Larger transfers financed with more progressive taxes? On the optimal design of taxes and transfers

Axelle Ferriere¹ Philipp Grübener² Gaston Navarro³ Oliko Vardishvili⁴

¹PSE & CNRS

²EUI & Danmarks Nationalbank

³Federal Reserve Board

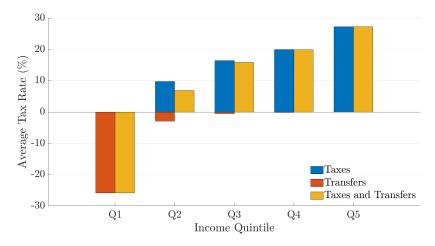
⁴Yale

July 2021

These views are those of the authors and not necessarily those of Danmarks Nationalbank, the Board of Governors or the Federal Reserve System.

Redistribution in the U.S.

Taxes and transfers are two key components in the U.S. fiscal system



- Working-age households ranked by income quintiles (CBO, 2013) Data

Main question

How should a government design a tax-and-transfer system to reduce inequality while preserving efficiency?

A Ramsey approach

- Progressive taxes & targeted transfers
- Rich quantitative macro model with a flexible set of fiscal instruments

Two questions

- Analytical: How should tax progressivity change with more generous transfers?
- Quantitative: How generous should transfers be? How progressive should taxes be?

Theoretical analysis

- Simple model with progressive income tax scheme & a transfer
 - HSV: Heathcote, Storesletten, and Violante (2017)
 - Loglinear income tax with progressivity τ and a lump-sum T
- \blacksquare Local approximations around T=0 to get a closed-form for welfare
 - Optimal negative relationship between T and τ
 - Due to both redistribution and efficiency concerns
- ⇒ Optimal fiscal plan features large average but low marginal progressivity

Quantitative analysis

- Standard heterogeneous-agent model augmented with:
 - Rich earnings dynamics: Pareto tail and GMAR process
 - (Heterogeneous discount factors)
- New and flexible fiscal functions
 - Non-negative progressive income tax: level & curvature
 - Targeted transfers: level & speed of phasing-out

Optimal policy

- Generous transfers, up to \$29k, with a slow phasing-out
- Moderately progressive income tax schedule
- => Large welfare gains!

Literature

Evolution of inequality and taxation in the US

Piketty and Saez (2003), Piketty and Saez (2007), Piketty, Saez, and Zucman (2017), Splinter (2020)

Parametric tax functions: Empirical estimates

Gouveia and Strauss (1994), Guner, Kaygusuz, and Ventura (2014), Feenberg, Ferriere, and Navarro (2020)

 Analytical frameworks to evaluate optimal tax progressivity Heathcote, Storesletten, and Violante (2014, 2017)

Quantitative frameworks to evaluate optimal tax progressivity Bakış, Kaymak, and Poschke (2015), Guner, Lopez-Daneri, and Ventura (2016), Krueger and Ludwig (2016), Peterman (2016), Kindermann and Krueger (2021), Boar and Midrigan (2021)

Intersection of Ramsey (1927) and Mirrlees (1971) traditions Findeisen and Sachs (2017), Heathcote and Tsujiyama (2021)

An Analytical Model

A tractable environment Bewley-Hugett economy

• No capital, representative firm with linear production function

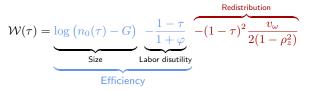
A utilitarian government

- Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1-\tau}$
- Budget: $G + T = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of infinitely-lived workers
 - Separable utility function: $\log c_{it} B \frac{n_{it}^{1+\varphi}}{1+\varphi}$, with $\varphi \geq 1$
 - Wages AR(1): $\log z_{it} = \rho_z \log z_{i,t-1} + \omega_{i,t}$, with $\omega_{i,t} \sim \mathcal{N}\left(-\frac{v_\omega}{2(1+\rho_z)}, v_\omega\right)$
 - Hand-to-mouth workers: $c_{it} = \lambda (z_{it}n_{it})^{1-\tau} + T$

+ Extension: uninsurable permanent + insurable iid shocks

No transfers Welfare as a function of progressivity τ

- Policy function for labor is $n_{it} = [(1 \tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

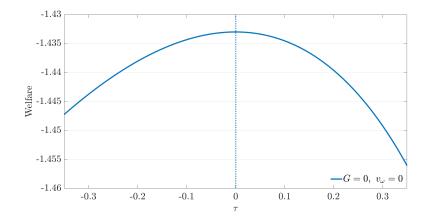


- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ

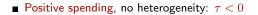
 \Rightarrow When $v_{\omega} = 0$, implements first-best allocation $n^{\star}(G)$ s.t. $Bn^{\varphi}(n-G) = 1$

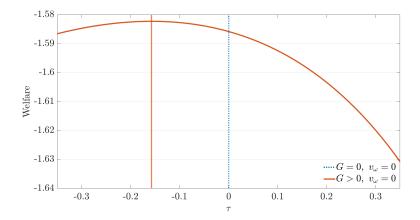
- Optimal $\tau_0^{\star}(G) = -G/(n^{\star}(G) G)$
- **Redistribution** term \uparrow with τ

Welfare without transfers $Optimal \tau$

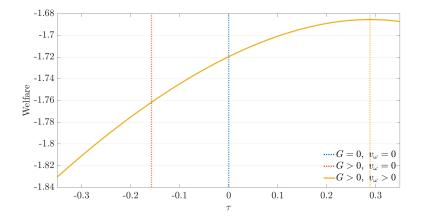


Welfare without transfers Optimal T





Welfare without transfers $Optimal \tau$



Implicit function theorem: approximation of the FOC

$$\hat{n}_{it} \approx n_0(\tau) - \frac{T}{1+\varphi} \frac{n_0(\tau)}{n_0(\tau) - G} z_{it}^{-(1-\tau)}$$

• Let
$$\eta \equiv \exp\left((1-\tau)\frac{v_{\omega}}{1-\rho_z^2}\right)$$
, with $\eta = 1$ when $v_{\omega} = 0$

 \blacksquare Compute $Y,~\lambda$ and c_{it} and obtain welfare

$$W(\tau,T) = W(\tau,0) + \frac{T}{1+\varphi} \frac{\eta^{-\tau}}{n_0(\tau) - G} \left(-\frac{n_0(\tau)}{n_0(\tau) - G} + (1-\tau)\eta + (\varphi+\tau)\left(\eta - \eta^{\tau}\right) \right)$$

Transfers Welfare: Representative agent

• Representative agent $v_{\omega} = 0$, $\eta = 1$

• Optimal fiscal plan attains the first-best allocation $n^*(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G) = 1$

For any T, optimal τ to implement the first-best given by

$$\tau(G,T) = -\frac{G+T}{n^*(G) - (G+T)}$$

- If
$$T = 0$$
, then $\tau = \tau_0^{\star}(G)$
 \Rightarrow Transfers $T > 0$ when $\tau < \tau_0^{\star}(G)$

Tax T < 0 when $\tau > \tau_0^*(G)$ (retrieve T = -G when $\tau = 0$)

- \Rightarrow Negative relationship between τ and T due to efficiency concerns
 - Efficiency gains of T are decreasing in τ

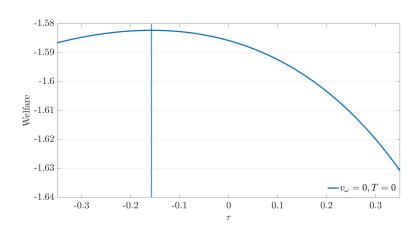
Transfers Welfare: Heterogeneous agents

 \blacksquare Approximated formula with heterogeneity $v_{\omega}>0,~\eta>1$

$$W(\tau,T) = W(\tau,0) + \frac{T}{1+\varphi} \frac{\eta^{-\tau}}{n_0(\tau) - G} \left(\underbrace{\frac{-G}{n_0(\tau) - G} - \tau}_{\dots + (1-\tau)(\eta - 1) + (\varphi + \tau)(\eta - \eta^{\tau})} \right)$$

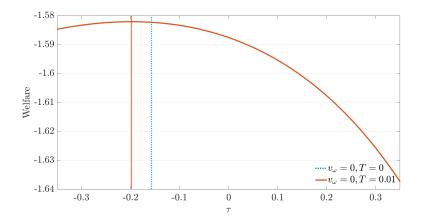
Redistribution

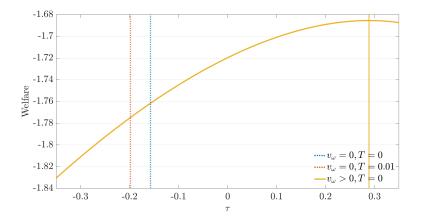
- **Efficiency** gains of T are decreasing in τ
 - Consistent with the representative agent
- \blacksquare The redistribution gains of T are decreasing in τ
 - Equals 0 when $\tau = 1$
- \Rightarrow Negative optimal relationship between T and au



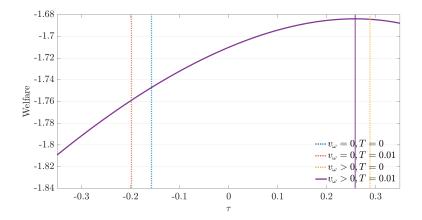
■ Spending, no heterogeneity

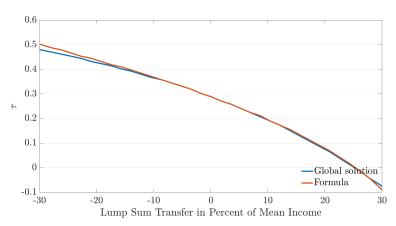
• Spending, no heterogeneity, $T > 0 \Rightarrow$ lower τ





 \blacksquare Spending, idiosyncratic shocks, $T>0 \Rightarrow$ lower τ



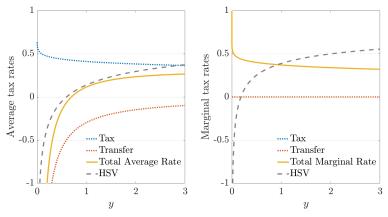


\blacksquare A **negative** relationship between τ and T

■ Formula: a good approximation!

Optimal plan with transfers Global solution

• Generous transfers: T = 0.3, regressive income taxes: $\tau = -0.08$



Average taxes are increasing, marginal taxes are decreasing

- Optimal negative relationship between progressivity and transfers
 - Due to both efficiency and redistribution
- The optimal plan looks very different when allowing for transfers

A Quantitative Model

Overview

- Rich quantitative model
 - Benchmark economy: standard Aiyagari with
 - + Realistic income risk: Gaussian mixture autoregressive (GMAR)
 - + Income concentration: Pareto tail
 - Extension: heterogeneous discount factors
- Calibration to the U.S.
- Optimize on the fiscal system parameters
 - Global algorithm: TikTak
 - Taking into account transitions

Households, firm, government

• Household's value function with productivity x and assets a:

$$V(a,z) = \max_{c,a',n} \left\{ \frac{c^{1-\sigma}}{1-\sigma} - B \frac{n^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{z'} \left[V(a',z') | z \right] \right\}$$

s.t.

$$c+a' \le wzn + (1+r)a - \mathcal{T}(wzn, ra), \quad a' \ge 0$$

- Productivity z follows a stochastic process
- Firm's static profit maximization:

$$\Pi = \max_{K,L} \left\{ L^{\alpha} K^{1-\alpha} - wL - (r+\delta) K \right\}$$

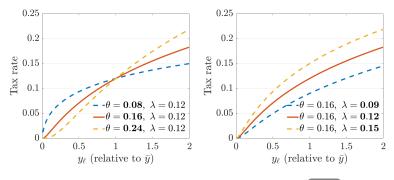
■ Government's budget constraint:

$$G + (1+r)D = D + \int \mathcal{T}(wxn, ra) \, d\mu(a, x)$$

Fiscal system Taxes

- Flat capital tax: $\tau_k y_k$
- Progressive labor tax: $\exp\left(\log(\lambda)\left(\frac{y_{\ell}}{\bar{y}}\right)^{-\frac{\theta}{2}}\right)y_{\ell}$

- λ is the tax rate at $y_{\ell} = \bar{y}$, θ captures the progressivity

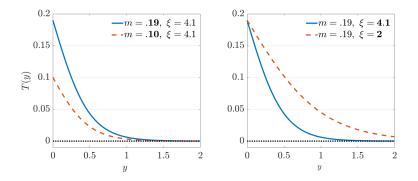


- Interpretation: heta and au on a roughly similar scale

Fiscal system Transfers

• New targeted-transfers function: $m \frac{2 \exp\left\{-\xi\left(\frac{y}{\bar{y}}\right)\right\}}{1+\exp\left\{-\xi\left(\frac{y}{\bar{y}}\right)\right\}}$

- m is the level at y = 0, ξ is the speed of phasing-out



Calibration Income process

Log-productivity follows a Gaussian Mixture Autoregressive Process

$$\log z_t = \rho \log z_{t-1} + \eta_t,$$

$$\eta_t \sim \begin{cases} \mathcal{N}\left(\mu_1, \sigma_1^2\right) & \text{with probability } p_1, \\ \mathcal{N}\left(\mu_2, \sigma_2^2\right) & \text{with probability } 1 - p_1 \end{cases}$$

Guvenen, Karahan, Ozkan, and Song (2021)

5 parameters:
$$(\rho, p_1, \mu_1, \sigma_1, \sigma_2)$$

- Restriction:
$$\mu_2 = -\frac{p_1}{1-p_1}\mu_1 \Leftarrow \mathbb{E}(\eta_t) = 0$$

■ Pareto tail as in Hubmer, Krusell, and Smith (2020)

- $\kappa = 1.6$ Aoki and Nirei (2017)

Calibration

■ Income process to match household income risk

- Annual earnings growth distribution from PSID (1978-1992)
- + Std deviation: 0.35, Skewness: -0.45, Kurtosis: 12, P9010: 0.64

-
$$p_1 = 0.85$$
, $\mu_1 = 0.016$ ($\mu_2 = -0.091$), $\sigma_1 = 0.15$, $\sigma_2 = 0.63$

- Persistence $\rho = 0.935$ to match the top-10 labor income share

Fiscal parameters to match taxes and transfers per quintile

- Taxes: $\theta = 0.16$, $\lambda = 0.12$, $\tau_k = 0.35$
- Transfers: $m = 0.19, \xi = 4.1$

• Preferences: $\sigma = 2$, $\varphi^{-1} = 0.4$; Production: $\alpha = 0.64$, $\delta = 0.08$

• Calibrate ($\beta = 0.962, B = 85, D = 0.59$) to match $r = 2\%, \bar{h} = 0.3, D/Y = 60\%$ ($\Rightarrow G/Y \approx 14\%$)

Data	Q1	Q2	Q3	Q4	Q5	Top 10
Labor income Net worth	2% -1%	9% 1%	15% 3%	23% 9%	52% 88%	38% 71%
Baseline	Q1	Q2	Q3	Q4	Q5	Top 10
Labor income Net worth	4% 0%	9% 2%	14% 8%	20% 18%	52% 72%	38% 52%

Income and Wealth Distributions

Notes: Labor income shares by labor-income quintiles and wealth shares by wealth quintile, households aged 25-60. Data: PSID 2012 for labor income; SCF 2013 for wealth and top-10 labor income.

■ Labor elasticity at the top-1%: 0.20

	Avera				
Data	Q1	Q2	Q3	Q4	Q5
Tax rate Transfer rate	0% 26%	10% 3%	16% 1%	20% 0%	27% 0%
Model	Q1	Q2	Q3	Q4	Q5
Tax rate Transfer rate	8% 24%	11% 4%	14% 1%	17% 0%	28% 0%

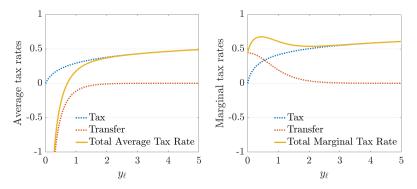
Average Tax and Transfer Rates

Notes: Average tax rates paid and transfer rates received per income quintile. Data: CBO 2013, working-age households. Model: tax parameters: $\theta = 0.16$, $\lambda = 0.12$; transfer parameters: m = 0.19, $\xi = 4.1$.

Graph

Optimal tax-and-transfer plan

- The optimal plan features
 - Large transfers m = 0.46, with a slow phase-out $\xi = 1.94$
 - Moderate tax progressivity, close to the calibrated value heta=0.17



Optimal plan Average and marginal rates

Data	Q1	Q2	Q3	Q4	Q5
Tax rate	0%	10%	16%	20%	27%
Transfer rate	26%	3%	1%	0%	0%
Total avg rate	-26%	-7%	15%	20%	27%
Optimal	Q1	Q2	Q3	Q4	Q5
Tax rate	15%	21%	27%	31%	44%
Transfer rate	170%	58%	21%	6%	0%
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%

• Optimal T/Y = 10%

Much larger redistribution overall ... but decreasing marginal tax rates

Optimal plan Transfers vs. progressivity, CE

- **Negative** relationship between m and θ
 - At \approx calibrated progressivity θ , transfers should be larger
 - At calibrated transfers, progressivity should be larger at $\theta=0.30$

■ Welfare gains in consumption equivalent terms: +9.64%!

- 79% of households would benefit
- Larger welfare gains for the poor
- Larger losses for the high- $z/{\rm low-}a$ households

How important is the phase-out of transfers?

• Optimal plan with lump-sum transfers ($\xi = 0$)

- Large transfers m=0.43 with almost flat taxes $\theta=0.03$

With phase-out	Q1	Q2	Q3	Q4	Q5
Tax rate	15%	21%	27%	31%	44%
Transfer rate	170%	58%	21%	6%	0%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Tax rate	<mark>56%</mark>	<mark>56%</mark>	<mark>57%</mark>	55%	58%
Transfer rate	181%	85%	53%	35%	13%

How important is the phase-out of transfers?

With phase-out	Q1	Q2	Q3	Q4	Q5
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Total avg rate	-125%	-29%	4%	20%	45%
Total marg rate	60%	61%	62%	63%	64%

- T/Y = 29%, redistribution almost as large but flatter marginal rates
- Welfare gains are 9.43%! vs. 9.62% with phase-out

 \Rightarrow Friedman was right!... but average tax rates $\approx 55-60\%$

- How important are the Pareto tail and the GMAR?
 Departures from normality
- How important is wealth inequality? Heterogeneous β
- Optimal loglinear plan HSV
- Optimal steady-state Steady State

Conclusion

■ This paper: optimal design of the tax-and-transfer system

Main findings

- Negative optimal relationship between transfers and tax progressivity
 - + For efficiency and redistribution concerns
- Transfers should be more generous, taxes should be higher...
 - $+ \ldots$ but taxes should not be more progressive
- => Average rates should be more progressive than marginal rates

Large welfare gains

Appendix

References

- Aoki, Shuhei and Makoto Nirei (2017). "Zipf's Law, Pareto's Law, and the Evolution of Top Incomes in the United States". American Economic Journal: Macroeconomics 9.3, pp. 36–71.
- Bakış, Ozan, Barış Kaymak, and Markus Poschke (2015). "Transitional dynamics and the optimal progressivity of income redistribution". Review of Economic Dynamics 18.3, pp. 679–693.
- Boar, Corina and Virgiliu Midrigan (2021). "Efficient Redistribution". Working Paper.
- Feenberg, Daniel, Axelle Ferriere, and Gaston Navarro (2020). "Evolution of Tax Progressivity in the United States: New Estimates and Welfare Implications". Working Paper.
- Findeisen, Sebastian and Dominik Sachs (2017). "Redistribution and insurance with simple tax instruments". Journal of Public Economics 146, pp. 58–78.
- Gouveia, Miguel and Robert P. Strauss (1994). "Effective federal individual income tax functions: An exploratory empirical analysis". National Tax Journal, pp. 317–339.
- Guner, Nezih, Remzi Kaygusuz, and Gustavo Ventura (2014). "Income taxation of US households: Facts and parametric estimates". Review of Economic Dynamics 17.4, pp. 559–581.
- Guner, Nezih, Martin Lopez-Daneri, and Gustavo Ventura (2016). "Heterogeneity and Government revenues: Higher taxes at the top?" Journal of Monetary Economics 80, pp. 69–85.

- Guvenen, Fatih, Fatih Karahan, Serdar Ozkan, and Jae Song (2021). "What Do Data on Millions of US Workers Reveal about Life-Cycle Earnings Risk?" Forthcoming in Econometrica.
- Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante (2014). "Consumption and labor supply with partial insurance: An analytical framework". <u>The American Economic Review</u> 104.7, pp. 2075–2126.
- (2017). "Optimal tax progressivity: An analytical framework". The Quarterly Journal of Economics 132.4, pp. 1693–1754.
- Heathcote, Jonathan and Hitoshi Tsujiyama (2021). "Optimal income taxation: Mirrlees meets Ramsey". Forthcoming in the Journal of Political Economy.
- Hubmer, Joachim, Per Krusell, and Anthony A. Smith (2020). "Sources of US wealth inequality: Past, present, and future". <u>NBER Macroeconomics Annual 2020</u>, Volume 35. University of Chicago Press.
- Kindermann, Fabian and Dirk Krueger (2021). "High Marginal Tax Rates on the Top 1%? Lessons from a Life Cycle Model with Idiosyncratic Income Risk". Forthcoming in the American Economic Journal: Macroeconomics.

References (cont.)

- Krueger, Dirk and Alexander Ludwig (2016). "On the optimal provision of social insurance: Progressive taxation versus education subsidies in general equilibrium". Journal of Monetary Economics 77, pp. 72–98.
- Krusell, Per and Anthony A. Smith Jr. (1998). "Income and wealth heterogeneity in the macroeconomy". Journal of Political Economy 106.5, pp. 867–896.
- Mirrlees, James A. (1971). "An exploration in the theory of optimum income taxation". The Review of Economic Studies 38.2, pp. 175–208.
- Peterman, William B. (2016). "The effect of endogenous human capital accumulation on optimal taxation". Review of Economic Dynamics 21, pp. 46–71.
- Piketty, Thomas and Emmanuel Saez (2003). "Income inequality in the United States, 1913–1998". The Quarterly Journal of Economics 118.1, pp. 1–41.
- (2007). "How progressive is the US federal tax system? A historical and international perspective". Journal of Economic Perspectives 21.1, pp. 3–24.
- Piketty, Thomas, Emmanuel Saez, and Gabriel Zucman (2017). "Distributional national accounts: methods and estimates for the United States". <u>The Quarterly Journal of Economics</u> 133.2, pp. 553–609.

- Ramsey, Frank P. (1927). "A Contribution to the Theory of Taxation". <u>The Economic Journal</u> 37.145, pp. 47–61.
- Splinter, David (2020). "US Tax Progressivity and Redistribution". <u>National Tax Journal</u> 73.4, pp. 1005–1024.

CBO Data: Components of Taxes and Transfers

Broad measure of market income for non-elderly households

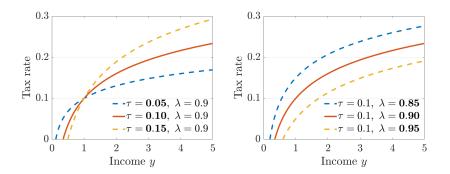
- Labor and capital income
- Includes all corporate and payroll taxes
- Taxes
 - Individual income tax (including tax credits) and payroll taxes
 - Corporate income tax and excise taxes

Transfers

- SNAP and other means-tested transfers (TANF, etc.)
- Excluding SSI and Medicaid

Loglinear tax function Description

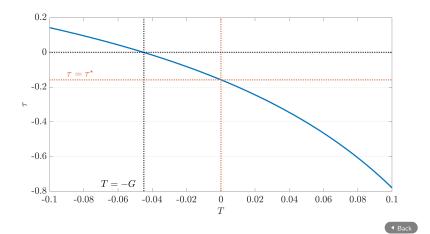
- A loglinear tax scheme: $\mathcal{T}(y) = y \lambda y^{1-\tau}$
- \blacksquare Tax progressivity is captured by τ
 - If au=0: flat average (and marginal) tax rate $\mathcal{T}(y)=(1-\lambda)y$
 - If $\tau > 0$: progressive tax $\partial [\mathcal{T}(y)y]/\partial y > 0$
 - If au = 1: full redistribution $y \mathcal{T}(y) = \lambda \;\; \forall y$



- Preference parameters: $\varphi^{-1} = 0.4$, B to match $n_0 = 0.3$
- Fiscal parameters: $\tau = 0.18$, G/Y = 0.15
- Idiosyncratic risk: $\rho_z = 0.935$, v_ω to match $\mathbb{V}[\log c]$

Transfers First-best

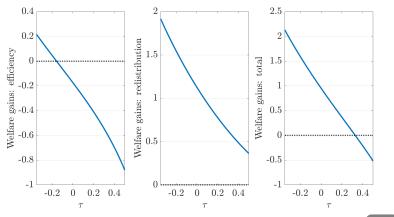
 \blacksquare Negative optimal relationship between T and τ



32/32

Transfers Heterogeneous agents

 \blacksquare Negative optimal relationship between T and τ



Equilibrium Definition

A stationary recursive competitive equilibrium is given by

- Households' value functions $\{V\}$ and policies $\{c, a', n\}$. Firm's policies $\{L, K\}$.
- Government's policies $\{G, D, \lambda, \theta, m, \xi\}$
- A measure µ

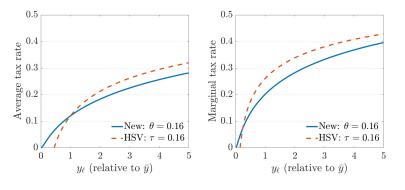
such that given prices $\{r,w\}$

- Households and the firm solve their respective problems.
- The government's budget constraint holds.
- Markets clear
 - Capital market clears: $K+D=\int_{\mathcal{B}}a'(a,z)d\mu(a,z)$
 - Labor market clears: $L=\int_{\mathcal{B}}zn(a,z)d\mu(a,z)$
 - Goods market clears: $Y=\int_{\mathcal{B}}c(a,z)d\mu(a,z)+\delta K+G$
- Measure μ is stationary

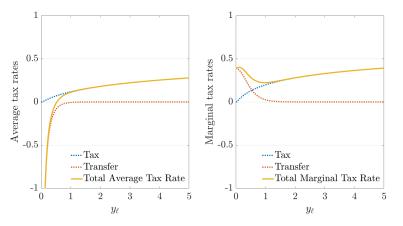
$$\mu(a',z') = \int \mathbb{I}\{a'(a,z) = a'\}\pi_z(z'|z)d\mu(a,z)$$

Fiscal system Taxes

New progressive labor tax resembles HSV except at the bottom

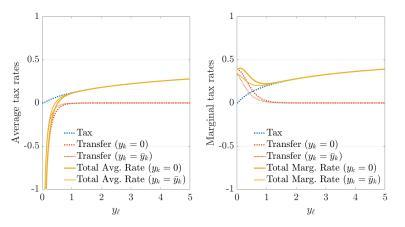


Calibration Fiscal system



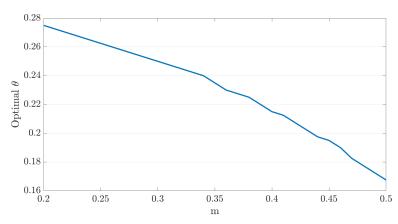
■ Marginal rates by quintile: 33%, 24%, 21%, 23%, 31%

Calibration Fiscal system



■ Marginal rates by quintile: 33%, 24%, 21%, 23%, 31%

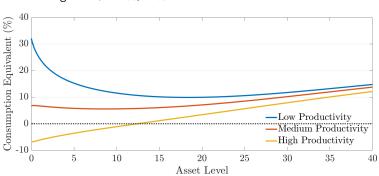
Optimal tax-and-transfer system



Negative relationship between m and θ

- Keeping ξ constant at $\xi = 2$

Optimal tax-and-transfer system CE



■ Welfare gains: +9.62%, 79% households would benefit

- Low-x/a households gain from larger transfers
- High-a households gain from higher r
- High- $\!x$ households lose from higher tax rates and lower w

How important are departures from normality?

Without a Pareto tail, lower overall progressivity

- Lower transfers m = 0.43
- Lower progressivity $\theta = 0.09$, lower phase-out $\xi = 1.65$

■ No higher order moments: AR(1) (without Pareto tail)

- σ to match SD of earnings growth (skewness: -0.05, kurtosis 3.08)
- => The system is more generous!
 - + Larger transfers than GMAR m = 0.45
 - + Similar progressivity $\theta = 0.08$ & phase-out $\xi = 1.40$

Total avg rate	Q1	Q2	Q3	Q4	Q5
Benchmark	-155%	-37%	6%	25%	44%
No Pareto tail	-131%	-26%	10%	28%	39%
AR(1)	-151%	-35%	5%	27%	41%

◀ Back

 Recalibration with heterogeneous stochastic discount factors Krusell and Smith (1998)

Net worth dist.	Q1	Q2	Q3	Q4	Q5	Top 10
Data	-1%	1%	3%	9%	88%	71%
Benchmark	0%	2%	8%	18%	72%	52%
Het. eta	0%	1%	3%	11%	85%	69%

Optimal plan with targeted transfers

- Larger transfers m = 0.47
- Less phase-out $\xi = 0.5$, less progressive taxes $\theta = 0.08$

Total avg rate	Q1	Q2	Q3	Q4	Q5
Benchmark	-155%	-37%	6%	25%	44%
Het. eta	-153%	-35%	1%	22%	47%

- Steady state: $\tau = 0.40$, with transitions: $\tau = 0.49$
- Consumption equivalent: +5.08%

• Optimal plan without transition:

-
$$\theta = 0.03$$
, $m = 0.36$, $\xi = 0$

▲ Back