Solving Heterogeneous Agent Models
with the Master Equation

Adrien Bilal

Harvard University & NBER

July 2021



Introduction

® Modern macro = IRFs in models with rich cross-sectional heterogeneity

» HANK, macro-search, spatial/trade

® Recent computational advances: Ahn et al. (2018), Auclert et al. (2019)

> Reiter (2008) on steroids

» Mostly numerical, restricted to first order

¢ |s there an underlying conceptual framework?

1.

2
3.
4

Expand solvable models: GE feedback w/ many prices, entire distribution

. Improve accuracy & capture nonlinearities: 2nd-order

Economic interpretation of components of IRFs

. Improve computation: accelerate, simplify
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This paper: The idea

Analytic foundation for perturbation methods with heterogeneous agents

1. Include entire distribution as state variable into individual decision
» Bellman eq. on infinite-dim. space of distribution: the Master Equation
> Introduced in maths/mean field games literature (Cardaliaguet et al. 2019)

> Fully recursive/Markovian representation of the economy

2. Analytically perturb the Master Equation in the distrib. & ag. shocks
» Continuous time key for tractability
» First/Second-order Approximation to the Master Equation (FAME, SAME)

> Leverages generalized derivatives in infinite-dimensional spaces



This paper: The benefits

The FAME
> Single Bellman equation that embeds all equilibrium relationships
» Depends on steady-state objects only, w/ explicit expressions

» Dimension reduced from oo to 2 x idiosyncratic states

Impulse Responses

» Block-recursive structure: FAME — KF — IRF

> A priori speed & conv. conditions w/ explicit steady-state objects

® Transparent implementation with standard Bellman equation methods

The SAME is virtually the same
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The plan
This talk
1. Derive the Master Equation in Krusell-Smith (1998) economy
2. Derive the FAME in Krusell-Smith (1998) economy

3. Derive the SAME in Krusell-Smith (1998) economy

In paper but not in talk

® Provide plug-and-play formulae for much more flexible setup

e 2 applications

» Application 1: welfare gains from state-dependent Ul

> Application 2: dynamic spatial /migration model

> Literature

4/
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The Master Equation

in Krussell Smith (1998)



Setup

e Continuous time

Individuals solve a standard income fluctuation problem

» No borrowing constraint for now

» Uninsurable income risk = asset distribution matters for interest rate

® A representative firm rents capital and labor from households

® No aggregate shocks for now

» Deterministic transition from out of steady-state



Individual decision problem
* Individual decision problem (HJB)

oV;

PVilay) — T(ay) = maxu(e) + (ra+ ey — ) (ay) + LIV

ot Oa

where functional operator Lo(y)[-] encodes productivity changes, e.g.

LIV = utn) 5 + TS

and V has at most linear growth at infinity (= No-Ponzi condition)

e Collect individual states, prices and define operator
x = (ay)

LoVl = (rat wy — 2 () + L(»)V]

e HJB writes more compactly

pVe) — D) = maxule) + Lulx, )V
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Firms and evolution of distribution

¢ Firm decision problem

max ZKN'™® — r,K — w; N
K,N

* Evolution of distribution (KF)

%) = o (2(9800) + Li(led
Li(x, &)l

where
> si(a,y) = ra+ wey — &(x): savings rate
> &(x): optimal consumption decision

» L*(x)[-] denotes the adjoint of functional operator L(x)[]

7
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A quick refresher on functional operators

® Analogy between functions, operators and vectors, matrices

® If instead we had a discrete state space or discretized on the computer
> Functions V(x),g(x) <= vectors V;, g;
> Operator L(x)[-] <= matrix Ljj, where x & i
> Action of operator on function L(x)[V] <= matrix multiplication L - V

» Adjoint L™ (x)[-] <= matrix transpose L”
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Step 1/3: Find "prices” that affect individual decisions

¢ In this example, immediate: ry, w;
® In spatial models, one or more prices per location

® In labor market models, “prices” = entire wage distribution
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Step 2/3: Express prices as functionals of distribution
¢ From firm's FOC
re = R(8t) w: = W(g:)
® R, W are simple functionals, e.g.

I ygt(am)dyda)l_a

Rige)=a (ff 22:(a. y)dyda

¢ Individual decision problem becomes

PV - a@tt( ) = T§§“(C)+(R(gt)a+w(gt)y—c)%(x)
+Lo(y)[ V4]
= maxu(c) + L(x, c, g:)[Vi]

c>0
®* No “t” subscript on Ly anymore!
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Step 3/3: Change variables

® Re-write the value function as a functional of the distribution
Vi(x) = V(x, 8t)
e Obtain the time derivative with the chain rule

aV, ov g,
att(x):/ag(x,x’,gt)att(x’)dx'

> g—; = Frechet derivative of V w.r.t. g: derivative w.r.t. functions
> Recall analogy with discrete case g = (gj);, would have

Og;

aV; oV, ag;
att =255 € o1
j

® Recognize that % given by the KF equation:

oV, ov .
8;()():/ag(xaxlagt)l—*(x,aC(X,,gt)vgt)[gt]dxl
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Putting it all together: The Master Equation

® The individual decision problem becomes

Standard flow utility and continuation value

pV(x,g) = maxu(c)+L(x,c,g)[V]

ov
+/ aig(xaxlag)l'*(x,v é(xlag)’ g) [g]dxl

. 1A
State-space representation of =5t

This is the Master Equation (Cardaliaguet et al. 2019)

Fully recursive/Markovian representation of the economy

Integro-PDE in infinite dimension

® Not very practical
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The FAME



The key simplification: Linearize in the distribution

* Suppose there exists a steady-state V5°(x), g%%(x)
 Consider small perturbations in the distribution g around g>°:
g = g% + h , with h small in some metric

¢ To first order
V(x,g% + h) ~ V55(x) + / v(x,x")h(x")dx’

® v is the “Impulse Value”

> Frechet derivative of the value function at steady-state distribution

v(xxX) = G K 8%)

> Represents how value function locally reacts to a distributional impulse h
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Strategy

e Substitute first-order approximation
V(x,g%° + h) =~ V55 (x) + / v(x,x")h(x")dx’

into the Master Equation
® Then “identify coefficients” on h(x”)

e “Coefficients” on h(x’) are functions
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The FAME

pr(x,x") = (¥ ()Dx,x) + LX), x)] + L)[v(x, )]
—_———
Direct price impact Continuation value from Continuation value from
idios. shocks to x propagation of impulse at x’

+ /V(X7X//)%(g55(xu) ( M(X”,X/7V) —D(X//,X/)) dx"!

distributional MPC

Change in savings rate of HH x’’
in response to impulse at x’

Weighted average of changes in savings rates of other HHs

where
D(x,x') = (Rod +Riy')a+ Wod +Wry')y
Ro = —(1—a)a(YSS/KSS) ™" /K
L(x) = L(x,c>¥(x),g>°) = (rssa +wly — css(x))(?a + L(y)
"ot _ 1 @ "o
M(X aX ) V) - UH(CSS(XN)) 83 (X 7X)
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Properties of the FAME

Standard HJB

Block-recursive

> Single Bellman equation that embeds the evolution of the distribution

> No extra fixed point on prices: has been merged into HJB

From infinite dimension to finite dimension

» To first order, only need perturbations in distribution point by point x’

e Explicit steady-state dependence

> Analytic local perturbation

¢ Computation: standard finite differences & only steady-state dimension

> Leverages analytic structure

» Relation to sequence space
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Discretizing the Impulse Value

* Discretize v(x, x") into a matrix v = v(x;, x;)
¢ Discretized FAME
pv = diag(ut**)-D+L-v4v-LT
+ v-d,- [diag(gss) : (diag(l/u”ss) v — D)}
® Written compactly
Mv +vN 4+ vPv =Q

for known matrices M, N, P, Q that depend only on steady-state objects
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Computing the Impulse Value

® Need to solve for square matrix v in
Mv 4+ vN + vPv = Q

® Suppose that P =0
» Obtain a Sylvester matrix equation Mv + vN = Q

» Well-studied problem with established routines in most programming languages

> Much more efficient than stacked system (M ®Ild+1d® N)vec(v) = vec(Q)

® Since P # 0, need to iterate
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A numerical scheme

e Guess an initial matrix v(©)

e Given a matrix v("), solve the Sylvester matrix equation in v("*1)
My (D -y (n+1) [N n pv(")} -Q

> Important to treat the “sandwich” term this way

> Similar to implicit scheme = stability

* Keep iterating until v(”) and v("*1) close enough
e Examples

» Krussel Smith (1998) model: ~ 0.1 seconds, 200 lines Matlab code
> Krussel Smith (1998)+ frictional job ladder: ~ 5 sec., 300 lines Matlab code
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The distribution and impulse response functions

® After solving for the Impulse Value v, linearize KF equation

¢ Obtain
oh .
a*t(x) = £ Xh]  + Kx)[h]
t —_——— ———
Chomgs iy T e Repere o i
where
K(x)[h] = /K(x,x’)h(x')dx’
0
/ - SS ! _ /
K(x,x') = aa(g () (M(x, %, v) D(x,x)))

e Similarly discretize and compute any deterministic IRF through

hesa =h+ A[LT +K]h
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Aggregate shocks



Aggregate shocks

® Introduce aggregate productivity shocks dlog Z, = —plog Z;dt + edW;

® Define rescaled aggregate productivity z; = %Iog % so that

dzt = 7ﬂztdt + th

e Master Equation with aggregate shocks: V(x, g,¢, z) solves

pVix,e,z,g) = max u(c) + L(x, c,ez,g)[V] + A(2)[V]

A%
+ / @(Xa X/,E,Z, g)L*(XI7 6(X’,EZ,g),EZ, g)[V]dX/
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The FAME with Aggregate Shocks

o Take limit e — 0, g =~ g%° + ¢h:

V(x,e,2z,8) = V5(x) + ¢ {/ v(x,x")h(x")dx" + w(x, z)}
where w is the “aggregate shock Impulse Value”

® Same strategy as in deterministic case

» Substitute 1st-order approximation in Master Equation
> ldentify coefficients
» Obtain one FAME for v(x, x"), one FAME for w(x, z)

e Distributional Impulse Value v(x, x’) still satisfies the deterministic FAME

> Block-recursive structure again
» Start with deterministic FAME
> Then only need to solve for w(x,z) w/ aggregate shock FAME
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The FAME with Aggregate Shocks

e Aggregate shocks Impulse Value w satisfies

po(x,2) = 2ZQ()U(c¥(x) + LO)w(,2)] + A2)[w(x,")]
—_——
Direct aggregate shock impact  Continuation value from  Continuation value from
idios. shocks to x aggregate shocks

+ /v(x,x’)%(gss(xl)( M(X w(-, 2)) —Qo(x)z))dX’

Aggregate shock MPC

Change in savings of HH x’

Weighted average of changes in savings rates of other HHs

where Qp(x) = Roa + Way

e Standard HJB that depends only on known steady-state objects
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A numerical scheme

® Discretize w(x,z) into a matrix w
® w solves a standard Sylvester matrix equation
Mw + wN = 6
for known matrices M, N, Q that depend only on known steady-state objects

» Block-recursive structure

» The distributional Impulse Value v is already known
e Solve directly for w, no need to iterate

e Examples
» KS98 model: ~ 0.05 sec., 50 extra lines Matlab code
» KS98 + frictional job ladder: ~ 0.3 sec., 50 extra lines Matlab code
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IRFs with aggregate shocks

¢ Linearized KF equation with aggregate shocks = SPDE

dh(x) ={ £h] + KEh] + Stnz) o
—— ——— —_——— ————
Change in density Prop. of distr. impulse  Response of savings  Response of savings
at x holding savings at SS to distr. impulse to ag. shock
where

S(2) = o (85 (Ml (- 2) ~ (x)2) )

e Steady-state is stochastically stable if A™(K 4+ K*) < 0

e Can similarly discretize and compute any IRF through
heia =he + A[LT + K+ S;]h
for a given sequence of aggregate shocks z;

» Stochastic steady-state 25/31
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The SAME



The SAME

® So far only considered first-order perturbations of the Master Equation
* Now second-order perturbations: same logic, just more components
* Again take limit ¢ — 0, g =~ g°° + ¢h:

V(x,e,2,8) =~ w +€{/v(x,x')h(x')dx'-i—w(x,z)}

Steady-state

First order

2
+ E{ / V(x,x"yx") h(x")h(x")dx"dx"
2 —_———

2nd-order effect
of distribution alone

—|—2/ L(x,x",z) h(x")dxX' + Q(x,2z)
—_——— ~———

Cross effect 2nd-order effect
of ag. shock. & distrib. of ag. shock alone

Second order

® 3 unknown functions V(x, x’, x”),T'(x,x’,z),(x, z)

26 /31



The SAME: Strategy

® Same strategy as in FAME

» Substitute 2nd-order approximation in Master Equation

> Identify coefficients

¢ Block-recursive structure again

1. Enough to start with SAME for V(x, x’, x"")
2. Then solve SAME for I'(x, x’, z)
3. Finally solve SAME for Q(x, z)
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The SAME: Bellman equation

pv(xaxl’x,l) = T(X7XI5XH)
—————
Exogenous 2nd-order impact
+ LW XX + LGV, x )]+ L) [V (x, X, )]

Continuation value from Continuation value from propagation in
changes to own state x pair of impulses h(x") and h(x"")

n /(V(x,t, X")or (£, X') + V(x,x's o (£, X)) e

GE: 2"Y-order valuation of
1%t-order changes in other HHs' savings

+ /V(t, x' x" )T (x, t)dt

GE: 1%t-order valuation of
2"_order changes in other HHs' savings

where
oy, t) = 9,[g%(y)(bg(y,t) — M(y,t,v))]
Txy) = 0y (v (xS (KE()

T(x,z,t) = similar combination of steady-state objects and v * petis
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The SAME: Computation
* Discretize V(x, x’,x") into a tensor Vj
e Obtain a generalized Sylvester tensor equation
Vi P+VxaQ+VxzR=T

where

> I57 Q, IA?, T are known matrices that depend on steady-state and v
» Xy denotes sum along index £ € {1,2,3} of tensor and first index of matrix

> Xy simply generalizes matrix product to tensors

® Well-established algorithms to solve the Sylvester tensor equation
» Unpack tensor along any dimension

» Recover sequence of standard Sylvester matrix equations

e Example: KS98: ~ 0.5 seconds

® Similar Bellman equations and discretization for I'(x, x", z) and Q(x, z)
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Scope



Generalization

In paper, extend all results to general joint framework with

* Arbitrary controlled jump-diffusion process for state x, € RPx

» Wage ladder, different types, location/industry/occupation choice

e State constraints

> Borrowing constraints

e Mass points in the distribution
» Borrowing constraints, kinks in interest rate

® Value enters in flow payoff & generator
» Epstein-Zin, bargaining models

® Intuition the same, just more notation

Provide plug-and-play formulae
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Conclusion

* FAME/SAME = recursive approach to dynamic economies w/ heterogeneity

Crux of approach: work with full distribution & perturb analytically

e Qutcomes
> Ready-to-use formulae
» Efficient, block-recursive & easy-to-code algorithm

» 2nd-order perturbation

Applicable to a wide range of settings
» HANK + frictional labor markets

» Dynamic discrete choice / spatial / trade

Analytic PDE structure opens promising synergies for large-scale models
» Sparse grids

» Neural networks
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Literature

Ahn et al. (2018)
» FAME = analytic foundation for Ahn et al.
» Some dimension reduction for free

> Bypasses automatic differentiation and Blanchard-Kahn steps

Auclert et al. (2019)

» Sequence-space FAME = analytic foundation for Auclert et al.

» Bypasses automatic differentiation

Bandhari et al. (2018)

» FAME preserves full nonlinearity in idiosyncratic decisions

Alvarez et al. (2021)
» FAME applicable more broadly

Handles 2nd-order perturbations: SAME

» Back to main presentation 32/31



Sequence-space representation: PE

e The distributional Impulse value v satisfies

Va4, Z/ t Ry REy)

pe{rw} Response of value Response of price at t

to price impulse at t  to distr. impulse
* vf(a,y), p € {r,w} are the price Impulse Values

® To first order, for price sequences 7, w;, t > 0,

Vi(a,y) = V¥(ay)+ 3 / e VE(3,y)pesrdT

pe{r,w}

* vf(a,y), p € {r,w} satisfy standard HJBs

Moy = Ly
§ay) = al(e(5.0) . % (o) = n/((a.y))

» Back to main presentation
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Sequence-space representation: GE

e Compute first-order consumption response from price Impulse Values

e Linearize KF equation analytically in prices

Obtain equilibrium linear system in prices, e.g.

o0
o=y JO””’ / JEPE AT+ / JPrPprdr
t

pe{w,r} |n|t|a| distrib. —_—
Cumul effect of past prices  Cumul. effect of future prices
through past savings rates through expectations

e Sequence-space Jacobians J have explicit expressions with

» Price Impulse Values v
» Steady-state distribution g°°(a, y) and transition probabilities £(a, y)
> Initial distribution ho(a, y)

» Back to main presentation 36/31



Stochastic steady-state

® Invariant distribution in stochastic steady-state is high-dimensional
> Essentially P[h: = h, z; = z]
» Probability distribution over functions h(x)

> Impractical

® Instead focus on unconditional distribution over indiv. and ag. states
» Essentially h(x,z) = P[x;: = x, z = 2]
> Implicitly integrates over randomness in h; conditional on z; = z

» Much more practical

* Unconditional distribution enough to first order

» Enough to compute first-order moments e.g.

E[a"|z] = /a” (gss(x) + eh(x, z)) dx

> Business cycle moments require second order anyway

» Back to main presentation 35/31
/



Stochastic steady-state

* The unconditional stochastic steady-state distribution h(x, z) solves

L (x)[h(-, 2)] + K(x)[h (-, 2)] + A" (2)[h(x, )] + S(x,2) = 0
e Depends only on known steady-state objects

¢ Discretized: obtain a Sylvester matrix equation

(LT +K] -h+h-A=-5S

» Back to main presentation
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The SAME: Details

T(x,z,t) = Lg(x, 2z, t)[V>]+ Le(x, 2)[v(s £)] + Lg(x, t)[v(, 2)]
Direct price impact Cross price-continuation value
u" (> (x))M(x, z, v)M(x, t, V)
Cross consumption-continuation value

{vz(x, z)(bg(z, t) = M(z,t,v)) + ve(x, t)(bg(t,z) — M(t,z, v))

+

GE: change in propagation of impulse due to change in savings

- /Vy(x,y)gss(y) [bgg(%L t) — k> vy (¥, 2) vy (¥, t)}dy

GE: 1%-order valuation of 2"-order changes in others’ savings

» Back to main presentation 37/31



Applications



Frictional credit and labor markets

e Setup
» Firms use capital & post wages a la Burdett-Mortensen
> Frictional unemployment + JtJ search — uninsurable income risk
» Borrowing constraint
» State-dependent Ul
» Calibrated to MPC = 0.2, u-rate = 0.1

® Implementation

» Distributional Impulse Value: 4s

> Aggregate shock Impulse Value: 0.1s
Any IRF: <1s

v

v

Stochastic steady-state distribution: <1s

v

~ 200 lines of Matlab code w/ only matrix products and linear systems
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Unemployed bear the brunt of recessions

Income elasticity to aggregate output (annuitized)

Elasticity

-1 1 1 1 1
Unemployed Bottom wage Median wage Top wage

Labor market status
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Impulse response to TFP shock with constant Ul

p.p. deviation

1.2

S
)

=4
@

14
=

4
o

-0.2

(A) Unemployment rate

(B) Welfare

(C) Welfare, constrained indiv.

% deviation, cons. eq.

----- Top wage earner
===Median wage earner
— =Bottom wage earner
== Unemployed

% deviation, cons. eq.

----- Top wage earner
===Median wage earner
— =Bottom wage earner
== Unemployed

2 4 6 8 10
Years

2 4 6 8
Years
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Impulse response to TFP shock with countercyclical Ul

s (A) Unemployment rate . (B) Welfare . (C) Welfare, constrained indiv.
1
08 g - 3.
5 g g
T 06 8- 8 -2
= - s
S 04 é K é -3
a 8 8
a 3 3
0.2 DA e Top wage earner Sap e Top wage earner
& ===Median wage earner & ===Median wage earner
0 -5 — =Bottom wage earner -5 — =Bottom wage earner
== Unemployed == Unemployed
0.2 6 6
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Years Years Years

e Ul elasticity to u-rate calibrated to a 15% increase

41/31



	Introduction
	Setup
	FAME
	Aggregate shocks
	SAME
	Scope
	Conclusion
	Appendix
	Literature
	Sequence-space FAME
	Stochastic steady-state
	SAME details
	Application


