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Abstract

Using Visa debit and credit card transactions in the U.S. from 2016 to

2019, we document the importance of customers in accounting for sales

variation across merchants, across stores within retail chains, and over time

for individual merchants and stores. Customers, as opposed to transac-

tions per customer or dollar sales per transaction, consistently account

for about 80% of sales variation. The top 1% of growing and shrinking

merchants account for about 70% of customer and sales reallocation in a

given year. We write down an endogenous growth model with and without

the customer margin. In this model, we find that the customer margin

dramatically increases the size and growth contribution of the largest firms,

but actually lowers the aggregate growth rate by diverting resources from

research to marketing.
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1. Introduction

Over the last two decades, a stream of research has emphasized the role of

customer acquisition in firm dynamics, trade, and growth. Influential models

include Fishman and Rob (2003), Luttmer (2006), Arkolakis (2010, 2016), and

Perla (2019). Gourio and Rudanko (2014) and Gilchrist, Schoenle, Sim and Za-

krajšek (2017) argue that such frictions play a role in business cycle fluctuations,

Eslava, Tybout, Jinkins, Krizan and Eaton (2015) present evidence and a cus-

tomer search model of exporting firm dynamics, and Bernard, Dhyne, Mager-

man, Manova and Moxnes (2019) document the importance of the number

of customers in Belgian inter-firm transactions. Bornstein (2018) argues that

consumer aging interacts with customer inertia to explain the decline in both

labor’s share and firm entry in recent decades. Bagwell (2007) surveys models

and evidence on the role of advertising in reaching and attracting customers.

In this paper, we use Visa debit and credit card transactions from 2016–

2019 to bring new systematic and direct evidence to bear on the importance

of customers in the U.S. retail sector.1 The Visa data covers a significant part

of consumer spending in the U.S. Roughly 93% of households used at least one

debit or credit card in 2018 (Foster, Greene and Stavins, 2019). Around 24% of

all U.S. consumer spending flowed through Visa in 2019.2 If Visa’s 60% share is

representative of all debit and credit card spending, then Visa spending patterns

are relevant for around 40% of all consumption.3

We start by decomposing Visa sales at the chain and store level into the

number of unique credit and debit cards, transactions per card, and sales per

transaction. We find that the number of customers dominates the decomposi-

1The sample is anonymized. Neither the name, address, nor any personal information about
the cardholder is observable, other than what can be inferred given a card’s transaction history.

2Visa (2019)’s 2019 10-K filing reports $3.242 trillion in nominal payments volume for
consumer credit and debit. This is 24.4% of BEA nominal consumption in 2019 of $13.280
trillion.

3Consistent with wide spending coverage, in Yelp data for seven mid-sized cities (Pittsburgh,
Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison, and Cleveland) in 2017, three
quarters of the outlets who reported payment information and 93% of tem indicated that they
accepted credit cards (https://www.yelp.com/dataset).

https://www.yelp.com/dataset
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tion across merchants and across stores within merchants, and over time within

stores or merchants.

The customer margin is more important for brick-and-mortar transactions

than for e-commerce. Focusing on offline retail, we show that about 80% of

sales variation can be traced to the number of customers, and that the im-

portance of customers per store plays an even bigger role than the number of

stores for sales variation across merchants and over time for a given merchant.

For only the largest merchants does the store margin play a big role. Perhaps

surprisingly, the importance of customers is remarkably consistent across all

retail categories, such as furniture, electronics, restaurants, or gas stations.

Our decomposition does not distinguish between adding low-spending vs.

high-spending customers. If expanding stores and merchants tend to add low-

spending customers, this will tend to overstate the contribution of new cus-

tomers and understate the role of spending increases by retained customers. To

address this, we show that retained customers do tend to increase their spend-

ing more at fast-growing merchants and stores. Even with a generous adjust-

ment for the spending of gained and lost customers versus retained customers,

however, we find that the extensive margin accounts for 60% of sales growth

variation across merchants and stores.

We then continue by showing that around 70% of aggregate sales increases

and decreases can be traced to the 1% fastest growing and shrinking merchants

in a given year. This is consistent with a stream of results on the role of fast-

growing firms in aggregate job creation, such as Decker, Haltiwanger, Jarmin

and Miranda (2016). We find that most of this tail behavior in the Visa data

reflects adding or losing customers. Though in the retail sector rather than

the manufacturing sector, our evidence of a large extensive margin for cus-

tomers is in the spirit of findings by Foster, Haltiwanger and Syverson (2008,

2016) and Hottman, Redding and Weinstein (2016). These studies estimate that

fast-growing manufacturers experience rising demand for their products, as

opposed to selling a wider array of products more cheaply. One explanation
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for this could be that such firms are attracting more customers, perhaps linked

to the quality and variety of their products. Baker, Baugh and Sammon (2020)

also analyze customers using debit and credit card transactions, specifically

from 2010 to 2015. Their focus is on a smaller set of 550 firms, 420 of whom

are publicly traded and hence have observable stock returns. Their analysis,

like ours, emphasizes the importance of the customer margin. In concurrent

work, Afrouzi, Drenik and Kim (2020) explore the relationship between price-

cost markups and margins of consumer demand.

We next write down an endogenous growth model with firm dynamics that

incorporates the customer extensive margin. In the model, firms invest in im-

proving the quality of their products each period, which generates growth in

the aggregate. Innovation outcomes are stochastic, so firms are heterogeneous

in their quality levels and growth rates. Firms spend on marketing to access

customers each period. Because they sell more to each customer they access,

firms with higher quality products spend more to access more customers. Cus-

tomer acquisition thereby amplifies size differences stemming from quality dif-

ferences across firms. Customers are a static function of current year marketing

efforts; firms do not lower markups early on to build their customer base dy-

namically. This is consistent with empirical evidence on Irish exporting firms

and U.S. consumer goods manufacturers documented by Fitzgerald and Priolo

(2018) and Fitzgerald, Haller and Yedid-Levi (2019).

In the model, customers dramatically amplify the effects of quality differ-

ences and therefore the market share and growth contribution of large firms.

Yet, calibrating the model based on the empirical facts we document, we find

that the customer margin actually undermines growth This is because it diverts

resources from research to marketing.

The rest of the paper proceeds as follows. Section 2 describes the Visa dataset.

Section 3 presents evidence on the importance of customers for sales variation.

Section 4 lays out the growth model, its calibration, and its quantitative proper-

ties. Section 5 concludes.
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2. The Visa dataset

Our primary source of data relies on all credit and debit card transactions that

were processed through Visa’s electronic payments network in the US between

January 2016 and December 2019. The Visa network is the largest network in

the market, accounting for about 50% of the credit card transaction volume and

about 70% of the debit card volume over this period, with Mastercard, American

Express, and Discover sharing the rest.4

The unit of observation is a transaction, which includes a merchant identi-

fier, an anonymized card identifier, the time and date of the transaction, and

the transaction amount. We do not see the specific items purchased, nor their

prices or quantities. The merchant details include an exact store location, so

each merchant’s store can be uniquely identified.

We apply standard filters used by Visa’s data analytics team. We exclude PIN-

debit transactions (as opposed to signature-debit transactions) because their

volume flowing through Visa fluctuates substantially with regulatory changes

during our sample period. We also exclude transactions that are not sales drafts

(these would include chargebacks, failed transactions, or payment holds, which

would not culminate in an actual transaction), those coming from prepaid gift

cards, and those conducted by cards that transacted at fewer than five mer-

chants during the lifetime of the card (these are likely specialized merchant-

specific rewards cards). We also exclude transactions associated with merchants

located outside the US (which would flow through the US Visa network if the

card is issued by a US bank). Online Appendix A provides more detail.

We further restrict the analysis to merchants who are (self) classified as op-

erating in the retail sector (Census Bureau NAICS 44 and 45) or as restaurants

(NAICS 722), and we limit our primary analysis to in-person transactions where

the card was used in a brick-and-mortar store. Thus, our main sample drops

NAICS code 454 (“Nonstore Retail”), which consists almost exclusively of online

transactions. We also exclude Gas Stations (NAICS 447) when we decompose

4https://WalletHub.com/edu/market-share-by-credit-card-network/25531.

http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
https://WalletHub.com/edu/market-share-by-credit-card-network/25531
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aggregate time series changes, given that gasoline sales are heavily driven by

price fluctuations (Levin, Lewis and Wolak, 2017).

Overall, the 2016–2019 Visa data contain an annual average of 428 million

cards, 31.5 billion transactions, and $1.07 trillion in sales for the retail sector

plus restaurants.5 Of these sales, 60% (of the dollar volume) were credit trans-

actions and 40% were debit transactions. Visa spending covers a similar share

of sales and restaurant spending in 2019 as consumption overall. Thus, if other

card transactions are similar in nature to Visa’s, then Visa spending would be

representative of approximately 40% of all retail and restaurant sales.

We analyze the Visa data at three levels of aggregation. First, we aggregate

the transaction data to store-card-years to calculate each card’s yearly spending

in each store. Second, we aggregate to store-years. For every store-year we

calculate the following: the number of distinct customer cards (accounts), the

number of transactions (swipes), and the dollar volume of transactions. Third,

we aggregate to merchant-years. We then calculate, for each merchant, the

following variables: number of distinct locations (stores), number of distinct

customer accounts (cards), number of transactions, and dollar volume.

Finally, we note that we also have access to Visa data before 2016, going back

to 2007, but it is less granular with respect to stores and merchants. For the

largest merchants (which covers about 70% of the transactions and 60% of the

dollar volume during these years), pre-2016 data do not provide exact location

for each transaction, but only a 5-digit zip code, which makes it infeasible to

distinguish stores of the same merchant within a zip. Smaller merchants in

these earlier years are grouped by NAICS, so it is also infeasible to distinguish

different stores of different small merchants within a NAICS-zip combination,

rendering them mostly unusable for our purpose. Therefore, in our main anal-

ysis we use the complete complete set of merchants and stores uing data from

2016–2019, but we also report results that use larger merchants only for this

longer panel of 2007–2019 (see Online Appendix B).

5Appendix Table A2 provides these statistics for each year separately.

http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
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3. The empirical importance of customers

3.1. Sales Decompositions

Measurement. To gauge the importance of customers to a merchant’s or store’s

sales, we decompose sales into three margins we can observe in the Visa data:

S = N · V
N
· S
V
, (1)

where S denotes total merchant (or store) sales in dollars over a given period,N

is the number of unique customer cards that transact at the merchant or store

over that period, and V is the total number of visits (transactions) at the mer-

chant or store in that period. The decomposition breaks down total sales into

a customer extensive margin (the number of cards) and two intensive margins

— the frequency at which customers visit the merchant or store, V/N , and the

average transaction amount (the “ticket size”), S/V .

At the merchant level, we can further decompose how merchants reach cus-

tomers into their number of locations (stores), L, and the number of unique

customers per store, so that the total decomposition becomes:

S = L · N
L
· V
N
· S
V
. (2)

To operationalize this decomposition, we take logs of both sides in equa-

tion (1) or (2) and regress each right-hand-side component on log sales. These

coefficients add up to 1 by construction. The coefficients are equivalent to a

variance decomposition in which the covariance terms are split equally.

Overall results. Table 1 presents this decomposition at the merchant level

using different subsamples of merchants in 2019. Panel A reports results from

all sectors (that is, not only retail), covering over two million different mer-

chants. In this broad sample, the customer margin accounts for 74% of sales

variation across merchants, transactions per card around 4%, and the ticket

size accounts for the remaining 22%. When we look at only online transactions
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(Panel B), the customer margin falls to 67% of variation in online sales across

merchants. In contrast, the customer margin accounts for 81% of variation in

offline sales across about 1.8 million merchants in 2019. Of this 81%, 71% comes

from cards per store and only around 10% from the number of stores.

Our primary focus is on offline retail (plus restaurants), a sector that con-

tains almost a million distinct merchants in 2019. The results (in Panel D) are

very similar to those obtained using the broader set of offline merchants. For

comparison, the bottom panel (Panel E) shows that for the much smaller set of

2,700 large “named” merchants, which Visa tracks all the way back to 2007, the

store margin is much more important, accounting for 56% of the variation in

sales vs. only 35% that is accounted for by cards per store.

In Table 2 we focus on the offline retail (plus restaurants) sector, now show-

ing additional types of variation. The first row (Panel A) reproduces the cor-

responding cross-sectional analysis we already reported in Panel D of Table 1.

The second row (Panel B of Table 2) uses the same set of merchants, over the

four years of data (2016–2019), but now focusing on variation in sales over time

within each merchant. To do so, we aggregate observation at the merchant-year

level (there are 3.9 million observations at this aggregation level) and include in

all regressions merchant and year fixed effects so that the variation is coming

from merchants that grow faster or slower than the average for that year. The

customer extensive margin is just as important here, accounting for 85% of the

variation of sales within merchants. Much of this (68.5%) is attributed to the

changing number of cards per store, and the rest (16%) to store closings and

openings.

Panels C and D of Table 2 report a similar analysis at the single store (rather

than the merchant) level, where we control for merchant fixed effect in all re-

gressions so that the object of interest is variation in sales across stores within

the same merchant. In Panel C we use a cross section of stores (in 2019), and

again find that much (84%) of the variation of sales across stores of the same

merchant is accounted for by the customer margin. Finally, in Panel D we look
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Table 1: Sales Decomposition for Different Merchant Samples

Stores Cards/Store Trans/Card Dollar/Trans

A. All Data 0.743 0.037 0.221

(N = 2, 176, 981) (<0.001) (<0.001) (<.001)

[0.551] [0.017] [0.091]

B. Online 0.673 0.073 0.254

(N = 606, 346) (<0.001) (<0.001) (<0.001)

[0.645] [0.083] [0.232]

C. Offline 0.095 0.714 0.032 0.159

(N = 1, 794, 469) (<0.001) (<0.001) (<0.001) (<0.001)

[0.109] [0.534] [0.016] [0.050]

D. Offline Retail 0.093 0.706 0.035 0.166

(N = 953, 615) (<0.001) (<0.001) (<0.001) (<0.001)

[0.115] [0.591] [0.018] [0.063]

E. Offline Retail, “named” 0.561 0.348 0.056 0.035

(N = 2, 741) (0.009) (0.009) (0.004) (0.007)

[0.601] [0.366] [0.079] [0.009]

Note: N = the number of merchant observations. Cards = the number of unique debit and credit
cards; Trans = the number of transactions. Standard errors are reported in parenthesis, and R-
Squared values are in square brackets. Regressions are based on 2019 data. All Data covers all
merchants with Visa transactions in consumer NAICS. The “named” merchants are the largest
chains. Each regression includes NAICS fixed effects.
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at variation in sales within a store over time by (similar to Panel B) using 2016–

2019 data, aggregating variables at the store-year level (we have 8.2 million such

observations), and adding store and year fixed effects. The customers margin

continues to be the dominant factor (82% in this specification) that explains

variation in store sales over time.

Taken together, whether we look across merchants or stores in 2019, or across

time for merchants and stores from 2016 to 2019, the number of unique cus-

tomers explains the vast majority (80% or more) of the variation in sales.

Heterogeneity across retail sectors. In some retail contexts, this general

finding seems hardly surprising. For example, in the context of furniture stores,

when purchases by a single customer are not frequent, it seems natural that

sales are almost entirely driven by how many customers show up. Yet, in other

retail contexts this general result is a-priory less obvious. For example, one can

imagine that coffee shop sales would be driven not only by how many unique

customers show up, but whether they show up once week or every day, or whether

they add a pastry to the coffee.

To explore this, we repeat the decomposition exercise using the “within mer-

chant over time”, which is our preferred specification (as in Panel B of Table

2), but estimate it separately for different retail categories (defined by 3-digit

NAICS). As before, the observation is at merchant-year level (using data from

2016 to 2019), and each regression includes merchant and year fixed effects.

The results are shown in Figure 1. Customers are the primary driver of mer-

chant sales in all sectors. Customers explain at least 70% of the variation in

merchant sales over time in every category except furniture and electronics.

In the latter two NAICSs, customers account for about 60% of the variation in

sales, and the average transaction amount accounts for much of the rest. The

frequency of visits explains very little of sales variation in thee two, a well as all

other retail categories.

Households vs. Cards. Cards could overstate the importance of the cus-

tomer margin to the extent that households use multiple cards at the same



11

Table 2: Decomposing Sales in Offline Retail

Stores Cards/Store Trans/Card Dollar/Trans

A. Across Merchants 0.094 0.712 0.036 0.157

(N = 891, 289) [0.119] [0.597] [0.020] [0.057]

B. Within Merchants over Time 0.170 0.676 0.097 0.057

(N = 3, 627, 846) [0.798] [0.974] [0.941] [0.969]

C. Across Stores within Merchants 0.841 0.077 0.082

(N = 1, 926, 714) [0.972] [0.809] [0.933]

D. Within Stores over Time 0.817 0.134 0.049

(N = 7, 746, 218) [0.995] [0.969] [0.987]

Note: All standard errors are less than 0.001. R-Squared values are reported in square brackets.
Across Merchant and Across Store within Merchant decompositions are based on 2019 data. Within
Merchants over Time and Within Stores over Time are based on 2016–2019 data. Within Merchants
over Time regressions include merchant and year fixed effects. Across Stores within Merchants
regressions include merchant fixed effects. Within store over Time regressions include store and year
fixed effects. See Online Appendix B for robustness with respect to a longer panel of merchant/store
data.

http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
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Figure 1: Decomposing Merchant Sales Growth by Industry

Note: This figure displays the coefficients of the “Within Merchant over time”
decomposition by industry. The regressions are run with Visa data from 2016
through 2019, and include merchant and year fixed effects.

merchant or store. In particular, if households use a greater number of cards

at merchants or stores with higher overall sales. For Visa credit cards from 2016

to 2019 we can match cards to households for about 50% of cards. these house-

holds average 1.7 Visa cards, but 91% of them transact with a given merchant

in a given year using a single card. More to the point, when we do a version of

Table 2 in Appendix Table B2 with cards vs. households, we find the customer

margin falls by only one percentage point.

Non-linearities. Our linear regressions may hide important non-linearities.

We explore this in Figure 2. We partition merchants into 20 bins in terms of their
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sales (Figure 2a) or sales growth (Figure 2b), with an equal number of merchants

in each bin, and plot their components vs. sales (or sales growth) on a log-log

base 10 scale. The first bin is normalized to one for all variables.

In the cross section of merchants in 2019 (Figure 2a), the number of unique

customers is even more important across larger merchants, with visits per cus-

tomer and average transaction amount being less important across the largest

merchants. When we look at sales variation over time within a merchant (Figure

2b), after residualizing merchant and year fixed effects, the relationship look

approximately linear.

Figure 2: Decomposing Merchant Sales

(a) across Merchants (b) within Merchants over time

Note: Panel (a) is based on a cross section of all merchants in 2019. In panel (a), we group the

x-axis into 20 bins, and report averages by bin, normalizing each variable by its average for the

first bin. Panel (b) repeats the same exercise, but for the panel of merchant-years over 2016–2019.

For (b) we de-mean each variable by its merchant average and its year average, so the plot reflects

fast vs. slow-growing merchants over time. Both panels are plotted on a log (base 10) scale.

Figure 3 further decomposes the number of unique customers into the num-

ber of stores and the number of unique cards per store, respectively. It shows
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that, both in the cross section and over time, the number of stores is not an

important source of sales variation for the bottom half (in terms of sales) of

merchants, which may be natural as many smaller merchants only have a single

store. For larger merchants stores become more important, in particular for

the largest set of merchants (top ventile). This is similar to the role of estab-

lishments in firm size more generally, as documented by Moscarini and Postel-

Vinay (2012) for example. That is, most variation in firm size comes from its

employment per establishment, except for the largest firms which have many

more establishments.

Figure 3: Stores vs. Cards Per Store

(a) across Merchants (b) within Merchants over time

Note: Panel (a) is based on a cross section of all merchants in 2019. In panel (a), we group the x-
axis into 20 bins, and report averages by bin, normalizing each variable by its average for the first
bin. Panel (b) repeats the same exercise, but uses the panel of merchant-years from 2016–2019.
For (b), we de-mean each variable by its merchant average and its year average. Both panels are
plotted on a log (base 10) scale.

Figure 4 repeats this exercise at the store (rather than merchant) level, both

for a cross section of stores in 2019 (Figure 4a) and within store over time (Figure

4b). The pattern is remarkably similar for stores and for merchants, except that

at the store level the relationships are approximately linear throughout.
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Figure 4: Decomposing Store Sales

(a) across stores within merchants (b) within stores over time

Note: Panel (a) uses a cross section of stores in 2019 and de-means each store by its merchant

average. We group the x-axis into 20 bins, and report averages by bin, normalizing each variable

by its average for the first group. Panel (b) repeats the same exercise, but uses a panel of stores

from 2016–2019, de-meaning each variable by its store average and its year average. All panels

are plotted on (base 10) log scale.

Results by store age. In Online Appendix B we repeat this analysis for the

much smaller set of large merchants who linked back to 2007 in the Visa data.

The results look qualitatively similar, with the exception that the number of

stores is much more important across large merchants and, to a lesser extent,

over time within large merchants.

An advantage of a longer panel is that we can look at whether store dynamics

differ by firm age. In Online Appendix B, we decompose the sources of store

growth separately for stores in their first two years since entry, years 3-5, and

stores that have been open for 6+ years. Customers remain the primary driver of

revenue growth for all three age groups (77%, 81%, and 85%, respectively), but

new stores rely more than established stores on the average transaction amount

to grow their sales (15% vs. 6%, respectively).

http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
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Returning vs. newly acquired customers. One possible concern about the

above analysis is that it confounds compositional effects. For example, we might

be overstating the extensive margin if returning customers increase their spend-

ing a lot at growing stores, but average spending does not grow much because

new customers spend less than returning customers.6

To address this concern, we regress the log change of spending per returning

customer on the log change of total sales for merchant-years from 2016 to 2019

(adding year fixed effects).7 We report the coefficient for all retail (first bar) and

separately by 3-digit NAICS in Figure 5. By this metric, returning customers

account for 38% of the variance of sales growth in all NAICS. Their contribution

ranges from 26% among clothing stores to almost 47% among food and bever-

age stores. This 38% is notably higher than the approximately 20% variation in

sales that we attributed to the intensive margin earlier, when we did not adjust

for composition. Still, we continue to find that the extensive margin accounts

for most of sales growth variation (62%) by this metric. In Online Appendix D

we report similar results at the store level.

3.2. Customers and aggregate growth

Skewed individual contributions to aggregate retail growth. Having estab-

lished the importance of the customer margin for growth at the merchant and

store levels, we now explore how this translates to retail-wide aggregates.8

Let Sit denote merchant i’s total sales in year t, and ∆Sit = Si,t − Si,t−1 be the

change in merchant i’s sales from year t − 1 to year t. In each year t, we order

6In the case of Pareto distribution of spending across customers, one might see the entry of
new customers exactly offset the growing spending of returning customers.

7Unlike the earlier decomposition analysis, this is not a precise decomposition because –
due to turnover of cards – tracking returning vs. new customers requires us to limit attention to
the subset of cards that are active over two consecutive years.

8Since the volume of transactions on the Visa network has been steadily increasing over time,
throughout this section we measure both aggregate and merchant sales in 2012 CPI dollars
and re-scale each of them by Visa’s share of the debit and credit card market by dollar volume
in the corresponding year (obtained from https://wallethub.com/edu/cc/market-share-by-
credit-card-network/25531). As mentioned in Section 2, in this part of the analysis we also
excluded gasoline sales.

http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
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Figure 5: Spending per returning customer on firm sales growth

The figure reports the coefficient in the regression of annual log change of spending per returning customer on annual
log change of total sales. An observation is a merchant-year level. The regression uses 2016-2019 data and includes a
year fixed effect.

merchants by ∆Sit, and place them into groups, year by year, which account

for the top or bottom 1%, 5%, 10%, or 25% of merchants in terms of their sales

change in that year. The top 1% saw the biggest increases in their sales, and the

bottom 1% saw the biggest decreases in sales.

We next divide the total increases (or decreases) in each group by the sum

of all increases (or decreases) across all merchants in the same year. This is

analagous to breaking down the gross job creation and destruction rate as in

Davis, Haltiwanger and Schuh (1998), only for the gross sales creation and de-

struction rates. That is, we trace how much of all sales creation and destruction,

respectively, comes from the biggest increases and decreases.

Figure 6 plots the contribution of each group to aggregate sales increases or

decreases, averaged across the three observations 2016-2017, 2017-2018, and

2018-2019. In a similar spirit to Decker et al. (2016), the figure illustrates that

a small fraction of growing merchants is responsible for a large fraction of ag-

gregate growth, and similarly a small number of shrinking merchants are re-
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sponsible for a large fraction of the aggregate decline. The top 1% growers

and shrinkers each contribute around 70% of aggregate sales increases and de-

creases, respectively. The top and bottom 5% contribute more than 80%, the top

and bottom 10% contribute about 90%, and the top and bottom 25% contribute

more than 99%. The patterns appear to be fairly symmetric for growing and

shrinking merchants.9

As we noted, in Figure 6 the grouping of firms is done year by year. This

implies that the identity of tail firms is changing from year to year. How im-

portant are cumulative sales increases and decreases to the aggregate increases

and decreases from 2016 to 2019? To find out we rank merchants based on their

cumulative sales changes from 2016 to 2019. This includes entrants among the

growers and exiting merchants among the shrinkers.

In Figure 7, we then show that tail firm contributions remain remarkably

similar when looking at cumulative changes from 2016 to 2019. Evidently, many

firms are growing and shrinking by large amounts over the three year period.

This could reflect the short time horizon, but in Online Appendix B we doc-

ument that the patterns are very similar when we use the longer (2007–2019)

panel, which include a much smaller set of merchants.

9In Figure B10 in the Appendix we should the share of initial sales at the top growers and
shrinkers. It is notably smaller than their share of changes, for example only 45% of sales on
average are at the top 1% of growing firms.

http://klenow.com/Customers_and_Retail_Growth_Online_Appendix.pdf
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Figure 6: Contribution to Aggregate Sales Changes

The figure reports the average contribution of each merchant group as defined in the text to aggregate sales change
over year with the error bar extending one standard deviation up and down. An observation is a merchant-year and the
figure uses a panel of merchants from 2016 to 2019. Each bar corresponds to a merchant group. TX refers to top X%
merchants and BX refers to the bottom X% of merchants according to their absolute sales changes.

Figure 7: Persistence of Merchant Contributions

The figure reports the contribution of each firm group as defined in the text to aggregate sales change between 2016

and 2019. Each bar corresponds to a firm group. TX refers to top X% firms and BX refers to bottom X% firms by the

absolute sales changes between 2016 and 2019.
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Figure 8 reports the contributions of the top and bottom 1% of merchants for

each 3-digit NAICS from 2016 to 2019. The importance of these tail merchants

varies from around 40% in motor vehicles and parts to over 90% for general

merchandise, but is mostly in the range of 50% to 80%. Thus, this is a robust

feature across retail NAICSs that extreme growers and shrinkers account for a

large fraction of aggregate sales changes.

Figure 8: Contribution to Aggregate Sales Changes By NAICS

The figure reports the average contribution of top and bottom 1% merchants to within-NAICs aggregate sales change
over year for each retail NAICs. An observation is a merchant-year and the figure uses a panel of merchants from 2016
to 2019. The calculation of each merchant group’s contribution is described in the text.

The importance of customers for the tails. We now try to assess the extent

to which the extensive margin of customers account for these tail patterns. To

do so, we decompose merchant sales changes into two components: changes

in the number of customers and changes in sales per customer. Let Nit denote

the number of unique customers visiting merchant i in year t and Sit/Nit denote

the sales per customer for merchant i in year t. Each merchant’s sales changes
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can be written as

∆Sit ≡ ∆Nit · S/N it + ∆(S/N)it ·N it

where

N it ≡
Nit +Ni,t−1

2

and

S/N it ≡
Sit/Nit + Si,t−1/Ni,t−1

2
.

Using this decomposition, we can tell how much of the aggregate sales changes

in each group are attributed to changes in the number of unique customers

versus changes in sales per customers. Figure 9 shows that the change in cus-

tomers accounts for around 80% of sales changes in the tails (modestly under

80% for increases, and modestly above 80% for decreases). Thus, the (now

familiar) pattern prevails even we focus on the tails of the growth/decline dis-

tribution: customer growth accounts for most of the extremes we see in overall

sales growth across merchants from year to year.

4. A model of growth with customer acquisition

Having shown that the customer margin is quantitatively important, we present

a model of growth that incorporates this margin to see how it may matter.

4.1. Customers

Consider a unit mass of customers with identical preferences:

U =
∞∑
t=0

βt
C

1−1/σ
t

1− 1/σ
.
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Figure 9: Customers vs. sales/customer and firm sales changes

The figure reports the average share of sales changes in each firm group that can be attributed to changes in number of
customers and changes in sales per customer respectively from 2016 to 2019. By construction, the two shares sum to
1. Each bar corresponds to a firm group. TX refers to top X% firms and BX refers to bottom X% firms by firms’ absolute
sales changes.

Their composite consumption C is a CES aggregate of varieties:

Ct =

(∫ 1

0

nit (qitcit)
θ−1
θ di

) θ
θ−1

where nit ∈ [0, 1] is the probability that a customer purchases variety i and qit is

the quality of variety i. θ > 1 is the elasticity of substitution between varieties

and 0 < β < 1 is the discount factor. Note there is a fixed unit measure of

varieties. Finally, we assume that nit is identical across consumers, so it is also

the fraction of consumers who buy variety i in period t. Demand (per customer)

conditional on access to variety i is given by:

cit =

(
Pt
pit

)θ
qθ−1
it Ct, ∀i ∈ [0, 1] ,
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where the ideal consumer price index is:

Pt ≡

(∫ 1

0

nit

(
pit
qit

)1−θ

di

) 1
1−θ

.

Total quantity demanded for variety i, summed across customers, is:

yit = nitcit.

4.2. Firms

Each firm uses production labor lit to produce its single variety:

yit = lit.

It uses marketing labor mit to reach a random fraction nit of customers:

nit =

(
γmit

φM δ
t

) 1
γ

where Mt ≡
∫ 1

0

mitdi.

Here γ > 1 and φ > 0, and M is aggregate marketing labor across all firms.10

We note the built-in negative externality with respect to other firms’ marketing

efforts. Choosing labor as the numéraire, the firm’s static profit maximization

problem is:

max
pit,mit

(pit − 1) yit −mit.

Assuming that firms engage in monopolistic competition, they set their price to

a constant markup above unit marginal cost:

pit = µ where µ ≡ θ

θ − 1
.

10With γ → ∞, we obtain the corresponding economy with no customer margin. One can
see this by inverting the marketing labor function and taking its limit as γ goes to infinity. For
nit ≤ 1, marketing labor marketing labor goes to zero.
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Substituting the firm’s price in its demand function yields:

cit =

(
qitPt
µ

)θ−1

· PtCt
µ

.

The firm’s static marketing problem becomes:

max
nit

nit

(
qitPt
µ

)θ−1

· PtCt
θ
− φM δ

t n
γ
it

γ
.

This marketing problem yields the following first order condition:

nit = min

{(
qitPt
µ

)θ−1

· PtCt
θφM δ

t

, 1

} 1
γ−1

.

Denoting Γ ≡ γ
γ−1

, it follows that a firm’s flow profits are:

πit =

[(
qitPt
µ

)θ−1

· PtCt
θφM δ

t

]Γ

· φM
δ
t

Γ
.

It is useful to define an aggregate quality index as:

Qt ≡
(∫ 1

0

q
Γ(θ−1)
it di

) 1
Γ(θ−1)

.

Defining a firm’s relative quality as zit = qit/Qt, we can use the market clear-

ing conditions for the final good and labor to solve for profits as a function of

aggregate production labor:

πit =
Ltz

Γ(θ−1)
it

Γ (θ − 1)
.
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4.3. Innovation

A firm with absolute quality qit and relative quality zit that hires research labor sit

sees its quality follow a controlled binomial process with probability xit ∈ [0, 1]:

qit+1 =

qite
∆ w/ prob. xit

qit w/ prob. 1− xit
and sit = λ log

(
1

1− xit

)
zζit.

Here ∆, λ and ζ are all strictly positive. ∆ is the step size of successful quality

innovations, and xit is the probability that a firm succeeds in innovating. λ is a

scalar for the level of research labor and ζ quantifies how much more research

labor is necessary to innovate from a higher level of relative quality. Note the

knowledge spillover in this formulation: the higher the quality of other firms,

the lower the cost of successfully innovating (ζ > 0). A firm’s value function is

given by:

Vt (z) = πt (z) + max
x∈[0,1]

{
R−1
t

[
xVt+1

(
ze∆−gt

)
+ (1− x)Vt+1

(
ze−gt

)]
− st (z, x)

}
where R is the gross interest rate. The Euler equation produces the usual rela-

tionship between the growth rate g (here of the aggregate quality index) and the

consumer’s discount factor in the absence of aggregate uncertainty:

(1 + gt)
1/σ = βRt.

The first-order condition of the firm’s dynamic problem implies:

xt (z) = 1− λzζRt

vt (ze∆−g) + vt (ze−g)
.



26

4.4. Labor market clearing

To recap, labor is used for production, marketing, and research:

Lt =

∫
lt (z) dFt (z)

Mt =

∫
mt (z) dFt (z)

St =

∫
st (z) dFt (z) .

As each of the unit mass of consumers is endowed with one unit of labor that

they supply inelastically, the labor market clearing condition is simply:

Lt +Mt + St = 1.

Solving for aggregate production and marketing labor yields:

Lt =
γ (θ − 1) (1− St)
γ (θ − 1) + 1

and Mt =
Lt

γ (θ − 1)
.

4.5. Calibration

In Table 3 we set our baseline parameter values. A period in the model is one

year. We set the intertemporal elasticity of substitution σ = 0.5. We choose

an elasticity of substitution between varieties of 3. This is at the lower end of

estimates such as in Hottman et al. (2016), but this and other papers typically

do not control for the customer margin. We set the discount factor to 0.992 so

that, when the baseline growth rate is set to 2.9% per year, the steady state real

interest rate is 6.7% per year. We also set the aggregate labor endowment to

one.11

We set the level of marketing costs φ so that the firm with maximum relative

quality reaches half of the customers. We set the elasticity of marketing labor

with respect to customers to γ = 1.25. The elasticity of sales with respect to

11The model features strong scale effects, but is invariant to the scale of the economy once
re-calibrated to match the targeted moments.
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quality in the model is the sum of the elasticity of customers and elasticity of

spending per customer with respect to quality:

ξy,q = ξn,q + ξc,q =
θ − 1

γ − 1
+ θ − 1.

With γ = 1.25 and θ = 3, the customer share of the sales elasticity is 80%, which

matches our finding in Section 3.

We choose an innovation step size of 6%. With θ = 3, γ = 1.25, and ∆ = 0.06,

sales grow by 29% for expanding firms and shrink by 29% for contracting firms:

Sales growth = g · ξy,q.

We choose the innovation cost parameters to achieve a 2.9% growth rate and

for the top 1% fastest growing firms to account for 70% of sales changes.

Table 3: Parameter Values

Symbol Parameter Value

σ Intertemporal elasticity of substitution 0.50

θ Elasticity of substitution between varieties 3.00

β Discount factor 0.992

φ Scale of marketing costs 3.57 · 1037

γ Elasticity of marketing costs wrt customers 1.25

∆ Quality step size 0.06

λ Linear research cost 0.094

ζ Research spillover parameter 10.04

δ Marketing externality 1.0
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4.6. Results

We are now ready to characterize equilibrium outcomes. For contrast, we also

show what happens in an economy with no customer margin. We achieve this

by setting γ =∞ and Γ = 1, so that labor is not needed to access customers. We

keep all other parameter values the same when we make this comparison.12

Figure E3 shows how n, the fraction of consumers the firm sells to, varies

with the firm’s relative quality z. It is log-linear with elasticity γ/(γ − 1) in the

Baseline. This in turn makes the value of the firm much more convex with

respect to z in the Baseline than in the No Customers case — see the log-log

scale in Figure E8.

Because the customer margin makes variable profits increase much faster in

relative quality, it induces higher quality firms to do more innovation than they

would otherwise do. This can be seen in Figure 10a. A corollary is that R&D in-

tensity (research spending as a share of sales) is slowly decreasing with respect

to z in the baseline case, whereas it falls quickly with z in the model without a

customer margin. As a result, the stationary distribution of relative qualities is

much more dispersed with customer variation than without it (Figure E7).13

The distribution of sales ends up being much more dispersed with an ex-

tensive margin for customers in Figure E5. Higher quality firms have more

customers, and this endogenously induces more quality dispersion.

12With no customer margin, the elasticity of sales with respect to quality would be only ξy,q =
ξc,q = θ − 1. To achieve relative sales growth of 40% in a model without customers, relative
quality would need to grow by 20% rather than by 4% as in the customer economy.

13Note that in both models, the probability of successfully innovating is equal to one for the
smallest firms and zero for the largest ones, which delivers a stationary distribution of relative
quality.
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Figure 10: Innovation

(a) Innovation
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(b) Cumulative research
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Note: This figure shows how the arrival rate of innovations x varies with the firm’s
relative quality z. The Baseline features γ = 1.25 and the “No customers” version
uses γ =∞, where γ is the elasticity of marketing costs with respect to customers.
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In Table 4 we compare some variables in steady state across the Baseline

and No Customer cases. The endogenous growth rate of aggregate quality rises

modestly from 2.9% in the baseline to 3.2% in the model without a customer

margin. This is despite 27% of all labor being freed up from doing marketing

when going from the Baseline to the model with no extensive margin for cus-

tomers. Production labor does soar from 68% of all labor in the Baseline to 93%

with no customer margin. But there is still room for research labor to rise from

4.9% in the baseline to 6.7% of all labor in the model with no extensive margin

for customers.

Table 5 shows the importance of the covariance between sales changes and

quality growth to aggregate growth. We calculate a Törnqvist approximation

to the true growth rate, which is the weighted average of quality growth rates

across firms. The Törnqvist weights are the firm’s average sales share across the

two years. The Table indicates that the Törnqvist second-order approximation

is quite good. If we instead use initial sales shares as weights (a 1st order ap-

proximation), the approximated growth rate understates the true growth rate by

about 50 basis points in the case with a customer margin. With no customers,

in contrast, the second order term is much smaller. This breakdown illustrates

the importance of customer acquisition in amplifying the growth contribution

of the right tail of firm growers.

Just like in the data, we can calculate the contribution of the top 1% of firms

(based on their sales increases) to aggregate sales increases. As depicted in

Figure 11, our baseline model is calibrated to achieve a contribution of 70%

from the top 1%. Without a customer margin, in contrast, the top 1% of firms

would account for less than 1% of all sales increases. Again, this comes from

both the direct effect of acquiring customers in response to rising z, and the

indirect effect of a much narrower z distribution in the absence of a customer

margin. In this economy, the growth contribution of top firms is the same as

their contribution to aggregate sales increases. Therefore, the top 1% fastest

growing firms also account for 70% of consumption growth.
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Table 4: Steady-state endogenous variables

Symbol Variable Baseline No customers
No customers

(scaled)

g Growth rate 2.90% 3.22% 2.65%

r Interest rate 6.70% 7.36% 6.19%

L Production labor 67.9% 93.3% 93.2%

M Marketing labor 27.2% 0.0% 0.0%

S Research labor 4.9% 6.7% 6.8%

Note: The scaled economy without customers has a total labor endowment of 0.728
instead of 1.

Table 5: Törnqvist growth decomposition

Baseline No customers
No customers

(scaled)

True growth rate 2.90% 3.22% 2.65%

Approximated growth rate 2.95% 3.26% 2.70%

1st order term 2.49% 3.17% 2.61%

2nd order term 0.46% 0.09% 0.09%

Note: The scaled economy without customers has a total labor endowment of 0.728
instead of 1.
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Figure 11: Firm Contributions to Aggregate Sales Changes
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5. Conclusion

Using Visa data on credit and debit card transactions at U.S. retail merchants

from 2016 to 2019, we document the paramount importance of the extensive,

customer relationship margin in driving variation in retail sales. Customers

account for approximately 80% of the sales variation whether we look across

merchants, across stores within merchants, or over time within merchants and

stores.

We write down a simple growth model that incorporates the extensive mar-

gin and illustrates how and why the customer margin may matter for growth.

In the model, firms pay marketing and research costs to acquire customers

and improve their quality. The customer margin makes large firms drastically

more important for sales and overall growth. The ability to increase profits by

adding customers increases the returns to innovation and stimulates research,

but marketing diverts resources away from research. The latter force dominates

so that growth is modestly lower in the model with a customer margin than if

all firms could access all customers.
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