Firms and Unemployment Insurance Take-up

Marta Lachowska Isaac Sorkin Stephen A. Woodbury

Upjohn Institute

Stanford & NBER

MSU & Upjohn Institute

July 2021

Background and motivation

In the U.S., unemployment insurance (UI) has dual goals:

- Smooth consumption of job losers (payments to workers)
- ▶ Automatic stabilizer (experienced rated: claims $\uparrow \Rightarrow$ tax rate $\uparrow \Rightarrow$ a layoff tax)

UI take-up is incomplete:

- Undermines both goals
 - Workers do not receive benefits
 - Firms perceive laying off workers to be less costly

Why is UI take-up incomplete?

Standard focus of studies: individual-level factors

Incentives (e.g., Anderson and Meyer (1997)), information (e.g., Vroman (2009)), hassle (e.g., Ebenstein and Stange (2010)) Novelty of this paper: firm-level factors are also very important

What we do: two-way fixed effects estimator on administrative data from Washington State

- Relative importance of firm to individual effects in claims larger than for wages
- Moving below median firms to median level: claims up 12%

Why and how would firms affect UI take-up?

Why: b/c of experience rating firms care whether workers collect

How: appeal claims

- Industry devoted to managing unemployment claims (Association of Unemployment Tax Organizations; Equifax Workforce Solutions)
- Interviews with job losers suggests different firm attitudes: helping to neglect to actively dissuading (Gould-Werth (2016))

What we show:

- Firm effects in appeals of UI claims
- \blacktriangleright Firm effects in appeals negatively related to those in claims \Rightarrow deterrence effects

 $\begin{array}{l} Quantify \ a \ simple \ model: \ financing \ of \ UI \ affects \ take-up \ and \ targeting \ (Kleven \ and \ Kopczuk \ (2011), \ Auray \ and \ Fuller \ (2020)) \end{array}$

Outline

- Policy background, data, and summary statistics
- Firm effects in UI take-up and appeals
- Link to (im)perfect competition
- A model of experience rating and UI take-up and targeting

UI background

UI eligibility:

- "Monetary" eligibility (in WA, an hours requirement)
- Non-monetary eligibility: separate through "no fault of your own"
 - Ambiguity and basis of appeals
- UI financing in Washington State:
 - ► Tax rate depends on last four years of UI charges (UI received by past workers) at the firm
 - On the "sloped" part of the schedule, extra \$1 in claims a year \Rightarrow taxes \uparrow by \approx \$1 a year
 - If there are enough charges, then tax rate stops increasing ("flat" part of the schedule)

Administrative data from Washington State: 2005-2013

- Earnings and hours records: monetary eligibility exactly
- Whether worker filed
- Whether firm appealed
- Whether worker collected

Observe numerator (who claimed), tricky thing is the denominator (who was eligible)

► Follow Anderson and Meyer (1997) with some refinements (→ Details)

Take-up rate by income

- Average take-up rate: 45% (Anderson and Meyer (1997, Table 3): 39.1%)
 - Lower than estimates following Blank and Card (1991) using CPS to determine eligibility

Inverted-u

- 20 percentage points from 1st to 5th decile of wages

Appeals rate by income

- Striking pattern by income: falls by half from 1st to 5th decile of wages
- ► Negative relationship with claims ⇒ consistent w/deterrence effects

Outline

Policy background, data, and summary statistics

- Administrative data from 2005-2013
- Incomplete take-up
- Stark income gradients in claims and appeals
- Firm effects in UI take-up and appeals
- Link to (im)perfect competition
- A model of experience rating and UI take-up and targeting

Empirical model of claiming

$$c_{ij} = \alpha_i + \psi_j + \epsilon_{ij},$$

- $\triangleright \alpha_i$ is person effect
- ▶ $\psi_{j(i)}$ is firm effect

Central economic concern: endogenous mobility (people choose firms based on ϵ_{ij})

- Sample construction: spells are connected by U
- Balance in mobility
- Symmetry in changes

Central statistical concern: limited mobility bias

▶ Report Kline, Saggio and Solvesten (2020) bias-corrected variance components

The role of firms in UI claims

71,000 twice-eligible worker; shrunken leave-one-out, w/o controlling for person f.e.(\rightarrow Details)

- Balanced and symmetric
- Slope: 0.82 Two-way fixed effect results:
- Variance (std) of firm effect: 0.022 (0.15)
- Variance of person effect: 0.049
- $\frac{\text{var(firm f.e.)}}{\text{var(person f.e.)}} = \frac{0.022}{0.049} \approx 45\%$ (20% for hourly wages)
- Move below-median to median firm effect (use dist.): raise take-up by 6 p.p. (12%)

Details

Individual income and firm effects in claiming remarkably related

- Surprisingly similar to the individual-level graph at the bottom of the income distribution
- Regress firm effects on income deciles: 1st to 5th decile is 60% of the individual-level slope

Firm effects and income gradient in appeals

- 21,000 twice-claiming workers
- Coefficient: 1.08; Mean: 0.037
- Var. (stdev.) of firm/worker effects: 0.0009/ 0.0011 (0.03)

- Similar to the individual-level graph
- Ist to 5th decile, 3/4 of the individual slope
 11/23

Negative relationship between firm claim and appeals rates

shrunken firm averages in claims and appeals

- Looking at firm FE in claiming and appeals (and correcting the slope), we get an elasticity of -0.16
- Anderson and Meyer (2000): elasticity of claims to separation issue denials: -0.128 to -0.279
- Consistent with deterrence effects

Outline

Policy background, data, and summary statistics

- Firm effects in UI take-up and appeals

 - Relative importance of firm to worker higher for take-up than in wages
 - Firm effects in appeals
 - Negative relationship b/w claims and appeals
- Link to (im)perfect competition
- A model of experience rating and UI take-up and targeting

Link to (im)perfect competition

- \blacktriangleright In perfect competition \Rightarrow compensating differential for lower firm-level claims
- ▶ In imperfect competition, less clear (Lang and Majumdar (2004), Sorkin (2018)):
 - If amenities are a normal good, some amenities will be positively correlated with earnings

Move to higher claims rate firms \Rightarrow

firm-level separation rate decreases

higher claims rate firms look like "better" firms from the worker perspective

Outline

- Policy background, data, and summary statistics
- Firm effects in UI take-up and appeals
- Link to (im)perfect competition
 - Higher UI claims rate firms more desirable firms
- A model of experience rating and UI take-up and targeting

Statistical model of take-up and targeting

Workers who separate are eligible or ineligible, $e \in \{0, 1\}$:

- Application rate: A_e
- Appeals rate: p_e
- ▶ Receipt (given appealed) rate: r_e
- To identify parameters for the eligible:
 - ► Assume: incremental workers who separate when the firm contracts are eligible for UI
 - ▶ We compare [-0.025, 0.025] to [-0.275, -0.225]

Additional moment that identifies parameters for the ineligible:

Share of ineligible among recipients (Benefit Accuracy Measurement data: 0.13 in WA)

Linking experience rating to appeals to claims

Elasticity of appeals to experience rating:

- Firm pays τ if worker collects UI (experience rating)
- Firm picks an appeals probability knowing eligibility status:

$$\underbrace{-p_e r_e \tau}_{\text{appeal, receive, pay}} - \underbrace{p_e (1 - r_e) \times 0}_{\text{appeal, don't receive}} - \underbrace{(1 - p_e) \tau}_{\text{don't appeal, pay}} - \underbrace{p_e^{\frac{1}{\zeta} + 1}}_{\text{cost function, } \zeta > 0}$$

► FOC:
$$p_e \propto ((1 - r_e)\tau)^{\zeta}$$

► Then: $\frac{p_1}{p_0} = \left(\frac{1 - r_1}{1 - r_0}\right)^{\zeta} \Rightarrow \zeta = \ln \frac{p_1}{p_0} / \ln \frac{1 - r_1}{1 - r_0}$

Elasticity of claims to appeals:

Use x-sectional elasticity

Firms that shrink still face marginal experience rating incentives

- Model assumes experience rating is constant
 - On the "slope" it approximately is
 - On the "flat" part it is not
- Regress outcome on growth rate dummies with and w/o firm f.e.
- ▶ W/firm f.e., can use growth rates out to ≈ -0.4 (informs choice of -0.25)

Claims rates rise as firms shrink

- Claims rate rises, but never get above 60%
- ➤ ⇒ eligible have higher claims rates than ineligible

Appeals rates fall as firms shrink

- Appeals rate declines-almost by half
- ➤ ⇒ eligible are less likely to be appealed than ineligible

Receipt rate (given appeals) rise as firms shrink

- Rise (albeit noisily)

Results

	Eligible	Ineligible
Application rate (A_e)	0.60	0.14
Appeals rate (application) (p_e)	0.02	0.24
Receipt rate (appeal) (r_e)	0.81	0.49
Eligible share at "zero" (σ)	0.61	

Kleven and Kopczuk (2011) error typology:

- Type IA: $\sigma(1 A_1) = 0.24$ (eligible don't apply)
- Type IB: $\sigma A_1 p_1 (1 r_1) = 0.003$ (eligible apply, don't collect)
- Type II: $(1 \sigma)A_0((1 p_0) + p_0r_0) = 0.048$ (ineligible collect)
- $\Rightarrow~\approx70\%$ do the correct thing

Elasticity of appeals w.r.t. exp. rating is 2.3

Simulate effects of reducing experience rating

Experience rating $\downarrow 10\% \Rightarrow$ take-up $\uparrow 4\%$ ($\approx -0.1 \times -0.16 \times -0.16$

- Type IA: 0.23 (\downarrow 1 p.p.) (eligible don't apply)
- Type IB: 0.002 (\downarrow 0.1 p.p.) (eligible apply, don't collect)
- Type II: 0.051 (\uparrow 0.3 p.p.) (ineligible collect)
- \Rightarrow 0.8 p.p. more do the correct thing
- "Layoff tax" only decreases by 6% (rather than 10%)

To increase take-up by 12% (i.e., same magnitude as compress firm f.e. distribution):

► A 30% decrease in experience rating

Summary

Typical explanations for incomplete UI take-up focus on individual-level factors

This paper: **firm-level** factors are also important:

- ▶ Relative importance of firm to individual effects in claims larger than for wages
- Moving below median firms to median level: claims up 12%
- Firm effects explain large share of income gradient

Important reason why firms matter: experience rating

- Important firm effects in appeals, negatively correlated with claims
- Decreases in experience rating:
 - increase take-up
 - more ineligible claim
 - endogeneity of take-up means reduction in layoff tax smaller

 \Rightarrow Take-up and targeting an important consideration in analyzing changes in financing

Denominator: who could have claimed

Follow Anderson and Meyer (1997), with some refinements. Get rid of:

- Employer-to-employer (small dip in hours in transition quarter)
- Employment-to-nonemployment (do not see for five quarters after (seasonal))
- "Complicated" histories: multiple employers pre-separation

We use variation in employer growth rates to change mix of non-monetarily "eligible" and ineligible

(
 Details
)

Weekly benefit amount by hourly wage

Mover regression and its interpretation

Consider a worker at two firms, regressed on firm-level claims rates:

$$\Delta c_{ij} = \beta \bar{c}_{j,-i}^{EB} + \Delta \epsilon_{ij}$$

c̄_{j,-i}: leave-one out mean firm claims rate
 EB: shrinkage (▶ Details)

Then:

$$\mathsf{plim}\ \hat{\beta} = \frac{\mathsf{var}(\psi_j - \psi_{j'}) + \mathsf{cov}(\psi_j - \psi_{j'}, \bar{\alpha}_{j,-i} - \bar{\alpha}_{j',-i})}{\mathsf{var}(\psi_j - \psi_{j'}) + \mathsf{var}(\bar{\alpha}_{j,-i} - \bar{\alpha}_{j',-i}) + 2\mathsf{cov}(\psi_j - \psi_{j'}, \bar{\alpha}_{j,-i} - \bar{\alpha}_{j',-i})}.$$

If sorting is positive (below, we show it is), then coefficient gives lower bound on share of variance of between-firm means in claim rates that is due to firm effects
 (• Details)

Estimating hyper-parameters for shrinkage

- \triangleright C_j: number of claims at firm j
- \triangleright N_j: number of (eligible) separators at firm j
- Assume $c \sim \mathcal{B}(\alpha, \beta)$, true distribution of claims *rates* are beta

► Then:
$$Pr(C_j|c, N_j) = \binom{N_j}{C_j} c^{C_j} (1-c)^{N_j-C_j}$$

• \mathcal{O} is observed data $(j^{th} \text{ row is } (N_j, C_j), \theta = \{\alpha, \beta\}$:

$$\max_{\theta} \mathbb{P}\{\mathcal{O}|\theta\} = \max_{\theta} \prod_{j} \omega_{j} \left(\int_{c=0}^{1} \underbrace{\mathbb{P}\{\mathcal{O}_{j}|c\}}_{binomial} \times \underbrace{\mathbb{P}\{c|\theta\}}_{beta} dc \right)$$

• Posterior:
$$\hat{c}_j^{EB} = \frac{C_j + \hat{\alpha}}{N_j + \hat{\alpha} + \hat{\beta}}$$

Back to mover reg

Variance decomposition of claims rates

UI claims	0.25	
	Plug-in	Leave-out (KSS)
Firm effects	0.079	0.022
Person effects	0.169	0.049
Covariance	-0.038	0.001

Standard deviation of firm effects: 0.1489, about a third of the mean claims rate ((\cdot Back to talk)

Sensitivity of share of variance in firm f.e. in claiming attributable to challenges to the relevant elasticity

