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Abstract

Developing countries suffer from rising urban pollution levels, with associated negative

effects on health and worker productivity. We study how managers in developing country

cities cope with the polluted environment. We collect high resolution pollution measure-

ments within Ugandan cities and match these with a novel firm survey. We find that firms

locate in close proximity to major polluted roads, which bundle a bad (exposure to pollu-

tion) with a good (market demand). Higher ability managers do not avoid polluted areas,

but better adapt to the pollution by protecting their workers through both provision of

equipment and flexibility in work schedules.
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1 Introduction

Developing countries are becoming increasingly urbanized and this trend is expected to continue,

with half of the population in low-income countries projected to live in cities by 2050 (Glaeser

and Henderson 2017, United Nations 2019).

Cities in the developing world feature some of the world’s highest levels of pollution, with

such levels rising over time as a result of motorization, poor infrastructure and poor urban

planning that ultimately lead to traffic congestion (Grossman and Krueger 1995; Akbar et al.

2018; Harari 2020).1 The high and increasing pollution generates severe health consequences

which may reduce worker productivity. Recent research has established the negative productiv-

ity effects of pollution exposure.2 These effects are likely to be even more severe in developing

countries due to poor healthcare systems.

Managers may play a key role in mediating the severity of the health cost of pollution on

worker productivity, especially in low income countries where the ability of governments to

regulate pollution emissions and work conditions is limited by weak state capacity. As air pol-

lution is not uniformly distributed within the city, the location choice of where to set up the firm

determines workers’ pollution exposure. Managers can also undertake mitigation investments

to limit exposure to pollution conditional on location, such as providing their workers with

protective equipment or putting in place organizational strategies to limit exposure, such as

flexibility in work schedules to avoid exposure at peak pollution times. Despite an established

literature on the role of management for firm productivity in both developed and developing

countries (Bloom and Van Reenen 2007, 2011; McKenzie and Woodruff 2017), little is known

on the role of managers in mediating exposure to pollution. Answering this question is impor-

tant as it sheds light on another avenue through which good management may raise both firm

productivity and worker welfare.

Our contribution is to fill this evidence gap by collecting a unique dataset that allows

us to characterize the role of managers in polluted cities in sub-Saharan Africa. We combine

street-level pollution measurements within Ugandan cities with rich information on management

practices and investments to protect workers from pollution from a novel representative geo-

coded survey of manufacturing firms. Guided by a simple model that illustrates the trade-offs

faced by a manager in a polluted city, we document three facts. First, we show that the nature

of informal production in developing countries generates a location choice trade-off between high

profitability areas, and areas with low exposure to pollution, since proximity to large and busy

roads bundles a good (product demand) with a bad (pollution exposure). Second, we document

1For instance, in Uganda, the setting of our study, between 2013 and 2019 over 800,000 vehicles were added
to the country’s vehicle fleet. Kreindler (2018) documents rising ownership rates of motor-vehicles in India
between 2005-2015.

2See Graff Zivin and Neidell (2012), Chang et al. (2016), Adhvaryu et al. (2019) and Fu et al. (2021).
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that, facing this trade-off, firms choose not to avoid pollution, but rather to cluster in the most

polluted and high-traffic areas of the city. They do so primarily in order to access customers.

Third, we find an important role of managerial skills: high ability managers do not avoid

polluted areas, but better protect their workers from pollution exposure. Overall, our results

bring new evidence on how pollution affects firms and workers, and uncover better adaptation

to pollution as a novel channel through which good management raises worker well-being and

firm productivity.

We begin by developing a simple model of a manager that maximizes profits in a polluted

city to clarify how taking into account pollution exposure affects production choices, and how

this relationship may be mediated by managerial ability. We consider three interrelated choices:

(i) where to locate the firm; (ii) which type of workers to hire; and (iii) whether to mitigate

the effects of pollution by investing in protective equipment or other organizational strategies

to limit exposure. Managers wish to reduce pollution exposure to avoid a productivity cost,

and to be able to hire high-skilled workers, who may demand more protection, for instance due

to higher awareness of pollution and its effects on health. Managers have two means to reduce

exposure: (i) by choosing a less polluted location (avoidance), or (ii) through investment in

protective equipment or organizational strategies (adaptation). Both avoidance and adaptation

are costly: less polluted areas may be less profitable, and protective investments come at a cost.

This creates the key trade-offs in the model. Managerial skill is allowed to affect all these choices

both through possible complementarities with location-specific profitability and workers’ type,

as well as through a potentially lower cost of protective investments. The framework offers a

series of testable predictions that motivate our data collection and empirical strategy.

To test the model’s predictions and offer a descriptive picture of how pollution exposure

affects firm production, we collected pollution measurements at high spatial resolution and

matched these to a novel firm survey with detailed information on firm location, managerial

skills, and managers’ investments to protect their workers from pollution exposure.

We gathered detailed geo-coded pollution measurements in a representative sample of ur-

ban areas throughout Uganda, using both mobile and stationary monitors. The resulting high

frequency data allows us to document spatial variation in pollution within the city, and to

precisely estimate temporal fluctuations in pollution within the day. We combine the pollution

data with a novel representative geo-coded survey of 1,000 firms in small-scale manufacturing

and their employees that we conducted in the same areas and at the same time as our pollu-

tion measurements (Bassi et al. 2021). For each firm, we have available detailed measures of

productivity, such as profits per worker, as well as a range of questions about location choice,

pollution avoidance behaviors and investments, and awareness of pollution as a problem among

employees. Building on the seminal work of Bloom and Van Reenen (2007, 2011) and McKenzie

and Woodruff (2017), our survey of small firms also includes a module on eliciting the man-
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ager’s quality, which we use to generate one summary index of managerial skill. Finally, we

have access to the geo-coded universe of Ugandan roads.

Guided by the model, we use this data to present three results on the role of managers

in mediating exposure to pollution in urban Uganda. First, we show that road traffic bun-

dles product demand and pollution exposure: areas near major roads are substantially more

polluted, but also feature significantly higher profits per worker. As a result, location choice

entails a trade-off between pollution exposure and market access. We also verify that the higher

pollution is mainly driven by road traffic, and we use our survey data to provide direct evidence

that the profitability benefits can be explained primarily by the fact that, as it is typically the

case across the developing world, firms are small and do not have any means to market their

products, so that they sell locally through face-to-face interactions. Hence, proximity to busy

roads is essential to access customers. Having established the presence of bundling, we study

how managerial choices determine workers’ exposure to pollution within the city.

Our second result is that firms do not actively avoid polluted areas; in fact, they locate along

the most trafficked, most highly polluted roads. This is true even within very small geographical

units, and we rule out that it is driven by reverse causality by showing that firms themselves

are not the source of pollution and the location of roads is pre-determined with respect to firm

location. Importantly, managers’ quality does not predict firm location choice. This rules out

one potential type of differential avoidance behavior: even high ability managers have chosen to

locate in the midst of pollution to access customers. Seen through the lenses of the model, this

result shows that the profitability benefits of locating in busy areas outweigh the productivity

costs of higher exposure to traffic pollution for all types of managers.

The fact that firms cluster along polluted roads opens up the possibility that workers may be

exposed to substantial pollution. Our readings show that high-polluted areas within Ugandan

cities feature similar pollution levels as Chinese cities. In addition, our survey confirms that

these small manufacturing firms produce output mostly in the open air near the roadside. As

a result, daily production activities are a large source of pollution exposure for workers, as

they spend their whole day working essentially in the streets while being exposed to pollution.

Documenting whether and how managers adapt to the local pollution exposure is therefore

critical to understand the implications of the observed location choices on workers’ welfare.

Our third result is that higher ability managers better protect their workers from pollution

exposure. In addition to having higher profits per worker and paying higher wages, managers

of higher ability are significantly more likely to provide pollution protective equipment (e.g.,

masks) to their workers, and to allow flexibility in commuting times to their workers to avoid

being exposed to pollution at rush hour. In line with this, workers employed by high ability

managers are more likely to report that their managers engage in active steps to protect them

from pollution exposure, and these workers are also significantly more aware of pollution as
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a problem. As the model makes clear, these results could be driven either by high ability

managers facing a lower marginal cost of adaptation, or by higher ability managers employing

more highly skilled workers, who demand more protection. Our evidence is consistent with the

first mechanism. That is, we show that our results on adaptation are not just driven by the

sorting of better workers to better managers: while higher ability managers do employ higher

skilled workers, controlling for a rich set of worker characteristics barely affects the role of

managerial quality in explaining these results. The fact that mitigation activities include not

only the provision of physical equipment but also changes in organizational strategies further

suggests that the lower cost of adaptation for higher ability managers is not just driven by

easier access to capital, and may reflect also a higher awareness of the costs of pollution on

worker productivity.3

Taken together, our results highlight the importance of managerial quality in determining

adaptation to environmental conditions and in limiting workers’ exposure to pollution. In doing

so, we contribute to a classic literature on the role of managers for firm productivity (Bloom

and Van Reenen 2007, 2011; Bloom et al. 2013; McKenzie and Woodruff 2017; Bruhn et al.

2018). This literature has established that good management practices lead to a reduction in

pollution emissions by firms: Bloom et al. (2010) document that higher quality managers are

more energy efficient, and Gosnell et al. (2019) show the importance of management practices

in reducing carbon emissions in the airline industry. In addition, recent evidence shows that

higher quality managers are better able to respond to shocks to worker productivity caused

by exposure to pollution: Adhvaryu et al. (2019) find that more attentive managers in Indian

factories reallocate workers across tasks to mitigate the productivity impacts of exposure to

pollution. Our contribution is to study the role of managers in preventing workers’ exposure to

pollution, distinguishing between the possible channels of avoidance and adaptation.

We also contribute to a growing literature on access to demand for small firms in developing

countries. This literature highlights that information frictions are a critical source of inefficiency

for buyers and sellers (Jensen and Miller 2018, Startz 2018) and that lack of managerial or

marketing ability creates a sizable barrier to accessing new markets (Anderson et al. 2018, Hjort

et al. 2020). As a consequence, small firms tend to sell locally. We contribute by highlighting

exposure to traffic pollution as another negative consequence of firms struggling to tap into

new markets and having to locate on busy roads to access the local demand. In doing so, we

3Our cross-sectional data is appropriate to study avoidance through location choice and adaptation through
investment in protective equipment/organizational strategies, as these are likely the result of sustained exposure
to pollution. However, our data is not appropriate to study the short-run (nor the long-run, which are inher-
ently harder to pin down) productivity impacts of pollution exposure (or of adopting mitigation strategies), as
identification would require high-frequency panel data on both pollution and firm outcomes. Therefore, we do
not estimate the productivity impacts of pollution, and instead rely on an extensive literature that is able to do
so with appropriate data (see Graff Zivin and Neidell 2012, Chang et al. 2016, Adhvaryu et al. 2019 and Fu et
al. 2021).
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also provide new insights to an established urban literature on agglomeration (Duranton and

Puga 2004; Ellison et al. 2010; Combes and Gobillon 2015) and on the relationship between

environmental amenities and location choice within the city (Kahn and Walsh 2015).4

Finally, we contribute to the literature studying the role of firms in driving wage inequal-

ity among workers (Song et al. 2019, Card et al. 2013). Recent work (Sorkin 2018, Morchio

and Moser 2020) highlights that a large share of welfare inequality across firms is not due

to differences in wages but rather to differences in non-monetary compensation, or amenities.

We contribute by focusing on one specific dis-amenity - exposure to pollution - and showing

how this varies as a function of manager characteristics. Our result shows that, in low-income

and informal economies, inequality in worker welfare across firms is likely to be larger than

inequality in earnings, due to the negative relationship that we document between exposure to

pollution and managerial ability.

The rest of the paper is organized as follows. Section 2 presents background information

on the context of our study. Section 3 presents the model. Section 4 describes the sample and

data. The empirical strategy is discussed in Section 5 and the results are presented in Section

6. Section 7 concludes. Additional details are in the Appendix.

2 Background

In this section, we provide background information on the context of our study. We discuss

trends in urbanization, motorization and pollution emissions in Uganda. Importantly, we high-

light key findings from the literature showing that pollution has a negative effect on individuals’

health and, consequently, workers’ productivity. While our empirical work focuses on urban

Uganda, the points we make below generalize to other developing countries.

Pollution levels in Uganda. Uganda features high levels of pollution: average annual con-

centration of PM2.5 particulate matter was 50.5 micrograms per cubic meter in 2017.5 In

Appendix Figure A10 we compare the evolution of average pollution levels in Uganda to the

US, China and India. The figure shows that pollution levels in Uganda are similar to Chinese

levels, and far higher than US levels. Pollution in Uganda is also far above the recommenda-

tions by the US Environmental Protection Agency (EPA), set in 2012 and confirmed recently

4Heblich et al. (2021) document the persistent effects of industrial pollution on neighborhood sorting within
English cities. By focusing on location choices within as opposed to across cities, we also relate to a growing
literature on how environmental conditions such as pollution or natural resource availability determine the
sorting of firms and households across space and migration decisions (Gollin et al. 2021; Liu and Sekhri, 2021;
Khanna et al. 2021; Chen et al. 2017).

5Source: World Bank: https://data.worldbank.org/indicator/EN.ATM.PM25.MC.M3?name_desc=true&

view=map. PM stands for particulate matter and 2.5 refers to the size of the particles (2.5 micrometers). Due
to their small size, these fine inhalable particles pose the greatest risk to health. For additional details see
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics.
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in 2020, which suggest an annual standard of 12 micrograms per cubic meters, and a daily cor-

responding standard of 35 micrograms per cubic meters. Further, a 2016 WHO study (WHO,

2016) emphasizes that fine particle pollution disproportionally affects urban areas in Uganda

with PM2.5 concentration 40 percent higher than in rural areas. This estimated urban-rural

gap in pollution exposure is wider in Uganda than in India, China and the US.6 Importantly,

as shown in Appendix Figure A10, while both Chinese and Indian PM2.5 pollution levels have

been declining since 2010 by 24 percent and 5 percent respectively, pollution in Uganda has

been increasing from 44.8 to 50.5 micrograms per cubic meter, or an increase of 13 percent

from 2010 to 2017.

Productivity and health effects of pollution. Such high and growing pollution levels

are a serious concern as the impacts of air pollution on health and productivity are well es-

tablished. Pope and Dockery (2006) argue that PM2.5 has been shown to be the deadliest

component of air pollution. Early work provides evidence on how plausible exogenous changes

in pollution affect health as measured by infant mortality (Chay and Greenstone 2003) and

mortality due to cardiorespiratory diseases (Ebenstein et al. 2015). Deryugina et al. (2019)

estimate that a 1 microgram per cubic meter increase in PM2.5 concentration (10 percent of

the mean) leads to 0.69 more deaths per million elderly over the following three days (0.18

percent increase relative to the average mortality rate). Anderson (2020) identifies a causal link

between long-term exposure to air pollution from road traffic and adult mortality.

Air pollution, including fine particle pollution such as PM2.5, also has adverse effects on

workers’ labor supply and productivity. At the extensive margin, pollution negatively affects

labor supply as first shown for the US by Ostro (1983) and Hausman et al. (1984). Hanna and

Oliva (2015) exploit a natural experiment to identify a negative causal effect of air pollution on

labor supply in Mexico, and Aragon et al. (2017) show similar results for Peru. On the inten-

sive margin, numerous studies document the negative effects of particulate matter on worker

productivity in both developed and developing countries (Graff Zivin and Neidell 2012, Chang

et al. 2016, Adhvaryu et al. 2019 and Fu et al. 2021).

Urbanization, motorization and pollution emissions. Road traffic is widely recognized as

a common source of PM2.5. With rapid urbanization growth and increasing incomes that have

been shown to speed up motorization, the challenges brought by air pollution in the developing

world can only be expected to rise. Across Africa, the urban population is expected to triple by

2050 (Collier 2017). Like other African countries, Uganda has experienced rapid urbanization in

6The corresponding median pollution concentrations (micrograms per cubic meters) reported by the same
WHO study for Uganda, China, India and the US are: 57 (overall) and 80 (urban only) for Uganda; 54 (overall)
and 59 (urban only) for China; 62 (overall) and 66 (urban only) for India; and 8 (overall) and 8 (urban only)
for the US.
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recent decades. The population of Kampala, the capital city, more than doubled since 1990 and

has now reached over 1.5 million (UBOS 2016). Some estimates suggest that Kampala could

have ten million inhabitants by 2040 (Hobson and Kathage 2017). Urbanization in Uganda has

been accompanied by a rapid increase in motorization. The road network in Kampala was built

in 1960 for about 100,000 vehicles per day. Today, about 400,000 vehicles per day use these

roads (KCCA 2014)7. The growth of a second-hand vehicle fleet (see Appendix Figure A11),

together with unpaved roads and limited coordinated land use or transport planning, make

motorization one of the main sources of pollution in urban Uganda.8

The issue is acknowledged by Ugandan policy makers, but no comprehensive solution exists

yet. In 2018, a ban on imports of motor vehicles older than 15 years was enacted, significantly

lowering the average age of newly registered vehicles, as shown in Appendix Figure A12. While

this policy was effective, the average age of newly registered vehicles still remained high at over

7 years in 2018. A Bus Rapid Transit (BRT) project for Kampala, with pre feasibility studies

completed in 2010, is still pending.

3 Conceptual Framework

We introduce a simple framework to clarify the key trade-offs that we study empirically in the

next sections. Our goal in this paper is to study the role of managers in mediating the pollution

exposure of workers. Therefore, we consider the problem of a manager that operates within

a polluted city and maximizes profits. We focus on three decisions that are plausibly directly

affected by pollution considerations: (i) the choice of the production location l; (ii) the choice

of the ability of workers h, as high ability workers may be less willing to work in a polluted

environment;9 (iii) the amount of investment in equipment or organizational strategies to limit

pollution exposure, e. We abstract from all other choices made by managers, such as firm size

and capital intensity, which we assume are not directly affected by pollution exposure. We also

abstract from any equilibrium consideration as our goal is not to characterize the equilibrium

allocation of production, but rather to describe how firms are managed in polluted cities.

A manager i, with productivity (or ability) zi, chooses a location l, workers’ type h, and

investments e to maximize profits, solving

7Cross-country research estimates an income elasticity of vehicle ownership of 1.1 (Dargay et al. 2007, Ingram
and Liu 1999).

8The Ministry of Works and Transport reports that petrol and diesel vehicles are 15.4 and 16.4
years old on average, respectively (Source: http://www.airqualityandmobility.org/PCFV/EAC_Workshop/

Ugandasinitiativecleanervehicles.pdf). Kirenga et al. (2015) emphasize the role of unpaved roads in driv-
ing up PM2.5 concentrations in Kampala and Jinja, two Ugandan cities: residential sites with unpaved roads
had very high PM2.5 concentrations of 152.6 micrograms per cubic meter vs 120.5 micrograms per cubic meter
on average in residential sites.

9Khanna et al. (2021) show that high-skilled individuals in China are more likely to migrate in response to
pollution.
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max
l,h,e

f (z, h)︸ ︷︷ ︸
Output

− χ (p)︸︷︷︸
Direct Cost of Pollution

− w (h)︸ ︷︷ ︸
Wage

− c (e, zi)︸ ︷︷ ︸
Cost of Pollution Mitigation

− Rl︸︷︷︸
Rental Cost of Location l

s.t.

z = g (zl, zi) (Productivity)

p = pl − e (Adaptation)

w (h) ≥ Ω (h, p) (Compensating Differentials).

The first constraint shows that the firm productivity z is an increasing function of both the

location-specific productivity zl and managers’ productivity zi, as we assume that g is increasing

in both arguments, with possible complementarities. The second constraint shows that the

overall pollution exposure p depends on the location-specific pollution pl but is abated by

protective investment e. The third constraint shows that in order to hire workers of type h,

a manager may need to offer them an environment with sufficiently low pollution – i.e., the

wage must be higher than an exogenous function Ω that is increasing in both arguments with

possible complementarities. We treat the wage, from the manager perspective, as an exogenous

increasing schedule. This schedule should be interpreted as the reduced-form outcome of an

equilibrium matching model which we do not model explicitly. Since managers do not directly

choose the wage, if the compensating differential constraint is binding they must either choose

a lower worker type h or offer more pollution abatement through higher investment e.10

We highlight two key assumptions embedded in this framework. First, we assume that

pollution exposure has a direct negative effect on output by lowering worker productivity. As

discussed in Section 2, a number of papers identify the negative short-run effects of pollution

exposure on worker productivity. Second, we assume that workers are paid below their marginal

product, so that there are rents to be shared between managers and workers, and the pollution

exposure of workers potentially reduces managers’ profits. This is justified by the literature

on labor market frictions in developing countries, which finds evidence in line with substantial

search frictions, driven primarily by lack of information on the skills of workers at recruitment.11

Bassi et al. (2021) show direct evidence of labor market frictions in our same context.

Next, we characterize the solution of this problem and highlight how it may vary across

managers of different ability zi. The main goal of the characterization is to provide guidance

and interpretation to the empirical results that we show below. While all choices are jointly

10In practice, allowing managers to offer a monetary compensation to workers to satisfy the third constraint
would not change the analysis. Rather, it would simply attenuate the role of adaptation and workers’ choice as
managers would have an alternative additional instrument (wage compensation) to maximize profits.

11See Abebe et al. (2020), Alfonsi et al. (2020), Bassi and Nansamba (2021) and Carranza et al. (2020).
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determined, we work through the problem backwards, solving first the choice of protective

investments e, then the one for the workers’ type h, and last the location choice l.

Adaptation: choice of investment e. Taking the first order conditions with respect to e,

we obtain

χp (pl − e)︸ ︷︷ ︸
MB of Pollution Reduction

+ µΩp (h, pl − e)︸ ︷︷ ︸
MB due to Lower Compensating Diff.

= ce (e, zi)︸ ︷︷ ︸
MC of Mitigation

where µ is the Lagrangian multiplier on the compensating differential constraint, which is equal

to 0 if the constraint is not binding.12 This equation shows that investments to adapt to a

polluted environment are driven by two motives: (i) mitigation of the direct cost of pollution,

captured by the first term χp; (ii) reduction in the distortions, in terms of workers’ types,

generated by the compensating differential if it was binding, captured by the second term

µΩp (h, pl − e).
We also notice that high ability managers could choose higher investment in mitigation

due to two economic forces. First, they may have a lower cost of mitigation – i.e., cz < 0.

This may capture easier access to credit to purchase protective equipment or higher ability to

make organizational changes to reduce exposure, but also higher awareness of pollution and its

productivity costs. Second, due to complementarities between managerial ability and worker

skill, high ability managers may prefer to hire high skilled workers, who may demand lower

pollution exposure. As long as Ωhp > 0 – i.e., if high skilled workers need to be compensated

more for pollution exposure – and assuming that there is sorting between high ability managers

and high skilled workers (discussed below), then high ability managers might have to invest

more in mitigation to satisfy the compensating differential constraint.

Sorting: choice of worker type h. Taking the first order condition with respect to h, we

obtain

fh (z, h)︸ ︷︷ ︸
MB of Workers’ Skills

= wh (h)︸ ︷︷ ︸
MC due to Higher Wage

+ µ (wh (h)− Ωh (h, p))︸ ︷︷ ︸
MC due to Change in Compensating Diff.

Firm output increases in worker skill, as long as fh > 0. The cost of employing high skilled

workers is a higher wage, wh > 0, and possibly more investment in reducing pollution exposure

to satisfy the compensating differential constraint if high skilled workers have a relatively higher

distaste for pollution. As a result, we may observe sorting between high ability managers

and high skilled workers due to either complementarity in productivity, as long as fhz > 0,

or complementarity due to pollution exposure. This second complementarity is novel to our

12Notation: we use gp (h, p) for the derivative of g (h, p) with respect to p.
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framework: if high ability managers choose lower pollution exposure – i.e., lower p – then they

may be able to hire high skilled workers while still satisfying the compensating differential

constraint. In contrast, this constraint may be costly to satisfy for low ability managers that

have higher cost of mitigation, as long as cz < 0.

Avoidance: choice of location l. Last, we consider the location choice. To do so, we need

to define the set of available locations within the city. We let each location l be defined by

a pair {zl, pl} of productivity and pollution. Firm location may affect productivity through

several channels. Central and busier locations are more visible to customers, thus offering

higher demand, and they may also provide economies of agglomeration, for example due to

interactions in the rental market (Bassi et al. 2021), demand externalities (Glaeser et al. 2001),

or productivity spillovers (Arzaghi and Henderson 2008). At the same time, too high firm

congestion could hinder productivity, either due to business stealing, or diseconomies of density

such as road traffic making it harder to access suppliers. Of course, locations may also differ in

their rental price Rl, which could itself be a function of local pollution pl and productivity zl.

We assume that there are only two levels of productivity and pollution: zl ∈ {z, z} and

pl ∈
{
p, p
}

, thus implying a maximum of four possible location choices. Of course, any location

with high pollution and low productivity would never be chosen. Similarly, if a location with

low pollution and high productivity existed, all managers would pick that one. In practice,

however, not all pollution-productivity pairs may exist within a city. Our starting hypothesis,

which we will verify in the data, is that pollution and demand are positively correlated due

to road traffic. Areas with higher traffic, hence higher pollution, are more visible and more

reachable, thus increasing the local demand and profitability. In fact, we posit that road traffic

bundles a good (market demand) with a bad (pollution exposure). In our model, that implies

that managers can only choose between two locations: {z, p̄} and
{
z, p
}

.

A manager, according to our framework, would choose the high pollution location if and

only if

f (g (z, zi) , h
∗ (z, p̄))− f

(
g (z, zi) , h

∗ (z, p))︸ ︷︷ ︸
Productivity Premium + Change in Workers’ Type

−

R (z, p̄)−R
(
z, p
)︸ ︷︷ ︸

Difference in Rental Costs

≥ w (h∗ (z, p̄))− w
(
h∗
(
z, p
))︸ ︷︷ ︸

Wage Premium due to Change in Workers’ Type

+

χ (p̄− e∗ (z, p̄))− χ
(
p− e∗

(
z, p
))︸ ︷︷ ︸+

Cost of Higher Pollution Exposure

c (e∗ (z, p̄) , zi)− c
(
e∗
(
z, p
)
, zi
)︸ ︷︷ ︸ .

Cost of Higher Mitigation

Hence a manager will choose the high pollution location if the productivity premium from
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producing in the more profitable location, taking into account the optimal choice of worker

types and net of the difference in rental costs, is larger than the sum of: (i) the wage premium

for the workers; (ii) the direct productivity cost of being exposed to higher pollution (net of

protective investments); and (iii) the cost of higher mitigation expenditures.13

Ex-ante, it is not clear whether we should observe managers sorting to high or low pollution

locations. This depends on the empirical strength of the negative correlation between produc-

tivity and pollution, and the relative perceived costs of pollution relative to the profitability

benefits. Similarly, higher ability managers could be either more or less likely to sort towards

more polluted areas. The pattern of sorting depends on the relative costs and benefits, which

are themselves mediated by the choice of workers’ type.

4 Sampling Strategy, Data and Descriptives

In Section 2 we have shown that the urban environment in Uganda is becoming increasingly

polluted due to rapid motorization and the resulting traffic emissions, thus plausibly inflicting

severe health costs on workers and productivity losses to firms. The simple framework of Section

3 describes how managers’ actions can mediate these negative effects through avoidance of

pollution (through location choice) or adaptation (through investment in protective equipment

or organizational strategies). In order to study how firms in urban Uganda respond to the

challenge created by increasing levels of urban pollution, we need the following types of data.

First, we need data on pollution within and across cities to document variation in pollution

exposure at a granular level. Second, we need data on the road network and on firm location to

examine how firm location choices determine exposure to traffic pollution. Third, we need firm-

level survey data to study the economic benefits and costs associated with different locations,

as well as firm’s perceptions of pollution and any adaptation strategies, as well as manager’s

characteristics. To the best of our knowledge, such highly granular data did not exist. Hence,

a core contribution of our study was to build this data. In the following section we describe the

sampling design and data collection strategy.

4.1 Sampling Strategy

We collected pollution measurements and a novel firm survey in a representative sample of urban

and semi-urban areas across three of the four macro-regions of Uganda: Central, Western, and

Eastern regions. Crucially for the purpose of this study, the pollution measurements and the

13Producing in the more profitable location affects the choice of workers’ type and wages through the com-
pensating differential constraint: workers demand higher wages in the more polluted location, and this may be
especially true for higher skilled workers. As a result, the optimal choice of workers’ types may be different in
the low and high profitability location.
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firm survey are both geo-located and were collected in the same geographical areas and at the

same time, which then allows us to combine them together for the analysis.

More specifically, our sampling units are sub-counties. For a sense of scale, the average

sub-county spans about 64 square miles and consists of about 5,000 households. A sample of 52

sub-counties was randomly extracted for our study, stratifying by population and by whether

the sub-county is in the broader Kampala area (the capital city).14 Notably, our sample includes

several sub-counties within Kampala and within other major cities (such as Jinja, Iganga, Mbale

and Fortportal) over these three regions. Our pollution measurement and survey activities took

place within these sub-counties and are described in the next sub-sections.

4.2 Pollution Measurements

We create a unique database of pollution measures with geo-coordinates and time stamps that

we collected in Uganda in partnership with AirQo and the World Bank.15

Stationary and mobile measurements. Pollution measurements come from two distinct

types of monitors, subsequently referred to as stationary and mobile monitors. The former were

attached to a number of fixed locations (e.g., lamp posts) within our sampled sub-counties. The

latter were attached to the front of motorcycle taxis (boda-bodas) circulating on the streets

within our sampled areas.16 Additional details on the technical details of monitors and processes

used for data collection are summarized in Okure et al. (2021).

Our budget allowed us to place 33 separate stationary monitors in distinct sub-counties for

a period of roughly 8 months, from January to August 2019, covering 24 out of the 25 districts

in our sample. Within a district, stationary monitor locations were determined to reflect local

pollution exposure.17 Monitoring devices were installed between 2.5 and 4 meter high to ensure

that captured pollution levels are reflective of population exposure. The stationary monitors

were active 24 hours a day. The average number of PM2.5 measurements by monitor-day-hour

is 41 (median 45), for a total of 3,179,575 measurements across all stationary monitors and days

in the dataset.

In addition, we used 10 mobile monitors placed on motorcycle taxis for roughly 4 months,

from February to May 2019. These mobile monitors were deployed in 32 of our 52 sampled

sub-counties. The partner taxi drivers were instructed to keep the monitors on at all times and

14Appendix Figure A13 shows the final sample of sub-counties.
15AirQo was founded in 2015 at Makerere University and works to improve air quality data in Uganda using

AI. AirQo develops and deploys low-cost air quality monitors across urban areas in Uganda. In 2019, it received
a $1.3m grant from Google as one of the 20 winners of the Google AI Impact Challenge.

16Appendix Figure A14 reports pictures of a stationary and mobile monitor.
17Most major emission sources being close to the ground, they predominantly have localized effects on PM2.5

concentration. Stationary monitors were thus deployed within a maximum of 1-2 km from identified activities
likely to affect local air quality.
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to drive through all the streets of the sampled sub-counties. The mobile monitors were also

active 24 hours a day and produced an average of 30 (median 31) measurements an hour for a

total of 119,011 in our sampled sub-counties.18

By moving across space, the mobile monitors allow us to measure the spatial variation in

pollution at a highly granular level within the city. By virtue of being fixed in one location,

stationary monitors allow us to precisely measure the time variation in pollution. In Section 5,

we describe how we use both types of measurements in our empirical approach.

Sanity checks and descriptives. We present two descriptives about our pollution data.

First, in Appendix Figure A15, we show that the average PM2.5 readings of mobile and sta-

tionary monitors in the same sub-county are positively correlated (the correlation is 0.34, sig-

nificant at the 1% level). This positive correlation reassures us about the internal validity of

our measurements.19 Second, in Figure 1, we report average and median pollution readings

by hour of the day, from both stationary and mobile monitors. The Figure reveals that: (i)

the stationary and mobile measurements track each other closely, which reassures us about the

quality of our data; (ii) average levels of PM2.5 are high in our sample, oscillating between

30-90 micrograms per cubic meters, which lines up well with the average of 50 micrograms per

cubic meter reported by the World Bank in 2017 and mentioned in Section 2; (iii) there is a

strong cyclicality in pollution within the day with peaks at rush-hour in both mornings and

evenings, which indicates that, as expected, the main source of pollution in these urban areas

is road traffic rather than economic activity, something that we explore further and confirm

again in Section 6. This hourly pattern is robust: we reach the same conclusion if we use the

stationary or mobile readings, and if we use the average or the median readings.

4.3 Firm Survey

The second data source is a novel survey of manufacturing firms that we conducted in Uganda.

The survey took place in all our target 52 sub-counties between September 2018 and July 2019

and was implemented by our partner NGO, BRAC Uganda, in partnership with the Ministry

of Trade. Within each target sub-county, urban and semi-urban parishes were surveyed. The

survey is described in detail in Bassi et al. (2021). Here we summarize again the key elements of

the sampling of firms and survey design, and then focus on those aspects that are particularly

relevant for this paper.

18In those sub-counties where the stationary and mobile monitors overlap, all active mobile monitors were
within proximity of a stationary monitor. The median distance between a mobile pollution measurement and
the closest stationary monitor is 2.345 km and 95% of measurements are within less than 7 km from a stationary
monitor.

19Of course, we expect the correlation of the pollution readings from stationary and mobile monitors within
sub-counties to be less than one as the mobile monitors were potentially hundreds of meters away from the
stationary monitors at times.
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Firm sampling. Our survey targeted three prominent sectors in manufacturing: carpentry,

metal fabrication and grain milling. As revealed by the latest Census of Business Establishments

conducted by the Uganda Bureau of Statistics in 2010, these are sectors that: (i) employ a large

share of workers and (ii) are not dominated by microenterprises with no paid employees. The

first criterion implies that we target sectors that are important for policy, whereas the second

criterion allows us to focus on labor relationships and human resource management within the

firm, which is a key focus of this paper.

We conducted a door-to-door listing of all the firms in our three sectors in the 52 sampled

sub-counties, identifying close to 3,000 firms. For each firm in the listing, we recorded their

sector of operation and GPS coordinates. This means that we virtually have geo-coded data

on the universe of firms in our sampled sub-counties and sectors.20

We then randomly selected about 1,000 firms from our listing to be included in the survey,

oversampling firms with five or more employees. In firms selected for the survey, we interviewed

the owner21 and all the employees working on the main product.22 As described in Bassi et al.

(2021): (i) compliance with the survey was high at over 90%; (ii) all the results from our survey

are appropriately weighted to reflect our sampling strategy.

Survey design. Our survey was designed to study firm performance, firm location choices,

adaptation to pollution and awareness of pollution as a problem, as well as the role of managerial

ability. On firm performance, we collected information on revenues and profits per worker as

well as wages. On firm location, in addition to collecting GPS coordinates, we asked the firm

owner to indicate the reasons behind their location choice, including also detailed information

on how firms access customers (e.g., whether orders are placed in person or by phone, whether

the firm relies on shipping etc.). We also collected information about the size of the business

premises and their rental value. On adaptation to pollution, we asked detailed questions about

any investments made by the firm owner to protect their workers from pollution exposure, such

as providing masks and other protective gear. We also asked about organizational strategies

to protect workers from pollution, such as allowing flexibility in commuting times and work

schedules to avoid exposure to traffic pollution at rush hour. Importantly, we asked employees

about whether they feel that managers are taking active steps to protect them from pollution

exposure. In addition, we included multiple questions to measure employees’ awareness of

20Appendix Figure A16 plots the firms in the listing in one of the study sub-counties.
21In our sample, firm owners also actively manage the firm operations in most cases. Therefore, we use the

terms firm owners and managers interchangeably in the paper.
22More precisely, as discussed in Bassi et al. (2021), for each of the three sectors we pre-specified one “core

product” that is commonly produced by firms in that sector. For instance, in carpentry, this is doors. If a firm
produced the pre-specified core product, we interviewed all employees working on that product. If a firm did
not produce the pre-specified core product, we interviewed all employees working on the main product of the
firm. See Bassi et al. (2021) for more details, where we verify also that most firms produce the core product
that we asked about in the survey, and that this makes up a large share of revenues for the average firm.
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pollution as a problem.

To measure managerial quality, we follow de Mel et al. (2008) and McKenzie and Woodruff

(2017), who build on the work of Bloom and Van Reenen (2007) to adapt standard management

surveys to the context of small firms in developing countries. In particular, we create a stan-

dardized index of manager quality by aggregating a wide range of questions about marketing

practices, stock management of inputs, recording of transactions, financial performance review,

business planning and forecasting. The index should be interpreted as a summary measure of

overall management quality. We validate the index in Bassi et al. (2021), where we show that

it is a strong predictor of revenues per worker. The exact construction of the index is detailed

in Appendix A.1. In addition to managerial quality, we also collected detailed information on

other owner and worker characteristics (e.g. education, age, experience etc.) including measures

of workers’ time use at the firm.

Descriptives. Table 1 reports descriptive statistics for the 1,027 firms in our survey sample.

The average firm has about five employees. Average monthly revenues and profits are $1,481

and $244, respectively. To put these numbers into perspective, per capita GDP in Uganda was

$60 per month in 2018. Thus, the average firm is profitable, and operates beyond subsistence

level. Besides, these are established and regular activities: the average firm has been in business

for 10 years. The average owner works 9 hours per day for the firm, so this is the primary job

for the majority of them. The average employee has 3.5 years of tenure, works 9.9 hours per

day for the firm, and makes about $71 per month. Taken together, the evidence shows that our

sample is composed of established and profitable firms that employ workers who hold stable,

regular, and well-paying jobs by Ugandan standards.

4.4 Road Network Data

We supplement the pollution measures and firm survey with data on the network of Ugandan

roads published by the World Food Program following the United Nations Spatial Data In-

frastructure (UNSDI) for Transport standards.23 The WFP shape-file distinguishes between 5

distinct road types in Uganda: track/trail, tertiary roads, secondary roads, primary roads, and

highways, by converting Open Street Map (OSM)’s highway tag.24 The geo-referenced nature

of the dataset allows us to match roads with both the pollution and the firm survey data. We

create an ordinal measure of road size. To do so, we rank road types by size such that track/trail

are assigned the number 1, and highways are assigned the number 5. We use these values when

23Source: https://geonode.wfp.org/layers/ogcserver.gis.wfp.org:geonode:uga_trs_roads_osm/

metadata_detail.
24The WFP classification is a mapping of the 18 OSM’s highway tag into 7 categories (the five categories

mentioned above, as well as Residential and Path/Footway, which are absent from the Uganda road shape-file).
Details of the mapping can be found on the WFP website.
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calculating summary statistics within a geographical area. For example, the median road size

of a geographical area containing one track/trail (1), one secondary road (3) and one primary

road (4), will be 3.25

Appendix Table A1 presents summary statistics about the number of kilometers per road

type and the corresponding share of total kilometers, both for the country as a whole and for

our sample. Our sample of 52 sub-counties contains 2,786 km of roads, or about 2 percent of

Ugandan roads, and roads are larger in our sample than in the rest of the country: 24 percent

of the roads in our sample are primary roads and only 38 percent are classified as track/trail,

while the corresponding figures for the country as a whole are 1 and 87 percent, respectively.

Reflecting our sampling strategy, this shows that our sample is more urban, and therefore

denser, than the average Ugandan geographical area.

5 Empirical Strategy

Our analysis is guided by the conceptual framework of Section 3, which posits several empirical

relationships that we are going to test with our data. Specifically, we proceed in three steps.

First, we study the relationship between local profitability and pollution, to establish that they

are positively related, hence that the trade-off we hypothesized between exposure to pollution

and market demand, created by locating near major roads, is present. Second, we study the

location choice of managers, to show that they choose to expose themselves to pollution in

order to get the benefits from market access on major roads. Third, we study heterogeneity

by managerial ability in location choice and adaptation behavior to show that high-skilled

managers do not avoid pollution, but better adapt to it.

Before showing the regression specifications for each of these three steps, we describe how

we residualize our pollution measurements to net out time effects, and how we create measures

of pollution, road size, and firm density at the neighborhood level. Residualizing pollution is

essential because we are interested in variation in pollution across space within the city (rather

than across time). Creating neighborhood or “grid cell” measures of firm density, pollution, and

road size allows us to study the location choice of firms.

5.1 Recovering Residual Spatial Variation in PM2.5

As described in Section 4, we collected measures of PM2.5 concentration from both station-

ary and mobile monitors. Our goal is to construct measures of spatial variation in pollution

at a highly granular level within the city. To do this, we exploit our mobile monitors that

continuously recorded pollution and GPS coordinates while moving within Ugandan cities.

25A road is defined as a road segment not intersected by any other road. Each road intersection marks the
extremity of the intersecting roads, as illustrated in Appendix Figure A17.
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As the mobile monitors were attached to motorcycle taxis, the location of the mobile mea-

surements might be systematically related to time trends in pollution (e.g., taxi drivers might

be more likely to drive through some specific city neighborhoods at the time of day when traffic,

hence pollution, is highest or lowest). To address this potential concern of non-random spatial

location of the mobile monitors across hours of the day and days of the year, we net out hour

and date fixed effects using the readings from the stationary monitors.26

We run the following regression using the readings from all our stationary monitors k in

order to recover hour b and date c fixed effects:

ln(PM2.5)k,h,d = a+ b×hourh + c× dated + λk + εk,h,d (1)

where ln(PM2.5k,h,d) is the log of the PM2.5 reading from monitor k recorded on calendar

date d and hour h. We include static monitor fixed effects λk since we do not have a balanced

panel. We then net out these time fixed effects from the readings of our mobile monitors. To

do so, we compute the pollution residuals ˆem,h,d as the log of the raw measurements from our

mobile monitors at GPS coordinates m at time h of date d, net of the hour and calendar date

fixed effects estimated from the stationary monitors:

ˆem,h,d = ln(PM2.5)m,h,d − (â+ b̂× hourh + ĉ× dated). (2)

ˆem,h,d captures residual pollution variation across locations conditional on a particular hour

of the day and a particular calendar date. As such, this allows us to document systematic

spatial variation in pollution within the city.

5.2 Grid Cell Approach

To create the neighborhood-level measures of firm density, pollution and road size, we adopt a

grid cell approach. The next administrative unit after sub-counties are parishes. Specifically,

our 52 sub-counties comprise 179 sampled parishes. Following Ahlfeldt et al. (2015), Carozzi

and Roth (2020) and Michaels et al. (2017), we split parishes in our sample into grid cells of

500m × 500m, drawing grid cells on all selected parishes.27 Each road, pollution measure and

firm are attributed to a cell using their geo-coordinates.28

26While stationary monitors are useful for recovering the time variation in pollution, we cannot rely on them
to recover the spatial variation in pollution within sub-county without making very strong assumptions on the
decay of pollution with distance from the stationary monitor. In fact, we decided to use both stationary and
mobile monitors precisely to be able to document both the spatial and temporal variation in pollution at a
granular level. Sullivan and Krupnick (2018) discuss the unreliability of using only stationary monitors. In
using the stationary monitors to identify time fixed effects across all the sub-counties in our study, we are
assuming that time trends do not vary spatially across the sub-counties in our sample.

27For more details on the calculation of the grid cells and the robustness of our approach see Appendix A.2.
2818% of firms interviewed in the survey fall slightly outside the boundaries of the corresponding sampled

sub-counties, often by just a few meters. We still include these firms in our estimation sample by adding grid
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We then compute the following variables for each grid cell: (i) the average residual pollution

ˆem,h,d, constructed as described above, for all the observations m recorded within the cell; (ii)

the median road size in the cell, where each road dummy is associated an ordinal number, as

described in Section 4.4; (iii) the firm density, computed by dividing the number of firms in

the cell by the cell area in km2. To compute (iii) we use our comprehensive initial firm listing

(rather than just the firms selected for the survey).29

Figures 2, 3, and 4, illustrate how our sampled parishes are split into grid cells, and provide

suggestive visual evidence that firms are clustered close to major roads (Figure 2), that such

roads are more polluted (Figure 3), leading to firm density being higher in grid cells with higher

average pollution (Figure 4).

5.3 Regression Specifications and Identifying Assumptions

Equipped with the residualized pollution observations and the grid-cell level variables, we next

describe our regression specifications.

Relationship between road size, pollution and productivity. Our first objective is to

test whether road traffic bundles a bad (pollution) with a good (access to demand). To do so,

we study: (i) whether areas near major roads are more polluted and (ii) whether firms near

major roads are more profitable, conditional on observables. To provide evidence on the first

point, we run the following regression at the grid cell level, for grid cell j in sub-county s in

region r:

ResidPollutionj,s,r = α0 + α1MedianRoadj + δs + θlog(dist)r + νj,s,r, (3)

whereResidPollutionj,s,r is the average residual (log) pollution in the grid cell. MedianRoadj

is the median road size in the grid cell. δs are sub-county fixed effects, as we are interested in

documenting variation in pollution and firm location choices within urban areas. In addition,

we control for log distance to the main city in the region, log(dist)r, to make sure that we do

not just capture the fact that areas closer to the city center are both more polluted and more

productive.30 To account for spatial correlation, we use Spatial Heteroskedastic and Autocor-

cells containing these firms, in addition to the grid cells in our sampled sub-counties. In the estimation we
control for a dummy for whether the firm falls in this category. Our results are robust to dropping these firms.

29When computing firm density, we take into account that all grid cells are not exactly 500m × 500m. This
may happen because grid cells overlapping two adjacent parishes are split at the parish level, and because
parishes are not of rectangular shape. A histogram of grid cell areas can be found in Appendix Figure A18.
Besides, in regressions including grid-level variables, we control for whether the grid cell has an area of less than
0.25 square km (dummy), as well as for grid cell size (linear control).

30We do not have data on road quality. To the extent that larger roads are of higher quality and road quality
reduces pollution (by reducing congestion), then our estimates of the effect of road size on pollution are a lower
bound.
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relation Consistent (SHAC) standard errors a la Conley (1999) using the routine developed by

Hsiang (2010).31 We also run a version of this regression at the individual pollution measure-

ment level. To do that, we replace the median road size in the cell with a variable capturing

the size of the road closest to the pollution measurement.

Our key coefficient of interest is α1. A positive estimate would indicate that areas closer to

larger roads are more polluted. To interpret α1 as the causal effect of road traffic on pollution,

we need two identifying assumptions. The first is that the location (and size) of roads is pre-

determined relative to contemporaneous sources of pollution emissions, such as large factories.

As discussed in Section 2, the core of the road infrastructure in Uganda was built in the 1960s.

This alleviates potential concerns related to the endogenous placement of roads based on the

current layout of local economic activity. The second identifying assumption is that the firms

in our sample are not the sources of PM2.5 pollution themselves. We note that this is unlikely,

given that our sample includes small firms in carpentry, metal fabrication and grain milling, and

so the nature of their production process is such that they do not produce substantial emissions

of PM2.5. In addition, as discussed above, Figure 1 shows that pollution peaks at rush hour

rather than when firms are open, which is consistent with pollution coming from traffic rather

than the firms themselves.32

To study whether firms next to major roads are more profitable, we estimate the following

regression for firm i in grid cell j in sub-county s and region r:

yi,j,s,r = β0 + β1MedianRoadj + β2ManScorei + λl + δs + ηlog(dist)r + υi,j,s,r, (4)

where yi,j,s,r is the outcome of firm i, such as log profit per worker. We regress this on

the median road size in the cell and the firm-level standardized index of managerial quality

ManScorei, controlling for sector fixed effects λl, sub-county fixed effects and distance from the

major city in the region, as in equation 3. Standard errors are adjusted for spatial correlation.

Our main coefficient of interest is β1. A positive estimate would indicate that firms located

near major roads are more profitable. Similarly to equation 3, our identifying assumptions

are that roads are pre-determined with respect to firm location. As shown in Table 1, the

average firm has been in business for 10 years, while the main road network was built in the

1960s. Therefore, concerns about the validity of this assumption are not first order. A second

identifying assumption is that, conditional on sub-county and sector fixed effects and on our

31When including sub-county fixed effects, we first demean both left- and right-hand side variables.
32Note that if firms cluster on major roads and this creates agglomeration externalities that increase traffic

(e.g., demand externalities leading to more customers driving to the firm cluster) then this would only refine the
interpretation of our results. Our main result – firms choose to locate in areas with high pollution since road
traffic bundles pollution and firm demand – would be unaffected. The counterfactuals, however, would vary, as
changing the firms’ location choice would also change the geographical distribution of traffic and demand.
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index of managerial ability, there is no selection of more productive firms in the proximity of

larger roads. While this assumption may sound strong, our data supports it: in the next section,

we show that there is no selection of higher ability managers into areas with larger roads. We

are also interested in β2, as that captures the correlation between managerial skills and firm

profitability. Based on the literature on returns to managerial skills in developing countries

(McKenzie and Woodruff 2017) we expect a positive and significant estimate.33

We also run a specification like equation 4 but with log rental value of the premises as

dependent variable, and a version of this equation at the employee level where the dependent

variable is log wages. These additional regressions are informative of the costs for firms of

locating into areas with larger roads.

Avoidance of pollution and managerial quality. Our next objective is to study whether

firms avoid more polluted areas, and whether this varies by managerial ability. We run a grid-

level regression similar to equation 3 but with firm density in the grid cell on the left hand side

to test whether firm density is higher or lower near major roads. As we find that major roads

are more polluted, these results will be informative of whether firms sort into more polluted

areas, which we also verify directly by replacing the median road size in the cell with the average

residual pollution in the cell.

To study heterogeneity in avoidance behavior by managerial ability, we adopt two strategies.

First, we augment the firm density regression at the grid cell level to add a measure of average

managerial skills in the grid cell on the right hand side. This specification will test whether

managerial skills are a predictor of firm density. Second, we run a regression similar to equation

4, but with ManScorei on the left hand side, to test directly whether managers of higher ability

are more likely to sort in areas with larger roads.

Adaptation to pollution and managerial quality. Our final objective is to study how

adaptation to pollution varies by managerial quality. To do so, we estimate versions of equation

4 but with various measures of adaptation on the left hand side, such as whether the manager

provides protective equipment to workers. We also run versions of this regression at the worker

level whenever the outcome is at the worker level (e.g., workers’ perceptions about manager’s

efforts to protect them from pollution exposure). Our main coefficient of interest in these

regressions is again that on the index of managerial quality. As we will show that managerial

quality does not predict location choice, this will reassure us that selection effects do not

confound the interpretation of the coefficient on managerial ability in these regressions.34

33Of course, our index of managerial ability could be correlated with other managers’ characteristics, such as
education or age. Our aim is to document heterogeneity in productivity, pollution avoidance and adaptation
along this basic summary measure of managerial quality that is standard in the literature.

34We note that avoidance through location choice and adaptation through protective investments/strategies
are both outcomes that are unlikely to respond to short-term fluctuations in pollution, and are instead the
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6 Results

We now follow our empirical strategy to document, in three sets of empirical results, how

pollution exposure shapes production activity in urban Uganda, and how high and low ability

managers deal with this challenge.

6.1 Road Traffic Bundles Pollution Exposure with Market Access

We first study the characteristics of available locations within the city to establish that road

traffic bundles a good (market access) with a bad (pollution exposure). This result implies that

managers face a trade-off in their location choice, in whether to avoid pollution or maximize

firm revenues and profits.

We proceed in four steps. First, we establish that large roads are more polluted. Second,

we find evidence that this pollution is generated by road traffic. Third, we show that firms

located near larger roads have higher revenues and profits per worker, conditional on a rich set

of controls. Finally, we explore the mechanism linking pollution to profitability using our rich

survey data and argue that is primarily due to access to market demand.

Larger roads are more polluted. We follow the empirical specification in equation 3 to

show that pollution is higher in grid cells with larger roads. The results are shown in Table

2: an increase in median road size in the cell of one unit is associated with an increase in

residual pollution of about 7-8%, a result significant at the 1% level. Comparing column 1 with

column 2 we note that the magnitude of the coefficient is barely affected by the introduction

of sub-county fixed effects, thus showing that the relationship is driven by variation within as

opposed to across sub-counties.

In columns 3 and 4, we check that these results are robust to conducting the analysis at

the level of the single pollution measurement rather than the grid cell, by running the same

equation 3 using variation across all the observed GPS coordinates m, rather than aggregating

at the grid-level.35 Reassuringly, the results are remarkably similar.

One example to illustrate the empirical variation in our data is shown in Figures 3 and 4,

which show pollution measurements and road size in one of our sample sub-counties. It is clear

that pollution is higher on the larger roads.

result of sustained exposure. Therefore, the empirical strategies adopted by related papers studying the impact
of pollution on labor supply and productivity, which typically rely on high-frequency temporal variation in
pollution exposure, would not be appropriate to answer the research questions we are after.

35In columns 3 and 4 of Table 2, 4,604 pollution observations (corresponding to 8% of the sample) are dropped
because the size of their closest road was not available as they are more than 100m away from the closest road.
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Pollution is due to road traffic. Next, we bring evidence to argue that the geographic

variation in pollution is mainly due to road traffic rather than the firms themselves. First, we

study the cyclicality of pollution across hours of the day: if we find that pollution peaks at

rush hour rather than when most firms are open for business, then this indicates that the main

source of pollution emissions is road traffic. Figure 5 uses data from our stationary monitors

and information on time use within the firm from our survey to suggest that the main source

of pollution in these urban areas is road traffic rather than the firms themselves. The top panel

shows that pollution peaks between 6-9am and 7-9pm. These times correspond to rush hour

in Uganda. On the bottom panel, we plot the share of workers that report being at the firm

premises working by hour of the day. The figure shows that production activity peaks between

10am to 3pm, that is, when pollution is lowest.

We conduct one further test in Figure 6: we split the stationary monitors by whether they

fall in a grid cell where there is at least one firm, or whether they have no firms nearby. If

firms are a source of pollution themselves, we would expect the cyclicality in pollution emissions

throughout the day to be different in these two areas. The Figure shows that the cyclicality

across the two sets of monitors is almost identical. This provides one more piece of evidence

in favor of the interpretation that pollution originates from traffic and is exogenous to firms.

Appendix Figure A19 displays the cyclicality of pollution during the day when restricting to

grid cells containing roads and is almost identical to Figure 6.

Firms benefit from locating near larger roads. We next study whether locating near

larger roads provides profitability benefits to firms. While we do not observe firms moving across

locations, we can study, following the specification shown in equation 4, the cross-sectional

relationship between proximity to large roads and measures of profitability, conditioning on a

rich set of controls. The results are shown in Table 3.

Columns 1-4 show that there are clear benefits from being located on large roads, as shown

by an increase in total revenues and profits, as well as per worker. Importantly, note that we

control for manager quality, which is a very strong predictor of revenues and profits, as expected

given the prior literature on returns to management skills (Bloom and Van Reenen 2007, 2011;

McKenzie and Woodruff 2017). Therefore, our results do not just capture the fact that more

productive managers locate in areas with larger roads (and that are more polluted). In fact,

as we show in column 8, high skilled managers are not more likely to locate near larger roads.

This attenuates the concerns that the documented relationship between profits per worker and

road size is driven by omitted variables, as long as sorting on unobservables and observables

are related. Rather, these results are in line with there being actual productivity benefits from

locating near roads with high traffic (and high pollution).

Columns 5 and 6 show that these productivity benefits pass through to workers in the form
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of higher salary. The result is still present once we add a rich set of worker controls. Note

that a positive effect on salary is not surprising, as in addition to rent sharing motivations, any

compensating differentials from the higher exposure to pollution should also be reflected into

higher wages.

Finally, in column 7 we study whether the productivity benefits from being located on a

large road, hence in a high pollution area, come at the expenses of higher land prices. Note

that it is not obvious that this would be the case as there could be negative effects of pollution

on land prices if pollution is perceived as a dis-amenity. To shed light on this, we exploit our

survey questions about the rental value and the size of the business premises.36 The result in

column 7 shows a precisely estimated and large positive coefficient. Prime locations, that give

access to customers, are more expensive. It is relevant to notice that, despite the higher rental

cost, the overall effect on profits (shown in columns 3 and 4) is positive. This result is expected,

given the magnitude of the effect on revenues and rents and the fact that rents are only a small

share of the overall firm costs.

Finally, it is worthwhile to highlight that all the results just discussed are estimated ex-

ploiting variation across grid cells within sub-county. Recall that a grid cell is a square of

500m× 500m, and that a typical sub-county only includes approximately 72 grid cells. There-

fore, our results are capturing the benefits from location choice within cities and neighborhoods

rather than between them.

Taken together, the results in Table 3 confirm that there are direct and tangible benefits to

firms from being located on busy roads with high traffic (and high pollution). In Table A2, we

show that we reach similar conclusions if we replace Median Road in the grid cell, with average

residual pollution in the cell. This confirms that there are tangible benefits of being located in

more polluted areas.37

Road traffic provides access to customers. Our final step is to provide support for

interpreting the positive effect of being located in polluted areas as being generated by better

access to customers, hence higher demand. To shed light on this, we leverage our firm survey,

where we collected detailed information on how firms access customers. Panel A of Table 4

shows that marketing activities are extremely limited: only 7% of managers spend any money

on marketing, and when asked about strategies they adopt to communicate the quality of

their products to customers, about 60% say that they just talk to the customers directly, and

22% report engaging in no strategies at all to market their products. In addition, sales are

36This information is available for those firm owners who rent the business premises (rather than owning or
using them free of charge), which is about 2/3 of the sample.

37The number of observations is lower in Table A2 than Table 3 because, as described in Section 4.2, in-
formation on pollution is available in 32 of our 52 sampled sub-counties, while road size is available in all
sub-counties.
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conducted through face-to-face interactions: about 93% of firms sell directly to final consumers

(as opposed to wholesale retailers) and 80% of orders are placed directly through walk-ins by

customers. Very few firms engage in shipping to customers. As firms sell mostly through face-

to-face interactions and do not market their products widely, this suggests that firms lack the

means to attract customers to their location. Therefore, by locating on large roads, firms may

gain visibility to potential customers driving down the road. The evidence from our survey is

thus consistent with the productivity benefits of being located near major roads arising mainly

from better access to customers.

6.2 Managers Sort to More Polluted (Higher Demand) Locations

Having established that managers face a trade-off, we study where they locate within the city.

We use a version of equation 3 to show that managers sort to more polluted and higher demand

locations,. The results are shown in Table 5.38

On the extensive margin, in columns 1 and 2 the dependent variable is a dummy equal to

one if the grid cell has at least one firm. We regress this on the median road size in the cell

(column 1) and the average residual pollution in the cell (column 2). The results show that

cells with larger roads and more polluted grid cells are more likely to have at least one firm.

We find similar results when looking at the intensive margin. Columns 3-4 use as outcome

the log of the firm density in the cell, and regress this again on the median road size in the cell

and on the average residual pollution in the cell. Both columns show positive and significant

estimates. Column 3 shows that an increase in median road size of one unit is associated with

an increase in firm density of 13 percent. Column 4 shows that a 1% increase in pollution

residual is associated with a 0.3% increase in firm density. In column 7, we show that this

result is robust to running the regression at the level of the individual pollution measurement.

Note again that in all these specifications we are controlling for sub-county fixed effects and

distance from the center of the major city in the region. Therefore, these results show that

within the city, firms sort into the more polluted areas with better road access. This pattern

can be appreciated visually in Figures 2 and 4, which plot grid cells, roads and firms for one

of our sampled sub-counties. The figures clearly show that firms cluster along the major roads,

and that these areas are more polluted.

Managers reveal to choose locations to access customers. Our survey provides direct

evidence that firms choose to locate in the more polluted areas of town as these provide better

38Through the lenses of the model, the previous section established that there exists a trade-off between
choosing a location with lower pollution or higher productivity. This section shows that managers, both high-
and low-skilled, tend to sort to locations with relatively higher pollution. Of course, in practice, there is variation
in the location that managers choose, as some managers pick the low pollution location due to factors outside
our model, such as proximity to their home. This variation allows us to estimate the empirical regressions.
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access to customers. We designed our survey to study the location choice of managers, and

thus we asked all firms that relocated or considered relocating in the previous year a question

on the reasons for their location choice. Managers were given a list of 18 possible reasons and

were asked to select up to 3 main reasons for their location choice39. Panel B of Table 4 shows

the share of managers reporting each potential reason among their top reasons. To limit the

number of rows in the table, we report the three most common options selected by managers,

and then the options related to pollution, for comparability. The table shows that: (i) access to

customers is the most important reason driving location choice, with more than one in two firms

selecting it among their top choices; (ii) in contrast, avoidance of air pollution is not a major

reason for location choice, with less than 10% of firms reporting it among their top choice (the

relevance of exposure to water and solid pollution is even lower). This provides direct evidence

that firms locate on busy (and polluted) roads to access customers.40

Finally, Figure 7 lists the main constraints to growth reported by firms in our survey, and

we see that lack of demand is the main constraint. This highlights that small firms struggle to

access demand in this context, which then justifies why access to demand considerations are

the main reasons driving their location choice. On the other hand, Table 4 makes clear that

firms do not take pollution exposure into account in their location choice, hence they do not

try to avoid it.

Interpreted through the lenses of the model, these results confirm that the productivity

benefits of locating in more polluted areas outweigh the potential costs resulting from higher

pollution exposure, potentially higher wages due to compensating differentials, and higher rents.

This is consistent with the result from Table 3 that firm profits are higher near larger roads.

Location choice exposes workers to pollution. As firms locate primarily near polluted

roads, this opens up the possibility that workers may be exposed to substantial pollution. As

discussed in Section 2, pollution levels in urban Uganda are high. Our data shows that 83% of

employees in our sample work in areas of the city (i.e., grid cells) with average levels of PM2.5

above the 24-hour fine particle standard recommended by the EPA (35 µg/m3). In addition,

exposure can be exacerbated by the fact that workers in this context operate mostly in the open

air and in the immediate vicinity of the road side. Our survey shows direct evidence of this:

Panel C of Table 4 reveals that 64% of firms produce only outside or mostly outside, and only

16% of firms produce entirely inside. This underscores the importance of understanding the role

of managerial quality in protecting workers from pollution exposure through either avoidance

or adaptation. We turn to this next.

39This information is available for 138 firms (13% of the sample).
40Figure A20 reports the distribution of all 18 possible reasons for location choice. Access to customers is

clearly the primary reason.
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6.3 High-Quality Managers Do Not Avoid Pollution, but Better

Adapt to it

Finally, we study whether high- and low-ability managers react differently to the challenge of

setting up and running a firm in a polluted urban environment.

High-quality managers do not avoid polluted areas. We fail to find any significant

heterogeneity in location choice by managerial quality. We show this in two ways. First, in

Table 3, we already showed that firms in cells with larger roads have similar managerial quality

(column 8). We probe this result further in columns 5 and 6 of Table 5, where we add the

average managerial quality in the cell to the grid-cell level regressions for firm density. The

coefficient on the average managerial quality is small in magnitude and not significant in both

specifications, indicating that the average managerial quality is unrelated to firm density. This

confirms that high ability managers do not differ in their location choices. Seen through the

light of the model, these results imply that the benefits of locating in more polluted (and

productive) areas outweigh the costs of doing so even for high ability managers.

High-quality managers better protect their workers from pollution. Next, we study

whether higher ability managers better adapt to pollution by protecting their workers. The

model makes clear two potential channels leading to this effect: (i) high ability managers may

have a lower marginal cost of adaptation (due to lower credit constraints or higher awareness);

(ii) high ability managers may wish to hire more highly skilled workers due to complementarity

in production, who may demand more protection. We explore both these channels.

We begin by studying whether higher quality managers engage in more physical or organi-

zational investments to protect their workers from pollution. To do so, we estimate firm and

worker level regressions following equation 4, where the standardized index of manager quality

is our key independent variable of interest. As shown in Tables 3 and 5, we notice again that

manager quality does not predict location choices, which justifies looking at the role of manager

quality conditional on location choice.

The dependent variable in column 1 of Table 6 is a dummy equal to one if managers report

providing any protective equipment to their workers, such as masks, to limit exposure to pollu-

tion. As shown by the mean of the dependent variable reported at the bottom of the table, only

5% of managers engage in such investments. The estimates show that a one standard deviation

increase in managerial quality is associated with an increase of 1.9 percentage points in the

probability that the manager provides such equipment to their workers, a result significant at

the 1% level. That is, the probability of providing protective equipment to workers increases

by 40% relative to the mean.
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In columns 4 to 7 we focus on organizational strategies to limit pollution exposure. Specifi-

cally, workers were asked if avoiding pollution on the commuting route was an important reason

why they could arrive late at work and/or may leave work early (columns 4 and 5), and if man-

agers allow them flexibility in working hours to avoid being exposed to such pollution (columns

6 and 7). The means of these dependent variables are low: only around 6-13% of workers are

allowed such flexibility by managers. The coefficients on our measures of manager quality are

positive and significant in both cases. For instance, column 6 shows that a one standard devi-

ation increase in managerial quality leads to an increase in the probability that workers report

being granted flexibility in commuting by 5.6 percentage points, or 42% relative to the mean.

While in columns 4 and 6 we do not control for worker characteristics, in columns 5 and 7

we add a host of employee controls to disentangle whether this effect is driven by differential

sorting of workers to higher quality managers or by higher quality managers actually treating

their workers differently.41 Our coefficient of interest is remarkably stable when employee-level

controls are added, which confirms that the results are more consistent with higher quality

managers treating their workers differently. At the end of this section, we perform additional

checks to show that the role of sorting in explaining our results is limited. This reinforces the

conclusion that the differential investments of high quality managers in protecting their workers

are a direct result of their ability as managers.

In columns 8 and 9 we create a dummy equal to one if the worker reported that their

manager is careful in trying to avoid exposing them to pollution. Again, we find a positive

and significant coefficient on our index of managerial quality in these regressions, which is very

stable when employee level controls are included.

Taken together, these results show that while investments by managers in protecting workers

are overall low, higher quality managers are better able to protect their workers from pollution

exposure.42 Interestingly, this is not just the consequence of higher quality managers having

more financial resources to purchase protective equipment; rather, it also reflects the adoption

of different organizational strategies to time production and employee commute such that peaks

in road traffic and hence pollution levels, are avoided. This is consistent with higher quality

managers being better aware of the negative consequences of pollution on worker productivity.

Finally, it is worth noting that columns 4-9 of the table are obtained from a survey of

workers, and do not use, apart from the independent variable (i.e., the index of managerial

ability), any information provided by managers. Therefore, our results cannot be contaminated

by any reporting bias correlated with managerial ability. Emphasizing the overall result again,

41Employee controls include the employee’s education, age, age squared, cognitive ability (measured through
a Raven matrices test), tenure (in years), vocational training (dummy). When explicitly noted, we also control
for the employee’s log(salary).

42The low overall level of investment in protecting workers from pollution is consistent with the findings of the
literature on management practices, which shows that managerial quality is substantially lower in developing
countries (Bloom et al. 2013).
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workers that are managed by higher ability manager report to be receiving better protection

from pollution exposure through several means.

Workers employed by better managers take more protective measures. We also

asked workers whether they do anything to protect themselves from air pollution on days when

air quality at the firm premises is bad. If the answer was positive, workers were invited to give

up to three examples of such protective measures. Appendix Figure A21 gives the detail of

workers’ answers. Almost half of the workers report taking protective measures when facing

air pollution. Dominant strategies are wearing a scarf or tissue (more than 25%) and wearing

a mask (about 20%). Notably, very few workers report staying inside the firm premises when

air quality is bad, which is consistent with work being predominantly open air.43 We create a

dummy equal to one if the worker reports taking any protection measure. Columns 2 and 3 of

Table 6 show that employees working for higher ability managers take more protective measures

when facing air pollution. Our coefficient of interest is virtually unaffected by the addition of

employee-level controls, which again confirms that these effects are not driven by sorting.

Finally, we note that our measures of road size are largely insignificant predictors of adap-

tation throughout Table 6, although the coefficients are always positive. This indicates a lack

of significant spatial variation in adaptation within the urban areas in our sample. This is not

surprising because as shown in Figure 1 pollution is high overall throughout these urban areas

(even the 25th percentile of pollution has hourly peaks above 40 micrograms per cubic meter

(not shown), that is above recommended U.S. standards) so that even though actual pollution

levels do vary within these urban areas, the perceived pollution levels deriving for instance from

smell and dust might not vary sufficiently from street to street to result in significant spatial

differences in adaptation.

Employees of higher quality managers are more aware of pollution as a problem.

In Table 7, we study employees’ perceptions of pollution as a problem, and how this varies

by manager quality. The specifications mirror those in Table 6, with odd columns excluding

worker controls and even columns including them.

First, workers were asked how concerned they are with the effects of pollution on the planet

and on their own health. Both questions were asked using a 0-5 likert scale, where higher values

indicate higher concerns about pollution. Columns 1-4 show that employees working for higher

ability managers are significantly more concerned about the effects of pollution on the planet

and on their own health. In columns 5-6 we use as dependent variables the answers to a question

43Appendix Figure A21 also shows that the availability of larger (and more expensive) technologies such as
air cleaners or air conditioners is extremely limited. As the firms in our sample operate at small scale and
mostly open air, this might prevent them from overcoming the fixed costs of purchasing these types of lumpy
equipment. In the context of households, Sun et al. (2017) show that richer individuals in China are more likely
to invest in lumpy pollution-abating technologies such as air filters.
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about whether the worker thought the government should do more on pollution (using a 1-5

scale). We again see positive and significant coefficients on managerial quality. Finally, workers

were asked to indicate the characteristics of their ideal job, selecting from a list which included

also low exposure to pollution as an option. We create a dummy equal to one if workers selected

exposure to pollution among the characteristics of their ideal job, and use this as dependent

variables in columns 7 and 8. We find that workers employed by higher quality managers are

substantially more likely to indicate exposure to pollution among the characteristics of their

ideal job. Interestingly again, the inclusion of employee controls in columns 2, 4, 6 and 8 barely

alters the coefficients on our index of manager quality. This once again suggests that the effects

are driven by higher quality managers being more aware of pollution as a problem and thus

affecting the perceptions of their employees, rather than by differential sorting of workers to

managers of varying quality.

In columns 1 and 2 of Appendix Table A3 we construct a standardized index of all the

outcome variables in Table 7 and use this as dependent variable. We again find a precisely

estimated positive correlation between managerial quality and this index of employee awareness

of pollution. Notably, we fail to find a significant correlation between median road size and this

index of employee awareness, although again the coefficients are positive. This suggests again

that spatial variation in awareness within the city is limited, while the effect of managerial

quality is significant.

Limited role of worker sorting in explaining the results. As discussed above, the

inclusion of worker-level controls in the regressions in Tables 6 and 7 barely affects the coefficient

on the managerial quality dummy. This is consistent with the sorting of workers to managers

not being a driver of the results in these two tables.

We conduct further checks to shed more light on the role of sorting. First, we look for direct

evidence of sorting. We do so in Appendix Table A3, columns 3-8. In columns 3 and 4, the

dependent variable is a measure of employee awareness of pollution that we argue is plausibly

pre-determined with respect to their current employer. That is, each worker was asked whether

low exposure to pollution was an important consideration in deciding where to live.44 We con-

struct a dummy equal to one for those who answered positively to this question, and use this

as dependent variable. The results in columns 3-4 show no evidence of sorting between higher

ability managers and workers based on this (pre-determined) measure of pollution awareness.

Columns 5-8 instead show that there is sorting by age and education.45 The lack of sorting

on our pre-determined measure of employee pollution awareness limits concerns that the spec-

ifications in Tables 6 and 7 with employee controls might capture sorting. Nevertheless, in

4418% of workers report that pollution was an important consideration in their location decision.
45Appendix Table A4 shows that employee age and education do predict awareness as pollution as a problem.
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Appendix Table A5 we verify that the results in Table 6 are robust to controlling for our pre-

determined measure of employee pollution awareness (even columns), as well as to controlling

for our standardized index of employee awareness that combines all the outcome variables in

Table 7 (odd columns). This further reassures us that the results on manager’s adaptation are

not primarily driven by sorting.

7 Conclusion

In developing nations, pollution tends to rise with economic development due to the lack of

environmental regulations to reduce emissions (Grossman and Krueger 1995, Selden and Daqing

1995). During a time when pollution is rising in many growing developing country cities, it is

important to explore who bears the economic incidence of these costs and who can affect it.

Our contribution is to collect new micro data combining high-resolution pollution measurements

with a rich firm-level survey and show that managers can play an important role in mediating

the severity of the health cost of pollution on worker productivity.

Studying the location choice of managers within polluted cities, we show that they face a

trade-off in whether to avoid pollution or maximize profits. Since road traffic bundles product

demand and pollution exposure, we show that managers choose to locate on high-traffic and

polluted roads to maximize access to customers. At the same time, firms are not passive victims

in the face of the threat of pollution exposure, and the extent to which they are able to adapt

depends on the ability of the manager: high ability managers better protect their workers from

pollution, through both equipment and organizational strategies to minimize their exposure.

This result highlights an important, yet overlooked, dimension of welfare inequality across

workers in low income countries: employees who work at the best firms earn higher wages but

also benefit from lower pollution exposure. In addition, this finding has implications for our

understanding of the effects of pollution on aggregate productivity: as those managers who are

better able to adapt are also the most productive ones, this may limit the negative effects of

pollution on industry productivity (Graff Zivin and Kahn 2016).

Our results have several implications for city leaders. First, they highlight one additional

potential benefit of policy interventions aimed at fostering firm growth: as firms grow larger

and become able to separate production and retail activities and to invest in marketing, this

might allow them to break the bundling problem and locate production in less congested and

less polluted areas of the city. Second, industrial parks might help even small firms in breaking

the bundling problem, by allowing a critical mass of small firms to relocate away from congested

areas while still retaining visibility to customers through the scale of the park. Our data shows

that such firm relocation could lead to significant reduction in pollution exposure as there is

substantial variation in pollution within developing country cities. For instance, the average
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employee in our sample works in an area of Kampala where average pollution is about twice

as high as the 24-hour particle standard recommended by the US Environmental Protection

Agency (EPA). If workers could move to an area of Kampala at the 10th percentile of the distri-

bution of pollution, their exposure would drop by two-thirds to levels below the EPA standard.

More generally, infrastructure investments and improvements in land use and transport policies

can help mitigate the negative effects of pollution on worker productivity and welfare.

Finally, our results suggest that information campaigns that increase managers’ awareness

of the negative effects of pollution may prove cost-effective at increasing adaptation. While

there is a vast literature on business training programs in the developing world, evidence on the

impact of interventions to help managers adapt to a polluted environment is missing (McKenzie

and Woodruff 2014). Our results suggest this is a promising avenue for future research. Given

the speed at which pollution is growing in low income countries, evaluating these types of

programs should become a priority in both the academic and policy agendas.
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Figure 1: Hourly Fluctuation in Pollution Within the Day

Notes: Averages (left panel) and medians (right panel) of PM2.5 measurements from our stationary and mobile
monitors are plotted for each hour in Kampala time (GMT +3).

Figure 2: Firm Location and Road Size in a Sampled Sub-County

Notes: Location of firms in our survey and roads for the sampled parish in Nakalama Sub-county (Iganga
District). Road sizes are defined in section 4.4. Grid cell dimensions are 500m x 500m. Sources: Own survey,
OSM Road data.
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Figure 3: Residual Pollution and Road Size in a Sampled Sub-County

Notes: Location of roads, location of pollution measurements from mobile monitors and average pollution
residual per grid cell for the sampled parish in Nakalama Sub-county (Iganga District). Road sizes are defined
in section 4.4 and the computation of pollution residuals is described in section 5.1. Grid cell dimensions are
500m x 500m. Sources: Own measurements, OSM Road data.

Figure 4: Average Residual Pollution, Firm Location and Road Size in a Sampled Sub-County

Notes: Location of firms in our survey, roads and average pollution residual per grid cell for the sampled parish in
Nakalama Sub-county (Iganga District). Road sizes are defined in section 4.4 and the computation of pollution
residuals is described in section 5.1. Grid cell dimensions are 500m x 500m. Sources: Own measurements, OSM
Road data.
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Figure 5: Cyclicality of Pollution During the Day Does Not Match Firms’ Working Hours

(a) Cyclicality of Pollution Levels Throughout the Day

(b) Times of the Day When Production Takes Place

Notes: The top panel shows pollution cyclicality during the day, as measured by our stationary monitors. The
bottom panel shows the share of employees who report working by hour of the day. In our survey, both managers
and employees are asked at what time they started and finished work at the firm during the last day worked.
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Figure 6: Cyclicality of Pollution Does Not Depend on Firm Density

Notes: Avg (PM2.5) is the standardized mean PM2.5 measurement from stationary monitors (top 1% trimmed)
by grid cell and hour. Grid cells with (without) firm correspond to grid cells containing at least one (no) firm
from our initial listing. Normalizing PM2.5 concentrations allows us to focus on pollution cyclicality.

Figure 7: Lack of Demand is the Main Reported Constraint to Firm Growth

Notes: In our survey, managers / owners were asked about the main perceived constraint when thinking about
increasing the profitability of their business. Managers could choose among a list of 14 possible constraints,
indicating up to three constraints. For each potential constraint, we report the share of firms that listed it
among the top three most important ones. We only report in the graph the six most common constraints.
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Table 1: Firm Descriptives

All Sectors

Number of firms 1027
Carpentry (%) 49.3
Metal fabrication (%) 37
Grain milling (%) 13.7
Panel A: Firm characteristics
Number of employees 4.9
Monthly revenues (USD) 1481
Monthly profits (USD) 243.6
Firm age (years) 10.1
Panel B: Owner characteristics
Owner is male (%) 96.1
Owner age (years) 40.3
Owner years of education 10
Owner hours usually worked per day for the firm 9.2
Panel C: Employee characteristics
Employee is male (%) 98
Employee age (years) 28.5
Employee years of education 9.3
Employee tenure (years) 3.5
Employee hours usually worked per day for the firm 9.9
Employee monthly wage (USD) 71

Notes: Descriptive statistics across firms in our firm survey. Firm, owner and employee characteristics are
reported in Panels A, B and C, respectively. Statistics for the average firm are shown. Monetary amounts,
originally in UGX, are converted to USD using the exchange rate 1 USD = 3,800 UGX.
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Table 2: Correlation Between Road Size and Pollution

(1) (2) (3) (4)
Avg log(Pollution) Resid. Avg log(Pollution) Resid. log(Pollution) Resid. log(Pollution) Resid.

Median Road Size 0.0774∗∗∗ 0.0708∗∗∗

(0.0118) (0.0161)

Closest Road Size 0.0988∗∗∗ 0.0597∗

(0.0156) (0.0334)
N 972 972 52965 52965
R2 .3516 .1636 .1591 .0334
Fixed Effects Subcounty Subcounty
Level of Observation Grid Cell Grid Cell Poll. measure Poll. measure
SE clustering SHAC SHAC Grid Cell Grid Cell

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). SHAC standard
errors are Bartlett (spatial weighting kernel decaying linearly in distance) and the distance cutoff for spatial
correlation is 5km. We control for log distance to the main city in the region. In regressions at the grid cell
level, we control for whether the grid cell contains any road (dummy), whether the grid cell is incomplete
(i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed area. The top and
bottom one percent of pollution residuals are trimmed. Regressions at the pollution measure level have the same
geographical coverage than regressions at the grid cell level and include a dummy for whether observations are
in our main surveyed area. Road size goes from 1 (Trail/Track) to 5 (Highway). The procedure to construct
pollution residuals is detailed in section 5.1.
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Table 3: Benefits of Locating on Large (and Polluted) Roads

(1) (2) (3) (4) (5) (6) (7) (8)
log(Rev/Worker) log(Rev) log(Profit/Worker) log(Profit) log(Salary) log(Salary) log(Rent) Man. Score

Med. Road Size/Cell 0.0672∗∗ 0.136∗∗∗ 0.0815∗∗ 0.148∗∗∗ 0.0308∗ 0.0260∗ 0.106∗∗∗ 0.0542
(0.0317) (0.0316) (0.0327) (0.0325) (0.0158) (0.0152) (0.0287) (0.0375)

Man. Score 0.191∗∗∗ 0.292∗∗∗ 0.132∗∗∗ 0.237∗∗∗ 0.0881∗∗∗ 0.0844∗∗∗ 0.0745∗∗

(0.0276) (0.0296) (0.0278) (0.0310) (0.0191) (0.0191) (0.0296)

log(Size Premises) 0.0499∗∗

(0.0212)
N 977 976 967 967 2272 2272 654 950
R2 0.418 0.450 0.483 0.537 0.316 0.392 0.475 0.187
Sector FE Yes Yes Yes Yes Yes Yes Yes Yes
Sub-county FE Yes Yes Yes Yes Yes Yes Yes Yes
Level of Observation Firm Firm Firm Firm Employee Employee Firm Firm
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell
Employee Controls No Yes

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). Man. Score is a standardized index of managerial ability
constructed using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region and whether the grid cell contains
any road. We also control for whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed
area. Employee controls include education, age, age squared, vocational training (dummy), cognitive ability (measured through a Raven matrices test),
employee tenure. We control for missing managerial score (dummy) and missing employee controls (dummy). The top and bottom one percent of all
monetary dependent variables are trimmed. Road size goes from 1 (Trail/Track) to 5 (Highway).
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Table 4: Descriptives on Access to Demand and Location Choice

Share (%)
Panel A: Access to demand and customers
(a) Marketing strategies
Owner spends money on marketing 6.6
Owner talks directly to customers 59.6
Owner does nothing 21.5
(b) Sales characteristics
Orders by phone 17.2
Orders from walk-in consumers 79.5
Sales to final customers 92.8
Shipping to final customers 16
Panel B: Reasons for location choice
Closeness to customers / market 52.5
Affordable rent / land price 40
Closeness to a good transportation network 32.4
Low exposure to air pollution 9.6
Low exposure to water pollution 2.2
Low exposure to solid waste pollution 1.5
Panel C: Production location
Firm produces only outside 39.7
Firm produces mostly outside 24.4
Firm produces sometimes outside 20.1
Firm produces only inside 15.7

Notes: Panel A describes the average firm’s marketing strategies and business practices, using the full sample
of firms in our survey. Firms that had relocated (or considered to relocate) their premises in the previous year
(138 firms) were asked the reasons for their location choice. Panel B gives the share selected as top 3 out of 18
potential reasons for location choice asked in the survey. The three top rows correspond to the most common
reasons. The three bottom rows correspond to the environmental-related reasons. Panel C gives details on
production location, again using the full sample of firms in our survey.
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Table 5: Correlation Between Pollution, Road Size, and Firm Density

(1) (2) (3) (4) (5) (6) (7)
Any Firm Any Firm log(Firm Density) log(Firm Density) log(Firm Density) log(Firm Density) log(Firm Density)

Median Road Size 0.0391∗∗ 0.131∗∗∗ 0.121∗∗∗

(0.0170) (0.0449) (0.0451)

Avg log(Pollution) Residual 0.202∗∗∗ 0.269∗ 0.243∗

(0.0536) (0.143) (0.136)

Avg Man. Score 0.0137 0.0111
(0.0659) (0.0676)

log(Pollution) Residual 0.164∗∗∗

(0.0454)
N 972 972 420 420 420 420 57569
R2 .2981 .3048 .4422 .4365 .4877 .4825 .4683
Fixed Effects Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty
Level of Observation Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Poll. Measure
SE clustering SHAC SHAC SHAC SHAC SHAC SHAC Grid Cell

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). SHAC standard errors are Bartlett (spatial weighting kernel
decaying linearly in distance) and the distance cutoff for spatial correlation is 5km. Man. Score is a standardized index of managerial ability constructed
using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region. In regressions at the grid cell level we also
control for whether the grid cell contains any road, whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it
is in our main surveyed area. In columns 5 and 6, we also control for missing managerial score (dummy). The top and bottom one percent of pollution
residuals are trimmed. Regressions at the pollution measure level have the same geographical coverage than regressions at the grid cell level. Road size
goes from 1 (Trail/Track) to 5 (Highway). The procedure to construct pollution residuals is detailed in section 5.1.
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Table 6: Correlation Between Manager Quality and Protective Investments

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Poll Equipment Own Protect Own Protect Late Commute Late Commute Flex Commute Flex Commute Managers Careful Managers Careful

Median Road Size/Cell 0.00207 0.0125 0.0133 0.0130∗ 0.0133∗ 0.0135 0.0139 0.0151 0.0139
(0.00603) (0.0146) (0.0145) (0.00773) (0.00748) (0.0136) (0.0134) (0.0118) (0.0119)

Man. Score 0.0194∗∗∗ 0.0456∗∗ 0.0450∗∗ 0.0284∗∗∗ 0.0249∗∗∗ 0.0556∗∗∗ 0.0499∗∗∗ 0.0654∗∗∗ 0.0601∗∗∗

(0.00687) (0.0180) (0.0184) (0.00890) (0.00869) (0.0148) (0.0142) (0.0151) (0.0153)
N 1000 2045 2045 2020 2020 2002 2002 1959 1959
R2 0.105 0.197 0.210 0.0836 0.100 0.173 0.194 0.140 0.148
Fixed Effects (1) Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fixed Effects (2) Yes Yes Yes Yes Yes Yes Yes Yes Yes
Level of Observation Firm Employee Employee Employee Employee Employee Employee Employee Employee
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell
Employee Controls No Yes No Yes No Yes No Yes
Mean(dependent var) .047 .523 .523 .056 .056 .132 .132 .21 .21
Answer scale Dummy Dummy Dummy Dummy Dummy Dummy Dummy Dummy Dummy

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). Man. Score is a standardized index of managerial ability
constructed using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region and whether the grid cell contains
any road. We also control for whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed
area. Employee controls include education, age, age squared, vocational training (dummy), cognitive ability, employee tenure and log wage. We control for
missing managerial score (dummy) and missing employee controls (dummy). Road size goes from 1 (Trail/Track) to 5 (Highway). The dummy dependent
variables are defined as follows: Poll Equipment is equal to 1 if any anti-pollution excludable technology or equipment (e.g., masks) is provided at the firm;
Own Protect is equal to 1 if the employee reports doing anything to protect herself against air pollution ; Late Commute is equal to 1 if the employee
reports that avoiding pollution on the commuting route is an important reason why she may arrive (leave) late (early) at work ; Flex Commute is equal
to 1 if the employee reports that her manager allows her to come in or leave early or late to avoid pollution on the commuting route ; Managers Careful is
equal to 1 if the employee thinks that her employer / manager is careful with trying to avoid exposing her to pollution.
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Table 7: Correlation Between Manager Quality and Employees’ Perceptions of Pollution as a Problem

(1) (2) (3) (4) (5) (6) (7) (8)
Concerned Concerned Concerned Concerned Gov Gov Ideal Job Ideal Job
Poll Planet Poll Planet Poll Health Poll Health Address Poll Address Poll Low Poll Low Poll

Median Road Size/Cell 0.0511∗ 0.0518∗ -0.00558 -0.00569 0.00252 0.000615 0.0252∗ 0.0281∗∗

(0.0284) (0.0286) (0.0376) (0.0368) (0.0335) (0.0334) (0.0131) (0.0127)

Man. Score 0.274∗∗∗ 0.254∗∗∗ 0.227∗∗∗ 0.211∗∗∗ 0.0897∗∗ 0.0957∗∗ 0.0693∗∗∗ 0.0603∗∗∗

(0.0327) (0.0319) (0.0476) (0.0462) (0.0446) (0.0415) (0.0151) (0.0146)
N 2045 2045 2044 2044 2045 2045 2045 2045
R2 0.167 0.188 0.187 0.204 0.123 0.135 0.133 0.161
Fixed Effects (1) Yes Yes Yes Yes Yes Yes Yes Yes
Fixed Effects (2) Yes Yes Yes Yes Yes Yes Yes Yes
Level of Observation Employee Employee Employee Employee Employee Employee Employee Employee
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell
Employee Controls No Yes No Yes No Yes No Yes
Mean(dependent var) 3.964 3.964 3.735 3.735 4.043 4.043 .298 .298
Answer scale 1-5 1-5 0-5 0-5 1-5 1-5 Dummy Dummy

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). Man. Score is a standardized index of managerial ability
constructed using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region and whether the grid cell contains
any road. We also control for whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed
area. Employee controls include education, age, age squared, vocational training (dummy), cognitive ability, employee tenure and log wage. We control for
missing managerial score (dummy) and missing employee controls (dummy). Road size goes from 1 (Trail/Track) to 5 (Highway). The dependent variables
are defined as follows: the employee is asked how concerned she is about the effects of air pollution on the health of the planet (cols 1, 2); to what extent
she is concerned about the effects of air pollution on her own health (cols 3, 4); to what extent she agrees that the government should do more to promote
and encourage a better air quality even if her taxes have to go up slightly (cols 5, 6); and whether her ideal job features low levels of air pollution (cols 7,
8).
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A Appendix

A.1 Managerial Ability Index

We develop a composite index of managerial ability largely in line with the methodology used

in McKenzie and Woodruff (2017) and de Mel et al. (2019). The index comprises of several

component scores including scores for marketing, stock, recording, financial and forecasting

abilities of firm owners/managers.46 We use a standardized index of the sum of these component

parts, where the total sum ranges from a minimum of -1 to a maximum of +27.

• The marketing score ranges from a minimum score of 0 to a maximum score of +7 (with

0 indicative of the lowest possible attainment in this category). The score is calculated

by adding one point for each of the following activities that the business may have im-

plemented in the three months preceding the date of the survey (unless explicitly stated

otherwise):

1. The firm owner/manager visited at least one competing firm to see what prices they

were charging.

2. The firm owner/manager visited at least one competing firm to find out what prod-

ucts they had available for sale.

3. The firm owner/manager spoke with existing customers to ascertain if there were

other products they would like the firm to sell or produce,

4. The firm owner/manager asked any of their former customers why they stopped

buying from the business.

5. The firm owner/manager asked any of the company’s suppliers which products were

selling well in the sector.

6. The firm owner/manager attracted new customers by providing special offers.

7. The firm spent any money in marketing/advertising its products in the past six

months.

• The stock score ranges from a minimum of -1 to a maximum of +2. One point is subtracted

(-1) if the owner/manager reports that the firm ran out of goods, inputs, or materials at

least once a month (specifically, that this occurred weakly more than three times in the

three months preceding the survey). One point is added (+1) if the owner/manager ever

tried to negotiate a lower price with a supplier of material inputs in the past three months.

A point is also added (+1) if the owner/manager asked at least one alternate domestic or

46Our approach differs from de Mel et al. (2019) in some areas, particularly with regard to calculations of the
recording score, the financial score and the forecasting score.
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foreign supplier (whom the firm was not sourcing from at the time of the interview) for a

price quotation any time over the past year.

• The recording score ranges from a minimum score of 0 to a maximum score of +7. The

score is calculated by adding one point for each of the following business practices reported

at the time of the survey:

1. The firm owner/manager kept written track of the performance of the business, in

terms of its output, revenues and profits.

2. The firm owner/manager maintained written records of every input purchased and

every product sold by the business.

3. The owner/manager reported they were able to infer how much cash on hand the

firm has at any point in time using the written records.

4. The owner/manager regularly utilized the firm’s written records to monitor if the

sales of a particular product were increasing or decreasing from one month to the

next.

5. The owner/manager typically worked out the costs of each main product sold by the

firm.

6. The owner/manager maintained a written budget with records of how much was owed

each month for rent, electricity, equipment maintenance, transport, advertising, and

other indirect costs.

7. The owner/manager kept written records that would allow one to gauge how much

money was left each month after paying off business expenses, which could be used

as documentation to apply for a loan.

• The financial score ranges from 0 to +6, and is calculated as follows:

1. Add up to three points depending on how frequently the owner or manager reports

having reviewed the firm’s financial performance. That is, add 0 if the respondent

reports “never” and +1, +2 or +3 if he/she answers “once a year”, “two or three

times per year” or “monthly or more often”, respectively.

2. As above, add up to three points depending on how frequently the owner/manager

compares the firm’s performance to a sales target (if any).

• The forecasting score ranges from a minimum score of 0 to a maximum of +5. The score

is calculated by adding one point for each of the following activities reported by the firm

owner/manager at the time of the survey:

1. The firm had set a target for sales over the forthcoming year.
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2. The firm had a budget of the likely costs it would incur over the next year.

3. The firm maintained an annual profit and loss statement.

4. The firm kept an annual statement of its cash flow.

5. The firm had an annual balance sheet.

Appendix Figure A1 shows the distribution of our raw managerial ability index for all firms

in our survey. There is considerable overlap of the managerial ability index distribution across

sectors.47 In our analysis we standardize the managerial ability index across all firms in our

sample.

Figure A1: Managerial Ability Index Distribution

Notes: This figure shows the distribution of our managerial ability index for all firms in our survey (not
standardized).

47The average ([Q25, Q75]) raw managerial ability score index is 11.6 ([8, 16]) for carpentry, 11.9 ([8, 16]) for
metal fabrication and 12.6 ([7, 18]) for grain milling.
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A.2 Grid Construction and Robustness Checks

As described in Section 5.2, we adopt a grid cell approach in order to create neighborhood-

level measures of firm density, pollution and road size. Do do so, we draw a rectangle (grid)

containing 500m x 500m cells covering all 179 urban and semi-urban parishes in our 52 sampled

sub-counties, as well as all neighboring parishes containing at least one surveyed firm.

By default in the software used to generate the grids, the bottom-left grid cell matches the

bottom-left corner of the smallest rectangle covering these sampled parishes. The grid starting

point (i.e., coordinates of the bottom-left corner) may mechanically affect the aggregation of

firms, pollution and road measures at the grid cell level. To address the arbitrariness of such

starting point, we check that our results are robust to alternative starting points of the covering

grid. More specifically, to mirror the software default, we build one grid such that the top-right

corner (as opposed to the bottom-left corner) of the smallest rectangle covering these parishes

matches a full grid cell, as well as 30 random starting points for the covering grid. Among these,

we also highlight results for the randomized grid with the largest average and median grid cell

area, to ensure that our results are robust when the distribution of grid cell areas is closest to

the ideal one, i.e., the one where all grid cells have a size of exactly 500m x 500m. Of course,

we note that reaching the ideal distribution is not possible given that the area of the sampled

parishes cannot be divided exactly in grid cells by 500m x 500m. We present below our main

coefficients susceptive of being affected by these changes. Overall, we see that our main results

are robust to these alternative starting points for the calculation of the grid cells.

Figure A2: Average log pollution residual/cell on median road size/cell (Table 2, col 1)

Notes: We run the specification in Table 2, Column 1 for different starting points of the covering grid. The red
square is the estimate from our main specification. The blue triangle corresponds to the mirroring specification
as described in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average
and median grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other
randomly picked starting points for the grid. 90% and 95% confidence intervals are displayed.
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Figure A3: Log(profit/worker) on median road size/cell (Table 3, col 3)

Notes: We run the specification in Table 3, Column 3 for different starting points of the covering grid. The red
square is the estimate from our main specification. The blue triangle corresponds to the mirroring specification
as described in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average
and median grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other
randomly picked starting points for the grid. 90% and 95% confidence intervals are displayed.

Figure A4: Managerial ability index on median road size/cell (Table 3, col 8)

Notes: We run the specification in Table 3, Column 8 for different starting points of the covering grid. The red
square is the estimate from our main specification. The blue triangle corresponds to the mirroring specification
as described in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average
and median grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other
randomly picked starting points for the grid. 90% and 95% confidence intervals are displayed.
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Figure A5: Log firm density per grid cell on median road size and average managerial score
(Table 5, col 5)

Notes: We run the specification in Table 5, Column 5 for different starting points of the covering grid. The red
square is the estimate from our main specification. The blue triangle corresponds to the mirroring specification
as described in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average
and median grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other
randomly picked starting points for the grid. 90% and 95% confidence intervals are displayed.

Figure A6: Log firm density per grid cell on average log pollution residual (Table 5, col 6)

Notes: We run the specification in Table 5, Column 6 for different starting points of the covering grid. The red
square is the estimate from our main specification. The blue triangle corresponds to the mirroring specification
as described in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average
and median grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other
randomly picked starting points for the grid. 90% and 95% confidence intervals are displayed.
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Figure A7: Use of protective equipment in the firm on median road size/cell (Table 6, col 1)

Notes: We run the specification in Table 6, Column 1 for different starting points of the covering grid. The red
square is the estimate from our main specification. The blue triangle corresponds to the mirroring specification
as described in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average
and median grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other
randomly picked starting points for the grid. 90% and 95% confidence intervals are displayed.

Figure A8: Protection of employees from pollution on median road size/cell (Table 6, Index)

Notes: We run the specification in Table 6 for different starting points of the covering grid. The red square is the
estimate from our main specification. The blue triangle corresponds to the mirroring specification as described
in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average and median
grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other randomly
picked starting points for the grid. 90% and 95% confidence intervals are displayed. The dependent variable is
constructed as the average of the dependent variables in Table 6, columns 3, 5, 7 and 9 capturing employees’
exposure to air pollution.
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Figure A9: Employee pollution awareness on median road size/cell (Table 7, Index)

Notes: We run the specification in Table 7 for different starting points of the covering grid. The red square is the
estimate from our main specification. The blue triangle corresponds to the mirroring specification as described
in Appendix A.2. The orange cross corresponds to the randomized grid with the largest average and median
grid cell area as described in Appendix A.2, and black crosses represent coefficients for the 29 other randomly
picked starting points for the grid. 90% and 95% confidence intervals are displayed. The dependent variable -
Pollution awareness at the firm - is a normalized average of the dependent variables in Table 7 (mean 0, sd 1).
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A.3 Additional Tables and Figures

Figure A10: Average Annual Pollution Over Time in Selected Countries

Source: World Bank
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Figure A11: Vehicle Registrations Over Time in Uganda

Notes: Annual number of first registrations for motorcycles (left panel) and motor-vehicles (right panel) from
2013 to 2019. The number of new motorcycle registrations has been sharply increasing since 2016. The number
of newly registered motor-vehicles peaked in 2017. Source: Uganda Revenue Authority (URA).

Figure A12: Average Vehicle Age at Registration Over Time

Notes: Average vehicle age at first registration in the country for motorcycles (left panel) and motor vehicles
(right panel). The 2018 ban on imports of motor vehicles older than 15 years significantly decreased the average
age of newly registered vehicles. Source: Uganda Revenue Authority (URA).
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Figure A13: Geographical Scope of the Survey

Notes: The figure shows in dark blue the sub-counties in our sample. The figure highlights that our sample
region is scattered across three of the four regions of the country (Central, Eastern and Western).

Figure A14: Stationary and Mobile MonitorsBuilding a citywide air quality network: AirQo experience

14

Building a citywide air quality network: AirQo experience

14

Notes: Photos of AirQo stationary (left panel) and mobile (right panel) pollution monitors.
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Figure A15: Correlation Between Average Stationary and Mobile Monitors’ Measures at the
Sub-county Level

Notes: Sub-county level averages of pollution measurements from mobile and stationary monitors. Source: Own
measurements.

Figure A16: Example of Listing Exercise in One Sampled Sub-County

Notes: The figure shows the location of the firms identified in our initial listing in one sampled sub-county.
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Figure A17: Illustration of Road Definition

Notes: Each color represents a different road as defined in our dataset by a road segment not intersected by
any other road. This grid cell, part of Bugiri Eastern Division, contains eight different roads. The median
average grid cell in our sample contains 6 roads (average 11).

Figure A18: Histogram of Grid Cell Areas

Notes: Distribution of grid cell area in km2 in our data. 3,936 grid cells in total.
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Figure A19: Cyclicality of Pollution Does Not Depend on Firm Density (Restricting to Cells
Containing at Least One Road)

Notes: Avg (PM2.5) is the standardized mean PM2.5 measurement from stationary monitors (top 1%
trimmed) by grid cell and hour. Normalizing PM2.5 concentrations allows us to focus on pollution cyclicality.
The sample is restricted to grid cells containing at least one road.

Figure A20: Reasons for Location Choice

Notes: Firms that had relocated (or considered to relocate) their premises in the previous year (138 firms) were
asked which factors affected their decision of where to set up the firm. They were invited to give up to three
factors. The histogram plots the share of firms in our sample listing the reason as one of the factors affecting
their location choice.
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Figure A21: Workers’ Own Protective Measures Against Pollution

0 .1 .2 .3 .4 .5
Employees' Own Protections Against Pollution

Air Conditioning Car

Air Conditioning

Change Transportation

Air Cleaner

Herbal Remedies

Allergy Medication

Stay Inside

Medicine

Other

Mask

Scarf/Tissue

Nothing

Notes: Workers were asked whether they do anything to protect themselves from air pollution on days when air
quality at the firm premises is bad. If the answer was positive, they were invited to give up to three examples.
The histogram plots the share of workers in our sample listing a given protective measure as part of their
strategy. About half of the workers take protective measures against pollution, and the dominant strategies
are to use a scarf, tissue or mask. Less than 4% of workers address air pollution by staying inside the firm’s
premises.

62



Table A1: Kilometers by Road Size

Road Type Corresponding Size Sample (Grid) Uganda
Length (km) Share Length (km) Share

Motorway 5 8 0.003 55 0
Primary Road 4 669 0.24 1288 0.011

Secondary Road 3 502 0.18 3049 0.025
Tertiary Road 2 547 0.196 11786 0.097
Track / Trail 1 1059 0.38 104763 0.866

Total 2786 1 120940 1

Notes: This table presents summary statistics about the number of kilometers per road type and the corre-
sponding share of total kilometers, both for the country as a whole and for our sampled area (grid). Our sample
contains 2,786 km of roads, or about 2 percent of Ugandan roads, and roads are larger in our sample than in the
rest of the country: 24 percent of the roads in our sample are primary roads and only 28 percent are classified
as track/trail, while the corresponding figures for the country as a whole are 1 and 87 percent, respectively.
Reflecting our sampling strategy, this shows that our sample is more urban, and therefore denser, than the
average Ugandan geographic area. Kilometers of road per road size, both for our sampled area (grid) and the
whole country. Source: Open Street Map (OSM).
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Table A2: Benefits of Locating on Polluted Roads

(1) (2) (3) (4) (5) (6) (7) (8)
log(Rev/Worker) log(Rev) log(Profit/Worker) log(Profit) log(Salary) log(Salary) log(Rent) Man. Score

Avg log(Poll) Resid./Cell 0.228∗ 0.252∗ 0.261∗ 0.250∗ -0.104 -0.0400 0.00798 -0.0701
(0.135) (0.132) (0.137) (0.129) (0.0731) (0.0651) (0.123) (0.147)

Man. Score 0.179∗∗∗ 0.260∗∗∗ 0.133∗∗∗ 0.196∗∗∗ 0.0639∗∗∗ 0.0569∗∗ 0.0850∗∗

(0.0346) (0.0370) (0.0320) (0.0378) (0.0244) (0.0228) (0.0422)

log(Size Premises) 0.0370
(0.0238)

N 595 601 592 591 1359 1359 410 579
R2 0.357 0.393 0.398 0.441 0.253 0.370 0.406 0.183
Fixed Effects (1) Sector Sector Sector Sector Sector Sector Sector Sector
Fixed Effects (2) Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty
Level of Observation Firm Firm Firm Firm Employee Employee Firm Firm
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell
Employee Controls No Yes

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). Man. Score is a standardized index of managerial ability
constructed using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region and whether the grid cell contains
any road. We also control for whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed
area. Employee controls include education, age, age squared, vocational training (dummy), cognitive ability, employee tenure. We control for missing
managerial score (dummy) and missing employee controls (dummy). The top and bottom one percent of all monetary dependent variables are trimmed.
Road size goes from 1 (Trail/Track) to 5 (Highway). The procedure to construct pollution residuals is detailed in section 5.1.
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Table A3: Correlation Between Manager Quality and Employees’ Pollution Awareness

(1) (2) (3) (4) (5) (6) (7) (8)
Poll Awareness Poll Awareness Poll Awareness Poll Awareness Age Years Schooling Age Years
At The Firm At The Firm At Home At Home Employee Employee Employee Employee

Mean Road Size/Cell 0.0438 0.0460 0.00540 0.00526 0.167 -0.114 0.0942 -0.0962
(0.0331) (0.0326) (0.0113) (0.0114) (0.206) (0.0820) (0.201) (0.0830)

Man. Score 0.293∗∗∗ 0.273∗∗∗ 0.00616 0.0113 0.127 0.209∗∗∗

(0.0338) (0.0330) (0.0165) (0.0156) (0.229) (0.0791)

Age Manager 0.0872∗∗∗

(0.0195)

Years School. Man. 0.0657∗∗∗

(0.0218)
N 2045 2045 2045 2045 2615 2633 2615 2633
R2 0.165 0.182 0.112 0.123 0.165 0.151 0.174 0.150
Fixed Effects (1) Sector Sector Sector Sector Sector Sector Sector Sector
Fixed Effects (2) Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty
Level of Observation Employee Employee Employee Employee Employee Employee Employee Employee
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell
Employee Controls No Yes No Yes No No No No
Mean(dependent var) 0 0 .175 .175 27.59 9.13 27.59 9.13

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). Man. Score is a standardized index of managerial ability
constructed using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region and whether the grid cell contains
any road. We also control for whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed
area. Employee controls include education, age, age squared, vocational training (dummy), cognitive ability, employee tenure and log wage. We control for
missing managerial score (dummy) and missing employee controls (dummy). The top and bottom one percent of pollution residuals are trimmed. Road
size goes from 1 (Trail/Track) to 5 (Highway). The dummy dependent variables are defined as follows: Poll Awareness - At the Firm is a normalized
average of the dependent variables in Table 7 (mean 0, sd 1). Poll Awareness - At Home is a dummy variable equal to one if the employee reports that air
pollution, solid water pollution or water pollution have affected her home location choice.
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Table A4: Correlation Between Employees’ Characteristics and Perceptions of Pollution as a Problem

(1) (2) (3) (4)
Concerned Poll Planet Gov Address Poll Ideal Job Low Poll Concerned Poll Health

Years Schooling 0.0298∗∗∗ -0.000325 0.000942 0.0163
(0.00834) (0.0100) (0.00374) (0.00990)

Age 0.0120 -0.00816 -0.0133∗∗ 0.0163
(0.0141) (0.0199) (0.00591) (0.0157)

Age2 -0.0000739 0.000124 0.000215∗∗∗ -0.000106
(0.000198) (0.000288) (0.0000806) (0.000217)

Vocational Training (Dummy) 0.113 0.0355 -0.0132 0.194∗∗

(0.0757) (0.0951) (0.0348) (0.0800)
N 2045 2045 2045 2044
R2 0.112 0.113 0.115 0.167
Fixed Effects (1) Sector Sector Sector Sector
Fixed Effects (2) Subcounty Subcounty Subcounty Subcounty
Level of Observation Employee Employee Employee Employee
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell
Mean(dependent var) 3.964 4.043 .298 3.735
Answer scale 0-5 1-5 Dummy 0-5

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). We control for log distance to the main city in the region.
The dependent variables are defined as follows: the employee is asked how concerned she is about the effects of air pollution on the health of the planet;
to what extent she is concerned about the effects of air pollution on her own health; to what extent she agrees that the government should do more to
promote and encourage a better air quality even if her taxes have to go up slightly; and whether her ideal job features low levels of air pollution.
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Table A5: Correlation Between Manager Quality, Employees’ Pollution Awareness and Protective Investments

(1) (2) (3) (4) (5) (6) (7) (8)
Own Own Late Late Flex Flex Managers Managers

Protect Protect Commute Late Commute Commute Commute Careful Careful
Mean Road Size/Cell 0.0106 0.0126 0.0120 0.0133∗ 0.0116 0.0140 0.0126 0.0138

(0.0141) (0.0141) (0.00735) (0.00749) (0.0132) (0.0134) (0.0121) (0.0119)

Man. Score 0.0290 0.0436∗∗ 0.0160∗ 0.0249∗∗∗ 0.0369∗∗∗ 0.0503∗∗∗ 0.0514∗∗∗ 0.0599∗∗∗

(0.0189) (0.0181) (0.00862) (0.00866) (0.0140) (0.0143) (0.0155) (0.0153)

Log Salary 0.00491 0.0113 0.0149∗ 0.0171∗ 0.0422∗∗∗ 0.0450∗∗∗ 0.0462∗∗ 0.0484∗∗∗

(0.0246) (0.0254) (0.00867) (0.00888) (0.0145) (0.0146) (0.0183) (0.0183)

Poll Awareness - At The Firm 0.0585∗∗∗ 0.0319∗∗∗ 0.0476∗∗∗ 0.0309∗∗

(0.0155) (0.00645) (0.00956) (0.0126)

Poll Awareness - At Home 0.127∗∗∗ 0.00415 -0.0346 0.0161
(0.0370) (0.0164) (0.0247) (0.0326)

N 2045 2045 2020 2020 2002 2002 1959 1959
R2 0.221 0.218 0.117 0.100 0.211 0.195 0.153 0.149
Fixed Effects (1) Sector Sector Sector Sector Sector Sector Sector Sector
Fixed Effects (2) Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty Subcounty
Level of Observation Employee Employee Employee Employee Employee Employee Employee Employee
SE clustering Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell Grid Cell
Employee Controls Yes Yes Yes Yes Yes Yes Yes Yes
Mean(dependent var) .523 .523 .056 .056 .132 .132 .21 .21
Answer scale Dummy Dummy Dummy Dummy Dummy Dummy Dummy Dummy

Notes: Standard errors are displayed in parentheses (* p < 0.10, ** p < 0.5, *** p < 0.01). Man. Score is a standardized index of managerial ability
constructed using our survey (see Appendix A.1 for details). We control for log distance to the main city in the region and whether the grid cell contains
any road. We also control for whether the grid cell is incomplete (i.e., <500m x 500m), its area, as well as a dummy for whether it is in our main surveyed
area. Employee controls include education, age, age square, vocational training (dummy), cognitive ability, employee tenure and log wage. We control for
missing managerial score (dummy) and missing employee controls (dummy). The top and bottom one percent of pollution residuals are trimmed. Road
size goes from 1 (Trail/Track) to 5 (Highway). The dummy dependent variables are defined as follows: Own Protect is equal to 1 if the employee reports
doing anything to protect herself against air pollution ; Late Commute is equal to 1 if the employee reports that avoiding pollution on the commuting route
is an important reason why they may arrive (leave) late (early) at work ; Flex Commute is equal to 1 if the employee report that their manager allows
her to come in or leave early or late to avoid pollution on commuting route ; Managers Careful is equal to 1 if the employee thinks that her employers /
managers are careful with trying to avoid exposing her to pollution. Poll Awareness - At the Firm is a normalized average of the dependent variables in
Table 7 (mean 0, sd 1). Poll Awareness - At Home is a dummy variable equal to one if the employee reports that air pollution, solid water pollution or
water pollution have affected her home location choice.
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