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Abstract

Historic levels of public debt and conditions of r < g for advanced economies have

prompted a reassessment of debt sustainability. Using a continuous-time model in

which the debt-to-GDP ratio is stochastic and r < g on average, we find that theoretical

conditions for sustainability are not closely tied to common metrics of sustainability:

the level of debt or whether r < g. However, when the primary surplus is bounded,

a state-dependent threshold level of public debt determines sustainability. Secular

stagnation factors like slow population growth, low productivity growth, or higher

output risk carry differing implications for debt sustainability.
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1 Introduction

A decade after the end of the Great Recession, output growth in advanced economies remains

historically slow with economies saddled with increased levels of public debt. The 2020

coronavirus pandemic will leave public debt levels far higher.

The combination of slow growth and historically high levels of debt would appear to

be problematic for debt sustainability. However, advanced economies have benefited from

historically low real interest rates. Even prior to the pandemic, short-term rates were close to

the zero lower bound and long-term rates fell over the decade, keeping the difference between

interest rates and output growth, which we call the cost of debt servicing, low for these

economies. This combination of low growth and low real interest rates—sometimes labeled

the secular stagnation hypothesis—carry contradictory implications for debt dynamics.

Among fiscal authorities and in much of the applied literature (Reinhart and Rogoff,

2010), discussions of debt sustainability center on two approaches. The first approach,

which we label the stock approach, focuses on the level of the debt-to-GDP ratio or its

distribution. Under the stock approach, debt-to-GDP ratios must remain below a threshold

level or converge to a stable distribution.

The second approach, which we label the flow approach, focuses on the trajectory of the

debt-to-GDP ratio (Ball, Elmendorf, and Mankiw, 1998; Barrett, 2018; Blanchard, 2019).

The flow approach recognizes that debt dynamics depend on the difference between the

interest on government debt r and the growth rate of the economy g. As Figure 1 shows,

many advanced economies today enjoy conditions of r < g and, consequently, a negative

cost of servicing the debt. These favorable dynamics have prompted a reassessment of the

risks of high public debt.

In this paper, we analyze debt sustainability from a more theoretically grounded per-

spective. We define debt sustainability as conditions under which forward-looking investors

willingly hold public debt. We label this the economic approach to debt sustainability. The
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central message of this paper is that these three approaches to debt sustainability need not

coincide, and the drivers affecting r and g may have diverging effects on debt sustainability

defined in these three ways.

We start by summarizing some basic facts about the historical relationship between inter-

est rates on government debt and economic growth. Using data on 17 advanced economies,

we find that cases in which the real interest rate is less than GDP growth are fairly common.

Taking 5-year averages, r < g for nearly half the country-period observations. If r − g was

permanently negative, a government in primary balance would see its debt-to-GDP ratio

shrink to zero. However, the cost of servicing the debt exhibits substantial variability. The

interquartile range for r − g is approximately five percentage points, with substantial and

rising persistence in the postwar period.

Consistent with these empirical facts, we analyze a continuous-time general equilibrium

endowment economy that produces closed-form solutions even with aggregate risk. In the

baseline model, output follows an exogenous geometric Brownian motion. The government is

assumed to follow a fiscal rule; we separately consider rules that ensure the safety of public

debt in all future states and rules that result in default in some states. Households are

willing to hold public debt if fiscal policy satisfies the household’s transversality condition

and the present value of the government’s primary surpluses equals the outstanding value of

the public debt. These conditions define debt sustainability under the economic approach.

The transversality condition and the government budget constraint are satisfied so long

as the primary surplus responds at least linearly to the debt-to-GDP ratio. This requirement

on fiscal policy turns out to be quite mild—the size of the (positive) primary surplus can be

arbitrarily small at any particular debt-to-GDP ratio but must nevertheless scale linearly,

implying unboundedly large primary surpluses as the debt-to-GDP ratio becomes large.

Crucially, neither the level of the debt-to-GDP ratio nor whether r < g matters for debt

sustainability; put starkly, the stock and flow approaches of debt sustainability are unrelated

to the economic approach.
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The debt-to-GDP ratio has a stationary distribution that can be characterized in closed

form if the fiscal surplus reacts in a stronger than linear fashion to the debt-to-GDP ratio.

In this case, fiscal policy satisfies both the stock and economic approach. Conversely, we can

construct cases where the flow approach and stock approach are satisfied, but the economic

approach is not. In the former case, the debt-to-GDP ratio evolves as an Ornstein-Uhlenbeck

process and converges to a log-normal distribution. In the latter case, the debt-to-GDP ratio

converges to a Pareto distribution.

When the stationary distribution exists, the mean debt-to-GDP ratio is decreasing in

population growth and increasing in productivity growth when the elasticity of intertemporal

substitution (EIS) is less than one.1 Lower population growth leaves the borrowing rate

unchanged while directly lowering output growth, shifting the average debt-to-GDP ratio

higher. By contrast, when the EIS is less than one, a decline in productivity growth has a

more than a one-for-one effect on the real interest rate, lowering r− g and thereby reducing

the average debt-to-GDP ratio. A rise in output uncertainty raises the variance of the

debt-to-GDP ratio but may well reduce the mean by lowering the interest rate r.

The assumption that the primary surplus (as a share of GDP) can be unboundedly

large is a strong one and separates completely theoretical conditions for sustainability from

the flow and stock notions of sustainability. The stock view—specifically the idea of a

debt threshold—can be resurrected if the primary surplus is bounded above and default

becomes possible, a property Ghosh, Kim, Mendoza, Ostry, and Qureshi (2013) labeled as

fiscal fatigue. To preserve tractability and highlight key results, we assume that the only

force that generates r < g is aggregate risk due to rare disasters. The possibility of a rare

disasters ensures r < g, but once aggregate uncertainty is realized, r > g. This time-varying

probability of disasters generates interest rate variation that can force a government into

default.

In the presence of a maximum primary surplus over GDP, an endogenous maximum debt-

1In the Pareto case, parameters must be such that higher moments of the distribution are finite.
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to-GDP ratio emerges, labeled the fiscal limit. The fiscal limit is closer to the stock approach

of debt sustainability, but is state-dependent as it depends on the time-varying probability of

disasters. For levels of debt below the limit, the interest rate on government debt rises with

the debt-to-GDP ratio reflecting default risk. In contrast to the no default case, stagnation

forces like slower productivity and population growth affect debt sustainability. Perhaps

counterintuitively, lower productivity growth relaxes the fiscal limit (when EIS < 1), while

lower population growth tightens the fiscal limit.

Our model also gives rise to a flipping point level of debt—a debt-to-GDP ratio above

which r becomes greater than g. An increase in disaster risk has opposing effects on the

flipping point and the fiscal limit, raising the former and lowering the latter, showing again

that flow and stock notions of debt sustainability need not be closely linked. When disaster

risk rises, the fiscal limit falls compressing fiscal space. However, because the flipping point

has increased, policymakers may enjoy a greater range of the debt-to-GDP over which r < g.

Calibrating our model to pre-pandemic (2019) US data and making somewhat pessimistic

assumptions: i) relatively high disaster risk (probability of 6.5 percent annually), ii) zero

recovery value in default, and iii) a maximum fiscal surplus of 5 percent of GDP, we never-

theless find substantial fiscal space. The fiscal limit is 222 percent of GDP in low risk state

and 144 percent of GDP in high risk state, and the flipping point is 106 percent of GDP.2

Furthermore, our calibration highlights the potential benefits of higher population growth.

Reverting back to the postwar average growth rate would push these various thresholds

higher by more than 50 percentage points.

The paper is laid out as follows. Section 2 presents basic statistics on the average cost of

servicing the public debt and its variability. Section 3 presents and solves the model without

default, while Section 4 analyzes the model with fiscal fatigue and sovereign default. Section

5 concludes.

2The recent papers that estimate fiscal limits in advanced countries are Ghosh, Kim, Mendoza, Ostry,
and Qureshi (2013), Collard, Habib, and Rochet (2015), and Pallara and Renne (2019).
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Related Literature. This paper builds on the literature analyzing fiscal policy when

interest rates are low. Darby (1984) shows that the condition of r < g turns the famous

unpleasant monetarist arithmetic in Sargent and Wallace (1981) into a pleasant one. Abel,

Mankiw, Summers, and Zeckhauser (1989) argue that low or negative rates do not necessarily

imply under-consumption and excess saving. Blanchard and Weil (2001) show that even in

cases when r < g due to the effects of uncertainty, it may not be feasible for the government to

operate a debt Ponzi game. Bohn (1995) establishes that empirical tests of debt sustainability

that rely on r < g are not appropriate in stochastic economies—a finding that we build on

in our analytical framework.

More recently, Reis (2021) shows how monetary and fiscal policies affect public debt liq-

uidity and, ultimately, debt sustainability when r < g. Relatedly, Jiang, Lustig, Van Nieuwer-

burgh, and Xiaolan (2019) find that the market value of US public debt exceeds the expected

present value of future government surpluses.

The paper also builds on a recent literature that seeks to explain the decline in safe

interest rates. Eggertsson and Mehrotra (2014) and Eggertsson, Mehrotra, and Robbins

(2018) emphasize factors like low population and productivity growth. Caballero and Farhi

(2017) stress a shortage of safe assets and an elevated risk premium in accounting for low

interest rates. The model here is closer to the literature that cites the risk premium as the

chief factor behind low interest rates.3

2 Stylized Facts on r − g

This section briefly summarizes some basic facts on the relationship between the return on

government debt and the growth rate of the economy. We show that, for advanced countries,

r is frequently less than g and r − g exhibits substantial variability over time.4

3See, for example, Del Negro, Giannone, Giannoni, and Tambalotti (2017) and Farhi and Gourio (2018)
for a quantitative analysis of how risk and liquidity premia account for low interest rates on government
debt.

4Mehrotra (2018) provides further empirical analysis on the risk of reverting to periods of r > g and the
historical relationship of r − g with both productivity and population growth.
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The importance of r relative to g for debt dynamics can easily be seen by inspecting the

government’s flow budget constraint, expressed here in continuous time with no shocks:

dBt = [rtBt + (Gt − Tt)]dt, (1)

where Tt is real tax revenue (net of any transfers), Gt is real government expenditures, Bt

is real government debt, and rt is the effective real interest rate paid on government debt.

Yt is real gross domestic product (GDP), hence the debt-to-GDP ratio is Bt/Yt. Along the

balanced growth path with constant interest rate and output growth, equation (1) gives the

primary surplus that keeps the debt-to-GDP ratio constant:

Tt −Gt

Yt
= (r − g)

Bt

Yt
.

The difference between the return on public debt r and output growth rate g represents

the unit fiscal cost of servicing public debt. When r > g, the fiscal authority must raise real

resources to keep the debt-to-GDP ratio constant. Equivalently, when r > g, the debt-to-

GDP ratio will be on an ever increasing trajectory even in primary balance, justifying the

flow approach focus on whether r > g or r < g.

To analyze the behavior of r − g, we draw on the historical macroeconomic dataset of

Jordà, Schularick, and Taylor (2016). This dataset provides macroeconomic and financial

variables for seventeen advanced economies including the US from 1870 to 2016.

To compute measures of the cost of servicing the debt r − g, we need a measure of the

ex-ante real interest rate. A three-year moving average of inflation is used as a proxy for

expected inflation in line with the approach in Hamilton, Harris, Hatzius, and West (2016).

The real interest rate is then the nominal measure less the three-year moving average of

inflation. When using annual data, we drop extreme observations of r− g above ten percent

and below negative ten percent. The resulting dataset is an unbalanced panel of 2145

observations.

Table 1 provides basic summary statistics for the real interest rate, population growth
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rate and real GDP per capita growth rate in the dataset. Values are shown for all countries

and for just the US. For all countries, the median nominal long-term rate is 4.6 percent with

a median inflation rate of 2.1 percent. For the US, both interest rates and inflation rates are

slightly lower than the global median. Population growth is somewhat higher in the US, as

is per capita real GDP growth. Public debt-to-GDP ratios are, on average, slightly lower in

the US.5

Real interest rates (negative in the US) and population growth were in the bottom quartile

of the distribution of historical observations prior to the start of the COVID-19 pandemic.

By contrast, the value of the US debt-to-GDP ratio before the pandemic (80% of GDP) was

in the top quartile.

Figure 2 plots the debt servicing cost for the US—long-term real interest rates less GDP

growth. The blue and more variable line shows this measure for the US and the smoother red

line is a five-year moving average of the blue line to smooth out business cycle fluctuations.

As the figure shows, the cost of servicing the debt has frequently been negative historically

and for a large part of the postwar period. Indeed, the period between 1980 and 2000

is the exception, namely one of the few periods where real interest rates on government

debt consistently exceeded real GDP growth. In the postwar period, US r − g displays less

volatility and greater persistence than the prewar or interwar periods.

Table 2 presents statistics on the fiscal cost of servicing the debt: r−g. We take averages

over five year periods (non-overlapping) of r−g for the US and 16 other advanced economies,

presenting median values and ranges.6 As the table shows, over the full sample of advanced

economies, the median value of r − g is nearly zero (eight basis points). In the US, that

5The macrohistory data set contains general government gross debt when data are available and central
government gross debt further back in time when data are scarce. These data do not net government
debt-like assets holdings, which is a more appropriate measure of public debt for sustainability purposes.
Using the data from the IMF World Economic Outlook, which contains gross and net debt after 1980 for
these countries, we document that the difference between gross and net debt-to-GDP ratios is on average 15
percent. However, gross debt variance over time—the statistic that we use for calibration of the model—is
almost identical to net debt variance.

Finally, the data do not include unfunded future government liabilities, such as Social Security.
6Five-year periods with fiscal cost above ten percent or below minus ten percent are winsorized at these

levels.
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median value (−16 basis points) has been negative over the past 140 years. The finding

that r − g is close to zero is not a function of historically extreme periods. Excluding the

world wars and the interwar years (including the Great Depression) leaves the median value

slightly higher for all countries and unaffected for the US. Limiting the sample to only the

postwar period, r − g becomes more negative for both the full sample and the US.

Though the median value is negative, there remains substantial variability in the cost

of servicing the debt. Table 2 provides the interquartile range of r − g for both the full

sample and the US. The 75th percentile is roughly one percent in the US, while the 25th

percentile is substantially negative. These percentiles for the USdisplay the same level shift

as the median; r−g is lower at each quartile than the corresponding figure for the all country

sample. An interquartile range of four to five percentage points demonstrates the substantial

variability in r − g.

Table 2 also shows the fraction of observations with a negative debt servicing cost or a

substantially negative cost (less than negative two percent). In the all-country sample, half

of the observations are negative and between 20 to 35 percent of five-year periods feature a

substantially negative value for the fiscal cost depending on the time period. In the case of

the US, these percentages are somewhat higher than those for the global sample. Again, the

percentage of years with a negative cost for the public debt are not driven by the interwar

years and the Great Depression, or the world wars. If anything, the postwar period features

a greater percentage of years with r − g negative. Quite remarkably, 70 percent of five-year

periods in the US and 55 percent of five-year periods across all advanced countries show

negative net fiscal cost in the postwar period.

Nevertheless, values for r−g at the 75th percentile illustrate the perils of carrying a high

public debt level. Sustained periods of even relatively moderate levels of debt servicing costs

would require a substantial primary surplus to stabilize the debt-to-GDP ratio, particularly

among countries with debt-to-GDP ratios above 100 percent. This section treated r − g as

a statistical object; in the next section, we turn to the analysis of debt dynamics when r− g
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is determined endogenously.

3 Debt Sustainability without Default

This section introduces a continuous-time general equilibrium model in which aggregate

output follows an exogenous geometric Brownian motion process, and fiscal policy rules out

default. The model allows closed-form solution for the real interest rate on government

debt, the return on risky assets, and the distribution of the debt-to-GDP ratio. Here,

we define and contrast the three approaches to public debt sustainability. We show that

theeconomic approach to debt sustainability is not related to the stationarity of the debt-

to-GDP distribution (the stock approach) and the sign of r − g (the flow approach) and

conclude with a numerical exercise that assesses the importance of secular stagnation forces

that may account for low r and low g.

3.1 Households

Time is continuous, infinite, and indexed by t. The economy is populated by a representative

household with a continuum of identical infinitely-lived members whose measure Nt grows

deterministically at a constant rate n with the initial value at time zero of one. The household

members derive utility from consuming and from holding safe and liquid bonds that only

the government can supply. The household is endowed with a traded Lucas tree that yields

per capita dividends that follow geometric Brownian motion:

dyt
yt

= gydt+ σydZ
y
t , (2)

where gy is the growth rate of per capita endowment, σ2
y is the variance of shocks to the

growth rate, and dZy
t is standard Brownian motion. The initial value is y0. Total output Yt

equals to Ntyt. We refer to yt as productivity. We draw a distinction between the growth

rate of output g that we have referred to earlier and the growth rate of output per capita (or

productivity), gy. In the model, average output growth g is the sum of population growth n
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and productivity growth gy.

Financial markets are dynamically complete, i.e., agents have access to government-

issued liquid bonds, safe bonds that are non-liquid, and risky securities.7 The safe bonds are

assumed to be in zero net supply. Equity—a claim on a Lucas tree that pays consumption

goods at flow rate yt—is in positive net supply that increases at the rate of population

growth. There is no international trade in either goods or assets.8

A typical household chooses paths for consumption {ct}, wealth {wt}, investments in

liquid, safe, and risky assets {bt, st, xtwt}, where xt denotes a fraction of wealth invested in

risky assets, to maximize

E0

∫ ∞
0

e−(ρ−n)t
[
c1−γt − 1

1− γ
+ c−γt ytu

(
bt
yt

)]
dt, (3)

subject to the flow budget constraint

dwt = (rst st + rtbt − ct − τt − wtn)dt+ wtxtdr
x
t , (4)

and subject to the wealth breakdown into safe, liquid, and risky assets

wt = st + bt + xtwt, (5)

together with a no-Ponzi game condition expressed below. All the variables in the above

optimization problem represent per member of household quantities: ct is consumption of a

member of the household, wt is the financial wealth, bt is the purchases of safe and liquid

government bonds, st is purchases of safe assets that do not provide liquidity services, τt

are taxes. Note that the part of the drift in financial wealth of a member of the household

−nwt captures the fact that new members dilute the household level of wealth. The returns

7When the households are free to re-optimize their portfolios at each instant, their access to just three
securities mentioned above and optimal portfolio choice is equivalent to the presence of complete markets,
i.e., the access to state-contingent Arrow-Debreu securities.

8It is potentially important to allow international trade in assets given a high level of integration in
financial markets. We leave this fruitful avenue of research for future work and focus our analysis on a closed
economy.
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on liquid, safe, and the risky assets over a short period of time dt are rtdt, r
s
tdt, and drxt

respectively.9 Finally, ct is an economy-wide average consumption of members of households.

It will be equal to ct in equilibrium, but an individual household does not internalize this

fact.

The members of the household derive utility from consumption {ct} and from holding

government bonds {bt}. Formally, the utility function (3) consists of two terms that capture

the utility from consumption and utility from holding government bonds. The assumption

that households have non-pecuniary preferences over government debt is a non-structural

way to represent special features of government debt such as safety and liquidity.10 The

main reason for having non-pecuniary preferences in our model is to introduce a deviation

from Ricardian equivalence in a representative household setting. In this case, changes in the

supply of government bonds affect the interest rate on these bonds contributing to changes

in r − g over time that facilitate bringing the model to the data.

The preferences over holding government bonds (second term in equation (3)) are additive

over time. The instantaneous utility over liquid bonds depends on average consumption ct,

the exogenous endowment, and liquid debt holdings relative to this endowment. As a result,

demand for liquid debt over aggregate output is a function of the liquidity yield only. We

choose the following structural form for tractability:

u

(
bt
yt

)
=
bt
yt

[
αu + βu − βu log

(
bt
yt

)]
, (6)

where αu are βu are non-negative real numbers. Equation (6) implies that the marginal

preferences from holding government debt, i.e., u′(bt/yt) = αu − βu log(bt/yt), is decreasing

in debt holdings. The fact that the marginal utility turns negative after a certain level of

debt-to-GDP can be thought of as a reduced form way of capturing the idea that people may

9All equalities featuring random variables hold “a.s.”, and all stochastic differential equations are assumed
to have solutions.

10This assumption has been used to improve asset-pricing properties of the standard finance models
(Krishnamurthy and Vissing-Jorgensen, 2012), explain business cycles (Fisher, 2015), solve for optimal gov-
ernment debt maturity (Greenwood, Hanson, and Stein, 2015), resolve New Keynesian puzzles (Michaillat
and Saez, 2018), and fit the consumption response to income shocks (Auclert, Rognlie, and Straub, 2018).
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worry about holding government debt when it is too large. It is worth emphasizing that our

qualitative results do not depend on government debt providing liquidity services.

We guess and later verify that the equity price qt follows the process dqt/qt = (µt −

yt/qt)dt+ σtdZ
y
t , where µt and σt are determined in equilibrium. The return on risky equity

is

drxt =
dqt + ytdt

qt
= µtdt+ σtdZ

y
t , (7)

so that µt and σt are interpreted as the drift and diffusion of the risky equity return. We

next turn the flow budget constraint in equation (4) into an intertemporal budget constraint.

To do this we assume (and verify in Appendix C) that there exists a unique continuous-time

stochastic discount factor ξt that follows a diffusion process of the form

dξt
ξt

= −rstdt−
µt − rst
σt

dZy
t . (8)

with some initial value ξ0. The no-Ponzi game condition can be expressed using this stochas-

tic discount factor as

lim
T→∞

E0[e
nT ξTwT ] ≥ 0. (9)

The following lemma presents the intertemporal budget constraint of the household.

Lemma 1. The flow budget constraint (4) together with the no-Ponzi game condition imply

the intertemporal budget constraint

w0 ≥ E0

∫ ∞
0

[ct + τt + (rst − rt)bt]
entξt
ξ0

dt. (10)

The proof is in Appendix A.1. The inequality (10) states that the value of initial wealth,

comprised of the value of Lucas trees and the stock of government debt, must be enough to

cover expected integral of future discounted spending on consumption, taxes, and government

debt holding costs. Note that the last term in the brackets on the right-hand side of the

inequality (10) is like the costs of renting a durable good, e.g., housing. However, in our
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model, durable goods are government bonds that provide liquidity services. The inequality

reflects the imposed no-Ponzi game condition. The number of members in the household,

i.e., ent, on the right-hand side (10) reflects the fact that all expenditure terms are expressed

per household member.

3.2 Government

The government issues instantaneous riskless real debt Bt that satisfies the flow budget

constraint (1). Our assumption that government debt is real can be taken at face value.

Alternatively, one can assume that the debt is nominal and nominal prices are sticky in the

short run, making debt effectively real. Yet, a third possibility is to imagine that monetary

policy keeps inflation stable. This possibility will only add a constant term to our analysis

that would not change the analysis.11

The primary deficit drift Dt, the difference between total spending and revenues, follows

a fiscal rule of the form

Dt

Yt
= αD

Bt

Yt
− βD

Bt

Yt
log

(
Bt

Yt

)
, (11)

where αD is a real number and βD is a non-negative real number.12 This fiscal rule has two

important properties. First, the deficit reacts proportionally to the level of debt as captured

by the first term in equation (11). Second, when βD is strictly positive, the government

reacts to increases in the debt-to-GDP ratio by strongly reducing (i.e., more than one-for-

one) the primary deficit-to-GDP ratio. The particular functional form of the second term

implies that the law of motion for the log of the debt-to-GDP ratio is linear in the log of

debt to GDP as in equation (13) below. This allows us to solve the model in closed form.

The fiscal rule (11) only specifies the behavior of the primary fiscal deficit. To complete

the description of fiscal policy, we assume that the government engages in wasteful spending,

11Inflation risk would alter our analysis. However, Hilscher et al. (2014) show that the government cannot
inflate a significant part of its debt away for plausible maturities of government debt.

12We assumed that the rule does not explicitly respond to changes in the interest rate on public debt.
Nevertheless, this rule implicitly depends on the interest rate because the interest rate is related to the
debt-to-GDP ratio in equilibrium.
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which is a constant fraction of total output:

gt = γGyt. (12)

where gt is government spending per capita. Public debt dynamics in equation (1) can be

re-expressed in terms of the log debt-to-GDP ratio denoted as B̂t. We summarize this useful

intermediate result in the next lemma.

Lemma 2. Given the productivity process (2) and the fiscal policy (1), (11), (12), the log

debt-to-GDP ratio follows

dB̂t = (rt − gy − n+ αD − βDB̂t + σ2
y/2)dt− σydZy

t . (13)

See Appendix A.2 for details. Equation (13) states that the drift of the log of debt-to-

GDP ratio depends positively on the interest rate, the deficit-to-debt ratio αD − βDB̂t, and

the volatility of the productivity process. The drift depends negatively on the growth rate of

total output gy+n. A convenient property of expression (13) is that the diffusion is constant,

allowing a closed-form solution.

3.3 Equilibrium Characterization

An equilibrium is a collection of interest rates {rtdt, rstdt, drxt } and allocations {ct, wt, bt, st,

xt, gt, τt, ct} such that households solve (3)-(5), (9), the government acts according to (1),

(11), (12), average consumption equals per member consumption, i.e., ct = ct, and the

markets clear: (i) Ntbt = Bt (government bonds), Ntst = 0 (safe bonds), ct+gt = yt (goods).

Asset returns are

rs = ρ+ γgy −
γ (γ + 1)

2
σ2
y, (14)

rt = rs − αu + βuB̂t, (15)

and the risky asset return is characterized by the drift µt = rs+γσ2
y and the diffusion σt = σy.
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The standard derivation of these formulas are in Appendix C.

The safe real interest rate is constant while the return on government bonds varies with

the debt-to-GDP ratio so long as βu is not equal to zero. This lemma shows how candidate

explanations for secular stagnation affect the safe and liquid rates. A lower rate of trend

output growth (equivalently, productivity growth) or an increase in the variance of the output

process lower the safe rate of return. The elasticity of the real interest rate with respect to

trend growth is governed solely by the intertemporal elasticity of substitution 1/γ. For a

coefficient smaller than unity, the real interest rate responds more than one-for-one with a

change in trend growth. A rise in endowment volatility lowers the safe interest rate and raises

the risk premium, with the strength of the effect rising with the coefficient of risk aversion

γ. Importantly, neither the risk premium nor the safe interest rate depends on population

growth. Lower population growth—modeled as a slower rate of birth of new members of the

representative household—leaves the real interest rate unaffected. Equation (15) shows that

as the debt-to-GDP ratio rises, the marginal benefit of liquid wealth decreases, raising the

required rate of return on government debt.

Using the law of motion for the debt-to-GDP ratio in Lemma 2 together with the expres-

sion for the return on liquid government bonds in equation (15), we have:

Proposition 1. In equilibrium, the log debt-to-GDP ratio is an Ornstein-Uhlenbeck process:

dB̂t =
(
α− βB̂t

)
dt− σydZy

t ,

where α ≡ αD − αu + ρ+ (γ − 1)gy − n− [γ(γ + 1)− 1]σ2
y/2 and β ≡ βD − βu.

The parameter α is a sufficient statistic for all of the forces that increase the drift of

the debt-to-GDP ratio and that are independent of the level of debt-to-GDP, while β is a

net effect of the forces that reduce the drift and that are proportional to the level of the

debt-to-GDP ratio. The law of motion is an Ornstein-Uhlenbeck (OU) process, which is the

continuous-time analog of an AR(1) process.
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Finally, we define the government transversality condition and the intertemporal budget

constraint. A combination of the no-Ponzi game condition (9) and the household transver-

sality condition (a necessary condition of optimal behavior) imply

lim
T→∞

E0[e
nT ξTwT ] = 0. (16)

In equilibrium, total financial wealth of the household is a sum of the value of Lucas trees

and the government debt, i.e., wt = qt + bt. Because qt and bt are always non-negative, the

condition (16) necessarily implies that in equilibrium:

lim
T→∞

E0[e
nT ξT bT ] = 0. (17)

We will call the limit in equation (17) the government transversality condition (TVC).

The household intertemporal budget constraint (10), equation (16), and the market clear-

ing conditions yield

b0 = E0

∫ ∞
0

[τt − gt + (rst − rt)bt]ent
ξt
ξ0
dt, (18)

the intertemporal budget constraint of the government. Equations (17) and (18) place equi-

librium restrictions on the set of feasible fiscal policies. Intuitively, fiscal policy must satisfy

these equations if the households purchase government debt in equilibrium. If this is not the

case, then equilibrium does not exist.

3.4 Three Approaches to Debt Sustainability

We are now ready to define and compare the three approaches to debt sustainability.

Definition 1. Fiscal policy is sustainable according to the stock approach if the debt-to-GDP

ratio has a stationary distribution.

Because the debt-to-GDP ratio process in Proposition 1 is a continuous-time analog of

an AR(1) process, it is straightforward to derive the evolution of the distribution of the

log of debt-to-GDP ratio and the conditions for the existence of its stationary distribution
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by solving the Kolmogorov forward equation (see, e.g., Section 3.8 of Stokey, 2009). The

following proposition does precisely this.

Proposition 2. If β > 0, then in equilibrium, the stationary distribution of the log debt-to-

GDP ratio exists and it is a normal distribution with mean α/β and variance σ2
y/2β. In levels,

the stationary distribution of the debt-to-GDP ratio is log-normal with mean exp[(α+σ2
y)/β]

and variance [exp(σ2
y/2β)− 1] exp(2α/β + σ2

y/2β).

Proposition 1 states that the debt-to-GDP process has a stationary distribution when it

is mean-reverting. When, instead, β ≤ 0, the mean of the log debt-to-GDP ratio drifts

to minus or plus infinity, and its variance becomes unbounded. Interestingly, the sufficient

condition for the existence of the stationary distribution is also necessary if we exclude a

trivial degenerate distribution with zero debt.

Definition 2. Fiscal policy is sustainable according to the flow approach if rt− gy − n < 0.

The interest rate net of aggregate output growth rate can be written as rt − gy − n =

α − αD − σ2
y/2 + βuB̂t. This expression implies that there is a cutoff level of the debt-to-

GDP ratio, which we call the flipping point, where the interest rate differential changes its

sign. Formally, B̂FP
t = −(α − αD − σ2

y/2)/βu. Comparing the definitions of the stock and

flow approaches makes clear that they are distinct. The stationarity of the debt-to-GDP

distribution depends only on β, while the sign of the debt servicing cost depends on other

parameters of the model and also on the endogenous level of the debt-to-GDP ratio.

Definition 3. Fiscal policy is sustainable according to the economic approach if it satisfies

equations (17) and (18).

To be clear, these conditions are necessary for the existence of equilibrium in our model.

The next proposition summarizes necessary and sufficient conditions.

Proposition 3. Fiscal policy is sustainable according to the economic approach if and only

if β > 0, or β = 0 and αu − αD > 0.

18



The proof is in Appendix A.4. Proposition 3 collects several results in a compact form.

First, when β < 0, debt to GDP explodes fast enough that the conditions of sustainability

under the economic approach are violated. Second, when β > 0, public debt is sustainable.

Combining it with the fact that the same condition is necessary for the stationarity of

the debt-to-GDP ratio (excluding the degenerate distribution with a zero public debt), we

conclude that the stock approach implies the economic approach conditional on the assumed

fiscal rule. However, the opposite is not true. To explain why this is so, we proceed to the

case when β equals zero.

When β is zero, the law of motion of the level of debt-to-GDP in Proposition 1 implies

that it either shrinks to zero when α is below zero or grows to infinity when α is greater than

zero. In the latter case, the debt-to-GDP is exponential in time. Importantly, Proposition 3

states that the transversality condition (17) can fail in the former case but still holds in the

latter case. To understand this, consider two situations. First, even when the debt-to-GDP

ratio grows without limit over time, i.e., α is positive, debt is sustainable when αu − αD is

above zero. This scenario is sustainable because the growth rate of debt is lower than the

growth rate of the discount factor so that the transversality condition of the government

is satisfied. In this case, the intertemporal budget constraint of the government is satisfied

automatically. A critical parameter that ensures sustainability is the sum of the sensitivity

of the primary surplus to the stock of government debt −αD and the constant part of the

liquidity yield αu. Interestingly, note that it is sufficient for this object to be positive; it

does not have to be large. Furthermore, if the government surplus does not respond to the

level of debt at all, i.e., αD is zero, then it is still possible for the debt to be sustainable

because of the remaining term αu, which reflects profits that the government collects due of

its unique ability to issue liquid debt that households value for their non-pecuniary returns.

This profit is analogous to the seigniorage that the central bank receives on printing money

that provides liquidity services.

Second, even if the debt-to-GDP ratio is shrinking with time on average (α is negative),
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it is not necessary that the TVCs are satisfied. For example, consider the case when αD and

αu equal zero, which implies that the primary surplus is zero and there are no seigniorage

revenue. At the same time, assume that α is negative because, for example, the interest rate

is low due to high volatility of shocks to output growth σ2
y. If the government starts with a

positive level of debt, the intertemporal budget constraint does not hold because the present

value of future surpluses is zero. As a result, the economic approach implies that debt is not

sustainable in this case.

3.5 Lower Bound on Public Debt

When α is negative, the debt-to-GDP ratio tends to zero. However, governments rarely repay

their debt in full. Here, we impose a lower bound on the log of debt-to-GDP ratio, which

we denote B̂min, establishing that stationarity of debt-to-GDP distribution is not sufficient

to satisfy the economic approach.13

Formally, we assume that the log of debt-to-GDP ratio B̂t follows a reflected Brownian

motion with a lower reflecting barrier at B̂min (Harrison, 1985). Intuitively, B̂t is pushed

in the positive direction every time it falls to its lower reflecting barrier. When we impose

this assumption, the debt-to-GDP ratio admits a closed-form solution for the stationary

distribution.

Proposition 4 (Lower reflecting barrier). If β = 0, α < 0, and B̂t ≥ B̂min > −∞, then

there is a stationary distribution of log debt-to-GDP ratio which is a negative exponential

with rate parameter ξ ≡ −2α/σ2
y. In levels, the stationary distribution of the debt-to-GDP

ratio is a Pareto distribution with shape parameter ξ. Moreover, the transversality condition

(17) holds if and only if αu − αD > 0.

The proof is in Appendix A.5. Given that the debt-to-GDP ratio has a Pareto distribu-

tion, its mean and variance depend crucially on the shape parameter. The mean and variance

13In 2001, Federal Reserve Chair Alan Greenspan famously worried that the possibility that the US may
payoff the public debt would complicate the implementation of monetary policy.
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of a Pareto distribution only exist when the shape parameter is larger than two. Notably,

a higher negative drift α or lower volatility shocks to output raise the shape parameter,

lowering both the mean and variance.

To understand why the stock approach does not imply economic approach in this case

note first that a combination of a negative drift α and a lower reflecting barrier mechanically

imply existence of the stationary distribution. Next, consider an example where αu−αD = 0,

implying a zero present value of government revenues. In this case, the investors are not

willing to hold government debt because no real dividend is ever paid. In this case, the

stationary distribution exists in mechanical but not in equilibrium sense.

These results starkly highlight the importance of the primary surplus and how both

the stock and flow approach to sustainability can differ from the economic approach to

sustainability.

3.6 Output Disasters

Anticipating our calibration exercises in Section 3.7 where we match asset pricing moments

with realistic values of risk aversion, we discuss the consequences of adding rare disaster

shocks to the above setup with a lower reflecting barrier. Now we replace output process (2)

with

dyt
yt

= gydt+ σydZ
y
t +

(
e−Zt − 1

)
dJt, (19)

where Jt is a Poisson process with constant intensity λ > 0. Zt is a positive, independent,

and identically distributed random variable that describes an instantaneous change in log

output when a disaster occurs.

Following the steps in Wachter (2013), we compute the interest rate when the endowment

jumps. This allows us to derive the law of motion and the corresponding stationary distri-

bution of the debt-to-GDP ratio. We present all details in Appendix A.6 and summarize the

results in the following proposition:

Proposition 5 (Disasters). If β = 0 and there is a lower reflecting barrier B̂min, then the
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law of motion of the log of the debt-to-GDP ratio for B̂t > B̂min is

dB̂t = α̃dt− σydZy
t + ZtdJt,

where α̃ ≡ α − λ(EZ [eγZ ] − 1). If α̃ < −λEZ [Z], then there is a stationary distribution of

the log debt-to-GDP ratio which is exponential with the rate parameter ξ that solves

α̃ξ +
σ2
y

2
ξ2 = λ(1− EZ [eξZ ]). (20)

In levels, the stationary distribution of the debt-to-GDP ratio is a Pareto distribution with

shape parameter ξ. Moreover, when α̃ ≥ −λEZ [Z], the transversality condition (17) holds if

and only if αu − αD > 0; when α̃ < −λEZ [Z], it holds if ξ > 1.

The shape parameter ξ solves equation (20), which depends on the disaster intensity λ,

the distribution of disasters, the drift α, and the diffusion σy of the debt-to-GDP ratio. Thus

our model can accommodate an output process where rare disasters lead to discontinuous

jumps in the debt-to-GDP ratio—of particular relevance for the discrete jumps in debt-to-

GDP experience in recent decades.

3.7 Calibration

This section quantifies effects of various secular stagnation forces on the stationary distri-

bution of the debt-to-GDP ratio. There are three distinct calibrations corresponding to the

model in Sections 3.1-3.4, its extension with a lower bound on debt in Section 3.5 and disas-

ters in Section 3.6. Considering three calibrations allows us to analyze the effects of different

fiscal policies and different kinds of shocks.

In these calibrations, we use a richer model than the one presented so far. First, instead of

separable utility function (3), we use Epstein-Zin-Weil (EZW) preferences to separate the IES

coefficient and the coefficient of relative risk aversion. Equations (B.1) and (B.2) in Appendix

B formally present these preferences. Second, we add shocks to the flow budget constraint
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of the government to dampen the covariance between the interest rates and productivity

growth. Formally, the modified budget constraint is

dBt = rtBtdt+Dtdt+BtσBdZ
B
t ,

where Dt is given by equation (11). The last two terms can be thought as the primary and

random terms of the primary fiscal deficit. A more detailed description and the solution of

this richer model is in Appendix B.

The parameters in Table 3 are fixed across the three calibrations. We set the intertem-

poral elasticity of substitution to 1/θ to 0.75.14 The average growth rate of annual GDP

per capita since 1950 of 0.02 is used to set gy, while annual postwar population growth of

0.0115 determines n. The diffusion term on output growth σy is 0.025 to match the standard

deviation of annual output growth in the US since 1950. The difference between AAA cor-

porate debt and the US 10-year Treasury yield, and its elasticity to the debt-to-GDP ratio

pin down both αu and βu (Krishnamurthy and Vissing-Jorgensen, 2012).15 As mentioned

above, we introduce a fiscal policy shock σB to match the correlation of the real interest rate

and output growth for the 17 countries in our dataset since 1950. This correlation is −0.055,

meaning that our model requires the relative variance of the fiscal policy shocks to be higher

than that for productivity growth to dampen the correlation between rt and dyt/yt.
16

The remaining parameters, presented in Table 4, differ across the three calibrations.

Calibration 1 assumes that all shocks are Brownian and that fiscal policy strongly reacts to

the level of debt-to-GDP ratio so that the stationary distribution is log-normal as described in

Proposition 2. Calibration 2 changes a fiscal response relative to calibration 1 by introducing

14An extensive literature has attempted to measure the elasticity of substitution by examining how house-
hold’s consumption growth responds to changes in the real interest rate faced by these households. The IES
is commonly assumed to be less than one in macroeconomics literature, with some estimates suggesting that
it is in fact substantially less than one (e.g., Hall, 1988; Campbell, 1999).

15A regression of the AAA-10 year Treasury spread on the log debt-to-GDP ratio determines βu and αu,
which is the constant from this regression plus βu.

16An alternative way to dampen correlation between the interest rate rt and the growth rate of produc-
tivity without setting a high variance of instantaneous shocks to the fiscal rule σB is to assume that the
fiscal rule parameter αD is not constant but rather a mean-reverting Ornstein-Uhlenbeck process with a
sufficiently high persistence.
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a lower reflecting barrier and by setting βD − βu to zero for levels of debt-to-GDP above the

reflecting barrier as in the first extension in Section 3.5. Finally, calibration 3 adds disaster

shocks to calibration 2, which allows us to lower the coefficient of relative risk aversion

required to match the equity premium.

We now describe calibration-specific parameters in detail. The average postwar real

return on long-term government bonds of 0.025 in the US is used to pin down the rate of

time preference ρ. The equity premium of 0.052 in the US is used to determine the coefficient

of relative risk aversion given the size of the shocks.17 In calibration 1, the fiscal response

parameters αD and βD are set to match the mean log debt-to-GDP ratio in the US postwar

period of -0.92, where we used gross federal debt held by the public from 1950 to 2016 as the

measure for public debt, and match the variance of the log debt-to-GDP ratio across the full

set of 17 countries in the Jordà, Schularick, and Taylor (2016) data set.18 We use the full

set of 17 countries given the high degree persistence in the debt-to-GDP ratio and absent

strong evidence on how systematically fiscal policy responds to the debt-to-GDP ratio. In

calibrations 2 and 3, the same empirical moments for the debt-to-GDP ratio determine αD

and the position of a lower reflecting barrier min(Bt/Yt). βD is just set to offset the effect

of liquidity parameter βu so that β is 0 in calibrations 2 and 3. Finally, in calibration 3,

we assume that productivity follows the stochastic process with disasters in equation (19).

Following Barro and Jin (2011) and Rebelo, Wang, and Yang (2018), we assume that sizes of

disasters (a log change in productivity) are distributed exponentially with the lowest value

of zero and the mean of z > 0. We set the values of λ and z to their empirical counterparts

in Barro (2006). Importantly, due to the presence of disasters, calibration 3 requires a

coefficient of relative risk aversion of around 4 to match the equity premium relative to its

value of 84 in calibrations 1 and 2.

Table 5 presents several moments from our three calibrations. “Baseline” shows the

17The bonds return and equity premium are from Jorda, Knoll, Kuvshinov, Schularick, and Taylor (2018).
18The data for gross federal debt held by public is from the Economic Report of the President by the

Council of Economic Advisers.
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moment for baseline parameters where the three calibrations are split into the three panels.

Columns “Ex. 1,” “Ex. 2,” and “Ex. 3” contain the moments of three comparative statics.

We see an important difference across the three calibrations in the baseline column. The

stationary distribution of debt-to-GDP ratio is log-normal in calibration 1 and Pareto with

the shape parameter between one and two in calibrations 2 and 3. As a result, the second

moment of the stationary distribution does not exist in the latter two calibrations.

In column Ex. 1, we show the effect of a decline in population growth rate to 0.7 percent—

a projected US population growth over the next decade. Slower population growth directly

lowers GDP growth while leaving the real interest rate unchanged thereby worsening debt

dynamics.19 All rates of return are left unaffected by changes in population growth, so the

effects on the debt-to-GDP ratio come solely through the effects on GDP. Calibration 1

shows a modest increase in the mean of the debt-to-GDP ratio relative to calibrations 2 and

3. This is because a change in population growth affects a tail of the Pareto distribution

with a stronger effect on the means in calibrations 2 and 3, while this effect is limited under

calibration 1 when the stationary distribution is log-normal. Quantitatively, the decline in

population growth raises the mean debt-to-GDP ratio by 2, 16, and 16 percentage points in

calibrations 1, 2, and 3, respectively.

Column Ex. 2 in the table presents the effects of a decline in productivity growth to

0.7 percent—in line with the post-2008 productivity growth. Slower productivity growth is

beneficial for debt levels, shifting the debt-to-GDP ratio downward as the fall in rt outpaces

the decline in GDP growth when the IES is below one. Under calibration 1, the mean debt

to GDP ratio falls by 1 percentage points. A decline in productivity reduces the government

interest rate to 0.7 percent. As before, the quantitative effects on the debt-to-GDP ratio are

modest under calibration 1. Calibrations 2 and 3 feature 12 percentage points decline in the

19The finding that population growth does not affect the interest rates is specific to this model. As
Eggertsson, Mehrotra, and Robbins (2018) show, in a quantitative life-cycle model, slower population growth
generally lowers the real interest rate. However, this effect in unlikely to be strong enough in standard
quantitative life-cycle models (Carvalho, Ferrero, and Nechio, 2016) to overturn a rightward shift in debt-
to-GDP distribution.
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mean debt-to-GDP ratio. This again results from the fact that the mean is quite sensitive

to the changes in the tail of the Pareto distribution.

Finally, column “Ex. 3” presents the model moments after an increase in volatility of

GDP such that the equity premium rises by 2 percentage points. In calibrations 1 and 2,

we achieve this by increasing the value of σy from 0.025 to 0.029, while in calibration 3,

we change the arrival rate of disasters λ from 0.02 to 0.028. A rise in volatility shifts the

debt-to-GDP distribution leftward in all of the cases. The real rate of return on government

debt falls to 0.1 percent under calibrations 1, 2, and 3. The mean debt to GDP ratio falls by

7, 36, and 33 percentage points in the three calibrations, respectively. Overall, our findings

show that the indirect effects of output volatility on the interest rate and consequently the

drift of the debt-to-GDP ratio dominate the direct effects of spreading out the distribution

of output.

4 Debt Sustainability with Default

In this section, we resurrect the stock approach but show that the flow approach remains

distinct. To do this, we assume that the primary surplus (as a share of GDP) is bounded

above. In this case, there exist threshold levels of debt-to-GDP ratio, which we label as

fiscal limits with and without risk, after which the government defaults. These thresholds

are state-dependent, implying that there is no single critical level of the debt-to-GDP ratio.

4.1 Model

As the model is nearly identical to the previous section, we only outline the differences.

Household preferences are the same as in equation (3) except that we dispense with non-

pecuniary benefits of holding government bonds to focus solely on the riskiness of public debt

as the level of debt varies. Second, productivity grows stochastically over time according to

equation (19) that allows for jumps. We assume that the Brownian motion term is absent

(σy = 0). Moreover, after a single realization of a disaster, there are no further disasters
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or any other sources of uncertainty. Third, the government’s flow budget constraint follows

equation (1) as before, but we assume that the primary deficit Dt takes the form:

Dt = −Yts
(
Bt

Yt

)
. (21)

Importantly, unlike in Section 3, we assume that the surplus function s(·) is bounded above

by a positive maximum primary fiscal surplus s. This limit would emerge in a production

economy with distortionary labor taxation; the government would not be able to raise ad-

ditional revenue beyond the peak of the Laffer curve. Ghosh, Kim, Mendoza, Ostry, and

Qureshi (2013) label this property of the surplus function as fiscal fatigue. Moreover, we

use a step function shown with green solid horizontal lines in Figure 3.20 This function is

positive and equals s for positive values of debt-to-GDP, is zero when debt is zero, and it

equals a negative value of s when debt is negative. Together, these assumptions allow us to

solve the model in closed form.

Combining the flow budget constraint of the government and the endowment process, we

get the law of motion for the debt-to-GDP ratio:

d

(
Bt

Yt

)
=

[
(rt − gy − n)

Bt

Yt
− s

(
Bt

Yt

)]
dt+

Bt

Yt
(eZt − 1)dJt. (22)

The first term on the right-hand side is the standard law of motion of debt-to-GDP ratio

in a deterministic setting. The second term incorporates the effect of uncertainty; when a

rare disaster decreases output by Zt in log terms, the debt-to-GDP ratio jumps by Zt in log

terms.

4.2 Equilibrium and the Three Approaches

The model is solved using backward induction as there is no uncertainty after the first

disaster shock. We first solve the model after uncertainty has realized, and then describe the

20The qualitative results that we highlight in this section also hold for monotonically increasing sigmoid
functions with the fiscal fatigue property. This can be verified by redrawing the phase diagram in Figure 3
below.

27



evolution of the economy before disaster shock hits the economy.

After the resolution of uncertainty, the interest rate on instantaneous risk-free debt is

standard: r = ρ + γgy. To understand the dynamics of the debt-to-GDP ratio after the

resolution of uncertainty, we plot the two forces affecting debt in equation (22) in Figure 3.

The upward-sloping straight black line shows the difference between the interest rate and

GDP growth rate times the debt-to-GDP ratio, while the green step-function is the primary

surplus over GDP. The black line must be upward sloping. If this were not the case, the

present value of output would be unbounded.

Without uncertainty, equation (22) admits two steady states: a stable one at zero debt-

to-GDP and an unstable one at BnrFL where the black and green lines intersect at a positive

debt-to-GDP ratio. We label the second steady state the fiscal limit without risk.21 The black

arrows on the horizontal axis show the dynamics of the debt-to-GDP ratio on either side

of this fiscal limit. Debt-to-GDP grows without bound to the right of the unstable steady

state. At a sufficiently high level of the debt-to-GDP ratio where the presence of constant

surplus does not materially matter anymore, debt-to-GDP grows exponentially. Importantly,

this path does not satisfy the transversality condition of the government in equation (17)

because debt grows at the rate of interest that is also used for discounting in the case of no

uncertainty.

Before the shock occurs, the interest rate on a riskless asset must reflect the fact that the

discount factor jumps by γZ percent whenever the disaster occurs. Moreover, if the shock

is large enough and the debt-to-GDP level jumps over the fiscal limit BnrFL, the government

defaults. For simplicity, we assume a complete default, but it is straightforward to relax this

assumption as in Yue (2010) and Lorenzoni and Werning (2019). The riskless interest rate

21There is a third steady state with a negative value of the debt-to-GDP ratio. However, the presence
of this steady state is inconsequential for our analysis because the debt to GDP can never become negative
with only negative disasters and a positive initial level of debt.
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and the interest rate on public debt are

rst = ρ+ γgy − λ(EZ [eγZ ]− 1), (23)

rt = ρ+ γgy − λ
{
EZ
[
eγzI

(
Bt

Yt
eZ ≤ BnrFL

)]
− 1

}
. (24)

The standard derivation is in Appendix A.7. Equation (23) states that, in the presence of

disaster shocks, households willingness to save is higher, which reduces the safe interest rate.

The interest rate falls when the intensity of disasters λ is higher, risk aversion γ is greater,

or the distribution of disasters has a fatter right tail.

Equation (24) shows that government debt features an endogenous credit spread. For-

mally, the variable inside the expectations operator is positive only when a disaster does not

trigger a default. The interest rate on government debt depends on the arrival rate of disas-

ters λ, the probability of crossing the fiscal limit BnrFL, and the output decline conditional on

a disaster. The default premium rises as the debt-to-GDP ratio approaches the fiscal limit.

Notice that a rise in the arrival rate of disasters λ has an ambiguous effect on the interest

rate on government debt. On the one hand, higher disaster risk increases the likelihood of

default. On the other hand, elevated disaster risk increases precautionary saving demand

for public debt.

Figure 3 plots the dynamics of the debt-to-GDP ratio before the arrival of a disaster

shock. The two red dashed lines show the debt-servicing cost, the interest rate net of GDP

growth rate multiplied by the debt-to-GDP ratio, in two cases. First, a downward sloping

line corresponds to riskless debt that pays interest rate rst , where we assumed that the risk of

disasters is sufficiently high to make r − g negative. Second, the upward sloping line shows

the case of debt that always defaults when a disaster arrives.22 The actual debt-servicing

cost curve, a solid red line, lies between these two extremes.

The unstable steady state of this system—a point in which the solid red debt-servicing

22The interest rate on the debt that always defaults when a disaster occurs is rdt = ρ+ γgy +λ. It follows
from equation (24) by setting the fiscal limit to zero.
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cost curve intersects the surplus line—is BrFL, which we label the fiscal limit with risk. This

fiscal limit is distinct from the fiscal limit without risk BnrFL. Debt-to-GDP levels to the

right of the fiscal limit with risk cannot be an equilibrium when risk is still present in the

economy because points to the right of BrFL do not satisfy standard backward induction.23

We summarize this and the earlier observations in the following lemma. Appendix A.8

provides details of the backward induction argument.

Proposition 6. The government defaults if debt to GDP exceeds BrFL before the resolution

of uncertainty and if it exceeds BnrFL > BrFL after the resolution of uncertainty.

This proposition shows that the government can default even at levels of debt-to-GDP

below the fiscal limit without risk. This observation underscores that there is no single fiscal

limit in our environment.24

The debt-servicing cost changes its sign at the flipping point BFP shown in Figure 3. This

point does not coincide with either of the two fiscal limits indicating highlighting the flow

approach is once again distinct from the economic or stock approaches to debt sustainability.

4.3 Secular Stagnation Forces

In this section, we present comparative statics of the debt limits with respect to the probabil-

ity of disasters and changes in productivity and population growth.25 These results highlight

that different approaches to debt sustainability can offer diverging assessments of how forces

lowering r and g affect debt sustainability.

We start with an increase in disaster intensity λ. Figure 4 illustrates the dynamics of

the debt-to-GDP ratio with a higher probability of disasters λ. The figure copies the curves

23We thank Fernando Broner, who pointed out that this logic was absent from the previous version of
our paper.

24We note that the model in this section also has rollover crises (e.g., Cole and Kehoe, 2000) with a
possibility of default at any level of debt. However, we focus on more gradual debt dynamics generated by a
possibility of future default, which is also the approach taken in Ghosh, Kim, Mendoza, Ostry, and Qureshi
(2013) and Lorenzoni and Werning (2019). Formally, we assume that the government does not default if it
can roll over its debt at a finite interest rate. At the same time, our setup does not have multiplicity in the
spirit of Calvo (1988) because we assume that the government first chooses the amount of bonds it sells to
investors. Then the investors determine the interest rate on these bonds (Eaton and Gersovitz, 1981).

25Appendix A.9 also presents comparative statics with respect to the sizes of disasters.
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presented in Figure 3 in pale red and adds the comparative statics of higher λ in blue. The

next proposition summarizes what is evident from the Figure.

Proposition 7. A higher disaster intensity λ does not change the fiscal limit without risk

BnrFL but unambiguously moves the fiscal limit with risk BrFL to the left and the flipping point

BFP to the right.

The proof is straightforward. A higher λ has two opposing effects on the government

bond interest rate because the interest rate is a weighted average of the riskless rate and the

interest rate on the debt that always defaults conditional on a disaster. With higher λ, the

riskless interest rate declines uniformly for debt levels because of a stronger precautionary

saving motive. The corresponding downward-sloping debt-servicing cost rotates clockwise

with λ as shown with dashed blue line in Figure 4. At the same time, debt that always

defaults conditional on disaster is riskier with higher λ, uniformly raising interest rates.

The debt-servicing cost curve for this type of debt rotates counterclockwise with λ. The

first effect dominates at low levels of debt, and the second effect dominates at higher levels

because the probability of default increases with debt. This is shown with the solid blue

line in the figure. Point O is where the effect of a decline in the safe interest rate exactly

balances the higher probability of default due to a higher arrival rate of disasters.26 As a

result, the blue solid debt-servicing cost is always higher to the right of point O relative to

its analog under a lower λ. The last observation implies that the new fiscal limit with risk

Br,
′

FL is lower than the original one BrFL.

At the same time, the flipping point BFP , where the debt-servicing cost changes its sign,

shifts to the right because the debt servicing cost curve falls for levels of debt-to-GDP between

26The fact that the point O lies on the black line can be deduced by observing that the only situation in
which the interest rate on government debt does no depend on the intensity λ is when the term in brackets of
equation (24) is zero, implying that the interest rate is ρ+ γgy. The equation that defines the debt-to-GDP
level B∗ that corresponds to this fixed point is

∫ log
BnrFL
B∗

0

eγzdF (z) = 1.

Clearly B∗ < BnrFL, otherwise the left-hand side of this equation is negative.
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zero and B∗. This result shows how periods of elevated disaster risk can simultaneously cause

r < g while tightening the fiscal limit.

A decline in productivity growth gy has unambiguous effects on the debt cutoffs. To

understand the intuition, note first that the lower growth rate lowers the interest rate on

bonds after uncertainty has resolved. As a result, the debt-servicing cost, represented by the

black line in Figure 3, turns clockwise (under the assumption of a low IES, i.e., γ−1 < 1).

Hence the fiscal limit without risk increases. Before disaster arrival, the safe interest rate

and the interest rate on debt that always defaults also declines. Moreover, a higher fiscal

limit without risk reduces default probability. The last two observations imply that the debt

servicing cost, the solid red curve in Figure 3, shifts down for all positive debt levels. Hence

the fiscal limit with risk and flipping points move to the right.

In our environment, a decline in the population growth rate is a mirror image of a decline

in the growth rate of productivity just discussed. Lower population growth directly reduces

GDP growth but leaves the riskless interest rates unchanged. Consequently, the fiscal limits

with and without risk and the flipping points move to the left. Thus, higher output risk

and slower population growth reduce fiscal space, but lower productivity growth may raise

fiscal space. As our model reveals, the impact of secular stagnation on debt sustainability

depends on assessing the drivers of low r and g.

4.4 Calibration

We now assess the quantitative magnitudes of the effects discussed in the previous section.

We keep the IES parameter 1/θ and the average size of disasters z at the values used in

calibration 3 presented in Section 3.7. We choose the remaining parameters to reflect the

recent state of the US economy in 2019 before the COVID-19 pandemic. The growth rate

of real GDP per capita gy is set to 1.7 percent, and population growth n is 0.5 percent.

We use a higher value for the arrival rate of disasters λ of 0.065 based on the structural

estimate in Farhi and Gourio (2018). The subjective discount factor ρ is set to match the
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average yield on 10-year inflation-protected Treasury bonds of 0.004. When computing ρ,

we take into account that government bonds are defaultable in this version of the model.

Specifically, we match the interest rate at the net public debt-to-GDP ratio of 80 percent.

As a result, the parameter ρ varies with the maximum fiscal surplus in the calibration. We

set the coefficient of relative risk aversion γ to 2.74 to match the equity risk premium of 5.5

percent. Faced with some uncertainty about the maximum fiscal surplus (see Eichengreen

and Panizza, 2016), we experiment with two values: 5 percent and 10 percent.

Table 6 reports values of the three debt-to-GDP thresholds discussed in this section under

the baseline calibration and the three comparative statics experiments. These experiments

are the opposite of those in Section 3.7. Specifically, we investigate how the fiscal thresholds

change if one parameter reverts from its end of 2019 (baseline) value to its post-WWII

average value.

Consider first Panel A in Table 6, where the maximum fiscal surplus to GDP ratio is 5

percent. In the baseline calibration, the fiscal limit without risk is 222 percent of GDP, a

number more than twice larger the current value of US public debt. The fiscal limit with

risk is at 144 percent, well above the 90 percent level considered unsustainable in Reinhart

and Rogoff (2009). The flipping point at which r > g is at 106 percent of GDP. A reversion

to post-war rates of population growth (column Ex. 1) leads to a substantial increase in all

three cutoffs, while an increase in the growth rate of productivity, column Ex. 2, somewhat

reduces these thresholds. A decline in the arrival rate of disasters, column Ex. 3, does

not change the fiscal limit without risk. However, it slightly lowers the flipping point and

somewhat increases the fiscal limit with risk. The small changes in Experiment 3 reflect that

the equity premium is only modestly impacted, falling from 5.5 percent to 5.2 percent.

Panel B demonstrates the considerable sensitivity of the thresholds to the maximum

fiscal surplus. If the government can extract a surplus-to-GDP ratio of 10 percent, it can

sustain the level of debt of nearly 300 percent when risk is absent and about 200 percent in

the presence of risk. It is worth emphasizing that the numerical values that we presented
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here are likely to represent lower bounds. First, we have not included a liquidity yield or

seigniorage revenue. Second, we assumed a zero recovery value of the public debt after

default, ignoring substantial physical assets held by the US government. Third, we have

modeled US debt as exclusively short-term debt.

5 Conclusion

For advanced economies, the previous decade has seen rising levels of public debt and low

rates of growth. Public debt levels are set to rise sharply in the wake of the coronavirus

pandemic. Despite this, interest rates on government debt remain remarkably low for most

advanced economies. Conditions of r < g have prompted a reassessment of debt sustainabil-

ity for these economies.

In this paper, we contrast informal ideas of debt sustainability with a more theoretically

grounded approach. Policy debates on sustainability typically center on the level or stability

of the debt-to-GDP ratio (stock approach) or whether r < g (flow approach). By contrast,

we consider an economic approach to sustainability— will forward-looking investors willingly

hold the public debt? Our key finding is that the economic approach to sustainability is not

closely tied to either the stock or flow approach. Debt is sustainable so long as the primary

surplus rises linearly with the level of debt.

The stock approach can be partially resurrected when the primary surplus is bounded. In

this case, a state-dependent fiscal limit emerges. Secular stagnation forces—explanation for

low r and low g—have counterintuitive effects on sustainability. Slower population growth

tightens the fiscal limit, but lower productivity growth could loosen limits; higher output

risk can lower rates but tightens fiscal limits.

This paper does not consider the optimal level of debt.27 We leave to future work the

27See Barro (1979) and Lucas and Stokey (1983) for optimal debt policy with distortionary taxes. See
Bhandari, Evans, Golosov, and Sargent (2017) for optimal debt policy with heterogeneous agents and in-
complete markets. Woodford (1990) showed how high levels of debt may be welfare improving and may
crowd-in capital in the presence of financial frictions, while stressing the empirical fact of low r relative to g
for the US. Angeletos, Collard, and Dellas (2016) consider optimal policy when interest rates on public debt
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question of optimal debt policy when r < g on average and taxation may be either econom-

ically or politically costly.

are low due to financial frictions.
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Online Appendix

A Proofs

A.1 Proof of Lemma 1

First, take the household flow budget constraint

dwt = (rst st + rtbt − ct − τt − nwt)dt+ wtxtdr
x
t ,

together with st + bt + xtwt = wt.

Second, consider the process ξt such that

dξt
ξt

= −rstdt−
µt − rst
σt

dZyt .

Third, compute d(ξte
ntwt) to get

d(ξte
ntwt) = entξt [(rt − rst ) bt − ct − τt] dt+

(
xt −

µt − rst
σ2
t

)
entσtξtwtdZ

y
t .

Fourth, integrate the above process forward and take expectations

ξT e
nTwT − ξ0w0 =

∫ T

0

entξt [(rt − rst ) bt − ct − τt] dt+

∫ T

0

(
xt −

µt − rst
σ2
t

)
entσtξtwtdZ

y
t ,

take expectations

E0ξT e
nTwT − ξ0w0 = E0

∫ T

0

entξt [(rt − rst ) bt − ct − τt] dt,

and, finally, take the limit

ξ0w0 = lim
T→∞

E0ξT e
nTwT + E0

∫ ∞
0

entξt [(rst − rt) bt + ct + τt] dt,

where in the last equation we assumed that limit and expectations are interchangeable.

Assuming that ξT is the stochastic discount factor, the no-Ponzi game condition is limT→∞ E0ξT e
nTwT ≥

0, which results in

ξ0w0 ≥ E0

∫ ∞
0

entξt [(rst − rt) bt + ct + τt] dt.
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A.2 Proof of Lemma 2

Log GDP is

d log yt =
dyt
yt
− 1

2

(
dyt
yt

)2

= gydt+ σydZ
y
t −

1

2
(gydt+ σydZ

y
t )

2

=

(
gy −

σ2
y

2

)
dt+ σydZ

y
t .

Log debt is

d logBt =
(rtBt +Gt − Tt) dt

Bt
− 1

2

[
(rtBt +Gt − Tt) dt

Bt

]2
=

(
rt +

Gt − Tt
Bt

)
dt.

The low of motion of B̂t ≡ log [Bt/(Ntyt)] is

dB̂t =

(
rt − gy − n+ αD +

σ2
y − σ2

B

2
− βDB̂t

)
dt− σydZyt .

A.3 Derivation of Asset Prices in Section 3.3

Step 0: preliminaries. We evaluate a part of the value function that depends on the stream of consump-

tion

Vt = Et
∫ ∞
t

e−(ρ−n)(u−t)
c1−γu

1− γ
du.

Note that
dct
ct

= gydt+ σydZ
y
t

implies

d log c1−γt = (1− γ)

(
gy −

σ2
y

2

)
dt+ (1− γ)σydZ

y
t .

Hence

c1−γu = c1−γt exp

{
(1− γ)

(
gy −

σ2
y

2

)
(u− t) + (1− γ)σyZ

y
u−t

}
and

Et
∫ T

t

e−(ρ−n)(u−t)c1−γu du =
1− e

[
−ρ+n+(1−γ)

(
gy−

γσ2y
2

)]
(T−t)

ρ− n− (1− γ)
(
gy −

γσ2
y

2

) c1−γt .

As long as ρ− n− (1− γ)(gy − γσ2
y/2) > 0, we have
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Vt =
c1−γt

ρ− n− (1− γ)
(
gy −

γσ2
y

2

) .
Note that the condition ρ − n − (1 − γ)(gy − γσ2

y/2) > 0 is necessary for the household problem to have a

solution.

Step 1: household problem. The household problem when the budget constraint takes the intertemporal

form is

max
ct,bt

E0

∫ ∞
0

e−(ρ−n)t

[
c1−γt − 1

1− γ
+ c−γt ytu

(
bt
yt

)]
dt

s.t. : w0 ≥ E0

∫ ∞
0

[ct + τt + (rst − rt)bt]
entξt
ξ0

dt,

The Lagrangian of this problem is

L0 = E0

∫ ∞
0

e−(ρ−n)t

[
c1−γt − 1

1− γ
+ c−γt ytu

(
bt
yt

)]
− κ

[
E0

∫ ∞
0

[ct + τt + (rst − rt)bt]
entξt
ξ0

dt− w0

]
.

Note that L0 is a functional such that L0 : L×L→ R, where L is a space of square integrable progressively

measurable processes with values in R.

Step 2: optimal choices and liquidity yield. The first order conditions for this optimization take the

following form

∂ct :e−ρtc−γt = κξt,

∂bt :e−ρtc−γt u′
(
bt
yt

)
= κξt (rst − rt) ,

together with the transversality condition

lim
T→∞

E0e
nT ξTwT ≤ 0.

Together the transversality condition and no-Ponzi game condition imply that

lim
T→∞

E0e
nT ξTwT = 0.

Individual optimality condition with respect to consumption can be solved to get consumption

ct =
(
eρtξtκ

)−1/γ
,

and with respect to liquid bonds for bonds

bt
yt

= (u′)
−1 [

cγt c
−γ
t (rst − rt)

]
= (u′)

−1 [
cγt e

ρtκξt(r
s
t − rt)

]
.
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Substituting out κξt from the first order conditions, we obtain

c−γt u′
(
bt
yt

)
= c−γt (rst − rt) .

It can be rewritten as

rst − rt = c−γt cγt u
′
(
bt
yt

)
.

In equilibrium, where ct = ct, we will have

rst − rt = u′
(
bt
yt

)
.

Note that the Lagrange multiplier κ solves the intertemporal budget constraint after substituting out

for optimal consumption and bond holdings:

w0 = E0

∫ ∞
0

{
(eρtκξt)

− 1
γ + τt + (rst − rt)yt (u′)

−1 [
cγt e

ρtκξt(r
s
t − rt)

]}
ent

ξt
ξ0
dt.

Step 3: SDF. First, we apply Ito’s lemma to the first order condition with respect to ct to get the law of

motion of ξt:

κdξt = d
(
e−ρt

)
c−γt + e−ρtd

(
c−γt
)

+ d
(
e−ρt

)
d
(
c−γt
)

= −ρe−ρtc−γt dt− γe−ρtc−γ−1t dct +
γ(γ + 1)

2
e−ρtc−γ−2t dc2t .

Divide both sides by κξt

dξt
ξt

= −ρdt− γ dct
ct

+
γ(γ + 1)

2

(
dct
ct

)2

.

Next, we use the goods market clearing condition yt = ct+Gt to note that (1−γG)yt = ct and dyt/yt = dct/ct.

As a result,

dξt
ξt

= −ρdt− γ dyt
yt

+
γ(γ + 1)

2

(
dyt
yt

)2

= −ρdt− γ(gydt+ σydZ
y
t ) +

γ(γ + 1)

2
σ2
ydt

= −
[
ρ+ γgy −

γ(γ + 1)

2
σ2
y

]
dt− γσydZyt . (A.1)

Step 4: safe rate. No arbitrage implies that the price pt of any security that pays dividends ds to its

holder equals

pt =
1

ξt
Et
∫ ∞
t

ξsdsds. (A.2)

The differential version of this equation is

0 = ξtdtdt+ Et [d(ξtpt)] . (A.3)
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The safe bond is a security with the price of 1 and the dividend rst . As a result,

0 = ξtr
s
tdt+ Etdξt,

rst = − 1

dt
Et
(
dξt
ξt

)
= ρ+ γgy −

γ(γ + 1)

2
σ2
y.

This confirms the guess of the drift in equation (8).

Step 5: equity price. The value of Lucas trees qt to the household that growth at rate n and collects

yte
nt in dividends is

qt =
1

ξt
Et
∫ ∞
t

ξse
ntysds.

We can compute the last integral explicitly. First note that ft ≡ ξtentyt = e−(ρ−n)ty1−γt follows the geometric

Brownian motion
dft
ft

= −
[
ρ− n+ (γ − 1)gy −

(γ − 1)γ

2
σ2
y

]
dt− (γ − 1)σydZ

y
t ,

which has the following solution

fs = ft exp

{
−

[
ρ− n+ (γ − 1)gy −

(γ − 1)σ2
y

2

]
(s− t)− (γ − 1)σy(Zys − Z

y
t )

}
.

Thus, we obtain

qt =
1

ξt
Et
∫ ∞
t

fsds

=
yt

ρ− n+ (γ − 1)gy −
γ(γ−1)σ2

y

2

=
yt

rs − gy − n+ γσ2
y

.

The last formula is a version of Gordon’s growth formula with risk. It implies that dqt/qt = dyt/yt, which,

in turn, yields

σt = σy,

µt = gy +
yt
qt

= rs + γσ2
y.

The last finding allows us to verify the diffusion part of the guess in equation 8. Specifically,

µt − rst
σt

= γσy,

which is the same turn as we obtained in equation (A.1).

A.4 Proof of Proposition 3

In the first part of the proof, we derive some preliminary results. Then, we show that fiscal policy is

unsustainable according to the economic approach when β < 0. Afte that we show that when β = 0, fiscal
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policy is sustainable if and only if αu − αD > 0. Finally, we present the case with β > 0.

Preliminaries: TVC. First, consider the transversality condition

Et
[
en(s−t)

ξs
ξt
bs

]
=Et

[
en(s−t)e−ρ(s−t)

(
ys
yt

)−γ
bs

]
=e−(1−γ) log yt+(ρ−n)tEt

[
e−(ρ−n)s+(1−γ) log ys+B̂s

]
.

To compute the expectations, we note that the term in the exponent in every point of time s is a normal

random variable because it is a sum of the Brownian motion with drift—term log ys—and the Ornstein–

Uhlenbeck process, which is also a normally distributed in a given point in time. As a result

Et
[
en(s−t)

ξs
ξt
bs

]
= e−(1−γ) log yt+(ρ−n)t · eEt[−(ρ−n)s+(1−γ) log ys+B̂s]+ 1

2Vt[−(ρ−n)s+(1−γ) log ys+B̂s]

= e−(1−γ) log yt−(ρ−n)(s−t)+Et[(1−γ) log ys+B̂s]+ 1
2Vt[(1−γ) log ys+B̂s]. (A.4)

To compute the moments of (1− γ) log ys + B̂s, we note that

log ys = log yt +

(
gy −

σ2
y

2

)
(s− t) + σy

∫ s

t

dZu, (A.5)

B̂s =

B̂te−β(s−t) + α
β

(
1− e−β(s−t)

)
− σy

∫ s
t
e−β(s−u)dZu, if β 6= 0,

B̂t + α(s− t)− σy
∫ s
t
dZu, if β = 0,

(A.6)

where the second equation can be obtained by first expressing the law of motion for eβsB̂s from the law of

motion for B̂s and then by integrating it. Combining (A.5) and (A.5), we get

(1− γ) log ys + B̂s =


(1− γ) log yt + B̂te

−β(s−t) + (1− γ)
(
gy −

σ2
y

2

)
(s− t)

+α
β

(
1− e−β(s−t)

)
+ σy

∫ s
t

(
1− γ − e−β(s−u)

)
dZu, if β 6= 0,

(1− γ) log yt + B̂t +
[
(1− γ)

(
gy −

σ2
y

2

)
+ α

]
(s− t)− σyγ

∫ s
t
dZu, if β = 0.

Conditional expectations and variance of the last expressions are

Et
[
(1− γ) log ys + B̂s

]
=

(1− γ) log yt + B̂te
−β(s−t) + (1− γ)

(
gy −

σ2
y

2

)
(s− t) + α

β

(
1− e−β(s−t)

)
, if β 6= 0,

(1− γ) log yt + B̂t +
[
(1− γ)

(
gy −

σ2
y

2

)
+ α

]
(s− t), if β = 0.

and

Vt
[
(1− γ) log ys + B̂s

]
= σ2

y

∫ s

t

(
1− γ − e−β(s−u)

)2
du

= σ2
y

2β(γ − 1)2 (s− t)− 4 (1− γ)
(
1− e−β(s−t)

)
+
(
1− e−2β(s−t)

)
2β

,

when β 6= 0 and

Vt
[
(1− γ) log ys + B̂s

]
= σ2

yγ
2(s− t),

when β = 0.
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We are ready to compute the exponent in the TVC condition (A.4). When β 6= 0

− (1− γ) log yt − (ρ− n) (s− t) + Et
[
(1− γ) log ys + B̂s

]
+

1

2
Vt
[
(1− γ) log ys + B̂s

]
=− (1− γ) log yt − (ρ− n) (s− t) + (1− γ) log yt + B̂te

−β(t−s) + (1− γ)

(
gy −

σ2
y

2

)
(s− t) +

α

β

(
1− e−β(s−t)

)
+ σ2

y

2β(γ − 1)2 (s− t)− 4 (1− γ)
(
1− e−β(s−t)

)
+
(
1− e−2β(s−t)

)
4β

=B̂te
−β(t−s) +

α

β

(
1− e−β(s−t)

)
+ σ2

y

−4 (1− γ)
(
1− e−β(s−t)

)
+
(
1− e−2β(s−t)

)
4β

−

[
ρ− n− (1− γ)

(
gy −

γσ2
y

2

)]
(s− t). (A.7)

When β = 0, the last equation becomes

− (1− γ) log yt − (ρ− n) (s− t) + Et
[
(1− γ) log ys + B̂s

]
+

1

2
Vt
[
(1− γ) log ys + B̂s

]
=B̂t + α(s− t) + σ2

y

2γ − 1

2
(s− t)−

[
ρ− n− (1− γ)

(
gy −

γσ2
y

2

)]
(s− t)

=B̂t +

{
αD − αu + ρ+ (γ − 1)gy − n− [γ(γ + 1)− 1]σ2

y/2 + σ2
y

2γ − 1

2
−

[
ρ− n− (1− γ)

(
gy −

γσ2
y

2

)]}
(s− t)

=B̂t + (αD − αu)(s− t). (A.8)

The case of β < 0. In this case, the Ornstein-Uhlenbeck process in Proposition 1 is exploding instead

of being mean-reverting. As a result, the transversality condition of the government, equation (17), is not

satisfied. The easiest way to see why the transversality condition fails is to note that conditional expectation

of the log of debt-to-GDP ratio increases or decreases exponentially depending on initial conditions and its

conditional variance grows exponentially, as can be seen by solving the differential equation in Proposition

1. At the same time, the log of the discount factor decreases only linearly with time according to equation

(8). As a result, the expectations term in the transversality condition increases without bounds. To see this

formally, take equation (A.7) and observe that as s goes to infinity, this equation becomes approximately

equal to

σ2
y

e−2β(s−t)

−4β
,

which increases to infinity with s.

The case of β = 0. Equation (A.8) implies that the TVC holds if and only if αD − αu < 0.

The iBC of the government is

b0 = E0

∫ ∞
0

[τt − gt + (rst − rt)bt]ent
ξt
ξ0
dt

= E0

∫ ∞
0

[αu − αD + β log(bt/yt)]bte
nt ξt
ξ0
dt.
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After imposing β = 0, the budget constraint becomes

b0 = (αu − αD)E0

∫ ∞
0

bte
nt ξt
ξ0
dt

= b0(αu − αD)E0

∫ ∞
0

eB̂t−B̂0+nt−ρt+(1−γ)(log yt−log y0)dt.

Note that

B̂t − B̂0 = αt− σy (Zyt − Z
y
0 ) ,

log yt − log y0 =

(
gy −

σ2
y

2

)
t+ σy (Zyt − Z

y
0 ) .

or

B̂t − B̂0 − (ρ− n) t+ (1− γ) (log yt − log y0)

=

[
α− ρ+ n+ (1− γ)

(
gy −

σ2
y

2

)]
t− γσy (Zyt − Z

y
0 ) .

As a result,

E0

∫ ∞
0

eB̂t+nt−ρt−γ(log ct−log c0)dt = eB̂0E0

∫ ∞
0

e

[
α−ρ+n+(1−γ)

(
gy−

σ2y
2

)]
t−γσy(Zyt −Z

y
0 )
dt

= eB̂0

∫ ∞
0

e

[
α−ρ+n+(1−γ)

(
gy−

σ2y
2

)
+
γ2σ2y

2

]
t
dt

= eB̂0
limt→∞ e

[
α−ρ+n+(1−γ)

(
gy−

σ2y
2

)
+
γ2σ2y

2

]
t
− 1

α− ρ+ n+ (1− γ)
(
gy −

σ2
y

2

)
+

γ2σ2
y

2

Replace α in the following expression

α− ρ+ n+ (1− γ)

(
gy −

σ2
y

2

)
+
γ2σ2

y

2
= αD − αu.

As a result, we get

E0

∫ ∞
0

eB̂t+nt−ρt−γ(log ct−log c0)dt = eB̂0
1

αu − αD
.

Plug this in the original equation

b0 = (αu − αD)b0
1

αu − αD
.

The last equation holds for any initial value b0 and for any αu − αD > 0.

The case of β > 0. When β > 0, equation A.7 is dominated by the last term which tends to minus infinity

as s goes to infinity. This is because for equilibrium to exist the parameters must satisfy ρ−n− (1−γ)(gy−
γσ2

y/2) > 0. It is easy to check that the government budget constraint also holds following steps similar to
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the case with β = 0.

A.5 Proof of Proposition 4

It is a standard result in the analysis of continuous-time stochastic processes (e.g., Dixit, 1994) that the

stationary distribution of a reflected Brownian motion is exponential. As a result, we only derive the

conditions for which the TVC is satisfied. Specifically, we will show that a necessary and sufficient condition

for limT→∞ Et[enT ξT bT ] = 0 is αu − αD > 0. The challenge in proving this result stems from the fact that

the log of debt-to-GDP ratio is not just Brownian motion with drift, but a reflected Brownian motion with

drift.

To slightly simplify the notation (but without any loss of generality), we assume that B̂0 = 0, B̂min = 0

and γ = 1. In the end of the proof, we comment on the consequences of dropping these assumptions.

First, note that

EtenT ξT bT = EtenT e−ρT
bT

(1− γG)yT
=

1

1− γG
Ete−(ρ−n)T eB̂T .

Second, we use the observation, which is straightforward to prove (see, for example, Harrison, 1985)

using the so-called reflection principle from probability theory, that the cdf of the reflected Brownian motion

with negative drift and a single (lower) reflecting barrier is

P
(
B̂t ≤ x|B̂0 = 0

)
= Φ

(
x− αt
σy
√
t

)
− e

2αx
σ2y Φ

(
−x− αt√

t

)
≡ F (x), (A.9)

where Φ(·) is the cdf of the standard normal distribution. Equation (A.9) implies that the PDF of the B̂t is

f(x) =
1√
t
φ

(
x− αt
σy
√
t

)
+

1

σ
√
t
e

2αx
σ2y φ

(
−x− αt
σy
√
t

)
− 2α

σ2
y

e
2αx
σ2y Φ

(
−x− αt
σy
√
t

)
. (A.10)

When 2α/σ2
y + 1 6= 0 (we will consider the special case when 2α/σ2

y + 1 = 0 separately), we have

E0e
B̂t =

∫ ∞
0

ex
[

1

σy
√
t
φ

(
x− αt
σy
√
t

)
+

1

σy
√
t
e

2αx
σ2y φ

(
−x− αt
σy
√
t

)
− 2α

σ2
y

e
2αx
σ2y Φ

(
−x− αt
σy
√
t

)]
dx

=

∫ ∞
0

ex
1

σy
√
t
φ

(
x− αt
σy
√
t

)
dx︸ ︷︷ ︸

A1

+

∫ ∞
0

e

(
2α
σ2y

+1

)
x 1

σy
√
t
φ

(
−x− αt
σy
√
t

)
dx︸ ︷︷ ︸

A2

+

−2α
σ2
y

2α
σ2
y

+ 1

[
−Φ

(
−αt
σy
√
t

)
+

1

σy
√
t

∫ ∞
0

e

(
2α
σ2y

+1

)
x
φ

(
−x− αt
σy
√
t

)
dx

]
︸ ︷︷ ︸

A3

. (A.11)

To compute A1, A2 and A3, note that

eaxφ (bx+ c) = e−
c2−(c− ab )

2

2 φ
(
bx+ c− a

b

)
.
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As a result,

A1 = e

σ2y

(
2α
σ2y

+1

)
2 tΦ

(
σ2
y + α

σy

√
t

)
, (A.12)

A2 = e

σ2y

(
2α
σ2y

+1

)
2 tΦ

(
σ2
y + α

σy

√
t

)
= A1, (A.13)

A3 =

−2α
σ2
y

2α
σ2
y

+ 1

−Φ

(
−α
σy

√
t

)
+ e

σ2y

(
2α
σ2y

+1

)
2 tΦ

(
σ2
y + α

σy

√
t

) . (A.14)

Plugging equations (A.12)-(A.14) into (A.11) and rearranging, we get

E0e
B̂t =e

σ2y

(
2α
σ2y

+1

)
2 tΦ

(
σ2
y + α

σy

√
t

)
+ e

σ2y

(
2α
σ2y

+1

)
2 tΦ

(
σ2
y + α

σy

√
t

)

+

−2α
σ2
y

2α
σ2
y

+ 1

−Φ

(
−α
σy

√
t

)
+ e

σ2y

(
2α
σ2y

+1

)
2 tΦ

(
σ2
y + α

σy

√
t

)
=2

α
σ2
y

+ 1

2α
σ2
y

+ 1
e

σ2y

(
2α
σ2y

+1

)
2 tΦ

[
σy

(
1 +

α

σ2
y

)√
t

]
−

−2α
σ2
y

2α
σ2
y

+ 1
Φ

(
−α
σy

√
t

)
. (A.15)

When 2α/σ2
y + 1 > 0, then α/σ2

y + 1 > −α/σ2
y > 0, so that the first term in equation (A.15) is positive.

Moreover, when again 2α/σ2
y + 1 > 0, the first term on the last line always goes to infinity when t tends to

infinity dwarfing the second term in equation (A.15). At the same time, when 2α/σ2
y +1 < 0, then as t→∞

the first term in equation (A.15) disappears leaving only the second term to be non-negligible. We now use

these properties to compute the transversality condition.

Now, we can compute the limit

lim
t→∞

e−(ρ−n)tE0e
B̂t = lim

t→∞

2

α
σ2
y

+ 1

2α
σ2
y

+ 1
e

σ2y
(

2α
σ2y

+1

)
2 −ρ+n

t
Φ

[
σy

(
1 +

α

σ2
y

)√
t

]
− e−(ρ−n)t

−2α
σ2
y

2α
σ2
y

+ 1
Φ

(
−α
σy

√
t

)
= lim
t→∞

2

α
σ2
y

+ 1

2α
σ2
y

+ 1
e

σ2y
(

2α
σ2y

+1

)
2 −ρ+n

t
Φ

[
σy

(
1 +

α

σ2
y

)√
t

]
= 2

α
σ2
y

+ 1

2α
σ2
y

+ 1
lim
t→∞

e

σ2y
(

2α
σ2y

+1

)
2 −ρ+n

t

where the second equality took into account the fact that limt→∞ e−(ρ−n)tΦ
(
−α
σy

√
t
)

= 0. Finally, we obtain
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that

lim
t→∞

e−(ρ−n)tE0e
B̂t =


0,

σ2
y

2 < −α+ ρ− n,

2
α
σ2y

+1

2α
σ2y

+1
,

σ2
y

2 = −α+ ρ− n,

+∞, σ2
y

2 > −α+ ρ− n.

After noting that

α− ρ+ n+
σ2
y

2
= αD − αu,

we can write

lim
t→∞

e−(ρ−n)tE0e
B̂t =


0, αu − αD > 0,

2
α
σ2y

+1

2α
σ2y

+1
, αu − αD = 0,

+∞, αu − αD < 0.

Remark 1. So far, we have considered the case when 2α/σ2
y + 1 6= 0. When, instead, 2α/σ2

y + 1 = 0,

the above calculations simplify considerably. The key difference starts from equation (A.15), which will not

feature 2α/σ2
y + 1 in the denominator anymore.

Remark 2. While the assumptions that B̂0 = B̂min = 0 are clearly non-consequential. The assumption of

γ = 1 can look suspicious. In fact, all of the calculation go through. The only non-standard feature is that

we need to deal with a joint distribution of correlated Brownian motion (i.e., log yT ) and reflected Brownian

motion (i.e., B̂T ) because we have to compute the following object

EtenT ξT bT = Ete−(ρ−n)T [(1− γG)yT ]
−γ

bT = (1− γG)−γe−(ρ−n)TEte(1−γ) log yT+B̂T .

This is straightforward but needs some care.

A.6 Proof of Proposition 5

The law of motion. Taking the difference between the low of motion of the log of debt and the log of

output, i.e.,

d logBt =

(
rt +

Gt − Tt
Bt

)
dt,

d log yt =

(
gy −

σ2
y

2

)
dt+ σydZ

y
t − ZtdJt,

We obtain the law of motion of the log of debt-to-GDP ratio

dB̂t =

(
rt − gy − n+ αD +

σ2
y

2
− βDB̂t

)
dt− σydZyt + ZtdJt.
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The interest rates are

rs = ρ+ γgy −
γ (γ + 1)

2
σ2
y − λ(EZeγZ − 1),

rt = rs − αu + βuB̂t.

As a result

dB̂t =
(
α̃− βB̂t

)
dt− σydZyt + ZtdJt.

where

α̃ = ρ+ γgy −
γ (γ + 1)

2
σ2
y − αu − gy − n+ αD +

σ2
y

2
− λ(EZeγZ − 1) = α− λ(EZeγZ − 1).

which is similar to the definition of α before but that takes into account rare disasters.

Stationary distribution. Taking into account the fact that β = 0, we can write the Kolmogorov forward

equation for the density function f = f(B̂, t) in the region B̂ > B̂min as

∂f

∂t
= −α̃ ∂f

∂B̂
+
σ2
y

2
· ∂

2f

∂B̂2
+ λ

{
E
[
f(B̂ − Z, t)

]
− f(B̂, t)

}
. (A.16)

The stationary distribution satisfied ∂f/∂t = 0. We guess and verify that

f(B̂) = f · e−ξB̂ ,

where f and B̂ are constants to be determined. Plugging this guess in equation A.16 and taking into account

that ∂f/∂t = 0, we obtain the implicit equation that determines the rate parameter ξ

α̃ξ +
σ2
y

2
ξ2 = λ

(
1− E

[
eξZ
])
. (A.17)

This equation has one obvious solution of ξ = 0, which immediately implies that f(B̂) = 0 for all

B̂ > B̂min. This must not be the case for the reflected process. As a result, we discard this solution. It

is easy to see by plotting the left- and the right-hand sides of equation A.17 as functions of ξ, that the

remaining solution of the equation is positive when α̃+ λE[Z] < 0 and it is negative in the opposite case of

α̃ + λE[Z] > 0. In the knife edge case of λE[Z] = −α̃, there is only one solution of ξ = 0. The stationary

distribution exists only for negative ξ.

Constant f is determined by requiring that∫ ∞
B̂min

f(B̂)dB̂ = 1.

As a result,

f = ξeξB̂min ,

and

f(B̂) = ξe−ξ(B̂−B̂min).

47



Transversality condition. To prove that the transversality condition holds if and only if αu − αD > 0,

we consider two separate cases.

First, consider the case when the stationary distribution does not exist. Specifically, suppose that

α̃ + λE[Z] > 0. In this case, the debt-to-GDP ratio increases unboundedly on average. As a result, we

can ignore the influence of the lower reflecting barrier. As a result, the expectation in the transversality

condition

EtenT ξT bT =
1

(1− γG)
2Ete

−(ρ−n)T eB̂T+(1−γ) log yT .

Next, express B̂T + (1− γ) log yT as

dB̂t + (1− γ)d log yt = α̃dt− σydZyt + ZtdJt + (1− γ)

[(
gy −

σ2
y

2

)
dt+ σydZ

y
t − ZtdJt

]

=

[
α̃dt+ (1− γ)

(
gy −

σ2
y

2

)]
dt− γσydZyt + γZtdJt

=

[
ρ− γ2

2
σ2
y − αu − n+ αD − λ(EZeγZ − 1)

]
dt− γσydZyt + γZtdJt.

Integrate the last equation

B̂T + (1− γ) log yT − [B̂t + (1− γ) log yt] =

[
ρ− γ2

2
σ2
y − αu − n+ αD − λ(EZeγZ − 1)

]
(T − t)

− γσy (ZyT − Z
y
t ) + γ

nt,T∑
k=1

Ztk ,

where nt,T is a (random) number of Poisson event arrivals between t and T . As a result,

Ete−(ρ−n)T eB̂T+(1−γ) log yT

=e−(ρ−n)t+B̂t+(1−γ) log ytEte[−γ
2σ2
y/2−αu+αD−λ(EZe

γZ−1)](T−t)−γσy(ZyT−Z
y
t )+γ

∑nt,T
k=1 Ztk

=e−(ρ−n)t+B̂t+(1−γ) log ytEte
[
− γ

2

2 σ
2
y−αu+αD−λ(EZe

γZ−1)
]
(T−t)+

γ2σ2y
2 (T−t)+(T−t)λEt[eλZt−1]

=e−(ρ−n)t+B̂t+(1−γ) log ytEte[−αu+αD](T−t).

It is clear from the last expression that the transversality condition holds if and only if −αu + αD < 0.

Consider now the second case in which the stationary distribution exists, that is, α̃ + λE[Z] < 0. For

simplicity of exposition, we consider the case of γ = 1, which allows us to write

EtenT ξT bT =
1

(1− γG)
2Ete

−(ρ−n)T eB̂T

=
1

(1− γG)
2 e
−(ρ−n)T

∫ ∞
B̂min

eB̂ξe−ξB̂dB̂

=
1

(1− γG)
2

(1− ξ)
e−(ρ−n)T ξ

∫ ∞
B̂min

e(1−ξ)B̂d (1− ξ) B̂

=
1

(1− γG)
2

(ξ − 1)
e−(ρ−n)T ξe(1−ξ)B̂min

where the last inequality is only valid under ξ > 1. As a result, the TVC holds if ξ > 1 and ρ > n.
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A.7 Derivation of Asset Returns with Default

We lay out a heuristic derivation here.

Safe interest rate. The discount factor is

mt,t+dt = e−ρdt
c−γt+dt

c−γt
=

e−ρdte−γgydt, no disaster,

e−ρdte−γgydte−γ(−Z), disaster,

=

e−(ρ+γgy)dt, no disaster,

e−(ρ+γgy)dt+γZ , disaster,

the return is

Rt,t+dt = er
s
tdt.

The Euler equation is

1 = Et (mt,t+dtRt,t+dt) .

Use the values of the SDF and the return

1 = (1− λdt)e−(ρ+γgy)dter
s
tdt + λdtEZe−(ρ+γgy)dt+γZer

s
tdt,

and simplify

e(ρ+γgy−r
s
t )dt = 1 + λdt

(
EZeγZ − 1

)
,

rst = ρ+ γgy − λ
(
EZeγZ − 1

)
.

Note that this last formula is just a special case of a more general formula in Proposition 8 in Appendix

B.

Defaultable interest rate. The return is

Rt,t+dt =

ertdt, no default,

0 default.

The Euler equation is

1 = Et (mt,t+dtRt,t+dt) .

Use the values of the SDF and the return

1 = (1− λdt)e−(ρ+γgy)dtertdt + λdte−(ρ+γgy)dtertdtP
(
Z < log

(
BnrFL
Bt/Yt

))
E
[
eγZ |Z < log

(
BnrFL
Bt/Yt

)]
,
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and simplify

e(ρ+γgy−rt)dt =(1− λdt) + λdtP
(
Z < log

(
BnrFL
Bt/Yt

))
E
[
eγZ |Z < log

(
BnrFL
Bt/Yt

)]
,

(ρ+ γgy − rt) =λ

{
P
(
Z < log

(
BnrFL
Bt/Yt

))
E
Z|Z<log

(
Bnr
FL

Bt/Yt

)[eγZ ]− 1

}
,

rt =ρ+ γgy − λ

{
P
(
Z < log

(
BnrFL
Bt/Yt

))
E
Z|Z<log

(
Bnr
FL

Bt/Yt

)[eγZ ]− 1

}
.

In the case of the exponential distribution of random variable Z, i.e., a change in log output, with the

probability distribution function

fZ(z) =

ξe−ξz, z ≥ 0,

0, z < 0,

we have

rt = ρ+ γgy − λ

∫ log
BnrFL
Bt/Yt

0

eγzdFZ(z)− 1


= ρ+ γgy − λ

ξ∫ log
BnrFL
Bt/Yt

0

e(γ−ξ)zdz − 1


= ρ+ γgy − λ

 ξ

γ − ξ
e(γ−ξ)z

∣∣∣∣∣
log

BnrFL
Bt/Yt

0

−1


= ρ+ γgy − λ

{
ξ

ξ − γ

[
1−

(
BnrFL
Bt/Yt

)γ−ξ]
− 1

}
.

A.8 Proof of Proposition 6

To see why the points to the right of BnrFL fail the backward induction argument, start with the debt-to-GDP

level of BnrFL and the situation when uncertainty has not been resolved yet. In the next instant, the debt-

to-GDP will exceed BnrFL because the debt servicing cost is larger than the surplus. Since the government

defaults after disaster of any size in this region, the interest rate on public debt is rd = ρ+γgy+λ. However,

the highest level of debt-to-GDP that the government can sustain at this interest rate is s/(rd − gy − n),

which is smaller than BnrFL.28 As a result, the households refuse to purchase government bonds leading to

immediate default. However, predictable defaults with capital losses are not possible in our model where

agents have rational expectations. This means that BnrFL could not be an equilibrium level of debt-to-GDP in

the first place. Continuing this logic all the way from BnrFL to BrFL, we deduce that when risk is still present,

all point to the right of BrFL are not an equilibrium.

28Formally, BnrFL = s/(ρ+ γgy − gy − n) > s/(ρ+ γgy + λ− gy − n).
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A.9 Change in Distribution of Disasters

In this section, we study how a rightward shift in the distribution of disaster sizes affects fiscal limits.

Formally, we consider a change from distribution F (z) to F̃ (z), where the latter first-order stochastically

dominated the former. Recall that sense. If the distribution F̃ (z) first-order stochastically dominates the

distribution F (z), then, for any increasing function, including D(z) = eγz, we have that EF g(z) < EF̃ g(z).

This change has two opposing effects on the debt servicing cost curve. First, it reduces the safe interest

rate in equation (23) via the household’s stochastic discount factor. Second, it increases the probability

of default conditional on a disaster and, as a result, raises the sovereign default premium. Each of these

two forces can dominate at any level of debt - a contrast to the previous case where a change in λ had an

unambiguous effects on the interest rate for debt-to-GDP ratios above or below B∗.
To illustrate this point, consider a special case when the distribution F is exponential with the mean of z

that satisfies zγ < 1. Without this parameters restriction, which states that either the risk aversion is small

enough or the average disaster is not too large, the demand for safe assets is infinite. Figure A.1 presents

three examples in which the net effect of the above two forces is either negative for all levels of debt, positive

for all levels of debt, or negative for some and positive for the other levels of debt. The left panel presents

the case in which the households are risk neutral, i.e., γ = 0. In this case, the effect of larger disasters on the

safe interest rate is absent and, hence, a higher probability of default conditional on a disaster dominates.

As can be seen from Figure A.1, for all levels of the debt-to-GDP ratio between 0 and the fiscal limit without

risk, the interest rate r̃t under larger disasters rises relative to rt . By contrast, the right panel of Figure A.1

draws the change in the interest rate in the case when the risk aversion is relatively high, such as γ = 1. In

this case, a safe interest rate decline is the dominant force that pushes down the public debt interest rate for

all debt-to-GDP levels considered. Next, the middle panel of Figure A.1, presents an intermediate case with

the coefficient of relative risk aversion γ = 0.5. In this scenario, there is a cutoff value of the debt-to-GDP

ratio below which the decline in the safe interest rate dominates and above which a higher probability of

disasters dominates. Finally, we note that this interest rate behavior directly translates into the behavior of

the debt-servicing costs. As a result, in general, it is impossible to determine the direction of a change in

the fiscal limit without risk and flipping points.
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Figure A.1: The three plots of this figure illustrate how the public bonds interest rate changes from rt
to r̃t when the distribution of disasters, represented by the exponential distribution with the density of
f(z) = z−1 exp(−z/z), changes its mean from z to z̃ > z. The left panel presents the case of γ = 0. The
middle panel shows the case for γ = 0.5. The right panel plots the interest rate for γ = 1. All the other
parameters are kept constant.
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B A Model with EZW Preferences

This section of the Appendix provides the details omitted in Section 3.7 and 4.4 by first describing the

recursive preferences and then by stating some results that we prove in an online appendix C.

B.1 A no-Disaster Case

In a model without disasters, a typical household maximizes the following preferences

Wt = Vt + Et
∫ ∞
t

πt,sysu

(
bs
ys

)
ds, (B.1)

where

Vt = Et
∫ ∞
t

f(cs, Vs)ds,

f(cs, Vs) =
[(1− γ)Vs]

θ−γ
1−γ

1− θ
{c1−θs − (ρ− n)[(1− γ)Vs]

1−θ
1−γ },

πt,s = e

{
θ−γ
1−γ

[
ρ−n−(1−θ)

(
g−

γσ2y
2

)]
−(ρ−n)(1−γ)

}
s−t
1−θ

[
ρ− n− (1− θ)

(
gy −

γσ2
y

2

)]− θ−γ1−θ

C−γs . (B.2)

Formally, the utility function (3) consists of two terms that capture the utility from consumption and

utility from holding government bonds. We assume that the utility from consumption is represented by

the Epstein-Zin-Weil preferences with subjective discount factor ρ, the coefficient of relative risk aversion γ,

and the intertemporal elasticity of substitution 1/θ. One advantage of using these preferences is that they

allow for separation of the coefficient of relative risk aversion (CRRA) and the intertemporal elasticity of

substitution (IES) that will be convenient in our calibration. We use the continuous-time formulation of

these preferences introduced by Duffie and Epstein (1992). When γ = θ, the preferences in (B.1) reduce to

the preferences we used in the main text and that are given by equation (3).

With the process (B.2) entering the preferences for public debt (3), the demand for liquid bonds does

not depend on current consumption of the household in equilibrium, i.e., the wealth effect on demand for

government bonds is zero in equilibrium.

By repeating steps is the proof of Lemma 2, which can be found in the Appendix A.2, we can write the

following law of motion for the log of debt-to-GDP ratio.

dB̂t =

(
rt − gy − n+ αD +

σ2
y − σ2

B

2
− βDB̂t

)
dt+ σB̂dZ

B̂
t ,

where dZB̂t ≡ (σB/σB̂)dZBt −(σy/σB̂)dZyt and σ2
B̂
≡ σ2

B+σ2
y. Note that we added disasters in this expression.

Asset market clearing conditions combined with optimal choices by households gives the asset pricing

equations summarized in the next proposition.
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Proposition 8. In equilibrium, the interest rate on safe assets and liquid government bonds are:

rs = ρ+ θgy −
γ (θ + 1)

2
σ2
y,

rt = rs − αu + βu + βuB̂t,

and the drift and diffusion terms for the return on the risky asset are given by:

µt = rs + γσ2
y,

σt = σy.

The proof is in Appendix C. Proposition 8 states that the only difference in the asset pricing in this

extended model compared to the model in Section 3 is the explicit presence of the IES parameter in the safe

interest rate

B.2 A Case with Disasters

Adding disasters is straightforward. Equation B.2 has to be modified to take into account the fact that the

household faces not only Brownian but also disaster risk. The law of motion of debt to GDP becomes

dB̂t =

(
rt − gy − n+ αD +

σ2
y − σ2

B

2
− βDB̂t

)
dt+ σB̂dZ

B̂
t + ZtdJt, (B.3)

We present the extension of Proposition 8 to the disaster case.

Proposition 9. In equilibrium, the interest rate on safe assets and liquid government bonds are:

rs = ρ+ θgy −
γ (θ + 1)

2
σ2
y + λE

[
θ − γ
1− γ

(e−(1−γ)Z − 1)− (eγZ − 1)

]
,

rt = rs − αu + βu + βuB̂t,

and the drift and diffusion terms for the return on the risky asset are given by:

µt = rs + γσ2
y + λEZ

[
(eγZ − 1)(1− e−Z)

]
,

σt = σy.

It is straightforward to extend the proof of Proposition 8 to the case with disasters by following, for

example, Tsai and Wachter (2015).

As a result, the law of motion of the log of public debt-to-GDP ratio is

dB̂t =
(
α− βB̂t

)
dt+ σB̂dZ

B̂
t + ZtdJt.

where

α ≡ ρ+ γgy − {σ2
B + [γ(θ + 1)− 1]σ2

y}/2− αu − gy − n+ αD + λEZ
[
θ − γ
1− γ

(
e−(1−γ)Z − 1

)
− (eγZ − 1)

]
.

which is similar to the definition of α̃ in Proposition 5 but that takes into account the fact that the IES and

CRRA are not equal each other.

53



Note that the stationary distribution of B̂t when there is a lower reflecting barrier B̂min and β = 0 is

again exponential with the rate parameter that solves

αξ +
σ2
B̂

2
ξ2 = λ(1− EZ [eξZ ]).

Assume that government defaults when the debt jumps over the debt limit as in Section 4. The household

needs to be compensated for this risk. The next proposition presents the interest rate paid on government

debt absent default.

Proposition 10. Conditional on no default, public debt pays

rt = rs + λE
[
eγZtI

(
Z > log

(
BFL
Bt/Yt

))]
.

The proof of this result uses Proposition 1 from Tsai and Wachter (2015). As a result,

rt = ρ+ θgy −
γ (θ + 1)

2
σ2
y + λ

θ − γ
1− γ

E
[
e−(1−γ)Z − 1

]
− λE

[
eγZI

(
Z < log

(
BFL
Bt/Yt

))
− 1

]
.

When we assume that Z has an exponential distribution with the pdf fZ(z) = z−1e−z/z for z ≥ 0, we

get

rt = ρ+ θgy −
γ (θ + 1)

2
σ2
y − λ

θ − γ
1 + z − zγ

z − λ

(
1

1− zγ

(
1−

(
Bt/Yt
BFL

) 1−zγ
z

)
− 1

)
.

where I used the fact that limz→∞ e(γ−1/z−1)z = limz→∞ e(γ−1/z)z = 0, which can only happen when

γ < ξ < ξ + 1, where the second inequality holds automatically. Moreover, the equity premium is

µt − rs = γσ2
y + λ

1 + z + 1− zγ
(1− γz) (1 + z) (1− γz + z)

γz2.

and the safe rate is

rs = ρ+ θgy −
γ (θ + 1)

2
σ2
y − λz

(
θ − γ

1 + z − zγ
+

γ

1− zγ

)
.

C Proof of Proposition 8

Step 0: preliminaries. First, the partial derivatives of function

f(c, V ) =
[(1− γ)V ]

θ−γ
1−γ

1− θ

[
c1−θt − (ρ− n) ((1− γ)V )

1−θ
1−γ

]
are

f1(c, V ) = c−θt [(1− γ)Vt]
θ−γ
1−γ ,

f2(c, V ) =
θ − γ
1− γ

· ft
Vt
− ρ+ n.
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Second, we now evaluate the value of Vt when the consumption follows a geometric Brownian motion

process. Formally, we solve the follow system of equations

Vt = Et
[∫ ∞

t

f(cu, Vu)du

]
,

f(c, V ) =
[(1− γ)V ]

θ−γ
1−γ

1− θ

[
c1−θ − (ρ− n) ((1− γ)V )

1−θ
1−γ

]
,

dct
ct

= gydt+ σydZ
y
t .

We guess the solution of the form

Vt = vc1−γt ,

where v is a positive constant. We plug this guess

f(ct, Vt) =

[
(1− γ)vc1−γt

] θ−γ
1−γ

1− θ

[
c1−θt − (ρ− n) ((1− γ)vc1−γt )

1−θ
1−γ

]
=

[(1− γ)v]
θ−γ
1−γ

1− θ

[
1− (ρ− n) ((1− γ)v)

1−θ
1−γ

]
c1−γt .

As a result

Vt = Et

[∫ T

t

f(cu, Vu)du+ VT

]

=
[(1− γ)v]

θ−γ
1−γ

1− θ

[
1− (ρ− n) ((1− γ)v)

1−θ
1−γ

]
Et
∫ T

t

c1−γu du+ vEtc1−γT .

To compute the last expectations note that

d log ct =
dct
ct
− 1

2

(
dct
ct

)2

=

(
gy −

σ2
y

2

)
dt+ σydZ

y
t .

55



As a result,

d log c1−γt = (1− γ)

(
gy −

σ2
y

2

)
dt+ (1− γ)σydZ

y
t ,

log c1−γu − log c1−γt = (1− γ)

(
gy −

σ2
y

2

)
(u− t) + (1− γ)σyZ

y
u−t,

c1−γu = c1−γt exp

{
(1− γ)

(
gy −

σ2
y

2

)
(u− t) + (1− γ)σyZ

y
u−t

}
,

Etc1−γu = c1−γt e
(1−γ)

(
g−

γσ2y
2

)
(u−t)

,

Et
∫ T

t

c1−γu du =

∫ T

t

Etc1−γu du

=
c1−γt

(1− γ)
(
g − γσ2

y

2

) [e(1−γ)(gy− γσ2y2 )
(T−t)

− 1

]
.

This implies

Vt =
[(1− γ)v]

θ−γ
1−γ

1− θ

[
1− (ρ− n) ((1− γ)v)

1−θ
1−γ

]
Et
∫ T

t

c1−γu du+ vEtc1−γT

=e
(1−γ)

(
gy−

γσ2y
2

)
(T−t)

c1−γt


[(1−γ)v]

θ−γ
1−γ

1−θ

[
1− (ρ− n) ((1− γ)v)

1−θ
1−γ

]
(1− γ)

(
gy −

γσ2
y

2

) + v


− [(1− γ)v]

θ−γ
1−γ

1− θ

[
1− (ρ− n) ((1− γ)v)

1−θ
1−γ

] c1−γt

(1− γ)
(
gy −

γσ2
y

2

) .
The term with T − t must be equal to zero for the conjecture to be correct

[(1− γ)v]
θ−γ
1−γ

1− θ
= (ρ− n)

(1− γ)v

1− θ
− v(1− γ)

(
gy −

γσ2
y

2

)
,

v =
1

1− γ

[
ρ− n− (1− θ)gy + (1− θ)

γσ2
y

2

]− 1−γ
1−θ

.

As a result, we obtain

Vt =
c1−γt

1− γ

[
ρ− n− (1− θ)

(
gy −

γσ2
y

2

)]− 1−γ
1−θ

.

Third, we will later show that the discount factor in this economy is given by

ξs
ξt

= e−n(s−t)e
∫ s
0
f2(cτ ,Vτ )dτf1(cs, Vs).

We next compute the equilibrium stochastic discount factor multiplied by population increase and show that

it equals πt,s.
ξs
ξ0
ens = e

∫ s
0
f2(cτ ,Vτ )dτf1(cs, Vs) = e

∫ s
0 [ θ−γ1−γ ·

ft
Vt
−ρ+n]dτ c−θs [(1− γ)Vs]

θ−γ
1−γ
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Consider the argument of the exponent first

e
∫ s
0
f2(cτ ,Vτ )dτ = e

∫ s
0

[
θ−γ
1−γ ·

1
1−θ [(1−γ)Vu]

− 1−θ
1−γ c1−θu −(ρ−n) 1−γ

1−θ

]
du

= e

∫ s
0

[
θ−γ
1−γ ·

1
1−θ [(1−γ)vc1−γu ]

− 1−θ
1−γ c1−θu −(ρ−n) 1−γ

1−θ

]
du

= e

{
θ−γ
1−γ

[
ρ−n−(1−θ)

(
gy−

γσ2y
2

)]
−(ρ−n)(1−γ)

}
s

1−θ
.

As a result,

ξs
ξ0
ens = e

{
θ−γ
1−γ

[
ρ−n−(1−θ)

(
gy−

γσ2y
2

)]
−(ρ−n)(1−γ)

}
s

1−θ
c−θs

[
(1− γ)vc1−γs

] θ−γ
1−γ

= e

{
θ−γ
1−γ

[
ρ−n−(1−θ)

(
gy−

γσ2y
2

)]
−(ρ−n)(1−γ)

}
s

1−θ
c−γs

[
ρ− n− (1− θ)

(
gy −

γσ2
y

2

)]− θ−γ1−θ

.

The last expression equals π0,t introduced in the text.

Note that in the case of the CRRA utility, πs has the following familiar look

π0,s = e−(ρ−n)sc−γs .

Step 1: Intertemporal Budget Constraint.

max
{ct,wt,,xt,bt,st}

W0,

s.t. : dwt = (rst st + rtbt − ct − Tt − nwt)dt+ wtxtdr
x
t ,

st + bt + xtwt = wt,

Rewrite the problem by substituting out drxt and st as follows

max
ct,wt,φt,xt,bt

W0,

s.t. :
d (entwt) + ent [ct + Tt + (rst − rt) bt] dt

entwt
= [rst + xt(µt − rst )] dt+ xtσtdZ

y
t + φtσ

φ
t dZ

B
t ,

Let the discount factor be ξt, which exists and is unique under the complete markets assumption, and must

satisfy
dξt
ξt

= −rstdt− κxt dZ
y
t . (C.1)

where κt ≡ (µt − rst )/σt. Note that ξt is the per member of the household discount factor. Under such

interpretation, optimally invested wealth must satisfy

wt = Et
∫ ∞
t

[cs + Ts + (rss − rBs )bs]e
n(s−t) ξs

ξt
ds.
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As a result, the household problem is

max
ct,bt

W0(a0; B̂0),

s.t. : w0 = E0

∫ ∞
0

[ct + Tt + (rst − rt)bt]
entξt
ξ0

dt,

where we omitted xt and wt from maximization arguments because we assume that the wealth is optimally

allocated across assets safe and risky assets. The Lagrangian of this problem is

L0 = W0 − κ
[
E0

∫ ∞
0

[ct + Tt + (rst − rt)bt]
entξt
ξ0

dt− w0

]
.

Note that L0 is a functional such that L0 : L×L→ R, where L is a space of square integrable progressively

measurable processes with values in R.

Step 2: First Order Conditions. The first order conditions for this optimization take the following

form, where we use notation of Duffie and Skiadas (1994),

∇L0(c, c̃) = 0, ∀c̃,

∇L0(b, b̃) = 0, ∀b̃.

The last two equations state that the Gateaux derivative of the Lagrangian with respect to consumption and

bond holdings processes are zeros in any direction c̃ (in case of consumption) and b̃ (in case of liquid bonds).

We next compute these derivatives explicitly. We start with ∇V0(c, c̃) and ∇V0(b, b̃).

∇W0(c, c̃) = E0

∫ ∞
0

e
∫ s
0
f2(cτ ,Vτ )dτf1(cs, Vs)c̃sds,

∇W0(b, b̃) = Et
∫ ∞
t

(1− θ)y1−θs

b̃s
ys
u′
(
bs
ys

)
ds,

As a result, the derivative of the Lagrangian with respect to consumption process is

0 = ∇L0(c, c̃)

= E0

∫ ∞
0

e
∫ s
0
f2(cτ ,Vτ )dτf1(cs, Vs)c̃sds− κE0

∫ ∞
0

c̃t
entξt
ξ0

dt

= E0

∫ ∞
0

(
e
∫ s
0
f2(cτ ,Vτ )dτf1(cs, Vs)−

κensξs
ξ0

)
c̃sds.

Because, the last equation has to hold for any c̃, we must have that

e
∫ s
0
f2(cτ ,Vτ )dτf1(cs, Vs) =

κensξs
ξ0

.

Taking the ratio of this equation at times t and s and using explicit expression for partial derivative f1, we

obtain

e
∫ t
s
f2(cτ ,Vτ )dτ

(
ct
cs

)−θ (
Vt
Vs

) θ−γ
1−γ

= en(t−s)
ξt
ξs
. (C.2)
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Analogously, the optimality wrt to liquid debt is

πt,su
′
(
bs
ys

)
=
(
rss − rbs

) κensξs
ξ0

. (C.3)

Diving the last two equations, we obtain

rbs = rss −
πt,su

′
(
bs
ys

)
e
∫ s
t
f2(cτ ,Vτ )dτf1(cs, Vs)

.

In equilibrium, we have

rbs = rss −
πt,su

′
(
bs
ys

)
e
∫ s
t
f2(cτ ,Vτ )dτf1(cs, Vs)

= rst − u′
(
bt
yt

)
(C.4)

Finally, when households optimize, it must be true that

Va = f1. (C.5)

Step 3: Stochastic Discount Factor. First, we want to compute the law of motion of ξt (here we

assume κ ≡ κ/ξ0). We will apply the Ito’s lemma to the FOC wrt to c. To do it, we separately compute

several stochastic differentials

df1(ct, Vt) =d
{
ωc−θt [(1− γ)Vt]

θ−γ
1−γ
}

=ω
(

[(1− γ)Vt]
θ−γ
1−γ d

{
c−θt
}

+ c−θt d
{

[(1− γ)Vt]
θ−γ
1−γ
}

+ d
{
c−θt
}
d [(1− γ)Vt]

θ−γ
1−γ
)

=ω

(
[(1− γ)Vt]

θ−γ
1−γ

(
−θc−θt

) [dct
ct
− 1 + θ

2
· dc

2
t

c2t

]

+ c−θt (θ − γ) [(1− γ)Vt]
θ−γ
1−γ

[
dVt

(1− γ)Vt
+

1

2
(θ − 1)

dV 2
t

[(1− γ)Vt]
2

]

+
(
−θc−θt

) [dct
ct
− 1 + θ

2
· dc

2
t

c2t

]
(θ − γ) [(1− γ)Vt]

θ−γ
1−γ

[
dVt

(1− γ)Vt
+

1

2
(θ − 1)

dV 2
t

[(1− γ)Vt]
2

])

=f1(ct, bt, Vt)

(
−θ
[
dct
ct
− 1 + θ

2
· dc

2
t

c2t

]
+
θ − γ
1− γ

[
d [(1− γ)Vt]

(1− γ)Vt
+

1

2
· θ − 1

1− γ
· (d [(1− γ)Vt])

2

[(1− γ)Vt]
2

]

− θ θ − γ
1− γ

· dct
ct
· d(1− γ)Vt

(1− γ)Vt

)
.

Note that the preferences have the following differential representation

dVt
Vt

= −f(ct, Vt)

Vt
dt+ σV,ydZ

y
t , (C.6)
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where σV can be time varying. As a result, (also taking into account that ct = (1− γG)yt)

df1
f1

=− θ
[
dct
ct
− 1 + θ

2
· dc

2
t

c2t

]
+
θ − γ
1− γ

[
d [(1− γ)Vt]

(1− γ)Vt
+

1

2
· θ − 1

1− γ
· (d [(1− γ)Vt])

2

[(1− γ)Vt]
2

]
− θ θ − γ

1− γ
· dct
ct
· d [(1− γ)Vt]

(1− γ)Vt

=

[
−θ
(
gy −

1 + θ

2
σ2
y +

θ − γ
1− γ

σyσV,y

)
+
θ − γ
1− γ

(
− ft
Vt

+
σ2
V,y

2
· θ − 1

1− γ

)]
dt+

(
θ − γ
1− γ

σV,y − θσy
)
dZyt .

Next

de
∫ t
0
f2(cτ ,Vτ )dτ = e

∫ t
0
f3(cτ ,Vτ )dτd

∫ t

0

f2(cτ , Vτ )dτ +
1

2
e
∫ t
0
f2(cτ ,Vτ )dτ

[
d

∫ t

0

f2(cτ , Vτ )dτ

]2
= e

∫ t
0
f2(cτ ,Vτ )dτf2(ct, Vt)dt.

Note that the last expression implies that de
∫ t
0
f2(cτ ,Vτ )dτdf1(ct, Vt) = 0. As a result,

entκdξt + κξte
ntndt = de

∫ t
0
f2(cτ ,Vτ )dτf1(ct, Vt) + e

∫ t
0
f2(cτ ,Vτ )dτdf1(ct, Vt) + de

∫ t
0
f2(cτ ,Vτ )dτdf1(ct, Vt)

= κξte
nt

[
f2(ct, Vt)dt+

df1(ct, Vt)

f1(ct, Vt)

]
.

Collecting previous results, we obtain

dξt
ξt

=− ndt+ f1(ct, Vt)dt+
df1(ct, Vt)

f1(ct, Vt)

=−

[
ρ+ θgy − θ

1 + θ

2
σ2
y +

θ − γ
1− γ

(
θσyσV,y −

θ − 1

1− γ
·
σ2
V,y + σ2

V,B

2

)]
dt

−
(
θσy −

θ − γ
1− γ

σV,y

)
dZyt . (C.7)

Step 4: Riskless Rate. No arbitrage implies that the price pt of any security that pays dividends ds to

its holder equals

pt =
1

ξt
Et
∫ ∞
t

ξsdsds. (C.8)

The differential version of this equation is

0 = ξtdtdt+ Et [d(ξtpt)] . (C.9)

The safe bond is a security with the price of 1 and the dividend rst . As a result,

0 = ξtr
s
tdt+ Etdξt,

rst = − 1

dt
Et
(
dξt
ξt

)
= ρ+ θgy −

θ (θ + 1)

2
σ2
y +

θ − γ
1− γ

(
θσyσV,y −

θ − 1

1− γ
·
σ2
V,y + σ2

V,B

2

)
.

First, by guessing a verifying that the value function in equilibrium is a power function of total wealth, we

show that

σV,y =
1− γ
γ

κt. (C.10)
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Second, we have two expressions for dξt in equations (C.1) and (C.7)

−κtdZyt = −
(
θσy −

θ − γ
1− γ

σV,y

)
dZyt ,

Again, because the last expression has to hold for all realizations of shocks, we obtain

κt = θσy −
θ − γ
1− γ

σV,y, (C.11)

Equations (C.10) and (C.11) lead to

σV,y = (1− γ)σy.

As a result, the riskless rate is

rst = ρ+ θgy −
θ (θ + 1)

2
σ2
y +

θ − γ
1− γ

(
θ
σy
σV,y

− θ − 1

2 (1− γ)

)
σ2
V,y

= ρ+ θgy − γ
(θ + 1)

2
σ2
y.

Step 5: the risky asset price.

qt =Et
∫ ∞
t

ξs
ξt
ysds

=Et
∫ ∞
t

πse
−ns

πte−nt
ysds

=cγt Et
∫ ∞
t

e

{
θ−γ
1−γ

[
ρ−n−(1−θ)

(
gy−

γσ2y
2

)]
−(ρ−n)(1−γ)

}
s−t
1−θ

c−γs

[
ρ− n− (1− θ)

(
gy −

γσ2
y

2

)]− θ−γ1−θ

e−n(s−t)ysds

=yt

[
ρ− n− (1− θ)

(
gy −

γσ2
y

2

)]− θ−γ1−θ

·
∫ ∞
t

e

{
θ−γ

(1−θ)(1−γ)

[
ρ−n−(1−θ)

(
gy−

γσ2y
2

)]
− (ρ−n)(1−γ)

1−θ −n+(1−γ)
(
gy−

γσ2y
2

)}
(s−t)

ds.
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Main Text Tables and Figures

Median 25th perc. 75th perc. Median 25th perc. 75th perc.
Long-term nominal interest rate 4.61 3.62 6.38 3.92 3.32 5.48
Inflation rate 2.14 0.11 4.39 1.75 0.00 3.51
Real interest rate 2.71 1.17 4.82 2.66 1.52 4.29
Real GDP per capita growth 2.01 0.28 3.82 1.89 -0.45 3.75
Population growth 0.80 0.44 1.17 1.39 0.97 1.91
Debt to GDP ratio 44.2 24.3 68.6 36.4 15.1 59.0

No. of observations 2145 134

17 Advanced Countries United States

Real interest rate is the long-term nominal interest rate less a three-year moving average of inflation rates. All 
variables expressed as percentage points. Statistics based on data set after observations with fiscal cost more 
than 10 percent or less than -10 percent are dropped.

Table 1: Moments of macro variables
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1870-2016
1870-1914, 
1946-2016 1946-2016 1870-2016

1870-1914, 
1946-2016 1946-2016

r - g (percent)
25th percentile -2.7 -1.8 -3.0 -2.2 -2.2 -2.2
Median 0.1 0.2 -0.8 -0.3 -0.4 -1.0
75th percentile 2.5 2.4 1.4 1.7 1.7 0.9

Fraction < 0 49 47 58 52 55 71
Fraction < -2% 30 24 34 31 27 36

No. of observations 491 373 238 29 22 14

17 Advanced Countries United States

Real interest rate is the long-term nominal interest rate less a three-year moving average of inflation 
rates. "Fraction < 0" is the fraction of years experssed in percent with negative debt servicing cost. 
"Fraction < -2%" is the fraction of years with the debt servicing cost of less than negative two 
percent. Statistics are based on the dataset after observations with the fiscal cost more than 10 
percent or less than -10 percent are winsorized at thresholds.

Table 2: Moments of the debt servicing cost.
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Parameter Description Value Source/target

gy Productivity growth rate 0.02 US data
σy Output per capita std 0.025 US data
n Population growth rate 0.0115 US data

1/θ Intertemporal elasticity of substitution 0.75 Standard in macro lit.
αu Liquidity yield independent of debt 0.0052 AAA bonds & gov. yield
βu Semi elasticity of liquidity yield 0.0028 AAA bonds & gov. yield
σB Public bonds growth rate shocks std 0.45 cor(dyt/yt, rt) = −0.056

Table 3: Parameters common across the three calibrations.

68



Parameter Description Cal. 1 Cal. 2 Cal. 3 Source/target

γ CRRA 83 83 3.47 Equity premium
ρ Subjective disc. factor 0.07 0.07 0.06 Mean 10-year Treasury yield
βd Fiscal rule parameter 0.16 −βu −βu Debt-to-GDP distribution
αd Fiscal rule parameter -0.04 -0.02 -0.03 Debt-to-GDP distribution

min(Bt/Yt) Reflecting boundary - 0.18 0.18 Debt-to-GDP distribution
λ Disaster’s arrival rate - - 0.02 Barro (2006)
z Mean log disaster size - - 0.23 Barro (2006)

Table 4: Calibration-specific parameters. Columns Cal. 1, Cal. 2, and Cal. 3 refer to our calibrations 1-3.
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Variable Description Baseline Ex. 1: n ↓ Ex. 2: g ↓ Ex. 3: E[µt]− rs ↑
Panel A: calibration 1

E[Bt/Yt] Mean of debt-to-GDP 0.55 0.57 0.54 0.48
std(Bt/Yt) Std of debt-to-GDP 0.53 0.54 0.51 0.45

rs Safe rate 0.032 0.032 0.014 0.009
E[rt] Average liquid rate 0.024 0.025 0.006 0.001

E[µt]− rs Equity risk premium 0.052 0.052 0.052 0.072
Panel B: calibration 2

E[Bt/Yt] Mean of debt-to-GDP 0.92 1.08 0.80 0.56
std(Bt/Yt) Std of debt-to-GDP - - - -

rs Safe rate 0.032 0.032 0.014 0.009
E[rt] Average liquid rate 0.024 0.025 0.006 0.001

E[µt]− rs Equity risk premium 0.052 0.052 0.052 0.072
Panel C: calibration 3

E[Bt/Yt] Mean of debt-to-GDP 0.92 1.08 0.80 0.59
std(Bt/Yt) Std of debt-to-GDP - - - -

rs Safe rate 0.032 0.032 0.014 0.009
E[rt] Average liquid rate 0.024 0.025 0.006 0.001

E[µt]− rs Equity risk premium 0.052 0.052 0.052 0.072

Table 5: Moments generated under Calibrations 1-3. Column “Baseline” shows the moments under
the baseline version of a calibration, while columns “Ex. 1,” “Ex. 2,” and “Ex. 3” shows the moments
for the three experiments that correspond to a decline in the population growth rate (Ex. 1), a decline in
productivity growth rate (Ex. 2), and an increase in equity premium (Ex. 3).
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Variable Baseline Ex. 1: n ↑ Ex. 2: g ↑ Ex. 3: E[µt]− rs ↓
Panel A: s = 0.05

BFP 1.06 1.59 1.01 1.04
BrFL 1.44 1.98 1.39 1.45
BnrFL 2.22 3.12 2.14 2.22

Panel B: s = 0.1
BFP 1.18 1.59 1.13 1.14
BrFL 1.95 2.36 1.91 1.96
BnrFL 2.90 3.58 2.83 2.90

Table 6: Thresholds. Column “Baseline” shows the cutoffs under the baseline version of a calibration,
while columns “Ex. 1,” “Ex. 2,” and “Ex. 3” show the cutoffs for the three experiments that correspond
to an increase in the population growth rate (Ex. 1), an increase in the productivity growth rate (Ex. 2),
and a decline in equity premium through lower probability of disasters λ (Ex. 3). The values of subjective
discount factor ρ are 0.022 in Panel A, and 0.034 in Panel B. The variables BFP , BrFL, and BnrFL denote the
flipping point, the fiscal limits with and without risk, respectively.
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Figure 1: The left panel shows the total public debt servicing costs, while the right panel presents the unit
costs. Both panels present average values over 2016-19 period.
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Figure 2: US (unit) debt servicing cost r − g.
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Figure 3: Debt-to-GDP dynamics before (red arrows) and after (black arrows) resolution of uncertainty.
The shaded areas represent the regions where government defaults absent uncertainty (darker gray region)
and with uncertainty (lighter gray region).
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O

Figure 4: Debt-to-GDP dynamics before the resolution of uncertainty under different arrival rate of disasters
λ. The light red solid and dashed lines correspond to a low value of λ, while the blue solid and dashed lines
correspond to high levels of λ. To avoid cluttering the diagram, we omitted explicit labels that are similar
to those in Figure 3.
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