ′e|θ∗e

)) ∂le (θ′e|θ∗e )
∂θ∗e

∂le (θ′e|θ∗e )
∂θ′e

+ φ′e
(
le
(
θ′e|θ∗e

)) ∂2le (θ′e|θ∗e )
∂θ∗e ∂θ′e

= φ′e
(
le
(
θ′e|θ∗e

))
le
(
θ′e|θ∗e

)  φ′′e (le(θ′e|θ∗e ))le(θ′e|θ∗e )
φ′e(le(θ′e|θ∗e ))

∂ ln le(θ′e|θ∗e )
∂θ∗e

∂ ln le(θ′e|θ∗e )
∂θ′e

+ ∂2 ln le(θ′e|θ∗e )
∂θ∗e ∂θ′e

,


so we have

sign

d
[
φ′e (le (θ′e|θ∗e ))

∂le(θ′e|θ∗e )
∂θ′e

]
dθ∗

 = sign

 φ′′e (le(θ′e|θ∗e ))le(θ′e|θ∗e )
φ′e(le(θ′e|θ∗e ))

∂ ln le(θ′e|θ∗e )
∂θ∗e

∂ ln le(θ′e|θ∗e )
∂θ′e

+ ∂2 ln le(θ′e|θ∗e )
∂θ∗e ∂θ′e





Since φ′′e (le(θ′e|θ∗e ))le(θ′e|θ∗e )
φ′e(le(θ′e|θ∗e ))

is positive, it follows that ∂ ln le(θ′e|θ∗e )
∂θ∗e

∂ ln le(θ′e|θ∗e )
∂θ′e

< 0 and ∂2 ln le(θ′e|θ∗e )
∂θ∗e ∂θ′e

= 0 is a sufficient

condition for
d
[

φ′e(le(θ′e|θ∗e ))
∂le(θ′e |θ∗e )

∂θ′e

]
dθ∗ < 0.

le (θ′e|θe) is determined by

P
(
Qij
(
xe (θe) le

(
θ′e|θe

)
, Lw

(
θ′e|θe

))
, θe
)

Qij
(
xe (θe) le

(
θ′e|θe

)
, Lw

(
θ′e|θe

))
(1− ts)−WLw

(
θ′e|θe

)
= π

(
θ′e
)

,

(B4)

where Lw (θ′e|θe) is the optimal labor input given that θe entrepreneur reports θ′e. The inverse demand

function P
(
Qij, θe

)
is given by (A45). In the following proof of part (i), we refer to P

(
Qij, θe

)
and Qij

as the short forms of P
(
Qij (xe (θe) le (θ′e|θe) , Lw (θ′e|θe)) , θe

)
and Qij (xe (θe) le (θ′e|θe) , Lw (θ′e|θe)), respec-

tively. Based on (B4), we have

∂le (θ′e|θe)

∂θe
= −

∂[P(Qij,θe)Qij]
∂Qij

∂Qij
∂θe

+
∂P(Qij,θe)

∂θe
Qij

∂[P(Qij,θe)Qij]
∂Qij

∂Qij
∂le

(B5)

= −

∂Qij
∂θe

+
∂P(Qij ,θe)

∂θe
Qij

P(Qij,θe)
[
1+εQij (θe)

]
∂Qij
∂le

= − x′e (θe)

xe (θe)
le
(
θ′e|θe

)
−

∂ ln P
(
Qij, θe

)
∂θe

le (θ′e|θe)

1 + εQij (θe)
< 0

and

∂le (θ′e|θe)

∂θ′e
= − −π′ (θ′e)

∂[P(Qij,θe)Qij]
∂Qij

∂Qij
∂le(θ′e|θe)

(B6)

= − −π′ (θ′e)
∂ ln[P(Qij,θe)Qij]

∂ ln Qij

∂Qij
∂le(θ′e|θe)

le(θ′e|θe)
Qij

P(Qij,θe)
le(θ′e|θe)

= − −π′ (θ′e)[
1 + εQ−ij(θe)

]
P(Qij,θe)
le(θ′e|θe)

> 0.

In addition, we have

∂ ln le (θ′e|θe)

∂θe
= − x′e (θe)

xe (θe)
−

∂ ln P
(
Qij (xe (θe) le (θ′e|θe) , Lw (θ′e|θe)) , θe

)
∂θe

1
1 + εQij (θe)

< 0 (B7)

and
∂2 ln le (θ′e|θe)

∂θe∂θ′e
= −

∂2 ln P
(
Qij, θe

)
∂θe∂Qij

∂Qij

∂θ′e

1
1 + εP

Qij
(θe)

. (B8)



According to (A47),
∂ ln P

(
Qij, θe

)
∂θe

=
χ(θe)

χ(θe)
+

[
σ− 1

σ
− 1

µ (θe)

] Q′ij (θe)

Qij (θe)
, (B9)

∂ ln P(Qij,θe)
∂θe

is independent of Qij (note that the
Q′ij(θe)

Qij(θe)
on the right side of the above equation is treated as

given by the agents when they report their types). Thus, we have
∂2 ln P(Qij,θ)

∂θ∂Qij
= 0 and ∂2 ln le(θ′|θ)

∂θ∂θ′ = 0. In

conclusion, we have
d
[

φ′e(le(θ′|θ∗))
∂le(θ′ |θ∗)

∂θ′

]
dθ∗ < 0.

(ii) Now we prove part (ii) of Lemma 1 (i.e., given (B10), (B11) is satisfied if and only if (35) is

satisfied). According to the definition of Ve(θ), we have

Ve(θe) = ce (θe)− φe (le(θe)) .∀θe ∈ Θe (B10)

Notice that

Ve(θ
′
e|θe) = ce

(
θ′e
)
− φe

(
le
(
θ′e|θe

))
,

where le (θ′e|θe) is the effort θe entrepreneur needs to finish the θ′e task. The first-order incentive condition

( ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe = 0) can be expressed as

0 =

[
c′e
(
θ′e
)
− φ′e

(
le
(
θ′e|θe

)) ∂le (θ′|θ)
∂θ′

]
|θ′=θ , ∀θe ∈ Θe. (B11)

First, note that by

Ve(θe) = max
θ′e

Ve(θ
′
e|θe),

we have

V ′e (θe) =
∂Ve(θ∗e (θe) |θe)

∂θ∗e (θe)

dθ∗e (θe)

dθe
+

∂Ve(θ∗e (θe) |θe)

∂θe
(B12)

where we use θ∗e (θe) to denote the optimal choice of θe entrepreneur.

Second, by the definition of Ve(θ′e|θe), we have

∂Ve(θ∗e (θe) |θe)

∂θe
= −φ′e (le (θ

∗
e (θe) |θ))

∂le (θ∗e (θe) |θe)

∂θe
, (B13)

where by (B5), we have

∂le (θ∗e (θe) |θe)

∂θe
= − x′e (θe)

xe (θe)
le (θ

∗
e (θe) |θe) (B14)

−
∂ ln P

(
Qij (xe (θe) le (θ∗e (θe) |θe) , Lw (θ∗e (θe) |θe)) , θe

)
∂θe

le (θ∗e (θe) |θe)

1 + εQ−ij(θe)
.



Last, a combination of (B12), (B13), and (B14) suggests that

V ′e (θe) = φ′e (le (θ
∗
e (θe) |θe)) le (θ

∗
e (θe) |θe)

 x′e(θe)
xe(θe)

+

µ (θe)
∂ ln P(Qij(xe(θe)le(θ∗e (θe)|θe),Lw(θ∗e (θe)|θe)),θe)

∂θe

 (B15)

if and only if ∂Ve(θ∗e (θe)|θe)
∂θ∗e (θe)

dθ∗e (θe)
dθe

= 0, which means that when the first-order incentive condition ( ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe =

0) is satisfied, we have (35); and if (35) holds (i.e., (B15) holds at θ∗e (θe) = θe), we must have ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe =

0 (unless dθ∗e (θe)
dθe

= 0, which is ruled out by Assumption 1).�

B.2 Proof of Lemma 2

We first show that a symmetric Cournot competitive tax equilibrium must satisfy parts 1šC3. First, by

the definition of SCCTE, (16) to (17) and (13) to (15) must be satisfied. Second, by the definition of

SCCTE, agents maximize their utility, which means (33) and (35) should be satisfied (see the subsections

on incentive compatibility).

Next, suppose that we are given allocation A and price P to satisfy the properties in parts 1šC3. We

now construct the tax system T (with ts = 0), which together with the given allocation A and price P
constructs an SCCTE. We first construct a policy system with the given allocation A and price P . We

then show that this constructed policy system together with A and P constructs an SCCTE.

First, we construct the policy system. By the definition of tax wedges and ts = 0, the marginal tax

rates are constructed as follows:

T′w (y (θw)) = 1− φ′w (lw (θw))
P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)
xw (θw)

and

T′e (π (θe)) = 1− φ′e (le (θe))
P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)

.

We use agents’ budget constraints to fix the labor income taxes. We first construct Tw (·). To do this,

we substitute

Tw (y(θw)) = Tw (y(θw)) +
∫ y(θw)

y(θw)
T′w (y) dy

into

y(θw)− Tw (y(θw))− cw(θw) = 0

and show that there exists Tw (y(θw)) such that given allocation A, price P and {T′w (y(θw))}θw∈Θw
, the

above equation is satisfied for any θw ∈ Θw.

To be consistent with the θw-type agent’s budget constraint, Tw (y(θw)) must satisfy

y(θw)− Tw (y(θw))− cw(θw) = 0.



We should show this Tw (y(θ)) is also consistent with other agents’ budget constraints. This is equivalent

to saying that

y′(θw)
[
1− T′w (y(θw))

]
− c′w(θw) = 0.

Substituting 1− T′w (y(θw)) with the FOC (18), the above equation is equivalent to

c′w(θw)−
φ′w (lw(θw))

Wxw (θw)
y′(θw) = 0.

The above equations are true since we have

V ′w(θw) =
φ′w (lw(θw)) lw(θw)x′w (θw)

xw (θw)
(B16)

= c′w(θw)−
y′(θw)

Wxw (θw)
φ′w (lw(θw)) +

φ′w (lw(θw)) lw(θw)x′w (θw)

xw (θw)
.

The first equation of (B16) is the incentive condition, and the second equation is derived through the

definition of Vw(θw). In conclusion, given the allocation, we can construct a unique labor income tax that

is consistent with the allocation in the equilibrium.

The construction of Te (·) is similar to the construction of Tw (·). Note that Tw (y(θw)) can be different

from Te (π(θe)). We substitute

Te (π(θe)) = Te (π(θe)) +
∫ π(θe)

π(θe)
T′e (π) dπ

into

π(θe)− Te (π(θe))− ce(θe) = 0

and show that there exists Te (π(θe)) such that given allocation A, price P and {T′e (π(θe))}θe∈Θe
, the

above equation is satisfied for any θe ∈ Θe:

To be consistent with the θe-type agent’s budget constraint, Te (π(θe)) must satisfy

π(θe)− Te (π(θe))− ce(θe) = 0.

We should show this Te (π(θe)) is also consistent with other agents’ budget constraints. This is equiva-

lent to saying that

π′(θe)
[
1− T′e (π(θe))

]
− c′e(θe) = 0.

Substituting 1− T′e (π(θe)) with the FOC (19), the above equation is equivalent to

c′e(θe)−
φ′e (le (θe))
P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)

π′(θe) = 0,



which is further equivalent to

c′e(θe)− µ (θe)
φ′e (le (θe)) le (θe)

P (θe) Qij (θe)
π′(θe) = 0. (B17)

The above equations are true since we have

V ′e (θe) = φ′e (le (θe)) le (θe)

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
κ′e (θe)

κe (θe)

]
(B18)

= c′e(θe)− φ′e (le (θe)) le (θe)
l′e (θe)

le (θe)
,

and

π′(θe) = Qij(θe)P
(
Qij (θe) , θe

)  ∂ ln P(Qij(θe),θe)
∂θe

+[
1 +

∂ ln P(Qij(θe),θe)
∂ ln Qij(θe)

] [
x′e(θe)
xe(θe)

+ l′e(θe)
le(θe)

]
 . (B19)

Substituting l′e(θe)
le(θe)

in (B18) by (B19) and using 1 +
∂ ln P(Qij(θe),θe)

∂ ln Qij(θe)
= 1

µ(θe)
delivers (B17) immediately. The

first equation of (B18) is the incentive condition, and the second equation is derived through the defini-

tion of Ve(θe). (B19) is derived from the definition of π(θe) (i.e., π(θe) = P
(
Qij(θe), θe

)
Qij(θe)−WLw(θe))

and the fact that the derivative of π(θe) with respect to Lw(θe) is zero.

In conclusion, given the allocation, we can construct a unique combination of labor income tax and

profit tax that is consistent with the allocation in the equilibrium.

We now show that the allocation A and price P satisfying parts 1šC3 and the constructed tax sys-

tem T construct an SCCTE. First, the allocation satisfies the incentive conditions (33) and (35). Thus,

according to the analysis in the subsections given before (see Lemma 1 for example), the allocation is

consistent with agents’ optimal choice. Second, the price P satisfies (16) and (17). Third, the market

clear conditions (13) to (15) are satisfied. Lastly, agents’ budget constraints (9) and (12) are embedded in

the definitions of gross utilities and the construction of income taxes. In conclusion, the constructed tax

system T together with the given allocation A and price P constructs an SCCTE.�

B.3 Proof of Lemma 3

We provide the following lemma, which is useful in expressing the optimal tax rate in sufficient statistics.

Lemma 3 Suppose that the markup within the interval (θ∗e , θ
∗
e ) ∈ Θ2

e is constant. Then we have the following

result under our benchmark model in the equilibrium:

π′ (θe)

π (θe)

[
1− π (θe) T′′e (π (θe))

1− T′e (π (θe))

]
=

l′e (θe)

le (θe)

1 + εe

εe
, (B20)



and

επ
1−τe

(π (θe)) =

d ln π(θe)
dθe

1+εe
εe

[
x′e(θe)
xe(θe)

+ µ (θe)
∂ ln P(Qij(θe),θe)

∂θe

] , ∀θe ∈ (θ∗e , θ
∗
e ). (B21)

Proof: By first-order conditions,

1− τe (θe) =
φ′e (le (θe))
P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)

,

and

P (θe)

µ (θe)

∂Qij (θe)

∂ [xe (θe) le (θe)]
=

π (θe)

µ (θe)

P
(
Qij(θ), θ

)
Qij (θ)

[xe (θe) le (θe)]π (θe)

∂ ln Qij (θe)

∂ ln [xe (θe) le (θe)]

=
π (θe)

µ (θe)

1[
1− ξ

µ(θe)

]
(1− ts)

1
[xe (θe) le (θe)]

,

we have [
1− T′e (π (θe))

]
π (θe) = [µ (θe)− ξ] φ′e (le (θe)) le (θe) ,

where we have substitute 1− τe (θe) with [1− T′e (π (θe))].

Taking the derivative of both sides of the above equation with respect to θe gives

[
1− T′e (π (θe))

]
π′ (θe)− T′′e (π (θe))π (θe)π′ (θe) =

[µ (θe)− ξ] φ′e (le (θe))

[
1 +

φ′′e (le (θe)) le (θe)

φ′e (le (θe))

]
l′e (θe)

le (θe)
+ µ′ (θe) φ′e (le (θe)) le (θe) .

Dividing the left side by [1− T′e (π (θe))]π (θe) and the right side by [µ (θe)− ξ] φ′e (le (θe)) le (θe) gives

π′ (θe)

π (θe)

[
1− π (θe) T′′e (π (θe))

1− T′e (π (θe))

]
=

l′e (θe)

le (θe)

1 + εe

εe
+

µ′ (θe)

µ (θe)

1
1− ξ/µ (θe)

, (B22)

where φ′′e (le(θe))le(θe)
φ′e(le(θe))

is substituted by 1
εe

and πT′′e (π)
1−T′e(π)

catches the progressivity of the profit income tax.



On the other hand, notice that π(θe)

P(Qij(θ),θ)Qij(θ)(1−ts)
= 1− ξ

µ(θe)
. Thus, we have

π′ (θ) =

[
∂P
(
Qij(θ), θ

)
∂θ

Qij(θ) +
∂
[
P
(
Qij(θ), θ

)
Qij (θ)

]
∂Qij (θ)

∂Qij (θ)

∂ (xe (θ) le (θ))

d (xe (θ) le (θ))

dθ

]
(1− ts)

+

[
∂
[
P
(
Qij(θ), θ

)
Qij (θ)

]
∂Qij (θ)

∂Qij (θ)

∂Lw (θ)
(1− ts)−W

]
L′w (θ)

=

[
∂P
(
Qij(θ), θ

)
∂θ

Qij(θ) +
∂
[
P
(
Qij(θ), θ

)
Qij (θ)

]
∂Qij (θ)

∂Qij (θ)

∂ (xe (θ) le (θ))

d (xe (θ) le (θ))

dθ

]
(1− ts)

=

[
∂P
(
Qij(θ), θ

)
∂θ

Qij(θ) +
P (θ)

µ (θ)

∂Qij (θ)

∂ (xe (θ) le (θ))

d (xe (θ) le (θ))

dθ

]
(1− ts) .

Therefore,
π′ (θe)

π (θe)
=

∂ ln P
(
Qij(θe), θe

)
∂θe

µ (θe)

µ (θe)− ξ
+

1
µ (θe)− ξ

d ln [xe (θe) le (θe)]

dθe
. (B23)

Combining (B23) and (B22) gives

µ (θe)
∂ ln P

(
Qij(θe), θe

)
∂θe

+
x′e (θe)

xe (θe)
=

π′ (θe)

π (θe)

[
µ (θe)− ξ −

[
1− π (θe) T′′e (π (θe))

1− T′e (π (θe))

]
εe

1 + εe

]
(B24)

+
µ′ (θe)

µ (θe)− ξ

εe

1 + εe
.

If µ (θe) is constant on θe ∈ (θ∗e , θ
∗
e ), then for any θe ∈ (θ∗e , θ

∗
e ), we have (B20) and

µ (θe)
∂ ln P

(
Qij(θe), θe

)
∂θe

+
x′e (θe)

xe (θe)
=

π′ (θe)

π (θe)

[
µ (θe)− ξ −

[
1− π (θe) T′′e (π (θe))

1− T′e (π (θe))

]
εe

1 + εe

]
. (B25)

Combining (39) and (B25) gives (B21).�



C Benchmark Results

C.1 Optimal Taxation

C.1.1 Lagrangian and First-order Conditions

We now take Lagrange multipliers to solve the planner’s optimization problem.40 The Lagrangian func-

tion for the planner’s problem is

£ (Lw, lw, le, Vw, Ve, δ, ∆; λ, ψw, ψe)

= ∑
o∈{w,e}

No

∫
θo

G (Vo(θo)) f̃o (θo) dθo + λ

[
Q− ∑

o∈{w,e}
No

∫
θo

[Vo (θo) + φo (lo (θo))] fo (θo) dθo − R

]

+λ′
[∫

θw

xw (θw) lw (θw) fw (θw) dθw − Ne

∫
θe

Lw (θe) fe (θe) dθe

]
+
∫

θe

ϕ (θe)
d ln v (θe, θele (θe) , Lw (θe) , Q)

dθe
dθe

+
∫

θe

κ (θe)

[
δ (θe)−

d ln Qij (θe)

dθe

]
dθe

+
∫

θw

ψw (θw)

[
lw (θw) φ′w (lw (θw))

x′w (θe)

xw (θe)
−V ′w(θw)

]
dθw

+
∫

θe

ψe (θe)

[
φ′e (le (θe)) le (θe)

[
µ(θe)

[
χ′ (θe)

χ (θe)
+ εQ−ij (θ) δ (θe)

]
+

x′e (θe)

xe (θe)

]
−V ′e (θe)

]
dθe,

where χ′(θe)
χ(θe)

+ εQ−ij(θe)δ (θe) =
∂ ln P(Qij(θe),θe)

∂θe
. Note that we have introduced δ (θe) =

d ln Qij(θe)
dθe

as a control

value and that ln Qij (θe) can be treated as a state variable. Constraint d ln v(θe,θe le(θe),Lw(θe),Q)
dθe

= 0 is used

to guarantee that v (θe) =
P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)
is constant, which is a result of uniform sales taxes on the goods

produced by firms.

Taking partial integrals yields the following:

−
∫

θe

κ (θe)
d ln Qij (θe)

dθe
dθe = ln Qij (θe) κ (θe)− ln Qij

(
θe
)

κ
(
θe
)
+
∫

θe

κ′ (θe) ln Qij (θe) dθo,

and ∫
θe

ϕ (θe)
d ln v (θe)

dθe
dθe = ϕ

(
θe
)

ln v
(
θe
)
− ϕ (θe) ln v (θe)−

∫
θe

ϕ′ (θe) ln v (θe) dθe,

and

−
∫

θe

ψo(θe)V ′o(θe)dθe = Vo(θo)ψo(θo)−Vo(θo)ψo(θo) +
∫

θo

ψ′o(θo)Vo(θo)dθo.

40See Luenberger (1969) for details about Lagrangian techniques. See Mirrlees (1976), Golosov (2016), and Findeisen and
Sachs (2017) for its application in the field of public economics.



The derivatives with respect to the endpoint conditions yield boundary conditions:

κ(θe) = κ(θe) = ϕ
(
θe
)
= ϕ (θe) = ψo(θo) = ψo(θo) = 0, o ∈ {w, e} . (C2)

Thus, ∫
θe

ϕ′ (θe) dθe = 0, (C3)

Substituting the above conditions into the Lagrangian function, yields the following first-order condi-

tions:
∂£

∂Vo(θo)
= G′(Vo(θo))No f̃o (θo) + ψ′o(θo)− λNo fo (θo) = 0, o ∈ {w, e} , (C4)

∂£
∂δ (θe)

= κ (θe) + ψe (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe) = 0, (C5)

∂£
∂lw (θw)

= −λNwφ′w (lw (θw)) fw (θw) + λ′Nwxw (θw) fw (θw) + ψw (θw)
φ′w (lw (θw))

xw (θw)

1 + εw

εw
= 0, (C6)

∂£
∂Lw(θe)

=

[
λP (θe)

∂Qij (θe)

∂Lw(θe)
− λ′

]
Ne fe (θe) +

 κ′(θe)
Lw(θe)

∂ ln Qij(θe)

∂ ln Lw(θe)

−
∫

Θe
ϕ′(θ′e)

∂ ln v(θ′e)
∂ ln Lw(θe)

dθ′e
Lw(θe)

 = 0, (C7)

and

∂£
∂le(θe)

= ψe (θe) φ′e (le (θe))
1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C8)

+λ

[
P (θe)

∂Qij (θe)

∂le (θe)
− φ′e (le (θe))

]
Ne fe (θe)

+
κ′ (θe)

le (θe)

∂ ln Qij (θe)

∂ ln le(θe)
−

∫
Θ ϕ′ (θ′e)

∂ ln v(θ′e)
∂ ln le(θe)

dθ′e

le (θe)
= 0, ∀θo ∈ Θo.

C.1.2 Social Welfare Weight

Unless otherwise specified, the following equations in this subsection are derived for any θo ∈ Θo.

According to ∂£
∂Vo(x) and φo(θo) = φo(θo) = 0, we have:

λ =
∫

θo

G′(Vo(θo)) f̃o(θo)dθo. (C9)

Set

go(θo) =
G′(Vo(θo)) f̃o (θo)

λ fo (θo)
(C10)

as the monetary marginal social welfare weight for θo agent of o occupation. Set

ḡo(θo) =

∫ θo
θo

g(x) f̃o (x) dx
1− Fo(θo)

(C11)



as the weighted monetary social welfare weight for agents whose abilities are higher than θe.

Substituting go(θo) into ∂£
∂Vo(θo)

gives

ψ′o(θo)

λNo fo (θo)
= 1− go(θo) (C12)

Taking integration and using the boundary conditions gives

−ψo(θo)

λNo
=

∫ θo

θo

[1− go(x)] fo(x)dx (C13)

= [1− ḡo(θo)] [1− Fo(θo)] .

In addition, based on ∂£
∂δ(θe)

, we have

κ (θe) = −ψe (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe) (C14)

= −ψe (θe) P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe),

where the second equation is derived by

φ′e (le (θe)) le (θe) =
φ′e (le (θe)) le (θe)

∂Qij(θe)

∂Le(θe)
Le(θe)
Qij(θe)

(C15)

=
φ′e (le (θe))

P(θe)
µ(θe)

∂Qij(θe)

∂Le(θe)
xe (θe)

1
Qij(θe)

µ(θe)
P(θe)

=
P (θe) Qij (θe)

µ (θe)
[1− τe (θe)] (1− τs) .

In addition, we have

κ′ (θe) = −
d
[
ψe (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe)

]
dθe

(C16)

= −


ψ′e (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe)+

ψe (θe) φ′e (le (θe))
1+εe

εe
l′e (θe) µ(θe)εQ−ij(θe)+

ψe (θe) φ′e (le (θe)) le (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe


= −φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe


= −P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

 .



Substituting ψe (θe) and ψ′e (θe) in (C16) and (C14) with (C12) and (C13), we have

κ (θe) = λNe [1− ḡe(θe)] [1− Fe(θe)] φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe) (C17)

= λNe [1− ḡe(θe)] [1− Fe(θe)] P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe),

and

κ′ (θe)

λNe fe (θe)
= −P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe)


[1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]

fe(θe)

×

 1+εe
εe

l′e(θe)
le(θe)

+

d ln
[
µ(θe)εQ−ij (θe)

]
dθe


 . (C18)

C.2 Proof of Theorem 1

Unless otherwise specified, the following equations in this subsection are derived for any θo ∈ Θo.

(i) According to ∂£
∂Lw(θe)

, one has:

P (θe)
∂Qij (θe)

∂Lw(θe)
=

λ′

λ
− κ′ (θe)

λLw (θe) Ne fe (θe)

∂ ln Qij (θe)

∂ ln Lw(θe)
+

∫
θe

ϕ′ (θ′e)
∂ ln v(θ′e)
∂ ln Lw(θe)

dθ′e

λLw (θe) Ne fe (θe)

=
λ′

λ
− κ′ (θe) ξ

λLw (θe) Ne fe (θe)
+

ϕ′ (θe) εv
Lw
(θe)

λLw (θe) Ne fe (θe)
,

where
∫

θe
ϕ′ (θ′e)

∂ ln v(θ′e)
∂ ln Lw(θe)

dx′ = ϕ′ (θe) εv
Lw
(θe) since εv

Lw
(θ′e, θe) is independent of θ′e and

∫
θe

ϕ′ (θ′e) dθ′ = 0.

Substituting P (θe)
∂Qij(θe)

∂Lw(θe)
by Wµ(θe)

1−τs
gives

Wµ (θe)

1− τs
=

λ′

λ
− κ′ (θe) ξ

λLw (θe) Ne fe (θe)
+

ϕ′ (θe) εv
Lw
(θe)

λLw (θe) Ne fe (θe)
. (C19)

Dividing both sides by
εv

Lw (θe)

Lw(θe)Ne fe(θe)
and integrating across θe gives

W
∫

θe

µ (θe)

1− τs

Lw (θe) Ne fe (θe)

εv
Lw
(θe)

dθe =
λ′

λ

∫
θe

Lw (θe) Ne fe (θe)

εv
Lw
(θe)

dθe −
∫

θe

κ′ (θe)

λεv
Lw
(θe)

ξdθe,

where we use
∫

θe
ϕ′ (θ′e) dθ′ = 0 again. Reformation of the above equation gives

1 =

λ′

λ

∫
θe

Lw(θe)Ne fe(θe)
εv

Lw (θe)
dθe

W
∫

θe

µ(θe)
1−τs

Lw(θe)Ne fe(θe)
εv

Lw (θe)
dθe
−

∫
θe

κ′(θe)
λεv

Lw (θe)
ξdθe

W
∫

θe

µ(θe)
1−τs

L(θe)Ne fe(θe)
εv

Lw (θe)
dθe

(C20)

=

λ′

λ

∫
θe

Lw(θe)Ne fe(θe)
εv

Lw (θe)
dθe

W
∫

θe

µ(θe)
1−τs

Lw(θe)Ne fe(θe)
εv

Lw (θe)
dθe

+
∫

θe

κ (θe)

λ

d ξ
εv

Lw (θe)
/dθe

W
∫

Θe

µ(θe)
1−τs

Lw(θe)Ne fe(θe)
εv

Lw (θe)
dθe

dθe,



where the second equation is derived by κ(θe) = κ(θe) = 0 and integration by parts.

Define

ε
Qij
1−τ(θe) ≡

ξ
εv

Lw (θe)∫
θe

µ(θe)
1−τs

WL(θe)Ne fe(θe)
εv

Lw (θe)
dθe

(C21)

Note that under our production function, labor inputs are perfectly substitutable. Thus, εv
Lw
(θe) is inde-

pendent of θe and dε
Qij
1−τ(θe)
dθe

= 0. Combining the above definitions and (C20) gives

1 =
λ′

λW µ
1−τs

+
∫

θe

κ′ (θe)

λ

dε
Qij
1−τ(θe)

dθe
dθe (C22)

=
λ′

λW µ
1−τs

,

where the second equation is derived by dε
Qij
1−τ(θe)
dθe

= 0.

According to ∂£
∂lw(θw)

, we have

1
φ′w(lw(θw))

xw(θw)

=
λ

λ′

[
1− x′w (θw)

xw (θw)

ψw(θw)

λNw fw (θw)

1 + εw

εw

]
. (C23)

Substituting φ′w(lw(θw))
xw(θw)

with [1− τw (θw)]W gives

1
1− τw (θw)

=
Wλ

λ′

[
1− x′w (θw)

xw (θw)

ψw(θw)

λNw fw (θw)

1 + εw

εw

]
(C24)

Second, combining (C24), (C13), and (C22) gives

1
1− τw (θw)

=
1
µ

1−τs

[
1 + [1− ḡw(θw)]

1− Fw(θw)

fw(θw)

x′w (θw)

xw (θw)

1 + εw

εw

]
. (C25)

In addition, based on the definitions of income elasticities (i.e., (A36) and (A37)), we have d ln y(θw)
d ln[xw(θw)W]

=

ε
y
1−τ (θw)

[
1 + 1

εw

]
. Thus,

1
1− τw (θw)

=
1
µ

1−τs

[
1 + [1− ḡw(θw)]

1− Fy(y (θw))

fy(y (θw))y (θw)

1
ε

y
1−τ (θw)

]
. (C26)



(ii) Divide both sides of ∂£
∂le(θe)

by λNe fe (θe) P (θe)
∂Qij(θe)

∂Le(θe)
, and we have

1− φ′e (le (θe))

P (θe)
∂Qij(θe)

∂le(θe)

(C27)

= − ψe (θe)

λNe fe (θe)

φ′e(le(θe))

P (θe)
∂Qij(θe)

∂le(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]

− κ′ (θe)

λle (θe) P (θe)
∂Qij(θe)

∂le(θe)
Ne fe (θe)

+
ϕ′ (θe) εv

le (θe)

λle (θe) P (θe)
∂Qij(θe)

∂le(θe)
Ne fe (θe)

,

where we use ∂ ln Qij(θe)

∂ ln le(θe)
= 1 and

∫
Θ ϕ′ (θ′e)

∂ ln v(θ′e)
∂ ln le(θe)

dθe = ϕ′ (θe) εv
le (θe) to simplify the expression.

For the convenience of derivation, we define

1− τ̃e (θe) ≡
[1− τe (θe)] (1− τs)

µ (θe)
=

φ′e (le (θe))

P (θe)
∂Qij(θe)

∂le(θe)

.

Then one has

τ̃e (θe) = − ψe (θe)

λNe fe (θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
[1− τ̃e (θe)]

− κ′ (θe)

λP (θe) Qij (θe) Ne fe (θe)
+

ϕ′ (θe) εv
le (θe)

λP (θe) Qij (θe) Ne fe (θe)
,

where we use ∂ ln Qij(θe)

∂ ln le(θe)
= 1 to simplify the expression. In the same vein, we have

τ̃e (θe)

1− τ̃e (θe)
= − ψe (θe)

λNe fe (θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C28)

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

[
κ′ (θe)

λNe fe (θe)
− ϕ′ (θe)

λNe fe (θe)
εv

le (θe)

]
or

1
1− τ̃e (θe)

= 1− ψe (θe)

λNe fe (θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C29)

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

[
κ′ (θe)

λNe fe (θe)
− ϕ′ (θe)

λNe fe (θe)
εv

le (θe)

]
.



Combining (C28) and (C13) gives

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
− 1

1− τ̃e (θe)

1
P (θe) Qij (θe)

κ′ (θe)

λNe fe (θe)

+
1

1− τ̃e (θe)

1
P (θe) Qij (θe)

ϕ′ (θe) εv
le (θe)

λNe fe (θe)
.

Using (C19) to substitute
ϕ′(θe)εv

le (θe)

λNe fe(θe)
,41 we have

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C30)

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

κ′ (θe)

λNe fe (θe)

[
1− ξ

εv
le (θe)

εv
Lw
(θe)

]

− 1
1− τ̃e (θe)

Lw (θe)

P (θe) Qij (θe)

λ′

λ

[
1− λ

λ′
Wµ (θe)

1− τs

]
εv

le (θe)

εv
Lw
(θe)

.

We now transform the three terms on the right side of the above equations one by one. First, accord-

ing to (B24),

[1− ḡe(θe)]
1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C31)

= [1− ḡe(θe)]
1− Fe(θe)

fe(θe)

π′ (θe)

π (θe)

[
1 + εe

εe
[µ (θe)− ξ]−

[
1− π (θe) T′′e (π (θe))

1− T′e (π (θe))

]]
+ [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

d ln µ (θe)

dθe

µ (θe)

µ (θe)− ξ
,

where µ(θ)
µ(θ)−ξ

=
P(θe)Qij(θe)(1−ts)

π(θ)
. Moreover, using the definition of the nonlinear elasticity of profit (39),

we have

[1− ḡe(θe)]
1− Fe(θe)

fe(θe)

π′ (θe)

π (θe)

[
1 + εe

εe
[µ (θe)− ξ]−

[
1− π (θe) T′′e (π (θe))

1− T′e (π (θe))

]]
(C32)

= [1− ḡe(θe)]
1− Fπ(π (θe))

π (θe) fπ(π (θe))

1
επ

1−τe
(π)

.

41Equation (C19) suggests that
ϕ′(θe)εv

le (θe)

λNe fe(θe)
=
[[

Wµ(θ)
1−τs

− λ′

λ

]
Lw (θe) +

κ′(θe)ξ
λNe fe(θe)

]
εv

le (θe)

εv
Lw (θe)

.



Second, substituting κ′ (θe) with (C18), we have the following equation:

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

κ′ (θe)

λNe fe (θe)
(C33)

=
[1− τe (θe)] (1− τs)

1− τ̃e (θe)
εQ−ij(θe)


[1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]

fe(θe)

×

 1+εe
εe

l′e(θe)
le(θe)

+

d ln
[
µ(θe)εQ−ij (θe)

]
dθe


 .

Lastly, notice that Lw(θe)W
P(θe)Qij(θe)[1−τs]

= ξ
µ(θe)

and λ′

λW = µ
1−τs

(e.g., see (C22)). The last term of (C30) equals

− 1
1− τ̃e (θe)

Lw (θe)

P (θe) Qij (θe)

λ′

λ

[
1− λ

λ′
Wµ (θe)

1− τs

]
εv

le (θe)

εv
Lw
(θe)

(C34)

= − 1− τs

1− τ̃e (θe)

ξ

µ (θe)

µ

1− τs

[
1− µ (θe)

µ

]
εv

le (θe)

εv
Lw
(θe)

= − ξ

1− τ̃e (θe)

[
µ

µ (θe)
− 1
]

εv
le (θe)

εv
Lw
(θe)

.

Combining equations (C32) to (C34) gives

τ̃e (θe)

1− τ̃e (θe)
(C35)

= [1− ḡe(θe)]
1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
x′e (θe)

xe (θe)

]

+
[1− τe (θe)] (1− τs)

1− τ̃e (θe)
εQ−ij(θe)


[1− ge(θe)]−

[1−ḡe(θe)][1−Fe(θe)]
fe(θe)

 1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe



[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]

− ξ

1− τ̃e (θe)

[
µ

µ (θe)
− 1
]

εv
le (θe)

εv
Lw
(θe)

.



In addition, substituting 1− τ̃e (θe) by [1−τe(θe)](1−τs)
µ(θe)

, we have

1
1− τe (θe)

(C36)

=

[
1 + [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
x′e (θe)

xe (θe)

]]
1− τs

µ (θe)

+ (1− τs) εQ−ij(θe)


[1− ge(θe)]−

[1−ḡe(θe)][1−Fe(θe)]
fe(θe)

 1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe



[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]

+
1

1− τe (θe)

[
1− µ

µ (θe)

]
ξ

εv
le (θe)

εv
Lw
(θe)

.

Using

RE (θe) ≡
[

µ

µ (θe)
− 1
]

and

IRE (θe) ≡ εQ−ij(θe)

 [1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]
fe(θe)

×
[

1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

]  ,

we have

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ (θe) / (1− τs)

(C37)

+ (1− τs) IRE (θe)

Elasticity of Qij w.r.t le︷ ︸︸ ︷[
1− ξ

εv
le (θe)

εv
Lw
(θe)

]

+
1

1− τe (θe)
ξRE (θe)

Elasticity of Lw w.r.t le︷ ︸︸ ︷[
−

εv
le (θe)

εv
Lw
(θe)

]
,

which is equivalent to

1
1− τe (θe)

=

1+[1−ḡe(θe)]
1−Fe(θe)

fe(θe)
1+εe

εe

[
µ(θe)

∂ ln P(Q(θe),θe)
∂θe

+
x′e(θe)
xe(θe)

]
µ(θe)/(1−τs)

+ IRE (θe)
[
1− ξ

εv
le (θe)

εv
Lw (θe)

]
1 + RE (θe) ξ

εv
le
(θe)

εv
Lw (θe)

. (C38)

Substituting the elasticities with parameters and τs by 0, we have the results given in Theorem 1.�



C.3 Proof of Corollary 1

We use subscript 0 to represent the original variables. For θe ≥ θ∗e ,

1− Fπ0 (π0 (θe))

π0 (θe) fπ0 (π0 (θe))
=

1− Fθe (θe)

fθe (θe)

π′0 (θe)

π0 (θe)
(C39)

is constant. To derive π0(θe)
π0(θe)

, we use the first-order conditions:

W =
P0(θe)Qij,0 (θe)

µ (θe)

ξ

Lw (θe)
,

and
P0(θe)Qij,0 (θe)

µ (θe)
[1− τ0 (θe)] = le,0 (θe) φ′e (le,0 (θe)) = le,0 (θe)

1+ 1
εe ,

where

P0 (θe) Qij,0 (θe) = χ(θe)A
σ−1

σ Qij,0 (θe)
1− 1

σ Q
1
σ = χ(θe)A

σ−1
σ

[
xe(θe)le,0 (θe) · Lw,0 (θe)

ξ
]1− 1

σ Q
1
σ , θe ≥ θ∗e .

Take the logarithm of both sides of the above equations, and then take the derivative of θe on both

sides of the equations:

0 =
χ′(θe)

χ(θe)
− d ln µ (θe)

dθe
+

σ− 1
σ

[
x′e(θe)

xe(θe)
+

l′e,0 (θe)

le,0 (θe)
+ ξ

L′w,0 (θe)

Lw,0 (θe)

]
−

L′w,0 (θe)

Lw,0 (θe)

and (
1 +

1
εe

) l′e,0 (θe)

le,0 (θe)
=

χ′(θe)

χ(θe)
− d ln µ (θe)

dθe
+

σ− 1
σ

[
x′e(θe)

xe(θe)
+

l′e,0 (θe)

le,0 (θe)
+ ξ

L′w,0 (θe)

Lw,0 (θe)

]
, θe ≥ θ∗e .

When τ0 (θe) is constant for θe ≥ θ∗e , we can express
l′e,0(θe)

le,0(θe)
and L′w(θe)

Lw(θe)
in exogenous parameters:

l′e,0 (θe)

le,0 (θe)
=

d ln µ(θe)
dθe

− χ′(θe)
χ(θe)

− σ−1
σ

x′e(θe)
xe(θe)

σ−1
σ

[
1 + ξ

(
1 + 1

εe

)]
−
(

1 + 1
εe

) , (C40)

L′w,0 (θe)

Lw,0 (θe)
=

(
1 +

1
εe

) l′e,0 (θe)

le,0 (θe)
, θe ≥ θ∗e .

Lastly, notice that

π0 (θ) = P0 (θe) Qij,0 (θe)−WLw,0 (θe) = P0 (θe) Qij,0 (θe)

[
1− ξ

µ (θe)

]
.



We have

π′0 (θe)

π0 (θe)
=

d ln
[
P0 (θe) Qij,0 (θe)

]
dθe

+
d ln

[
1− ξ

µ(θe)

]
dθe

(C41)

=
χ′(θe)

χ(θe)
+

σ− 1
σ

[
x′e(θe)

xe(θe)
+

l′e,0 (θe)

le,0 (θe)
+ ξ

L′w,0 (θe)

Lw,0 (θe)

]
+

d ln
[
1− ξ

µ(θe)

]
dθe

, ∀θe ≥ θ∗e .

One can see that 1−Fθe (θe)
fθe (θe)

π′(θe)
π(θe)

is constant on θe ≥ θ′e as long as the profit tax wedge is constant on

θe ≥ θ′e and θ′e ≥ θ∗e . This is because for any θe ≥ θ∗e ,
l′e,0(θe)

le,0(θe)
+ ξ

L′w,0(θe)

Lw,0(θe)
can be expressed in exogenous

parameters when the profit tax rate is constant on θe ≥ θ∗e . Moreover, 1−Fθe (θe)
fθe (θe)

π′(θe)
π(θe)

is equal to Hinitial

when (i) θe ≥ θ′e; (ii) the profit tax wedge is constant on θe ≥ θ′e; and (iii) θ′e ≥ θ∗e .

Suppose that there exists θ?e ∈
(
θe, θe

)
such that for any θe ≥ θ?e , τe (θe) = τe is constant. Then for

any θe ≥ θ?e , 1−Fθe (θe)
fθe (θe)

π′(θe)
π(θe)

is equal to Hinitial . When for any θe ≥ θ?e , ḡe(θe) = ge, we have (48) for any

θe ≥ {θ∗e , θ?e }.�

C.4 Proof of Corollary 2

When the social welfare function is utilitarian, one has ḡo(θo) = g(θe) = 1. Then the general optimal tax

formulas given in Theorem 1 can be simplified to the formulas given in Corollary 2.�

C.5 Proof of Corollary 3

Combining equations (C32) to (C34) also gives

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C42)

+
1− τe (θe)

1− τ̃e (θe)
εQ−ij(θe)


[1− ge(θe)]−

[1−ḡe(θe)][1−Fe(θe)]
fe(θe)

 1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe



[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]

− 1
1− τ̃e (θe)

[
1− µ

µ (θe)

]
ξ

[
−

εv
le (θe)

εv
Lw
(θe)

]
.



Substituting 1
1−τ̃e(θe)

with µ(θe)
1−τe(θe)

, we have

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ (θe)

(C43)

+εQ−ij(θe)


[1− ge(θe)]−

[1−ḡe(θe)][1−Fe(θe)]
fe(θe)

 1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe



[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]

−
[

1− µ

µ (θe)

]
ξ

[
−

εv
le (θe)

εv
Lw
(θe)

]
,

where

∂ ln P(Qij, θe)

∂θe
|Qij=Qij(θe) =

χ′(θe)

χ(θe)
+

[
σ− 1

σ
− 1

µ (θe)

]
d ln Qij (θe)

dθe
(C44)

εQ−ij(θe) =
σ− 1

σ
− 1

µ (θe)

εv
le (θe)

εv
Lw
(θe)

=
1

ξ − σ
σ−1

, ∀θe ∈ Θ.

Now suppose that the tax rate is constant in the interval
(

θ∗e , θ
∗
e

)
. According to the proof of Corollary

1, one can see that

l′e (θe)

le (θe)
=

d ln µ(θe)
dθe

− χ′(θe)
χ(θe)

− σ−1
σ

x′e(θe)
xe(θe)

σ−1
σ

[
1 + ξ

(
1 + 1

εe

)]
−
(

1 + 1
εe

) , (C45)

L′w (θe)

Lw (θe)
=

(
1 +

1
εe

)
l′e (θe)

le (θe)
,

Q′ij (θe)

Qij (θe)
=

x′e(θe)

xe(θe)
+

l′e (θe)

le (θe)
+ ξ

L′w (θe)

Lw (θe)
, ∀θe ∈

(
θ∗e , θ

∗
e

)
.

Further assume that the markup is constant in the interval
(

θ∗e , θ
∗
e

)
. Then in this interval,

d ln
[
µ(θe)εQ−ij (θe)

]
dθe

=

0, and l′e(θ)
le(θ)

1+εe(θ)
εe(θ)

= π′(θ)
π(θ)

and επ
1−τe

(π (θe)) =
d ln π(θe)

dθe

1+εe
εe

[
µ(θe)

∂ ln P(Qij(θe),θe)
∂θe

+
x′e(θe)
xe(θe)

] = 1
1+εe

εe [µ(θe)−ξ]−1
(e.g., see



Lemma 3). Thus,

1
1− τe (θe)

(C46)

=
1 + [1− ḡe(θe)]

1−Fπ(π(θe))
π(θe) fπ(π(θe))

[
1+εe

εe
[µ (θe)− ξ]− 1

]
µ (θe)

+

εQ−ij(θe)

[
[1− ge(θe)]−

[1− ḡe(θe)]
1−Fπ(π(θe))

π(θe) fπ(π(θe))

] [
1− ξ

εv
le (θe)

εv
Lw
(θe)

]

− 1
1− τe (θe)

[
1− µ

µ (θe)

]
ξ

[
−

εv
le (θe)

εv
Lw
(θe)

]
, ∀θe ∈

(
θ∗e , θ

∗
e

)
.

In the same vein,

1
1− τe (θe)

=

 1
µ(θe)

[
1 + [1− ḡe(θe)]

1−Fπ(π(θe))
π(θe) fπ(π(θe))

[
1+εe

εe
[µ (θe)− ξ]− 1

]]
+

εQ−ij(θe)
[
[1− ge(θe)]− [1− ḡe(θe)]

1−Fπ(π(θe))
π(θe) fπ(π(θe))

] [
1− ξ

εv
le (θe)

εv
Lw (θe)

] 
1 +

[
1− µ

µ(θe)

]
ξ
[
− εv

le
(θe)

εv
Lw (θe)

] , (C47)

where θe ∈
(

θ∗e , θ
∗
e

)
. According to the definitions of elasticities, we have

εQ−ij(θe)

[
1− ξ

εv
le (θe)

εv
Lw
(θe)

]
=

[
σ− 1

σ
− 1

µ (θe)

] [
1− ξ

ξ − σ
σ−1

]
=

1− 1
µ(θe)

σ
σ−1

σ
σ−1 − ξ

. (C48)

In conclusion, we have ∀π ∈
(

π (θ∗e ) , π
(

θ
∗
e

))
:

1
1− T′π (π)

=

 1
µπ(π)

[
1 + [1− ḡπ(π)] 1−Fπ(π)

π fπ(π)

[
1+εe

εe
[µ (θe)− ξ]− 1

]]
+

1− σ
σ−1

1
µπ (π)

σ
σ−1−ξ

[
[1− gπ(π)]− [1− ḡπ(π)] 1−Fπ(π)

π fπ(π)

]


1−
[
1− µ

µπ(π)

]
ξ

ξ− σ
σ−1

,

where µπ (π (θe)) ≡ µ (θe).

For the top tax rate, we have

1
1− τe

=

1+(1−ḡ)Hinitial[ 1+εe
εe (µ−ξ)−1]

µ +
1− σ

σ−1
1
µ

σ
σ−1−ξ [1− ḡ]

[
1− Hinitial

]
1−

(
1− µ

µ

)
ξ

ξ− σ
σ−1

,

which suggests that (52).�



D Extensions and Discussions

D.1 Proof of Theorem 2

(i) When the uniform restriction on v (θe, θele (θe) , Lw (θe) , Q) is loosened, ϕ (θe) = 0. Under this case,

according to ∂£
∂Lw(θe)

, we have

P (θe)
∂Qij (θe)

∂Lw(θe)
=

λ′

λ
− κ′ (θe)

λLw (θe) Ne fe (θe)

∂ ln Qij (θe)

∂ ln Lw(θe)

=
λ′

λ
− κ′ (θe) ξ

λLw (θe) Ne fe (θe)
.

Dividing both sides by
εv

Lw (θe)

Lw(θe)Ne fe(θe)
and integrating across θe gives

∫
θe

P (θe) Qij (θe) ξ
Ne fe (θe)

εv
Lw
(θe)

dθe =
λ′

λ

∫
θe

Lw (θe) Ne fe (θe)

εv
Lw
(θe)

dθe −
∫

θe

κ′ (θe)

λεv
Lw
(θe)

ξdθe,

Using κ(θe) = κ(θe) = 0 and integration by parts, we have

λ′

λW
=

ξ
∫

θe
P (θe) Qij (θe) Ne fe (θe) dθe

W
∫

θe
Lw (θe) Ne fe (θe) dθe

=
ξ
∫

θe

P(θe)Qij(θe)

WLw(θe)
WLw (θe) Ne fe (θe) dθe∫

θe
WLw (θe) Ne fe (θe) dθe

=
ξ
∫

θe

µ(θ)
ξ[1−τs(θe)]

WLw (θe) Ne fe (θe) dθe∫
θe

WLw (θe) Ne fe (θe) dθe

= µ̃.

Substituting P (θe)
∂Qij(θe)

∂Lw(θe)
with Wµ(θ)

1−τs(θe)
gives

1
1− τs (θe)

=
λ′

λWµ (θ)
− κ′ (θe) ξ

λLw (θe) Ne fe (θe)Wµ (θ)

=
µ̃

µ (θ)
− κ′ (θe) ξ

λLw (θe) Ne fe (θe)Wµ (θ)

=
µ̃

µ (θ)
+ [1− τe (θe)] εQ−ij(θe)

 [1− ge(θe)]−
[1−ḡe(θe)][1−Fe(θe)]

fe(θe)

[
1+εe

εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

] 
where the third equation is derived by (C18).

In particular, if within the interval (θ∗e , θ
∗
e ) ∈ Θ2

e tax rates and markups are constant, we have



d ln
[
µ(θe)εQ−ij (θe)

]
dθe

= 0 and the following result (e.g., see Lemma 3):

π′ (θe)

π (θe)
=

l′e (θe)

le (θe)

1 + εe

εe
. (D2)

Thus, for any (θ∗e , θ
∗
e ) ∈ Θ2

e ,

1
1− τs (θe)

=
µ̃

µ (θ)
+ [1− τe (θe)] εQ−ij(θe)

[
[1− ge(θe)]− [1− ḡe(θe)]

1− Fπ(π (θe))

fπ (π (θe))π (θe)

]
.

(ii) According to ∂£
∂lw(θw)

, we have

1
φ′w(lw(θw))

xw(θw)

=
λ

λ′

[
1− x′w (θw)

xw (θw)

ψw(θw)

λNw fw (θw)

1 + εw

εw

]
. (D3)

Substituting φ′w(lw(θw))
xw(θw)

by [1− τw (θw)]W gives

1
1− τw (θw)

=
1
µ̃

[
1 + [1− ḡw(θw)]

1− Fw(θw)

fw(θw)

x′w (θw)

xw (θw)

1 + εw

εw

]
.

(iii) According to ∂£
∂le(θe)

, we have

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
− 1

1− τ̃e (θe)

WLw (θe)

P (θe) Qij (θe)

1
ξ

κ′ (θe) ξ

λNe fe (θe)WLw (θe)

Using µ(θ)
1−τs(θe)

= µ̃− κ′(θe)ξ
λWLw(θe)Ne fe(θe)

to substitute κ′(θe)ξ
λWLw(θe)Ne fe(θe)

and ξ[1−τs(θe)]
µ(θ)

to substitute WLw(θe)
P(θe)Qij(θe)

we have

1
1− τ̃e (θe)

= 1 + [1− ḡe(θe)]
1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(D4)

+
1

1− τ̃e (θe)

[
1− µ̃

1− τs (θe)

µ (θ)

]
.

Lastly, substituting 1− τ̃e (θe) with [1−τe(θe)][1−τs(θe)]
µ(θe)

, we have

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ̃

. (D5)

�



E Additional Figures

E.1 Comparison Economy under Laissez-faire and Optimal Tax: Ratios

Figure E2: Comparing variables under zero tax and optimal tax



E.2 Optimal Tax Rates under Different Distributions of Markup.

Figure E3: Optimal profit tax rates under different distributions of markup
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