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Introduction

• Modern macro ≡ IRFs in models with rich cross-sectional heterogeneity

I HANK, macro-search, spatial/trade

• Recent computational advances: Ahn et al. (2018), Auclert et al. (2019)

I Reiter (2008) on steroids

I Mostly numerical, restricted to first order

• Is there an underlying conceptual framework?

1. Expand solvable models: GE feedback w/ many prices, entire distribution

2. Improve accuracy & capture nonlinearities: 2nd-order

3. Economic interpretation of components of IRFs

4. Improve computation: accelerate, simplify
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This paper: The idea

Analytic foundation for perturbation methods with heterogeneous agents

1. Include entire distribution as state variable into individual decision

I Bellman eq. on infinite-dim. space of distribution: the Master Equation

I Introduced in maths/mean field games literature (Cardaliaguet et al. 2019)

I Fully recursive/Markovian representation of the economy

2. Analytically perturb the Master Equation in the distrib. & ag. shocks

I Continuous time key for tractability

I First/Second-order Approximation to the Master Equation (FAME, SAME)

I Leverages generalized derivatives in infinite-dimensional spaces
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This paper: The benefits

• The FAME

I Single Bellman equation that embeds all equilibrium relationships

I Depends on steady-state objects only, w/ explicit expressions

I Dimension reduced from ∞ to 2 x idiosyncratic states

• Impulse Responses

I Block-recursive structure: FAME → KF → IRF

I A priori speed & conv. conditions w/ explicit steady-state objects

• Transparent implementation with standard Bellman equation methods

• The SAME is virtually the same
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The plan

Literature

This talk

1. Derive the Master Equation in Krusell-Smith (1998) economy

2. Derive the FAME in Krusell-Smith (1998) economy

3. Derive the SAME in Krusell-Smith (1998) economy

In paper but not in talk

• Provide plug-and-play formulae for much more flexible setup

• 2 applications

I Application 1: welfare gains from state-dependent UI

I Application 2: dynamic spatial/migration model
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The Master Equation

in Krussell Smith (1998)



Setup

• Continuous time

• Individuals solve a standard income fluctuation problem

I No borrowing constraint for now

I Uninsurable income risk ⇒ asset distribution matters for interest rate

• A representative firm rents capital and labor from households

• No aggregate shocks for now

I Deterministic transition from out of steady-state

5 / 31



Individual decision problem
• Individual decision problem (HJB)

ρVt(a, y)− ∂Vt

∂t
(a, y) = max

c≥0
u(c) + (rta + wty − c)

∂Vt

∂a
(a, y) + L0(y)[Vt ]

where functional operator L0(y)[·] encodes productivity changes, e.g.

L0(y)[V ] = µ(y)
∂V

∂y
+
σ(y)2

2

∂2V

∂y2

and V has at most linear growth at infinity (≡ No-Ponzi condition)

• Collect individual states, prices and define operator

x ≡ (a, y)

Lt(x , c)[V ] ≡ (rta + wty − c)
∂V

∂a
(x) + L0(y)[V ]

• HJB writes more compactly

ρVt(x)− ∂Vt

∂t
(x) = max

c≥0
u(c) + Lt(x , c)[Vt ]
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Firms and evolution of distribution

• Firm decision problem

max
K ,N

Z̄KαN1−α − rtK − wtN

• Evolution of distribution (KF)

∂gt
∂t

(x) = − ∂

∂a

(
st(x)gt(x)

)
+ L∗0(x)[gt ]

≡ L∗t (x , ĉt(x))[gt ]

where

I st(a, y) = rta + wty − ĉt(x): savings rate

I ĉt(x): optimal consumption decision

I L∗(x)[·] denotes the adjoint of functional operator L(x)[·]
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A quick refresher on functional operators

• Analogy between functions, operators and vectors, matrices

• If instead we had a discrete state space or discretized on the computer

I Functions V (x), g(x) ⇐⇒ vectors Vi , gi

I Operator L(x)[·] ⇐⇒ matrix Lij , where x ⇔ i

I Action of operator on function L(x)[V ] ⇐⇒ matrix multiplication L · V

I Adjoint L∗(x)[·] ⇐⇒ matrix transpose LT
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Step 1/3: Find “prices” that affect individual decisions

• In this example, immediate: rt ,wt

• In spatial models, one or more prices per location

• In labor market models, “prices” ≡ entire wage distribution
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Step 2/3: Express prices as functionals of distribution

• From firm’s FOC

rt =R(gt) wt =W(gt)

• R,W are simple functionals, e.g.

R(gt) = α

(˜
ygt(a, y)dyda˜
agt(a, y)dyda

)1−α

• Individual decision problem becomes

ρVt(x)− ∂Vt

∂t
(x) = max

c≥0
u(c) + (R(gt)a +W(gt)y − c)

∂Vt

∂a
(x)

+L0(y)[Vt ]

≡ max
c≥0

u(c) + L(x , c , gt)[Vt ]

• No “t” subscript on L0 anymore!
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Step 3/3: Change variables
• Re-write the value function as a functional of the distribution

Vt(x) ≡ V (x , gt)

• Obtain the time derivative with the chain rule

∂Vt

∂t
(x) =

ˆ
∂V
∂g

(x, x ′, gt)
∂gt

∂t
(x ′)dx ′

I ∂V
∂g = Frechet derivative of V w.r.t. g : derivative w.r.t. functions

I Recall analogy with discrete case g ≡ (gj)j , would have

∂Vit

∂t
=
∑
j

∂Vi

∂gj
(gt)

∂gjt

∂t

• Recognize that ∂gt
∂t given by the KF equation:

∂Vt

∂t
(x) =

ˆ
∂V
∂g

(x, x ′, gt)L∗(x ′, ĉ(x ′, gt), gt)[gt ]dx
′
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Putting it all together: The Master Equation

• The individual decision problem becomes

ρV (x, g) =

Standard flow utility and continuation value︷ ︸︸ ︷
max
c≥0

u(c) + L(x, c, gt)[V ]

+

ˆ
∂V
∂g

(x, x ′, g)L∗(x ′, ĉ(x ′, g), g)[g ]dx ′︸ ︷︷ ︸
State-space representation of ∂Vt

∂t

• This is the Master Equation (Cardaliaguet et al. 2019)

• Fully recursive/Markovian representation of the economy

• Integro-PDE in infinite dimension

• Not very practical

12 / 31



The FAME



The key simplification: Linearize in the distribution

• Suppose there exists a steady-state V SS(x), gSS(x)

• Consider small perturbations in the distribution g around gSS :

g = gSS + h , with h small in some metric

• To first order

V (x , gSS + h) ≈ V SS(x) +

ˆ
v(x, x ′)h(x ′)dx ′

• v is the “Impulse Value”

I Frechet derivative of the value function at steady-state distribution

v(x, x ′) =
∂V

∂g
(x , x ′, gSS)

I Represents how value function locally reacts to a distributional impulse h
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Strategy

• Substitute first-order approximation

V (x , gSS + h) ≈ V SS(x) +

ˆ
v(x, x ′)h(x ′)dx ′

into the Master Equation

• Then“identify coefficients” on h(x ′)

• “Coefficients” on h(x ′) are functions
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The FAME

ρv(x, x ′) = u′(cSS(x))D(x , x ′)︸ ︷︷ ︸
Direct price impact

+ L(x)[v(·, x ′)]︸ ︷︷ ︸
Continuation value from

idios. shocks to x

+ L(x ′)[v(x, ·)]︸ ︷︷ ︸
Continuation value from

propagation of impulse at x′

+

ˆ
v(x, x ′′)

∂

∂a′′

(
gSS(x ′′)

(
M(x ′′, x ′, v)︸ ︷︷ ︸

distributional MPC

−D(x ′′, x ′)
)

︸ ︷︷ ︸
Change in savings rate of HH x′′

in response to impulse at x′

dx ′′

︸ ︷︷ ︸
Weighted average of changes in savings rates of other HHs

where

D(x , x ′) =
(
R0a

′ +R1y
′)a +

(
W0a

′ +W1y
′)y

R0 = −(1− α)α
(
Y SS/KSS

)1−α
/KSS

L(x) = L(x , cSS(x), gSS) =
(
rSSa + wSSy − cSS(x)

)
∂a + L(y)

M(x ′′, x ′, v) =
1

u′′(cSS(x ′′))

∂v
∂a

(x ′′, x ′)

15 / 31



Properties of the FAME

Relation to sequence space

• Standard HJB

• Block-recursive

I Single Bellman equation that embeds the evolution of the distribution

I No extra fixed point on prices: has been merged into HJB

• From infinite dimension to finite dimension

I To first order, only need perturbations in distribution point by point x ′

• Explicit steady-state dependence

I Analytic local perturbation

• Computation: standard finite differences & only steady-state dimension

I Leverages analytic structure
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Discretizing the Impulse Value

• Discretize v(x, x ′) into a matrix vij ≡ v(xi , xj )

• Discretized FAME

ρv = diag(u′SS) · D + L · v + v · LT

+ v · da ·
[
diag(gSS) ·

(
diag(1/u′′SS) · v− D

)]
• Written compactly

Mv + vN + vPv = Q

for known matrices M,N,P,Q that depend only on steady-state objects

17 / 31



Computing the Impulse Value

• Need to solve for square matrix v in

Mv + vN + vPv = Q

• Suppose that P = 0

I Obtain a Sylvester matrix equation Mv + vN = Q

I Well-studied problem with established routines in most programming languages

I Much more efficient than stacked system
(

M⊗ Id + Id⊗ N
)

vec(v) = vec(Q)

• Since P 6= 0, need to iterate
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A numerical scheme

• Guess an initial matrix v(0)

• Given a matrix v(n), solve the Sylvester matrix equation in v(n+1)

Mv(n+1) + v(n+1)
[
N + Pv(n)

]
= Q

I Important to treat the “sandwich” term this way

I Similar to implicit scheme =⇒ stability

• Keep iterating until v(n) and v(n+1) close enough

• Examples

I Krussel Smith (1998) model: ∼ 0.1 seconds, 200 lines Matlab code

I Krussel Smith (1998)+ frictional job ladder: ∼ 5 sec., 300 lines Matlab code
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The distribution and impulse response functions

• After solving for the Impulse Value v, linearize KF equation

• Obtain

∂ht

∂t
(x)︸ ︷︷ ︸

Change in density
at x

= L∗(x)[ht ]︸ ︷︷ ︸
Propagation of impulse
holding savings at SS

+ K(x)[ht ]︸ ︷︷ ︸
Response of savings

to impulse

where

K(x)[h] ≡
ˆ

K(x, x ′)h(x ′)dx ′

K(x, x ′) ≡ ∂

∂a

(
gSS(x)

(
M(x , x ′, v)− D(x , x ′)

))
• Similarly discretize and compute any deterministic IRF through

ht+∆ = ht + ∆
[
LT + K

]
h
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Aggregate shocks



Aggregate shocks

• Introduce aggregate productivity shocks d logZt = −µ logZtdt + εdWt

• Define rescaled aggregate productivity zt = 1
ε log Zt

Z̄
so that

dzt = −µztdt + dWt

• Master Equation with aggregate shocks: V (x , g , ε, z) solves

ρV (x , ε, z , g) = max
c

u(c) + L(x , c , εz , g)[V ] +A(z)[V ]

+

ˆ
∂V

∂g
(x , x ′, ε, z , g)L∗(x ′, ĉ(x ′, εz , g), εz , g)[V ]dx ′
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The FAME with Aggregate Shocks

• Take limit ε→ 0, g ≈ gSS + εh:

V (x , ε, z , g) ≈ V SS(x) + ε

{ˆ
v(x, x ′)h(x ′)dx ′ + ω(x, z)

}
where ω is the “aggregate shock Impulse Value”

• Same strategy as in deterministic case

I Substitute 1st-order approximation in Master Equation

I Identify coefficients

I Obtain one FAME for v(x, x ′), one FAME for ω(x, z)

• Distributional Impulse Value v(x, x ′) still satisfies the deterministic FAME

I Block-recursive structure again

I Start with deterministic FAME

I Then only need to solve for ω(x, z) w/ aggregate shock FAME
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The FAME with Aggregate Shocks

• Aggregate shocks Impulse Value ω satisfies

ρω(x, z) = zΩ0(x)u′(cSS(x))︸ ︷︷ ︸
Direct aggregate shock impact

+ L(x)[ω(·, z)]︸ ︷︷ ︸
Continuation value from

idios. shocks to x

+ A(z)[ω(x, ·)]︸ ︷︷ ︸
Continuation value from

aggregate shocks

+

ˆ
v(x, x ′)

∂

∂a′

(
gSS(x ′)

(
M(x ′,ω(·, z))︸ ︷︷ ︸

Aggregate shock MPC

−Ω0(x)z
)

︸ ︷︷ ︸
Change in savings of HH x′

)
dx ′

︸ ︷︷ ︸
Weighted average of changes in savings rates of other HHs

where Ω0(x) = R2a +W2y

• Standard HJB that depends only on known steady-state objects
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A numerical scheme

• Discretize ω(x, z) into a matrix w

• w solves a standard Sylvester matrix equation

Mw + wN = Q

for known matrices M,N,Q that depend only on known steady-state objects

I Block-recursive structure

I The distributional Impulse Value v is already known

• Solve directly for w, no need to iterate

• Examples

I KS98 model: ∼ 0.05 sec., 50 extra lines Matlab code

I KS98 + frictional job ladder: ∼ 0.3 sec., 50 extra lines Matlab code
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IRFs with aggregate shocks

Stochastic steady-state

• Linearized KF equation with aggregate shocks = SPDE

dht(x)︸ ︷︷ ︸
Change in density

at x

=
{
L∗(x)[ht ]︸ ︷︷ ︸

Prop. of distr. impulse
holding savings at SS

+ K(x)[ht ]︸ ︷︷ ︸
Response of savings

to distr. impulse

+ S(x, zt)︸ ︷︷ ︸
Response of savings

to ag. shock

}
dt

where

S(x, z) =
∂

∂a

(
gSS(x)

(
M(x ,ω(·, z))− Ω0(x)z

))
• Steady-state is stochastically stable if λdom(K +K∗) < 0

• Can similarly discretize and compute any IRF through

ht+∆ = ht + ∆
[
LT + K + St

]
h

for a given sequence of aggregate shocks zt
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The SAME



The SAME
• So far only considered first-order perturbations of the Master Equation

• Now second-order perturbations: same logic, just more components

• Again take limit ε→ 0, g ≈ gSS + εh:

V (x , ε, z , g) ≈ V SS(x)︸ ︷︷ ︸
Steady-state

+ ε

{ˆ
v(x, x ′)h(x ′)dx ′ + ω(x, z)

}
︸ ︷︷ ︸

First order

+
ε2

2

{ ¨
V(x, x ′, x ′′)︸ ︷︷ ︸
2nd-order effect

of distribution alone

h(x ′)h(x ′′)dx ′dx ′′

+2

ˆ
Γ(x, x ′, z)︸ ︷︷ ︸

Cross effect
of ag. shock. & distrib.

h(x ′)dx ′ + Ω(x, z)︸ ︷︷ ︸
2nd-order effect

of ag. shock alone

}
︸ ︷︷ ︸

Second order

• 3 unknown functions V(x, x ′, x ′′),Γ(x, x ′, z),Ω(x, z)
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The SAME: Strategy

• Same strategy as in FAME

I Substitute 2nd-order approximation in Master Equation

I Identify coefficients

• Block-recursive structure again

1. Enough to start with SAME for V(x, x ′, x ′′)
2. Then solve SAME for Γ(x, x ′, z)

3. Finally solve SAME for Ω(x, z)
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The SAME: Bellman equation

ρV(x, x ′, x ′′) = T(x, x ′, x ′′)︸ ︷︷ ︸
Exogenous 2nd-order impact

+ L(x)[V(·, x ′, x ′′)]︸ ︷︷ ︸
Continuation value from
changes to own state x

+L(x ′)[V(x, ·, x ′′)] +L(x ′′)[V(x, x ′, ·)]︸ ︷︷ ︸
Continuation value from propagation in

pair of impulses h(x′) and h(x′′)

+

ˆ (
V(x, t, x ′′)σ(t, x ′) +V(x, x ′, t)σ(t, x ′′)

)
dt︸ ︷︷ ︸

GE: 2nd-order valuation of
1st-order changes in other HHs’ savings

+

ˆ
V(t, x ′, x ′′)τ(x, t)dt︸ ︷︷ ︸
GE: 1st-order valuation of

2nd-order changes in other HHs’ savings

where

σ(y , t) = ∂y
[
gSS(y)(bg (y , t)−M(y , t, v))

]
τ (x, y) = ∂y

(
vy(x, y)gSS(y)kSS(y)

)
T(x, z, t) = similar combination of steady-state objects and v Details
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The SAME: Computation

• Discretize V(x, x ′, x ′′) into a tensor Vijk

• Obtain a generalized Sylvester tensor equation

V×1 P̂ + V×2 Q̂ + V×3 R̂ = T

where

I P̂, Q̂, R̂,T are known matrices that depend on steady-state and v

I ×` denotes sum along index ` ∈ {1, 2, 3} of tensor and first index of matrix

I ×` simply generalizes matrix product to tensors

• Well-established algorithms to solve the Sylvester tensor equation

I Unpack tensor along any dimension

I Recover sequence of standard Sylvester matrix equations

• Example: KS98: ∼ 0.5 seconds

• Similar Bellman equations and discretization for Γ(x, x ′, z) and Ω(x, z)
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Scope



Generalization

In paper, extend all results to general joint framework with

• Arbitrary controlled jump-diffusion process for state xt ∈ RDX

I Wage ladder, different types, location/industry/occupation choice

• State constraints
I Borrowing constraints

• Mass points in the distribution
I Borrowing constraints, kinks in interest rate

• Value enters in flow payoff & generator
I Epstein-Zin, bargaining models

• Intuition the same, just more notation

• Provide plug-and-play formulae

30 / 31



Conclusion



Conclusion

• FAME/SAME = recursive approach to dynamic economies w/ heterogeneity

• Crux of approach: work with full distribution & perturb analytically

• Outcomes

I Ready-to-use formulae

I Efficient, block-recursive & easy-to-code algorithm

I 2nd-order perturbation

• Applicable to a wide range of settings

I HANK + frictional labor markets

I Dynamic discrete choice / spatial / trade

• Analytic PDE structure opens promising synergies for large-scale models

I Sparse grids

I Neural networks
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Thank you!
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Appendix



Literature

Back to main presentation

• Ahn et al. (2018)

I FAME ≡ analytic foundation for Ahn et al.

I Some dimension reduction for free

I Bypasses automatic differentiation and Blanchard-Kahn steps

• Auclert et al. (2019)

I Sequence-space FAME ≡ analytic foundation for Auclert et al.

I Bypasses automatic differentiation

• Bandhari et al. (2018)

I FAME preserves full nonlinearity in idiosyncratic decisions

• Alvarez et al. (2021)

I FAME applicable more broadly

• Handles 2nd-order perturbations: SAME
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Sequence-space representation: PE

Back to main presentation

• The distributional Impulse value v satisfies

v(a, y , a′, y ′) =
∑

p∈{r ,w}

ˆ ∞
0

e−ρt vp
t (a, y)︸ ︷︷ ︸

Response of value
to price impulse at t

v̄p
t (a′, y ′)︸ ︷︷ ︸

Response of price at t
to distr. impulse

dt

• vp
t (a, y), p ∈ {r ,w} are the price Impulse Values

• To first order, for price sequences r̂t , ŵt , t ≥ 0,

Vt(a, y) = V SS(a, y) +
∑

p∈{r ,w}

ˆ ∞
0

e−ρτvp
τ (a, y)p̂t+τdτ

• vp
t (a, y), p ∈ {r ,w} satisfy standard HJBs

−∂v
p
t

∂t
(a, y) = L(a, y)[vp

t ]

v r
0 (a, y) = au′(cSS(a, y)) , vw

0 (a, y) = yu′(cSS(a, y))
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Sequence-space representation: GE

Back to main presentation

• Compute first-order consumption response from price Impulse Values

• Linearize KF equation analytically in prices

• Obtain equilibrium linear system in prices, e.g.

r̂t =
∑

p∈{w ,r}

(
J0,r ,p
t︸ ︷︷ ︸

Initial distrib.

+

ˆ t

0

J1,r ,p
t−τ p̂τdτ︸ ︷︷ ︸

Cumul. effect of past prices
through past savings rates

+

ˆ ∞
t

J2,r ,p
t,τ−t p̂τdτ︸ ︷︷ ︸

Cumul. effect of future prices
through expectations

)

• Sequence-space Jacobians J have explicit expressions with

I Price Impulse Values vp

I Steady-state distribution gSS(a, y) and transition probabilities L(a, y)

I Initial distribution h0(a, y)
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Stochastic steady-state

Back to main presentation

• Invariant distribution in stochastic steady-state is high-dimensional

I Essentially P[ht = h, zt = z]

I Probability distribution over functions h(x)

I Impractical

• Instead focus on unconditional distribution over indiv. and ag. states

I Essentially h̄(x, z) ≡ P[xt = x , zt = z]

I Implicitly integrates over randomness in ht conditional on zt = z

I Much more practical

• Unconditional distribution enough to first order

I Enough to compute first-order moments e.g.

E[an|z] =

ˆ
an
(
gSS(x) + εh̄(x , z)

)
dx

I Business cycle moments require second order anyway
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Stochastic steady-state

Back to main presentation

• The unconditional stochastic steady-state distribution h̄(x, z) solves

L∗(x)[h̄(·, z)] +K(x)[h̄(·, z)] +A∗(z)[h̄(x, ·)] + S(x, z) = 0

• Depends only on known steady-state objects

• Discretized: obtain a Sylvester matrix equation[
LT + K

]
· h + h · A = −S
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The SAME: Details

Back to main presentation

T(x, z, t) = Lgg (x , z , t)[V SS ]︸ ︷︷ ︸
Direct price impact

+Lg (x , z)[v(·, t)] + Lg (x , t)[v(·, z)]︸ ︷︷ ︸
Cross price-continuation value

+ u′′(cSS(x))M(x , z , v)M(x , t, v)︸ ︷︷ ︸
Cross consumption-continuation value

−
[
vz(x, z)

(
bg (z , t)−M(z , t, v)

)
+ vt(x, t)

(
bg (t, z)−M(t, z , v)

)]
︸ ︷︷ ︸

GE: change in propagation of impulse due to change in savings

−
ˆ

vy(x, y)gSS(y)
[
bgg (y , z , t)− kSS

p vy(y , z)vy(y , t)
]
dy︸ ︷︷ ︸

GE: 1st-order valuation of 2nd-order changes in others’ savings
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Applications



Frictional credit and labor markets

• Setup

I Firms use capital & post wages à la Burdett-Mortensen

I Frictional unemployment + JtJ search → uninsurable income risk

I Borrowing constraint

I State-dependent UI

I Calibrated to MPC = 0.2, u-rate = 0.1

• Implementation

I Distributional Impulse Value: 4s

I Aggregate shock Impulse Value: 0.1s

I Any IRF: <1s

I Stochastic steady-state distribution: <1s

I ∼ 200 lines of Matlab code w/ only matrix products and linear systems
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Unemployed bear the brunt of recessions

Income elasticity to aggregate output (annuitized)
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Impulse response to TFP shock with constant UI
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(B) Welfare
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(C) Welfare, constrained indiv.
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UI elasticity to u-rate calibrated to a 15% increase
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Impulse response to TFP shock with countercyclical UI

0 2 4 6 8 10
Years

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

p.
p.

 d
ev

ia
tio

n

(A) Unemployment rate

0 2 4 6 8 10
Years

-6

-5

-4

-3

-2

-1

0

1

%
 d

ev
ia

tio
n,

 c
on

s.
 e

q.

(B) Welfare
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(C) Welfare, constrained indiv.
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• UI elasticity to u-rate calibrated to a 15% increase
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