Solving Heterogeneous Agent Models with the Master Equation

Adrien Bilal

Harvard University & NBER

July 2021

Introduction

- Modern macro ≡ IRFs in models with rich cross-sectional heterogeneity
 - ► HANK, macro-search, spatial/trade
- Recent computational advances: Ahn et al. (2018), Auclert et al. (2019)
 - ► Reiter (2008) on steroids
 - Mostly numerical, restricted to first order
- Is there an underlying conceptual framework?
 - 1. Expand solvable models: GE feedback w/ many prices, entire distribution
 - 2. Improve accuracy & capture nonlinearities: 2nd-order
 - 3. Economic interpretation of components of IRFs
 - 4. Improve computation: accelerate, simplify

This paper: The idea

Analytic foundation for perturbation methods with heterogeneous agents

- 1. Include entire distribution as state variable into individual decision
 - ▶ Bellman eq. on infinite-dim. space of distribution: the Master Equation
 - ▶ Introduced in maths/mean field games literature (Cardaliaguet et al. 2019)
 - ► Fully recursive/Markovian representation of the economy
- 2. Analytically perturb the Master Equation in the distrib. & ag. shocks
 - Continuous time key for tractability
 - ► First/Second-order Approximation to the Master Equation (FAME, SAME)
 - Leverages generalized derivatives in infinite-dimensional spaces

This paper: The benefits

- The FAME
 - ► Single Bellman equation that embeds all equilibrium relationships
 - Depends on steady-state objects only, w/ explicit expressions
 - ▶ Dimension reduced from ∞ to 2 x idiosyncratic states
- Impulse Responses
 - ightharpoonup Block-recursive structure: FAME ightarrow KF ightarrow IRF
 - ► A priori speed & conv. conditions w/ explicit steady-state objects
- Transparent implementation with standard Bellman equation methods
- The SAME is virtually the same

The plan

This talk

- 1. Derive the Master Equation in Krusell-Smith (1998) economy
- 2. Derive the FAME in Krusell-Smith (1998) economy
- 3. Derive the SAME in Krusell-Smith (1998) economy

In paper but not in talk

- Provide plug-and-play formulae for much more flexible setup
- 2 applications
 - Application 1: welfare gains from state-dependent UI
 - Application 2: dynamic spatial/migration model

Literature 4/31

The Master Equation

in Krussell Smith (1998)

Setup

- Continuous time
- Individuals solve a standard income fluctuation problem
 - No borrowing constraint for now
 - ▶ Uninsurable income risk ⇒ asset distribution matters for interest rate
- A representative firm rents capital and labor from households
- No aggregate shocks for now
 - Deterministic transition from out of steady-state

Individual decision problem

Individual decision problem (HJB)

$$\rho V_t(a,y) - \frac{\partial V_t}{\partial t}(a,y) = \max_{c \ge 0} u(c) + (r_t a + w_t y - c) \frac{\partial V_t}{\partial a}(a,y) + L_0(y)[V_t]$$

where functional operator $L_0(y)[\cdot]$ encodes productivity changes, e.g.

$$L_0(y)[V] = \mu(y)\frac{\partial V}{\partial y} + \frac{\sigma(y)^2}{2}\frac{\partial^2 V}{\partial y^2}$$

and V has at most linear growth at infinity (\equiv No-Ponzi condition)

Collect individual states, prices and define operator

$$x \equiv (a, y)$$

$$L_t(x, c)[V] \equiv (r_t a + w_t y - c) \frac{\partial V}{\partial a}(x) + L_0(y)[V]$$

HJB writes more compactly

$$\rho V_t(x) - \frac{\partial V_t}{\partial t}(x) = \max_{c>0} u(c) + L_t(x,c)[V_t]$$

Firms and evolution of distribution

Firm decision problem

$$\max_{K,N} \bar{Z} K^{\alpha} N^{1-\alpha} - r_t K - w_t N$$

Evolution of distribution (KF)

$$\frac{\partial g_t}{\partial t}(x) = -\frac{\partial}{\partial a} \left(s_t(x) g_t(x) \right) + L_0^*(x) [g_t]$$

$$\equiv L_t^*(x, \hat{c}_t(x)) [g_t]$$

where

- $s_t(a, y) = r_t a + w_t y \hat{c}_t(x)$: savings rate
- $ightharpoonup \hat{c}_t(x)$: optimal consumption decision
- ▶ $L^*(x)[\cdot]$ denotes the adjoint of functional operator $L(x)[\cdot]$

A quick refresher on functional operators

- Analogy between functions, operators and vectors, matrices
- If instead we had a discrete state space or discretized on the computer

```
► Functions V(x), g(x) \iff vectors V_i, g_i
```

- ▶ Operator $L(x)[\cdot]$ \iff matrix L_{ij} , where $x \Leftrightarrow i$
- Action of operator on function $L(x)[V] \iff$ matrix multiplication $L \cdot V$
- ► Adjoint $L^*(x)[\cdot]$ \iff matrix transpose L^T

Step 1/3: Find "prices" that affect individual decisions

• In this example, immediate: r_t, w_t

In spatial models, one or more prices per location

ullet In labor market models, "prices" \equiv entire wage distribution

Step 2/3: Express prices as functionals of distribution

From firm's FOC

$$r_t = \mathcal{R}(\mathbf{g}_t)$$
 $w_t = \mathcal{W}(\mathbf{g}_t)$

• \mathcal{R}, \mathcal{W} are simple functionals, e.g.

$$\mathcal{R}(\mathbf{g}_t) = \alpha \left(\frac{\iint y \mathbf{g}_t(\mathbf{a}, y) dy d\mathbf{a}}{\iint a \mathbf{g}_t(\mathbf{a}, y) dy d\mathbf{a}} \right)^{1-\alpha}$$

Individual decision problem becomes

$$\rho V_t(x) - \frac{\partial V_t}{\partial t}(x) = \max_{c \ge 0} u(c) + (\mathcal{R}(g_t)a + \mathcal{W}(g_t)y - c)\frac{\partial V_t}{\partial a}(x) + L_0(y)[V_t]$$

$$\equiv \max_{c \ge 0} u(c) + L(x, c, g_t)[V_t]$$

No "t" subscript on L₀ anymore!

Step 3/3: Change variables

Re-write the value function as a functional of the distribution

$$V_t(x) \equiv V(x, g_t)$$

Obtain the time derivative with the chain rule

$$\frac{\partial V_t}{\partial t}(x) = \int \frac{\partial V}{\partial g}(x, x', g_t) \frac{\partial g_t}{\partial t}(x') dx'$$

- $ightharpoonup rac{\partial V}{\partial g}$ = Frechet derivative of V w.r.t. g: derivative w.r.t. functions
- ▶ Recall analogy with discrete case $g \equiv (g_j)_j$, would have

$$\frac{\partial V_{it}}{\partial t} = \sum_{j} \frac{\partial V_{i}}{\partial g_{j}} (g_{t}) \frac{\partial g_{jt}}{\partial t}$$

• Recognize that $\frac{\partial g_t}{\partial t}$ given by the KF equation:

$$\frac{\partial V_t}{\partial t}(x) = \int \frac{\partial V}{\partial g}(x, x', g_t) L^*(x', \hat{c}(x', g_t), g_t)[g_t] dx'$$

Putting it all together: The Master Equation

The individual decision problem becomes

$$\rho \textbf{\textit{V}}(x, \textbf{\textit{g}}) = \underbrace{\max_{c \geq 0} \textbf{\textit{u}}(c) + \textbf{\textit{L}}(x, c, \textbf{\textit{g}}_t)[\textbf{\textit{V}}]}_{\text{\textit{S}}} \\ + \underbrace{\int \frac{\partial \textbf{\textit{V}}}{\partial \textbf{\textit{g}}}(x, x', \textbf{\textit{g}}) \textbf{\textit{L}}^*(x', \hat{c}(x', \textbf{\textit{g}}), \textbf{\textit{g}})[\textbf{\textit{g}}] dx'}_{\text{State-space representation of } \frac{\partial \textbf{\textit{V}}_t}{\partial t}}$$

- This is the Master Equation (Cardaliaguet et al. 2019)
- Fully recursive/Markovian representation of the economy
- Integro-PDE in infinite dimension
- Not very practical

The FAME

The key simplification: Linearize in the distribution

- Suppose there exists a steady-state $V^{SS}(x)$, $g^{SS}(x)$
- Consider small perturbations in the distribution g around g^{SS} :

$$g = g^{SS} + h$$
, with h small in some metric

To first order

$$V(x, g^{SS} + h) \approx V^{SS}(x) + \int v(x, x')h(x')dx'$$

- v is the "Impulse Value"
 - Frechet derivative of the value function at steady-state distribution

$$\mathbf{v}(\mathbf{x}, \mathbf{x'}) = \frac{\partial V}{\partial \mathbf{g}}(\mathbf{x}, \mathbf{x'}, \mathbf{g}^{SS})$$

Represents how value function locally reacts to a distributional impulse h

Strategy

• Substitute first-order approximation

$$V(x, g^{SS} + h) \approx V^{SS}(x) + \int v(x, x')h(x')dx'$$

into the Master Equation

- Then "identify coefficients" on h(x')
- "Coefficients" on h(x') are functions

The FAME

$$\rho \mathbf{v}(\mathbf{x}, \mathbf{x'}) = \underbrace{u'(c^{SS}(x))D(x, x')}_{\text{Direct price impact}} + \underbrace{\mathcal{L}(\mathbf{x})[\mathbf{v}(\cdot, \mathbf{x'})]}_{\text{Continuation value from idios. shocks to } x} + \underbrace{\mathcal{L}(\mathbf{x'})[\mathbf{v}(\mathbf{x}, \cdot)]}_{\text{Continuation value from propagation of impulse at } x'}_{\text{Continuation value from propagation of impulse at } x'}$$

$$+ \int \mathbf{v}(\mathbf{x}, \mathbf{x''}) \frac{\partial}{\partial a''} \left(g^{SS}(\mathbf{x''}) \left(\underbrace{\mathcal{M}(\mathbf{x''}, \mathbf{x'}, \mathbf{v})}_{\text{distributional MPC}} - D(\mathbf{x''}, \mathbf{x'}) \right) dx''}_{\text{distributional MPC}}$$

$$\underline{Change in savings rate of HH x''}_{\text{in response to impulse at } x'}$$

where

$$D(x,x') = (\mathcal{R}_0 a' + \mathcal{R}_1 y') a + (\mathcal{W}_0 a' + \mathcal{W}_1 y') y$$

$$\mathcal{R}_0 = -(1 - \alpha) \alpha (Y^{SS}/K^{SS})^{1-\alpha}/K^{SS}$$

$$\mathcal{L}(x) = L(x, c^{SS}(x), g^{SS}) = (r^{SS} a + w^{SS} y - c^{SS}(x)) \partial_a + L(y)$$

$$\mathcal{M}(x'', x', \mathbf{v}) = \frac{1}{u''(c^{SS}(x''))} \frac{\partial \mathbf{v}}{\partial a} (x'', x')$$

Weighted average of changes in savings rates of other HHs

Properties of the FAME

- Standard HJB
- Block-recursive
 - Single Bellman equation that embeds the evolution of the distribution
 - ▶ No extra fixed point on prices: has been merged into HJB
- From infinite dimension to finite dimension
 - To first order, only need perturbations in distribution point by point x'
- Explicit steady-state dependence
 - Analytic local perturbation
- Computation: standard finite differences & only steady-state dimension
 - Leverages analytic structure

Relation to sequence space 16 / 31

Discretizing the Impulse Value

- Discretize $\mathbf{v}(\mathbf{x}, \mathbf{x}')$ into a matrix $\mathbf{v}_{ij} \equiv \mathbf{v}(\mathbf{x}_i, \mathbf{x}_j)$
- Discretized FAME

$$\begin{array}{lll} \rho \textbf{v} & = & \mathsf{diag}(\textbf{u}'^{SS}) \cdot \textbf{D} + \textbf{L} \cdot \textbf{v} + \textbf{v} \cdot \textbf{L}^T \\ & + & \textbf{v} \cdot \textbf{d}_a \cdot \left[\mathsf{diag}(\textbf{g}^{SS}) \cdot \left(\mathsf{diag}(1/\textbf{u}''^{SS}) \cdot \textbf{v} - \textbf{D} \right) \right] \end{array}$$

Written compactly

$$M\mathbf{v} + \mathbf{v}N + \mathbf{v}P\mathbf{v} = Q$$

for known matrices M, N, P, Q that depend only on steady-state objects

Computing the Impulse Value

Need to solve for square matrix v in

$$M\mathbf{v} + \mathbf{v}N + \mathbf{v}P\mathbf{v} = Q$$

- Suppose that P = 0
 - Obtain a Sylvester matrix equation Mv + vN = Q
 - Well-studied problem with established routines in most programming languages
 - lacktriangle Much more efficient than stacked system $\Big(\mathsf{M}\otimes\mathsf{Id}+\mathsf{Id}\otimes\mathsf{N}\Big)\mathsf{vec}({f v})=\mathsf{vec}(\mathsf{Q})$
- Since $P \neq 0$, need to iterate

A numerical scheme

- Guess an initial matrix v⁽⁰⁾
- Given a matrix $v^{(n)}$, solve the Sylvester matrix equation in $v^{(n+1)}$

$$\mathsf{M} \mathbf{v}^{(n+1)} + \mathbf{v}^{(n+1)} \Big[\mathsf{N} + \mathsf{P} \mathbf{v}^{(n)} \Big] = \mathsf{Q}$$

- Important to treat the "sandwich" term this way
- ▶ Similar to implicit scheme ⇒ stability
- Keep iterating until $\mathbf{v}^{(n)}$ and $\mathbf{v}^{(n+1)}$ close enough
- Examples
 - ightharpoonup Krussel Smith (1998) model: \sim 0.1 seconds, 200 lines Matlab code
 - ightharpoonup Krussel Smith (1998)+ frictional job ladder: \sim 5 sec., 300 lines Matlab code

The distribution and impulse response functions

- After solving for the Impulse Value v, linearize KF equation
- Obtain

$$\underbrace{\frac{\partial h_t}{\partial t}(x)}_{\text{Change in density}} = \underbrace{\mathcal{L}^*(x)[h_t]}_{\text{Propagation of impulse}} + \underbrace{\mathcal{K}(x)[h_t]}_{\text{Response of savings to impulse}}$$

where

$$\begin{split} \mathcal{K}(\mathbf{x})[\mathbf{h}] &\equiv \int \mathcal{K}(\mathbf{x}, \mathbf{x}') \mathbf{h}(\mathbf{x}') d\mathbf{x}' \\ \mathcal{K}(\mathbf{x}, \mathbf{x}') &\equiv \frac{\partial}{\partial \mathbf{a}} \Big(\mathbf{g}^{SS}(\mathbf{x}) \big(\mathcal{M}(\mathbf{x}, \mathbf{x}', \mathbf{v}) - D(\mathbf{x}, \mathbf{x}') \big) \Big) \end{split}$$

Similarly discretize and compute any deterministic IRF through

$$\mathbf{h}_{t+\Delta} = \mathbf{h}_t + \Delta \left[\mathbf{L}^T + \mathbf{K} \right] \mathbf{h}$$

Aggregate shocks

Aggregate shocks

- Introduce aggregate productivity shocks $d \log Z_t = -\mu \log Z_t dt + \varepsilon dW_t$
- Define **rescaled** aggregate productivity $z_t = \frac{1}{arepsilon}\log\frac{Z_t}{Z}$ so that

$$dz_t = -\mu z_t dt + dW_t$$

• Master Equation with aggregate shocks: $V(x, g, \varepsilon, z)$ solves

$$\rho V(x, \varepsilon, z, g) = \max_{c} u(c) + L(x, c, \varepsilon z, g)[V] + \mathcal{A}(z)[V] + \int_{c} \frac{\partial V}{\partial g}(x, x', \varepsilon, z, g) L^{*}(x', \hat{c}(x', \varepsilon z, g), \varepsilon z, g)[V] dx'$$

The FAME with Aggregate Shocks

• Take limit $\varepsilon \to 0$, $g \approx g^{SS} + \varepsilon h$:

$$V(x, \varepsilon, z, g) \approx V^{SS}(x) + \varepsilon \left\{ \int v(x, x')h(x')dx' + \omega(x, z) \right\}$$

where ω is the "aggregate shock Impulse Value"

- Same strategy as in deterministic case
 - Substitute 1st-order approximation in Master Equation
 - Identify coefficients
 - ▶ Obtain one FAME for v(x, x'), one FAME for $\omega(x, z)$
- Distributional Impulse Value v(x, x') still satisfies the **deterministic FAME**
 - ▶ Block-recursive structure again
 - Start with deterministic FAME
 - ▶ Then only need to solve for $\omega(x,z)$ w/ aggregate shock FAME

The FAME with Aggregate Shocks

Aggregate shocks Impulse Value ω satisfies

$$\rho \boldsymbol{\omega}(\mathbf{x}, \mathbf{z}) = \underbrace{z\Omega_0(x)u'(c^{SS}(x))}_{\text{Direct aggregate shock impact}} + \underbrace{\mathcal{L}(x)[\boldsymbol{\omega}(\cdot, \mathbf{z})]}_{\text{Continuation value from idios. shocks to } \times} + \underbrace{\mathcal{L}(z)[\boldsymbol{\omega}(\mathbf{x}, \cdot)]}_{\text{Continuation value from idios. shocks to } \times} + \underbrace{\int \boldsymbol{v}(\mathbf{x}, \mathbf{x}') \frac{\partial}{\partial a'} \left(g^{SS}(x') \left(\underbrace{\mathcal{M}(x', \boldsymbol{\omega}(\cdot, \mathbf{z}))}_{\text{Aggregate shock MPC}} - \Omega_0(x)z \right) \right) dx'}_{\text{Change in savings of HH } x'}$$

Weighted average of changes in savings rates of other HHs

where
$$\Omega_0(x) = \mathcal{R}_2 a + \mathcal{W}_2 y$$

Standard HJB that depends only on known steady-state objects

A numerical scheme

- Discretize $\omega(x,z)$ into a matrix w
- w solves a standard Sylvester matrix equation

$$\overline{M}w + w\overline{N} = \overline{Q}$$

for known matrices $\overline{M}, \overline{N}, \overline{Q}$ that depend only on known steady-state objects

- Block-recursive structure
- ► The distributional Impulse Value v is already known
- Solve directly for w, no need to iterate
- Examples
 - ightharpoonup KS98 model: \sim 0.05 sec., 50 extra lines Matlab code
 - ightharpoonup KS98 + frictional job ladder: \sim 0.3 $\,$ sec., 50 extra lines Matlab code

IRFs with aggregate shocks

Linearized KF equation with aggregate shocks = SPDE

$$\underbrace{d\textbf{h}_t(\textbf{x})}_{\text{Change in density}} = \left\{ \underbrace{\textbf{L}^*(\textbf{x})[\textbf{h}_t]}_{\text{Prop. of distr. impulse}} + \underbrace{\textbf{K}(\textbf{x})[\textbf{h}_t]}_{\text{Response of savings}} + \underbrace{\textbf{S}(\textbf{x}, \textbf{z}_t)}_{\text{to distr. impulse}} \right\} dt$$

where

$$S(x,z) = \frac{\partial}{\partial a} \left(g^{SS}(x) \left(\mathcal{M}(x, \omega(\cdot, z)) - \Omega_0(x)z \right) \right)$$

- Steady-state is stochastically stable if $\lambda^{dom}(\mathcal{K}+\mathcal{K}^*)<0$
- Can similarly discretize and compute any IRF through

$$\mathbf{h}_{t+\Delta} = \mathbf{h}_t + \Delta \left[\mathbf{L}^T + \mathbf{K} + \mathbf{S}_t \right] \mathbf{h}$$

for a given sequence of aggregate shocks Z_t

▶ Stochastic steady-state 25/31

The SAME

The SAME

- So far only considered first-order perturbations of the Master Equation
- Now second-order perturbations: same logic, just more components
- Again take limit $\varepsilon \to 0$, $g \approx g^{SS} + \varepsilon h$:

$$V(x, \varepsilon, z, g) \approx \underbrace{V^{SS}(x)}_{\text{Steady-state}} + \underbrace{\varepsilon \left\{ \int v(x, x') h(x') dx' + \omega(x, z) \right\}}_{\text{First order}}$$

$$+ \underbrace{\frac{\varepsilon^2}{2} \left\{ \iint \underbrace{V(x, x', x'')}_{\text{2nd-order effect of distribution alone}} h(x') h(x'') dx' dx'' \right.}_{\text{Cross effect of ag. shock. \& distrib.}} \underbrace{\left\{ \underbrace{\int v(x, x', x'') h(x') dx' + \omega(x, z)}_{\text{First order}} \right\}}_{\text{2nd-order effect of ag. shock alone}}$$

Second order

• 3 unknown functions $V(x, x', x''), \Gamma(x, x', z), \Omega(x, z)$

The SAME: Strategy

- Same strategy as in FAME
 - ► Substitute 2nd-order approximation in Master Equation
 - Identify coefficients
- Block-recursive structure again
 - 1. Enough to start with SAME for $\mathcal{V}(x, x', x'')$
 - 2. Then solve SAME for $\Gamma(x, x', z)$
 - 3. Finally solve SAME for $\Omega(x, z)$

The SAME: Bellman equation

$$\rho \mathcal{V}(x,x',x'') = \underbrace{\mathcal{T}(x,x',x'')}_{\text{Exogenous 2nd-order impact}} + \underbrace{\mathcal{L}(x)[\mathcal{V}(\cdot,x',x'')]}_{\text{Continuation value from changes to own state } x}_{\text{Continuation value from propagation in pair of impulses } h(x') \text{ and } h(x'')}_{\text{Continuation of 1st-order changes in other HHs' savings}} + \underbrace{\mathcal{V}(t,x',x'')\sigma(t,x') + \mathcal{V}(x,x',t)\sigma(t,x'')}_{\text{GE: 2}^{\text{nd}}\text{-order valuation of 2}^{\text{nd}}\text{-order valuation of 2}^{\text{nd}}\text{-order valuation of other HHs' savings}}$$

where

$$\sigma(y,t) = \partial_y [g^{SS}(y)(b_g(y,t) - \mathcal{M}(y,t,v))]$$

$$\tau(x,y) = \partial_y (v_y(x,y)g^{SS}(y)k^{SS}(y))$$

$$T(x,z,t) = \text{similar combination of steady-state objects and } v^{SS}(y)$$

The SAME: Computation

- Discretize V(x, x', x'') into a tensor V_{ijk}
- Obtain a generalized Sylvester tensor equation

$$\mathbf{V} \times_1 \hat{P} + \mathbf{V} \times_2 \hat{Q} + \mathbf{V} \times_3 \hat{R} = T$$

where

- \hat{P} , \hat{Q} , \hat{R} , T are known matrices that depend on steady-state and v
- \triangleright \times_{ℓ} denotes sum along index $\ell \in \{1,2,3\}$ of tensor and first index of matrix
- \triangleright \times_{ℓ} simply generalizes matrix product to tensors
- Well-established algorithms to solve the Sylvester tensor equation
 - Unpack tensor along any dimension
 - Recover sequence of standard Sylvester matrix equations
- Example: KS98: \sim 0.5 seconds
- Similar Bellman equations and discretization for $\Gamma(x,x',z)$ and $\Omega(x,z)$

Scope

Generalization

In paper, extend all results to general joint framework with

- Arbitrary controlled jump-diffusion process for state $x_t \in \mathbb{R}^{D_X}$
 - ▶ Wage ladder, different types, location/industry/occupation choice
- State constraints
 - Borrowing constraints
- Mass points in the distribution
 - Borrowing constraints, kinks in interest rate
- Value enters in flow payoff & generator
 - Epstein-Zin, bargaining models
- Intuition the same, just more notation
- Provide plug-and-play formulae

Conclusion

Conclusion

- FAME/SAME = recursive approach to dynamic economies w/ heterogeneity
- Crux of approach: work with full distribution & perturb analytically
- Outcomes
 - Ready-to-use formulae
 - Efficient, block-recursive & easy-to-code algorithm
 - 2nd-order perturbation
- Applicable to a wide range of settings
 - ► HANK + frictional labor markets
 - Dynamic discrete choice / spatial / trade
- Analytic PDE structure opens promising synergies for large-scale models
 - Sparse grids
 - Neural networks

Thank you!

adrienbilal@fas.harvard.edu

Appendix

Literature

- Ahn et al. (2018)
 - ightharpoonup FAME \equiv analytic foundation for Ahn et al.
 - Some dimension reduction for free
 - ▶ Bypasses automatic differentiation and Blanchard-Kahn steps
- Auclert et al. (2019)
 - Sequence-space FAME ≡ analytic foundation for Auclert et al.
 - Bypasses automatic differentiation
- Bandhari et al. (2018)
 - ► FAME preserves full nonlinearity in idiosyncratic decisions
- Alvarez et al. (2021)
 - FAME applicable more broadly
- Handles 2nd-order perturbations: SAME

▶ Back to main presentation 32 / 31

Sequence-space representation: PE

The distributional Impulse value v satisfies

$$v(a,y,a',y') = \sum_{p \in \{r,w\}} \int_0^\infty e^{-\rho t} \underbrace{v_t^p(a,y)}_{\text{Response of value Response of price at } t} \underbrace{\overline{v_t^p(a',y')}}_{\text{to price impulse at } t} dt$$

- $v_t^p(a, y)$, $p \in \{r, w\}$ are the price Impulse Values
- To first order, for price sequences \hat{r}_t , \hat{w}_t , $t \ge 0$,

$$V_t(a,y) = V^{SS}(a,y) + \sum_{p \in \{r,w\}} \int_0^\infty e^{-\rho \tau} v_{ au}^p(a,y) \hat{p}_{t+ au} d au$$

• $v_t^p(a, y)$, $p \in \{r, w\}$ satisfy standard HJBs

$$-\frac{\partial v_t^{\rho}}{\partial t}(a, y) = \mathcal{L}(a, y)[v_t^{\rho}]$$

$$v_0^{\rho}(a, y) = au'(c^{SS}(a, y)), v_0^{w}(a, y) = yu'(c^{SS}(a, y))$$

Back to main presentation

Sequence-space representation: GE

- Compute first-order consumption response from price Impulse Values
- · Linearize KF equation analytically in prices
- Obtain equilibrium linear system in prices, e.g.

$$\hat{r_t} = \sum_{p \in \{w,r\}} \left(\underbrace{J_t^{0,r,p}}_{\text{Initial distrib.}} + \underbrace{\int_0^t J_{t-\tau}^{1,r,p} \hat{p}_{\tau} d\tau}_{\text{Cumul. effect of past prices}} + \underbrace{\int_t^{\infty} J_{t,\tau-t}^{2,r,p} \hat{p}_{\tau} d\tau}_{\text{Cumul. effect of future prices}} \right)$$

- Sequence-space Jacobians J have explicit expressions with
 - Price Impulse Values v^p
 - ▶ Steady-state distribution $g^{SS}(a, y)$ and transition probabilities $\mathcal{L}(a, y)$

▶ Initial distribution $h_0(a, y)$

▶ Back to main presentation 34/31

Stochastic steady-state

- Invariant distribution in stochastic steady-state is high-dimensional
 - Essentially $\mathbb{P}[h_t = h, z_t = z]$
 - ▶ Probability distribution over functions h(x)
 - ► Impractical
- Instead focus on unconditional distribution over indiv. and ag. states
 - Essentially $\bar{h}(x,z) \equiv \mathbb{P}[x_t = x, z_t = z]$
 - ▶ Implicitly integrates over randomness in h_t conditional on $z_t = z$
 - Much more practical
- Unconditional distribution enough to first order
 - Enough to compute first-order moments e.g.

$$\mathbb{E}[a^{n}|z] = \int a^{n} \Big(g^{SS}(x) + \varepsilon \bar{h}(x,z)\Big) dx$$

Business cycle moments require second order anyway

▶ Back to main presentation 35 / 31

Stochastic steady-state

• The unconditional stochastic steady-state distribution $\bar{h}(x,z)$ solves

$$\mathcal{L}^*(x)[\bar{h}(\cdot,z)] + \mathcal{K}(x)[\bar{h}(\cdot,z)] + \mathcal{A}^*(z)[\bar{h}(x,\cdot)] + \mathbf{S}(x,z) = 0$$

- Depends only on known steady-state objects
- Discretized: obtain a Sylvester matrix equation

$$\left[\mathbf{L}^{T} + \mathbf{K}\right] \cdot \mathbf{h} + \mathbf{h} \cdot \mathbf{A} = -\mathbf{S}$$

▶ Back to main presentation 36 / 31

The SAME: Details

$$T(x, z, t) = \underbrace{\mathcal{L}_{gg}(x, z, t)[V^{SS}]}_{\text{Direct price impact}} + \underbrace{\mathcal{L}_{g}(x, z)[v(\cdot, t)] + \mathcal{L}_{g}(x, t)[v(\cdot, z)]}_{\text{Cross price-continuation value}}$$

$$+ \underbrace{u''(c^{SS}(x))\mathcal{M}(x, z, v)\mathcal{M}(x, t, v)}_{\text{Cross consumption-continuation value}}$$

$$- \underbrace{\left[v_{z}(x, z)\left(b_{g}(z, t) - \mathcal{M}(z, t, v)\right) + v_{t}(x, t)\left(b_{g}(t, z) - \mathcal{M}(t, z, v)\right)\right]}_{\text{GE: change in propagation of impulse due to change in savings}}$$

$$- \underbrace{\int v_{y}(x, y)g^{SS}(y)\left[b_{gg}(y, z, t) - k_{p}^{SS}v_{y}(y, z)v_{y}(y, t)\right]dy}$$

▶ Back to main presentation 37/31

GE: 1st-order valuation of 2nd-order changes in others' savings

Applications

Frictional credit and labor markets

Setup

- ► Firms use capital & post wages à la Burdett-Mortensen
- ightharpoonup Frictional unemployment + JtJ search o uninsurable income risk
- ► Borrowing constraint
- State-dependent UI
- ► Calibrated to MPC = 0.2, u-rate = 0.1

Implementation

- Distributional Impulse Value: 4s
- Aggregate shock Impulse Value: 0.1s
- ► Any IRF: <1s
- ► Stochastic steady-state distribution: <1s
- ightharpoonup \sim 200 lines of Matlab code w/ only matrix products and linear systems

Unemployed bear the brunt of recessions

Impulse response to TFP shock with constant UI

Impulse response to TFP shock with countercyclical UI

UI elasticity to u-rate calibrated to a 15% increase