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Abstract

We propose and experimentally test a theory of strategic behavior in which players are

cognitively imprecise and perceive the state of the world with noise. We focus on 2× 2

regime change games. When players observe the state precisely and this is common

knowledge, there are multiple equilibria. However, when players are cognitively impre-

cise, each player holds a slightly different perception of the state and this transforms

the game into one of incomplete information. Relying on arguments from the global

games literature, we show that small perceptual noise can select a unique equilibrium.

When combined with a further assumption of efficient coding, this prediction delivers

our main testable hypothesis: the amount of noise with which players implement the

unique equilibrium strategy is increasing in the ex-ante volatility of the state of the

world. We find strong empirical support for this prediction in a pre-registered exper-

iment. For a given state, the distribution of observed actions depends systematically

on the environment to which players’ perceptual systems have adapted. Our results

suggest that the theory of global games can potentially be applied even in the pres-

ence of precise public information (e.g., market prices) because of players’ cognitive

imprecision. More broadly, our framework offers a cognitive foundation for models of

imperfect best response (e.g., QRE).
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1 Introduction

Over the past decade, economists have begun investigating the effects of cognitive impreci-

sion on individual decision-making (see Woodford 2020 for a review). This agenda proposes

that the decision-maker’s perception of the economic environment does not coincide with

the objective environment, due to information processing constraints in the brain. To date,

the emphasis of cognitive imprecision in economics has largely been in the domains of choice

under risk and intertemporal choice. For example, even when the decision-maker has linear

utility and perfectly patient time preferences, theoretical models with cognitive imprecision

can generate as-if risk aversion (Khaw, Li and Woodford, Forthcoming) and as-if time dis-

counting (Gabaix and Laibson, 2017). Initial experimental tests in both the domains of

risky choice and intertemporal choice have produced encouraging results (Enke and Grae-

ber, 2019; Gershman and Bhui, 2020; Khaw, Li and Woodford, Forthcoming; Frydman and

Jin, Forthcoming).

Motivated by this growing evidence from the domain of individual decision-making, it is

natural to ask whether cognitive imprecision also affects strategic behavior. This line of in-

quiry is important not only to test whether cognitive imprecision extends into other economic

domains, but also because imposing psychologically-grounded restrictions on perception can

affect equilibrium predictions. Indeed, in many regime change games that are used to model

bank runs, currency attacks, and revolutions, there can be multiple equilibria — especially

when each player perceives the state of the world with perfect precision1 However, as pointed

out by Woodford (2020), if one adds a small amount of cognitive imprecision to the model,

so that each player has a slightly different perception of the state, then coordination becomes

more difficult and multiplicity breaks down. Thus, perceptual noise may prove useful in se-

lecting a unique equilibrium. This line of reasoning follows directly from the vast literature

on global games, with the important distinction that, here, we interpret the noise as arising

1For examples of regime change models in these domains, see Diamond and Dybvig (1983), Obstfeld
(1996), Morris and Shin (1998), Atkeson (2000), Goldstein and Pauzner (2005), and Edmond (2013).
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from perceptual errors, rather than from more traditional sources of asymmetric information

(Carlsson and Van Damme, 1993; Morris and Shin, 2003; Angeletos and Lian, 2016).

In this paper, we theoretically develop and experimentally test the hypothesis that per-

ceptual noise systematically affects behavior in games. The hypothesis enables us to apply

standard results from the global games literature, without explicitly introducing private in-

formation. Specifically, we analyze a 2× 2 simultaneous move game of regime change where

players can choose to invest or not in an asset. If both players invest, the regime changes.

Each player’s payoff depends on the value of a fundamental and on the action of the other

player. While theory predicts multiple equilibria for a range of fundamental values in the

complete information version of the game, a small amount of perceptual noise implies the

existence of a unique equilibrium: each player invests if and only if the fundamental crosses

a threshold. Our experimental design is optimized to test this prediction.

Several previous experimental studies have found empirical support for the global games

prediction that the probability of investing is monotonic in the fundamental (Heinemann,

Nagel and Ockenfels, 2004, 2009; Cabrales, Nagel and Armenter, 2007; Szkup and Trevino,

2020; Goryunov and Rigos, 2020). However, our interpretation of noise in the global games

model as stemming from perceptual constraints generates a novel testable hypothesis, which,

if validated, should make the results from the global games literature more broadly applica-

ble. Specifically, we assume a particular type of cognitive imprecision in our model, called

efficient coding. This assumption delivers sharp predictions about context-dependent percep-

tion, and hence behavior. Thus, if our experimental results are consistent with the stronger

assumption of efficient coding, then this provides evidence for (the weaker assumption of)

cognitive imprecision, which is the key ingredient for generating a unique equilibrium.

Roughly speaking, efficient coding posits that the distribution of perceptual noise is op-

timally adapted to the decision-maker’s environment. This principle implies that, when a

fundamental parameter is drawn from a symmetric and unimodal distribution, a player’s

perceptual resources are optimally allocated towards perceiving more accurately those fun-
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damentals close to the mean of the distribution, since a bulk of the density is concentrated

near the mean. But when the distribution becomes wider — so that fundamentals are more

volatile — perceptual resources are then optimally readjusted away from the center of the

distribution; thus, at least for values near the mean of the distribution, there is an increase

in cognitive imprecision.2

To test this hypothesis, we conduct a pre-registered experiment in which subjects are

randomly matched into pairs and play a regime change game, in each of three hundred

rounds. The game is characterized by the value of a fundamental parameter, which is

clearly displayed to both subjects on each round as a two-digit Arabic numeral, such as

“48”. We rely on subjects’ inherent cognitive imprecision to transform this “public” signal

into a private signal, owing to idiosyncratic perceptual errors. The perceptual error, of

course, induces uncertainty over the fundamental; but, more importantly, it also induces

strategic uncertainty over the other player’s action, which is key to breaking the multiplicity

of equilibria. In order to provide a targeted test of cognitive imprecision as the source of

private information, we manipulate the volatility of the fundamental across a high volatility

and a low volatility condition. Under efficient coding, this manipulation should endogenously

change the amount of noise in a subject’s perceived value of the fundamental.

Our data are consistent with the hypothesis that subjects perceive the fundamental pa-

rameter with imprecision. We also find clear evidence supporting the stronger hypothesis of

efficient coding in the regime change game, which manifests as a context-dependent proba-

bility of investing. Specifically, we observe that the probability of investing is monotone in

the fundamental, and we find that this monotonic relationship is significantly stronger in the

low volatility condition than in the high volatility condition. Importantly, this result holds

when restricting to the same set of games, i.e., those games characterized by a fundamental

in a fixed range. In light of our model, we interpret the observed treatment effect as a conse-

2Such an assumption has been validated in many papers on sensory perception (Girshick et al., 2011;
Wei and Stocker, 2015; Payzan-LeNestour and Woodford, Forthcoming) and in economic decision making
(Polania, Woodford and Ruff, 2019; Frydman and Jin, Forthcoming).
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quence of more accurate perception of fundamentals in the low volatility condition. Further

evidence comes from the distribution of response times, which indicates that subjects make

decisions significantly more quickly when they are adapted to the low volatility distribution

of fundamentals.

We emphasize that, in both conditions, the strong monotonic relationship that we observe

between fundamentals and investing is not predicted under the complete information version

of the game. As such, the data suggest that even when subjects receive no explicit private

signals from the experimenter, private information is inherent in the game because subjects

encode the fundamental with idiosyncratic perceptual noise. Our results offer an explana-

tion for earlier experimental papers on regime change games which, surprisingly, find little

difference in behavior when manipulating the provision of private information (Heinemann,

Nagel and Ockenfels, 2004; Van Huyck, Viriyavipart and Brown, 2018).3 Such a result can

be explained when one takes a broader view of the potential sources of private information

to also include perceptual errors.

Because our experimental tests are based on equilibrium predictions, one important and

implicit assumption we make is that subjects are aware of their own perceptual noise and

that of their opponent. Although this assumption is much weaker than the assumption of

common knowledge of the noisy signal technology that is usually invoked in global games, it

is important for the equilibrium arguments to follow.4

To investigate the validity of this assumption, we conduct a second experiment, where

subjects are asked to classify whether a two-digit number is greater than a reference level

3Moreover, when discussing an experiment where there is no explicit private information about payoffs,
Heinemann, Nagel and Ockenfels (2009) argue that “Of course, players know the true payoff. Their uncer-
tainty about others’ behavior makes them behave as if they are uncertain about payoffs” (p. 203). Our
results indicate that it may well be the case that subjects do not know the true payoff. Heinemann, Nagel
and Ockenfels (2009) also estimate the standard deviation of as if private signals in their experimental data
and find that the model implies a fairly large standard deviation; one interpretation of their result is that a
portion of the large estimate of noise in private signals is driven by errors in perceiving the fundamental.

4Morris, Shin and Yildiz (2016) show that a weaker assumption of “common certainty of uniform rank
beliefs” is sufficient to deliver the standard global games result. In our case of a 2× 2 symmetric game, this
assumption states that each player assigns probability 1/2 to the other player’s signal being greater than his
own.
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of 55 (which is chosen to be the same as the threshold in the unique equilibrium of the

regime change game from our first experiment). We then incentivize subjects to report their

beliefs about their own accuracy and the accuracy of the average of all other subjects in the

experiment. We find that subjects do report that they are aware of their own errors and of the

errors of others in the classification task. Moreover, subjects are aware that discriminating

between a number close to the threshold, say “54”, is harder than discriminating between a

number far from the threshold, say “47.” This property has been shown theoretically to have

important implications for equilibrium selection (Morris and Yang, 2019), and has recently

been formalized in the rational inattention literature using a so-called “neighborhood cost

function” (Hébert and Woodford, Forthcoming). The data from our second experiment

therefore provide novel evidence supporting the assumption that subjects are aware that

nearby states are systematically harder to distinguish compared to far-away states.

In our regime change game experiment, we emphasize that the fundamental is represented

by a two-digit Arabic numeral that is clearly displayed to both subjects. Thus, any cognitive

imprecision that we observe in the experiment is likely to be a lower bound on the imprecision

in perceiving more complex, but publicly available, stimuli in the field (e.g., market prices).

This is important because previous theoretical work has shown that the amount of noise in

public signals, relative to that in private signals, determines whether there exists a unique

equilibrium (Morris and Shin, 2003; Angeletos and Werning, 2006; Hellwig, Mukherji and

Tsyvinski, 2006).

The remainder of the paper proceeds as follows: Section 2 presents the model and derives

the theoretical predictions for our experimental manipulation. Sections 3 and 4 describe the

experimental design and report the experimental results for Experiment 1 (the regime change

game) and Experiment 2 (the number classification task), respectively. Section 5 discusses

some assumptions of our theoretical framework and its connection with existing behavioral

game theory models. Section 6 concludes.
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2 Model

Here we provide a theory of strategic interaction in which a game payoff is perceived impre-

cisely but also efficiently, according to the principle of efficient coding (Barlow, 1961; Wei

and Stocker, 2015; Khaw, Li and Woodford, Forthcoming; Frydman and Jin, Forthcoming).

The bulk of our theoretical results depend only on the assumption of cognitive imprecision;

as we discuss in more detail below, the assumption of efficient coding provides us with an

identification strategy in the experiment to test the source of noisy behavior. Here we il-

lustrate the implications of the theory in a 2 × 2 simultaneous-move game which, for some

parameters, captures the essential features of a coordination game. Consider the following

game

Not Invest Invest
Not Invest θ, θ θ, a

Invest a, θ b, b

Table 1: The Game

where b > a. In what follows, we always assume that a and b are perceived precisely

by both players, and we are interested in the effects of imprecise coding of θ.5 In Section

2.1, we assume that θ is perceived precisely by both players. In Sections 2.2 and 2.3, we

introduce imprecise coding of θ and investigate the consequences for strategic behavior and

equilibrium outcomes.

2.1 Precise Coding

First, we consider the game where θ is perceived precisely by both players. This is a game

of complete information, which has the following Nash equilibria:

5Our assumption that a and b are perceived without noise can be justified, for example, through a
learning mechanism. In our experiment, we keep a and b constant across all rounds, so the amount of noise
in perceiving a and b is arguably minimal.
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• If θ > b, then Invest is a strictly dominated action for each player, and (Not Invest,

Not Invest) is the unique Nash (and dominant strategy) equilibrium.

• If θ < a, then Not Invest is a strictly dominated action for each player, and (Invest,

Invest) is the unique Nash (and dominant strategy) equilibrium.

• If a ≤ θ ≤ b, then there are two Nash equilibria in pure strategies, (Not Invest, Not

Invest) and (Invest, Invest), and a Nash equilibrium in mixed strategies.

When a ≤ θ ≤ b, one of the two pure Nash equilibria is risk dominant. In particular,

according to Harsanyi and Selten (1988), (Not Invest, Not Invest) risk-dominates (Invest,

Invest) if Not Invest is associated with the largest product of deviation losses (and vice

versa). It follows that (Not Invest, Not Invest) risk dominates (Invest, Invest) if and only if

(θ − a)2 > (b − θ)2. To illustrate the predictions of the complete information game using a

particular example, we assign values to a and b that we also use in our experiment:

Example 1 Assume a = 47, b = 63. Then, if θ > 63, (Not Invest, Not Invest) is the

unique Nash equilbrium; if θ < 47, (Invest, Invest) is the unique Nash equilibrium; and if

47 ≤ θ ≤ 63, there are two Nash equilibria in pure strategies, (Not Invest, Not Invest) and

(Invest, Invest). When θ ∈ [47, 55), the risk dominant Nash equilibrium is (Invest, Invest)

and when θ ∈ (55, 63], the risk dominant Nash equilibrium is (Not Invest, Not Invest).

In summary, when players are endowed with the ability to perfectly perceive all payoffs,

and thus there is common knowledge of θ, theory predicts multiple equilibria when θ takes

on values in the intermediate range, 47 ≤ θ ≤ 63.

2.2 Imprecise Coding

Suppose now that players perceive θ with noise. This assumption is backed up by a large

literature in numerical cognition, which finds that people encode numerical quantities with
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noise, even when the quantities are presented symbolically (see Dehaene 2011 for a review).

Suppose further that the distribution of noisy signals, conditional on θ, is common knowledge.

Assumption 1 (Cognitive Imprecision) Each player has a common prior that θ is dis-

tributed normally: θ ∼ N (µθ, σ
2
θ). Moreover, each player i, i = {1, 2}, observes a noisy

internal representation of θ, Si = θ + εi, where each εi is independently and normally dis-

tributed: εi ∼ N (0, σ2
S). This is common knowledge.

The specific way in which we model the variance of the noisy internal representation

has two implications that are worth noting. First, the literature on numerical cognition

typically imposes an assumption that larger numbers are perceived with more noise (so that,

for example, σ2
S scales linearly with θ). For analytical tractability, we assume σ2

S is constant

in θ. Second, Assumption 1 implies that σ2
S does not vary with the distribution of θ. In

Section 2.3, we relax this restriction in order to allow θ to be efficiently coded, as a function

of the distribution of θ.

Given Assumption 1, we follow the global games literature and restrict our analyses to

monotone equilibria of this incomplete information game; that is, equilibria in which actions

are monotonic in the internal representation, Si. In a monotone equilibrium, players’ mu-

tual best response is to choose Invest if and only if their internal representation is below a

threshold k?. Adapting results from the global games literature (Carlsson and Van Damme,

1993; Morris and Shin, 2003; Morris, 2010) to the game in Table 1, with the further assump-

tion that µθ = (a + b)/2 (as in our experiment), we can establish there exists a monotone

equilibrium such that player i invests if and only if Si ≤ µθ, for any value of σθ and σS.

Furthermore, if the noise in the internal representation is sufficiently small, then this is the

unique monotone equilibrium.

Proposition 1 (Equilibrium Existence and Uniqueness) Suppose Assumption 1 and

µθ = (a + b)/2. There exists an equilibrium of the game where each player invests if and
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only if Si ≤ µθ (or, equivalently, E[θ|Si] ≤ µθ). Moreover, if
σ2
θ

√
2σ2
θσ

2
S+σ4

S

(b−a)σ2
S

√
σ2
θ+σ2

S

> 1√
2π

, this is

the unique monotone equilibrium of the game.

Proposition 1 implies a particular set of comparative statics with respect to θ. Specifically,

the probability of investing is pinned down by the distribution of the internal representation:

Pr[Invest|θ] = Pr [Si ≤ µθ|θ] = Φ
(
µθ−θ
σS

)
, where Φ(·) is the cumulative density function of

the standard normal. This result indicates that, in the unique monotone equilibrium, the

probability of investing is monotonically decreasing in θ. Moreover, once the noise in internal

representation is sufficiently small relative to σθ (so that the conditions in Proposition 1 are

satisfied), the probability of investing does not depend on the prior volatility, σθ.

Corollary 1 (Comparative Statics on θ and σθ) Assume the conditions in Proposition

1 are satisfied. In the unique monotone equilibrium, the probability that each player invests

for a given value of θ is Pr[Invest|θ] = Pr [Si ≤ µθ|θ] = Φ
(
µθ−θ
σS

)
. This probability is

decreasing in θ and does not change with the variance of the distribution of θ.

Note that, in deriving Proposition 1, we assumed common knowledge of the distribution of

internal representations. However, precise knowledge of the underlying information structure

is not necessary for this equilibrium to arise. As we show in Appendix B, it is enough to

assume that (i) µθ = (a + b)/2, (ii) E[εi] = 0, (iii) the distribution of εi is symmetric,

quasiconcave and independent of the realized value of θ, and (iv) the distribution of θ is

symmetric and continuous on R. Figure 1 summarizes the behavioral prediction of our

theory of cognitive imprecision.

2.3 Imprecise and Efficient Coding

In this section, we continue to assume that players have imprecise perception, but we now

allow the noisy internal representation to adapt to the player’s environment. There is sub-

stantial empirical evidence, mainly from the literature on sensory perception, which demon-

strates that the distribution of noisy internal representations is optimally adapted to the
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Figure 1: Predicted Probability of Investing as a Function of θ with Imprecise Coding. Note:
a = 47, b = 63, θ ∼ N(55, σθ), σS = 20; the prediction is the same for any value of σθ > 0.

statistical regularities of the environment. This principle is called efficient coding, and re-

cent work has empriically documented effects of efficient coding in economic choices (Polania,

Woodford and Ruff, 2019; Frydman and Jin, Forthcoming). Here, we make the assumption

that efficient coding operates in a strategic setting.

When modeling efficient coding, one needs to take a stand on (i) the constraints imposed

by the perceptual system and (ii) the objective function of the decision-maker. We follow

the model of efficient coding from Khaw, Li and Woodford (Forthcoming), which assumes

that the perceptual system is constrained in encoding the value θ, and must use a noisy

internal representation, Si = m(θ) + εi, where m(θ) is an encoding function. Furthermore,

the encoding function is assumed to be linear, m(θ) = ξ+ψθ, and there is a channel capacity

constraint, E[m2] ≤ Ω2.

Turning to the player’s performance objective, we assume the player minimizes the mean

squared error between θ and its estimate.6 With the additional assumption of a lognormal

prior, Khaw, Li and Woodford (Forthcoming) show that, as the volatility of the prior distri-

bution increases, so does the amount of noise in the internal representation. In Appendix C,

6In this environment, our interpretation is that the minimization process, and the generation of noisy
signals, is performed unconsciously by the perceptual system.
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Figure 2: Predicted Probability of Investing as a Function of θ with Efficient Coding. Note:
The blue line denotes the prediction for a low volatility distribution with θ ∼ N(55, 20); the
red line denotes the prediction for a high volatility distribution with θ ∼ N(55, 400); we set
the following parameter values: a = 47, b = 63, and ω = 1.5.

we confirm this result holds for the normal prior distribution that players hold in the game

we analyze. For the purpose of analyzing strategic behavior, the important elements of our

efficient coding assumptions are summarized by:

Assumption 2 (Efficient Coding) The precision of the internal representation depends

on the distribution of θ. In particular, the standard deviation of the internal representation

is proportional to the standard deviation of θ, that is, σS = ωσθ, where ω > 0.

At an intuitive level, efficient coding implies that perceptual resources are allocated so

as to better discriminate between different values of θ that are expected to occur more

frequently under the player’s prior beliefs. Specifically, as the volatility of the prior decreases,

perceptual resources are reallocated towards a narrower range. A key testable prediction

of this theory is that manipulating σθ affects the optimal encoding rule and, thus, the

noise in implementing the equilibrium monotone strategy of the game analyzed above. This

prediction is summarized in the following proposition:

Proposition 2 (Comparative Statics on θ and σθ with Efficient Coding) Suppose As-

sumption 1, Assumption 2, µθ = (a+ b)/2, and
√
ω(1 + ω) <

√
6π

(b−a)
σ2
θ . In the unique mono-
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tone equilibrium of the game, we have that Pr[Invest|θ] = Φ
(

55−θ
ωσθ

)
. Thus, increasing the

precision of the distribution of θ (that is, 1/σθ) increases the sensitivity of choices to θ (that

is, the rate at which Pr[Invest|θ] decreases with θ) for values of θ close to µθ.

Under our assumption of efficient coding, theory predicts that, in equilibrium, the prob-

ability of investing will depend not only on θ, but also on the prior distribution from which

θ is drawn. Thus, if we experimentally manipulate the volatility of the prior, we should see

that, in the unique equilibrium of the game obtained when ω is sufficiently small, the proba-

bility of investing is more sensitive to θ when the prior volatility is smaller. This prediction

is shown in Figure 2, and motivates our experimental design.

3 Experiment 1: Simultaneous-Move Game

3.1 Experimental Design

In this experiment, we test the model by incentivizing subjects to play a simultaneous-

move game, and we manipulate the distribution that generates the fundamental payoff, θ.

We pre-register the experiment and recruit 300 subjects from the online data collection

platform, Prolific.7 We restrict our sample to subjects who (i) were UK nationals and

residents, (ii) did not have any previous “rejected” submissions on Prolific, and (iii) answered

all comprehension quiz question correctly. Subjects were paid 2 GBP (∼ 2.8 USD) for

completing the experiment, and they had the opportunity to receive additional earnings

based on their choices and the choices of other participants.

The experiment consists of 300 rounds, and each subject participates in all rounds. In

each round, a subject is randomly matched with another subject and, together, they play

the simultaneous-move game in Table 1. In all rounds, we set the payoff parameters a = 47

and b = 63. The only feature of the game that varies across rounds is the value θ, which is an

i.i.d. draw from the condition-specific distribution f(θ). We do not provide subjects with any

7The pre-registration document is available in Appendix E.
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feedback on their opponent’s decision in each round, nor do we provide any feedback about

their payoff in a given round. We chose not to provide interim feedback for two reasons: (i)

to shut down learning about a subject’s opponent and (ii) to analyze behavior in each round

as a one-shot game.8 At the end of the experiment, one round was selected at random, and

subjects were paid according to the number of points they earned in that round, which in

turn, depended on their action, their opponent’s action, and the (round-specific) value of θ.

Points were converted to GBPs using the rate 20:1. The average duration of the experiment

was ∼ 25 minutes and average earnings, including the participation fee, were ∼ 5.5 GBP

(∼ 7.7 USD).

Subjects were randomized into one of two experimental conditions: a high volatility

condition or a low volatility condition, which differ only based on the distribution of θ.

In the high volatility condition, f(θ) is normally distributed with mean 55 and variance

400. In the low volatility condition, f(θ) is normally distributed with mean 55 and variance

20. In both conditions, after drawing θ from its respective distribution, we round θ to the

nearest integer, and we re-draw θ if the rounded value is less than 11 or greater than 99. We

implemented these modifications to the normal distribution in order to control complexity

and ensure that θ is a two-digit number in each round. We do not give subjects any explicit

information about f(θ) in the instructions, as our intention is to test whether a subject’s

perceptual system can adapt to the statistical properties of the environment without explicit

top-down information. Indeed, subjects read the same instructions and are asked the same

questions in the comprehension quiz in both conditions.9

Recall that, in the complete information version of the game that subjects face, there are

multiple equilibria when θ is in the range, [47, 63]. We therefore focus our analyses on games

8While subjects do not receive explicit feedback about their opponent’s choice, it is still possible that
they learn about the strategic environment through repeated exposure to the game, as in Weber (2003)
and Rick and Weber (2010). Indeed, we find evidence that response times decrease over the course of the
experiment, a signature pattern of learning. Part of these learning effects are likely due to the general
strategic environment, but we also find that some learning takes place over the distribution of f(θ). We
discuss this further in Section 3.2. Table 3 in Appendix D shows that results are robust to focusing on
subsamples where subjects have the same experience with the same game (i.e., θ) in both conditions.

9The experimental instructions are available in Appendix E.
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Figure 3: Sample Screenshot Shown to Participants in Experiment 1. Note: In this round,
the realized value of θ is 45, which is clearly and explicitly displayed to both subjects.
Subjects choose either “Option A” or “Option B” by pressing one of two different keys on
the keyboard.

for which θ lies in this range, which occurs on 93% of rounds in the low volatility condition

and on 31% of rounds in the high volatility condition. We pre-register that our main analyses

are restricted to those rounds for which θ is in [47, 63], which we call “common rounds.” This

is a crucial feature of our design, because it allows us to compare behavior across conditions,

using the exact same set of games, and varying only the context — which is characterized by

the distribution of possible games.10 In choosing the variance of f(θ) for each condition, we

thus struck a balance between generating a substantial number of common rounds to analyze,

and creating a large difference in prior variance across conditions; the latter is necessary to

generate different predictions across conditions. As outlined in our pre-registration, we also

exclude the first 30 rounds from our analyses, in order to allow subjects time to adapt to

the distribution of θ.

Figure 3 provides a screenshot of a single round shown to subjects. In order to avoid

framing effects, we label the two options “Option A” and “Option B”, and the left-right

location of each option is randomized across rounds. The number “45” is the realized value

10In the original Carlsson and Van Damme (1993) paper on global games, the authors conclude that their
uniqueness result is “driven by the fact that, in a global game, the uncertainty forces the players to take
account of the entire class of a priori possible games. . . ” Here, we experimentally manipulate the distribution
of possible games, which we think of as varying the context of the game.
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of θ on the specific round shown in Figure 3. We emphasize that while the number is clearly

displayed to all subjects, and thus would traditionally be interpreted as public information,

here we rely on cognitive imprecision to transform the fundamental value into private infor-

mation. In other words, we assume that the constraints on a subject’s perceptual system

make it impossible to perfectly perceive the fundamental value. Under the hypothesis of

efficient coding outlined in the model section, we expect the amount of imprecision to vary

endogenously with the distribution of θ in each condition. Thus, we use efficient coding

to identify cognitive imprecision, which is the core mechanism that generates the unique

equilibrium structure in the game.

3.2 Experimental Results

Choice Behavior

Following our pre-registration, we restrict our analysis to common rounds in which subjects

made a decision with a response time greater than 0.5 seconds. After applying this restriction,

we are left with 50,129 decisions, of which 73.0% are in the low volatility condition and

27.0% are in the high volatility condition. Across both conditions, subjects choose to invest

on 58.9% of rounds, and exhibit an average response time of 1.64 seconds.

In Figure 4, we plot the probability of investing as a function of the fundamental, sep-

arately for the two experimental conditions. One can see that, in both conditions, the

aggregate data are consistent with the hypothesis that subjects implement strategies that

are monotone in θ. This finding is consistent with previous experimental results on coor-

dination games (Heinemann, Nagel and Ockenfels, 2004, 2009; Szkup and Trevino, 2020).

Importantly, the aggregate data are inconsistent with a discrete jump in the probability of

investing at any level of the fundamental (assuming all subjects use the same threshold);

rather there is a smooth and decreasing relationship between the probability of investing and

the fundamental. This is important because the noisy perception of the fundamental is what

generates the prediction of a (noisy) threshold strategy at the subject level, and the amount

16



46 48 50 52 54 56 58 60 62 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Low Volatility
High Volatility

Figure 4: Observed Probability of Investing as a Function θ. Note: For each value of θ
between 47 and 63, we plot the proportion of rounds in which a subject chooses to invest,
separately for each of the two experimental conditions. Data are pooled across subjects and
are shown for rounds 31-300, after an initial 30-round adaptation period. Vertical bars across
each dot denote two standard errors of the mean. Standard errors are clustered by subject.

of noise is reflected in the shape of the psychometric curve. Thus, in both conditions, the

aggregate data are consistent with cognitive imprecision.

In order to provide a more targeted test of cognitive imprecision, we exploit the varia-

tion in the distribution of θ across our two experimental conditions. Specifically, efficient

coding predicts systematically different behavior across conditions, and any evidence of effi-

cient coding necessarily implies some degree of cognitive imprecision in subjects’ perception.

Consistent with the hypothesis of efficient coding, we see from Figure 4 that the probability

of investing is more sensitive to the fundamental in the low volatility condition, compared

to the high volatility condition.

To formally test the difference in slope, we estimate a series of mixed effects logistic
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Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.458∗∗∗ -0.467∗∗∗ -0.577∗∗∗ -0.481∗∗∗

(0.033) (0.039) (0.051) (0.037)

(θ − 55) x Low -0.499∗∗∗ -0.351∗∗∗ -0.487∗∗∗ -0.374∗∗∗

(0.063) (0.059) (0.076) (0.061)

Low -0.182 -0.335 -0.170 -0.275

(0.386) (0.343) (0.423) (0.360)

Late -0.022

(0.121)

(θ − 55) x Late 0.013

(0.021)

Low x Late 0.092

(0.154)

Low x (θ − 55) x Late -0.065∗

(0.034)

Constant 1.351∗∗∗ 1.316∗∗∗ 1.465∗∗∗ 1.292∗∗∗

(0.221) (0.224) (0.222) (0.229)

Observations 50,129 13,196 12,861 25,864

Rounds 31-300 31-100 231-300 31-100

+ 231-300

Table 2: Mixed Effects Logistic Regression Results. Note: The dependent variable takes
value 1 if the subject chooses to Invest, and 0 otherwise. The variable Low takes the value
1 if the round belongs to the low volatility condition and 0 otherwise. The variable Late
takes the value 1 if the round is 231 or beyond, and 0 otherwise. Only data from rounds
where 46 < θ < 64 are included. There are random effects on (θ − 55) and the intercept.
Standard errors of the fixed effect estimates are clustered at the subject level. ***, **, *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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regressions. Column (1) of Table 2 confirms our main result: the coefficient on the interaction

term (θ − 55) x Low is significantly negative, indicating that the probability of investing

decreases in the fundamental more rapidly when a subject is adapted to the low volatility

condition. Columns (2) and (3) show that this result holds within early (first 70 trials

after adaptation) and late (last 70 rounds of the session) subsamples. Column (4) indicates

that the treatment effect becomes moderately stronger over the course of the experiment.

The strengthening of the treatment effect over the course of the experiment suggests that

subjects have not fully adapted to the distribution by round 100, and additional rounds of

play provide the opportunity for further adaptation.

Response Times

We can also use response times as another source of data to analyze adaptation over the

course of the experiment. Figure 5 shows that, in both conditions, response times (averaged

across subjects) decrease dramatically over the first 50 trials.11 The rapid decrease in re-

sponse times in each condition likely reflects learning about both the strategic environment

and the distribution of θ. Evidence for learning about the distribution of θ comes from the

fact that there is a clear separation of the two time series across conditions: response times

are, on average, longer in the high volatility condition. Thus, not only is the probability of

investing more sensitive to the fundamental in the low volatility condition, but decisions are

also executed significantly more quickly over the course of rounds 31− 300 (1.51 seconds vs.

2.01 seconds, p < 0.001).

We can also analyze cross-sectional variation in response times, which illuminates how

response time varies with the fundamental. Figure 6 shows that, in the high volatility condi-

tion, the peak is at 55, whereas in the low volatility condition, the peak is at 54. If subjects

are implementing the unique equilibrium threshold strategy, which involves discriminating

whether the fundamental is above or below 55, then models of sequential sampling from

11We again restrict to common rounds and, thus, there is less data in the high volatility time series, which
is why it appears noisier than the low volatility time series.
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Figure 5: Time Series of Average Response Time. Note: For each condition and round
number, the figure plots the response time averaged across subjects. Data are restricted to
rounds for which 46 < θ < 64

the mathematical psychology literature (Ratcliff, 1978; Krajbich, Armel and Rangel, 2010)

would predict that response times should peak at the predicted threshold of 55, since these

are the most “difficult” discrimination problems. The response time data provide some sup-

port for this prediction. We also see that, in both conditions, there is an uptick in response

times as θ approaches 63. This could, in part, reflect the fact that not all subjects play the

same threshold strategy.

4 Experiment 2: Number Classification Task

4.1 Experimental Design

Because we are relying on cognitive imprecision to endogenously transform the complete

information game into an incomplete information game, our theoretical analysis also assumes
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Figure 6: Average Response Time as a Function of θ. Note: Response times are averaged
across subjects and across rounds. Vertical bars denote two standard errors of the mean.
Standard errors are clustered by subject.

common knowledge of cognitive imprecision. While we cannot directly test the common

knowledge assumption, here we report results from a second experiment that is designed to

investigate whether subjects are at least aware of their own imprecision and the imprecision

of their opponent. If subjects are not aware of cognitive imprecision (either their opponent’s

or their own), this naivete would cast doubt on the mechanism which generates a unique

equilibrium.

Our method for studying awareness of imprecision is to create a simplified version of

the previous experiment, but one that retains the core individual decision-making prediction

that subjects should play a threshold strategy. Specifically, we employ a task from the

numerical cognition literature where subjects are incentivized to quickly and accurately

classify whether a two-digit number is larger or smaller than the number 55. Note that this
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strategy is identical to the theoretical prediction in the unique equilibrium from the previous

experiment; here we exogenously impose the strategy on subjects without any strategic

considerations or equilibrium requirements. We then incentivize subjects to report beliefs

about errors in their own classification and in the classification of others.

For this second experiment, we recruit 300 subjects from Prolific who did not participate

in Experiment 1. We pay subjects 1 GBP for completing the study, in addition to earnings

from three phases of the experiment. In Phase 1, on each of 150 rounds, subjects are

incentivized to quickly and accurately classify whether a two-digit Arabic numeral on the

experimental display screen is larger or smaller than 55. In particular, subjects earned

(1.5 × accuracy − 1 × speed) GBPs, where ‘accuracy’ is the percentage of trials where the

subject classified the number correctly, and ‘speed’ is the average response time in seconds.

As in Experiment 1, there are two conditions, and the only difference across conditions is

the distribution from which the two-digit Arabic numeral is drawn. Furthermore, we use

the same two distributions as in Experiment 1: in the high volatility condition θ is normally

distributed with mean 55 and variance 400; in the low volatility condition, θ is normally

distributed with mean 55 and variance 20. We also round each value of θ to the nearest

integer and re-draw if the rounded integer is less than 11 or greater than 99 (again, to ensure

that each number contains exactly two digits).

In Phase 2, subjects are incentivized to report beliefs about others’ performance in the

task. Not only are we interested in eliciting awareness of imprecision, we also collect data

to test whether subjects believe that others are more imprecise when the number on screen

is closer to the reference level of 55. We implement this latter test because the specific

noise structure in perception plays an important role in generating the unique equilibrium

we explored in the previous experiment; in particular, recent theoretical work has shown

that an important feature of the noise structure in generating a unique equilibrium is that

nearby states are harder to discriminate compared to far away states (Morris and Yang, 2019;

Hébert and Woodford, Forthcoming). To investigate this property of the noise structure,
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we ask subjects to consider the 149 other participants in their experimental condition of the

study, who also just completed Phase 1. We then ask subjects the following two questions:

1. Consider only trials where the number on screen was equal to 47. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

2. Consider only trials where the number on screen was equal to 54. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

For each of the two questions, we pay the subject 0.5 GBP if their forecast is within

1% of the true percentage.12 Question 1 elicits beliefs about others’ imprecision when the

distance between the number is far from the threshold (47 vs. 55), whereas Question 2 elicits

beliefs about others’ imprecision when the distance is close (54 vs. 55). While we could

have asked subjects about their beliefs about others’ imprecision for a range of numbers —

rather than the single numbers 47 and 55 — this would have introduced a confound, since

the distribution of numbers is different across conditions.

In Phase 3, we ask subjects about their own performance on the number classification

task (that they completed in Phase 1). This question is not trivial because we do not provide

subjects with feedback after any round in Phase 1 (nor after the end of Phase 1). Here, we

are also interested in subjects’ awareness of their own imprecision for numbers that are close

and far from the threshold. Specifically, we ask subjects the following two questions:

1. Consider only trials where the number on screen was between 52 and 58. In what

percentage of these trials do you think you correctly classified whether the number was

smaller or larger than 55?

12Following Hartzmark, Hirshman and Imas (Forthcoming), we chose to use this elictation procedure as
opposed to more complex mechanisms such as the Binarized Schoring Rule (BSR) due to recent evidence
showing that the BSR can systematically bias truthful reporting (Danz, Vesterlund and Wilson, 2020).
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2. Consider only trials where the number on screen was less than 52 or greater than 58.

In what percentage of these trials do you think you correctly classified whether the

number was smaller or larger than 55?

For each of these two questions, we again reward subjects with 0.50 GBP if they provide

an answer that is within 1% of their true accuracy. All subjects first go through Phase 1,

and the order of Phase 2 and Phase 3 is randomized across subjects. One concern is that

when asking subjects about their performance in Phase 1, we are testing memory, not ex-

ante beliefs. This is a reasonable concern, and an alternative is to have subjects forecast

their performance before undertaking the classification task. However, in this case, subjects’

classification performance would be endogenous to their beliefs, and would invalidate the

incentive compatibility of our belief elicitation procedure. For this reason, we opted to

implement Phase 1 first for all subjects.

4.2 Experimental Results

We first report results from subjects’ behavior in Phase 1, which are shown in Figure 7. In

the left panel, we replicate the classic results from previous experiments on number discrim-

ination, whereby subjects exhibit errors, and these errors increase as the number on screen

approaches the threshold (Dehaene, Dupoux and Mehler, 1990). Moreover, we see that, for

numbers between 47 and 63, errors are systematically higher in the high volatility condi-

tion (Frydman and Jin, Forthcoming). Similar patterns are reflected in the response times

shown in the right panel of Figure 7: response times increase as the number approaches the

threshold of 55, and response times are systematically longer in the high volatility condition.

The purpose of Phase 1 is to create a dataset about performance, over which we can

ask subjects about their beliefs in Phases 2 and 3. In the left panel of Figure 8, we see

that subjects believe their performance in the classification task exhibits imprecision (that

is, beliefs about accuracy are less than 100%). Moreover, we see that subjects are aware

that mistakes for numbers closer to the threshold (that is, greater than 52 and less than 58)
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Figure 7: Accuracy and Response Times in the Classification Task in Experiment 2. Note:
Left panel shows the proportion of rounds on which subjects correctly classified the stimulus
as greater than or less than the reference level of 55. Right panel shows the average response
time on rounds where subjects correctly classified the stimulus. In both panels, the vertical
bars denote two standard errors of the mean. Standard errors are clustered by subject.

are more likely than on numbers that are farther from the threshold (that is, less than 52 or

greater than 58; p < 0.001). In the middle panel, we see that subjects report similar beliefs

about other subjects’ imprecision; beliefs about others’ errors when discriminating 54 vs. 55

are greater than when discriminating 47 vs. 55 (p < 0.001).

Our data also enable us to test one other feature of beliefs about others’ imprecision. As

outlined in our pre-registration, we test whether beliefs about others’ accuracy on rounds

when θ = 54 is higher for those subjects who experience the low volatility distribution

in Phase 1.13 Such a test investigates the hypothesis that subjects are aware that others’

perception of a given number varies as a function of the experienced distribution. Indeed,

the right panel of Figure 8 shows that, for θ = 54, subjects who experience the high volatility

distribution in Phase 1 report that others make more errors, compared to those subjects who

experience the low volatility distribution in Phase 1 (p = 0.048).

13Pre-registration documents are available in Appendix E.
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Figure 8: Beliefs about Own and Others’ Accuracy in the Classification Task. Note: Panel
(a) shows the average belief about own accuracy for values of θ that are far (θ < 52 or θ > 58)
and close (51 < θ < 59) to the threshold 55. Panel (b) shows the average belief about others’
accuracy for values of θ that are far (θ = 47) and close (θ = 54) to the threshold 55. Panel
(c) shows the average belief about others’ accuracy when θ = 54, split by experimental
condition. In all panels, vertical bars denote two standard errors of the mean.

5 Discussion

As we discussed in Section 2.3, the efficient coding rule we use to model perception is only one

of several plausible specifications (Ma and Woodford, 2020). In particular, there are other

possible objective functions that players may have, besides minimizing the mean squared

error of the estimate of θ. For example, a prominent alternative efficient coding objective

from the literature on sensory perception is to maximize the mutual information between

the state and its noisy internal representation. In Appendix C, we confirm that the coding

rule we use in our model is robust to this alternative objective.

Yet another alternative objective that has been examined in the economics literature is to

maximize expected financial gain. Because we are analyzing perception and decision-making

in a strategic environment, the coding rule that maximizes expected financial gain would

need to incorporate beliefs about the opponent’s actions, and hence, the opponent’s efficient

coding objective. Such a model of efficient coding over the opponent’s perceived value of

fundamentals would entail a variety of additional and substantial assumptions, for which

we currently have little empirical guidance. For this reason, we have opted to maintain
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the assumption that each player’s coding scheme is efficient in the sense of minimizing the

perceptual error of the fundamental.

Throughout the paper, we have highlighted the role that perceptual noise can play in

satisfying the assumptions that generate the classic global games result. However, with

the additional assumption of efficient coding, we have shown both theoretically and experi-

mentally how cognitive imprecision can generate context-dependent behavior in games. Our

framework can thus be seen as offering a potential cognitive foundation for stochastic and

context-dependent choice in games. As such, our results are related to the well-known the-

ory of Quantal Response Equilibrium (McKelvey and Palfrey, 1995, 1998), in which players

stochastically best respond to each other. Interestingly, in the original QRE paper, McKelvey

and Palfrey propose that “to the extent that we can find observable independent variables

that a priori one would expect to be correlated with the precision of these [expected payoff] es-

timates, one can make predictions about the effects of different experimental treatments that

systematically vary these independent variables.” Efficient coding provides one such indepen-

dent variable, which is the volatility of the payoff distribution. In related work, Friedman

(2020) proposes a model that endogenizes the precision parameter in QRE, though it is the

set of payoffs in the current game that determine the precision parameter — rather than the

distribution of payoffs within a class of games, as in our model.

Our results also relate to another behavioral theory of games called Level-k Thinking

(Stahl and Wilson, 1994, 1995; Nagel, 1995). In one version of this theory, there are different

types of players, and each type best responds to another type who exhibits one less degree of

strategic sophistication. For example, a Level-0 type would be characterized by no strategic

sophistication and, thus, would exhibit purely random behavior. A Level-1 type would then

best respond to a Level-0 player, and a Level-2 player would best respond to a Level-1 player,

and so on. What are the predictions of Level-k Thinking for our game? Given that Level-0
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players randomize, the expected utility of a Level-1 player from Invest is

EUL1(Invest) =
1

2
a+

1

2
b

Thus, EUL1(Invest) > EU(Not Invest) if and only if θ < (a + b)/2. Next, under the

assumption that Level-2 players believe they are facing a Level-1 opponent, the expected

utility from Invest for a Level-2 player is

EUL2(Invest) =


b if θ < (a+ b)/2

a if θ > (a+ b)/2

When θ < (a + b)/2, then EUL2(Invest) = b > θ. Conversely, when θ > (a + b)/2, then

EUL2(Invest) = a < θ. Thus, Level-2 players choose Invest if and only if θ < (a + b)/2.

Using the same logic, we obtain the same prediction for all upper levels.

In sum, the fraction of subjects who choose Invest is:

Pr[Invest] =


Pr[L0]1

2
+ (1− Pr[L0]) if θ < (a+ b)/2

Pr[L0]1
2

if θ > (a+ b)/2

where Pr[L0] is the fraction of Level-0 players in the population. The theory therefore

predicts that, in the aggregate, the probability of investing exhibits a sharp decrease at

θ = (a + b)/2. More importantly, Level-k Thinking does not predict any difference across

our experimental treatments; thus the theory would need to be augmented with some extra

feature in order to explain the clear context-dependence we observe in our data.

6 Conclusion

We have provided and experimentally validated a framework for analyzing strategic behav-

ior, when players have imprecise perception of the state of the world. Our results are in line
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with previous experiments on global games, which find evidence consistent with an equilib-

rium where all players invest once the fundamental crosses a threshold (Heinemann, Nagel

and Ockenfels, 2004, 2009; Cabrales, Nagel and Armenter, 2007; Szkup and Trevino, 2020;

Goryunov and Rigos, 2020). At the same time, our experimental data suggest that the pre-

dictions from the global games literature may be more applicable than previously thought.

Even when there is no explicit private information given to players, imprecise perception

can serve as a source of private information. Interestingly, the particular manner in which

we model imprecise perception is closely connected to the noise structure used in the global

games literature to select a unique equilibrium.

We also find empirical evidence of context-dependent strategic behavior, which is consis-

tent with efficient coding. We argue that the unstable strategic behavior that we observe

across experimental conditions is a consequence of the efficient use of cognitive resources.

In our setting of a 2 × 2 regime change game, efficient coding provides a mechanism that

modulates the probability that two players coordinate and play the same action. As such,

the framework we present here may prove useful in serving as a cognitive foundation for

other imperfect best response models in game theory, such as quantal response equilibrium.
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Appendix A: Proofs

Proof of Proposition 1

First, we show that, when the conditions in the statement of the Proposition are satisfied,

there exists a unique monotone equilibrium of the game.

Since the distribution of Si conditional on θ (that is, the likelihood function) is conjugate

to the prior distribution of θ, we have a closed form solution for the distribution of player

i’s posterior beliefs over θ. In particular, player 1’s posterior distribution of θ given S1 is

θ|S1 ∼ N
(

σ2
S

σ2
θ + σ2

S

µθ +
σ2
θ

σ2
θ + σ2

S

S1,
σ2
θσ

2
S

σ2
θ + σ2

S

)
(1)

Thus, we have:

EU [Not Invest|S1] = E[θ|S1] =
σ2
Sµθ + σ2

θS1

σ2
θ + σ2

S

(2)

On the other hand, player 1’s expected utility from investing is

EU [Invest|S1] = a+ (b− a)Pr[Opponent Invests|S1] (3)

Assume player 1 believes his opponent uses a monotone strategy with threshold k. In

this case, player 1’s expectation that the opponent invests is Pr[S2 ≤ k|S1]. Player 1’s

distribution of S2 given S1 is:

S2|S1 ∼ N
(
E[θ|S1] =

σ2
S

σ2
θ + σ2

S

µθ +
σ2
θ

σ2
θ + σ2

S

S1,
2σ2

θσ
2
S + σ4

S

σ2
θ + σ2

S

)
Thus, we have:

Pr[S2 ≤ k|S1] = Φ

(
k
√
σ2
θ + σ2

S√
2σ2

θσ
2
S + σ4

S

− σ2
Sµθ + σ2

θS1√
σ2
θ + σ2

S

√
2σ2

θσ
2
S + σ4

S

)
= Φ

(
(σ2

θ + σ2
S) k − σ2

Sµθ − σ2
θS1√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

)

where Φ(·) is the cumulative distribution of the standard normal.
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Player 1’s best response is to invest if and only if

EU [Not Invest|S1] ≤ EU [Invest|S1, k]

σ2
Sµθ + σ2

θS1

σ2
θ + σ2

S

≤ a+ (b− a)Φ

(
(σ2

θ + σ2
S) k − σ2

Sµθ − σ2
θS1√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

)
(4)

If we write S(k) for the unique value of S1 such that player 1 is indifferent between

investing and not investing (this is well defined since player 1’s expected payoff from not

investing is strictly increasing in S1 and player 1’s expected payoff from investing is strictly

decreasing in S1), the best response of player 1 is to follow a monotone strategy with threshold

equal to S(k), that is, to invest if and only if S1 ≤ S(k).

Observe that as k → −∞ (player 2 never invests), EU [Invest|S1, k] tends to a, so S(k)

tends to
(σ2
θ+σ2

S)a−σ2
Sµθ

σ2
θ

. As k → ∞ (player 2 always invests), EU [Invest|S1] tends to b, so

S(k) tends to
(σ2
θ+σ2

S)b−σ2
Sµθ

σ2
θ

. A fixed point of S(k) — that is a value k? such that S(k?) = k?

— is a monotone equilibrium of the game where each player invests if and only if his signal

is below k?. Since S(k) is a mapping from R to itself and is continuous in k, there exists

k ∈
[

(σ2
θ+σ2

S)a−σ2
Sµθ

σ2
θ

,
(σ2
θ+σ2

S)b−σ2
Sµθ

σ2
θ

]
, such that S(k) = k and a threshold equilibrium of this

game exists.

When is there a unique equilibrium? Define W (S(k), k) as

W (S(k), k) =
σ2
Sµθ + σ2

θS(k)

σ2
θ + σ2

S

− a− (b− a)Φ

(
(σ2

θ + σ2
S) k − σ2

Sµθ − σ2
θS(k)√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

)

At a fixed point, S(k?) = k?. Thus, we have:

W (k?) =
σ2
Sµθ + σ2

θk
?

σ2
θ + σ2

S

− a− (b− a)Φ

(
σ2
S√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

(k? − µθ)

)
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Then,

∂W (k?)

∂k?
=

σ2
θ

σ2
θ + σ2

S

− φ

(
σ2
S√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

(k? − µθ)

)
σ2
S(b− a)√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

And there is a unique fixed point if and only if ∂W (k?)
∂k?

> 0 at the fixed point. When

∂W (k?)
∂k?

< 0, there are at least three fixed points.

Since φ(y) ≤ 1√
2π

, this is a sufficient condition for ∂W (k?)
∂k?

> 0:

σ2
θ

σ2
θ + σ2

S

>
1√
2π

σ2
S(b− a)√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

(5)

σ2
θ

√
2σ2

θσ
2
S + σ4

S

(b− a)σ2
S

√
σ2
θ + σ2

S

>
1√
2π

(6)

√
2π >

(b− a)σ2
S

√
σ2
θ + σ2

S

σ2
θ

√
2σ2

θσ
2
S + σ4

S

(7)

We can find the same sufficient condition if we use implicit differentiation to derive a

condition which guarantees that ∂S(k)
∂k
∈ (0, 1) and, thus, S(k) is a contraction.

∂S(k)

∂k
= − ∂W/∂k

∂W/∂S(k)
=

φ

(
(σ2
θ+σ2

S)k−σ2
Sµθ−σ

2
θS(k)√

2σ2
θσ

2
S+σ4

S

√
σ2
θ+σ2

S

)
(b−a)σ2

θ+(b−a)σ2
S√

2σ2
θσ

2
S+σ4

S

√
σ2
θ+σ2

S

σ2
θ

σ2
θ+σ2

S
+ φ

(
(σ2
θ+σ2

S)k−σ2
Sµθ−σ

2
θS(k)√

2σ2
θσ

2
S+σ4

S

√
σ2
θ+σ2

S

)
(b−a)σ2

θ√
2σ2
θσ

2
S+σ4

S

√
σ2
θ+σ2

S

Note that, since φ(·) ∈ (0, 1), ∂S(k)
∂k

is always positive. It is also less than 1 if the following

condition is satisfied:

σ2
θ

σ2
θ + σ2

S

> φ

(
(σ2

θ + σ2
S) k − σ2

Sµθ − σ2
θS(k)√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

)
(b− a)σ2

S√
2σ2

θσ
2
S + σ4
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√
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S

σ2
θ

σ2
θ + σ2

S

√
2σ2

θσ
2
S + σ4

S

√
σ2
θ + σ2

S

(b− a)σ2
S

> φ

(
(σ2

θ + σ2
S) k − σ2

Sµθ − σ2
θS(k)√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

)
σ2
θ

√
2σ2

θσ
2
S + σ4

S

(b− a)σ2
S

√
σ2
θ + σ2

S

>
1√
2π

(8)

When the condition in equation (8) is satisfied, there exists a constant G < 1 such that
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|∂S(k)/∂k| ≤ G < 1 for all k ∈ R. This means that, when the condition in equation (8) is

satisfied, S(k) is a contraction and, thus, by the Banach fixed point (or contraction mapping)

theorem, S(k) has exactly one solution.

This shows that, when the conditions in the statement of the Proposition are satisfied,

there exists a unique monotone equilibrium of the game.

Second, we show that when Assumption 1 is satisfied and µθ = (a+b)
2

, there exists a

monotone equilibrium of the game where k? = µθ for any value of σθ and σS. When the

third condition from Proposition 1 is satisfied, this is the unique monotone equilibrium of

the game.

Assume player 2 uses a threshold strategy where he invests if and only if S2 ≤ k = µθ. Is

this an equilibrium, that is, is S(µθ) = µθ? S(µθ) is the value of S1 such that the following

equation is satisfied with equality:

σ2
Sµθ + σ2

θS1

σ2
θ + σ2

S

= a+ (b− a)Φ

(
(σ2

θ + σ2
S) k − σ2

Sµθ − σ2
θS1√

2σ2
θσ

2
S + σ4

S

√
σ2
θ + σ2

S

)
σ2
Sµθ + σ2

θS1

σ2
θ + σ2

S

= a+ (b− a)Φ

(
σ2
θµθ − σ2

θS1√
2σ2

θσ
2
S + σ4

S

√
σ2
θ + σ2

S

)

If we set S(µθ) = µθ, we get:

µθ = a+ (b− a)Φ (0)

µθ =
(a+ b)

2

Proof of Proposition 2

The condition
√
ω(1 + ω) <

√
6π

(b−a)
σ2
θ ensures uniqueness of the equilibrium. It is obtained

by replacing σS = ωσθ (Assumption 2) in the condition for a unique monotone equilibrium

from Proposition 1 and re-arranging terms. From Proposition 1 and the condition above,
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we know that there exists a unique monotone equilibrium of the game with imprecise and

efficient cognition where each player invests if and only if the signal he receives is smaller

than µθ. In this equilibrium, Pr[Invest|θ] = Pr [Si ≤ µθ|θ] = Φ
(
µθ−θ
ωσθ

)
and ∂Pr[Invest|θ]

∂θ
=

−φ
(
µθ−θ
ωσθ

)(
1
ωσθ

)
. Thus, Pr[Invest|θ] grows with σθ if θ < µθ and it decreases with σθ is

θ > µθ. Moreover, the sensitivity of choices to θ decreses with σθ for values of θ around the

cutoff.

Indeed, we have

∂Pr [Invest|θ]
∂θ∂σθ

= φ

(
µθ − θ
ωσθ

)(
1

ωσ2
θ

)
+ φ′

(
µθ − θ
ωσθ

)(
µθ − θ
ωσ2

θ

)(
1

ωσθ

)
= φ

(
µθ − θ
ωσθ

)(
1

ωσ2
θ

)
−
(
µθ − θ
ωσθ

)
φ

(
µθ − θ
ωσθ

)(
µθ − θ
ωσ2

θ

)(
1

ωσθ

)
= φ

(
µθ − θ
ωσθ

)(
1

ωσ2
θ

)
− φ

(
µθ − θ
ωσθ

)(
(µθ − θ)2

ω3σ4
θ

)
= φ

(
µθ − θ
ωσθ

)(
ω2σ2

θ − (µθ − θ)2

ω3σ4
θ

)

which is positive if and only if (µθ − θ)2 < ω2σ2
θ .

(In the second line, we used the fact that φ′(x) = −xφ(x).)
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Appendix B: Robustness of Equilibrium with k? = µθ

Let us introduce the following definitions from Chambers and Healy (2012):

Definition 1 A random variable with cumulative density function F and mean µ is sym-

metric if, for every a ≥ 0, F (µ+ a) = 1− limx→a− F (µ− a).

Definition 2 A random variable is quasiconcave (or unimodal) if it has a density function

f such that for all x, x′ ∈ R and λ ∈ (0, 1), f(λx+ (1− λ)x′) ≥ min{f(x), f(x′)}.

Definition 3 The error term εi satisfies symmetric dependence with respect to the ran-

dom variable θ if, for each realization of θ, εi|θ has a continuous density function fεi|θ satis-

fying fεi|θ(εi|µθ + a) = fεi|θ(εi|µθ − a) for almost every εi and a in R. (Note that error terms

that are independent of θ satisfy this definition).

Consider the following assumptions:

(A1) Si = θ + εi

(A2) E[θ] = µθ <∞

(A3) θ is a symmetric random variable and its density is continuous on R

(A4) E[εi|θ] = 0 for each θ

(A5) εi is a symmetric and quasiconcave random variable

(A6) εi satisfies symmetric dependence with respect to θ

Lemma 1 (Chambers and Healy 2012, Proposition 2) Assume A1-A6. A Bayesian

agent updates his beliefs over θ in the direction of the signal, that is, for almost every Si ∈ R,

there exists some α ≥ 0 such that E[θ|Si] = αSi + (1− α)µθ.

Proposition 3 Assume A1-A6 and µθ = (a+ b)/2. There exists a monotone equilibrium of

the game where k? = µθ.
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Proof of Proposition 3 The proof can be carried out with general values for a and b

(such that b > a). For ease of exposition, we focus on the experimental parameters: a = 47,

b = 63, µθ = 55. Assume that player j uses threshold kj = 55, that is, he invests if and

only if Sj < 55. We want to show that player i’s best response is to use the same threshold,

ki = 55. Player i prefers to invest if and only if EU [Not Invest|Si] < EU [Invest|Si, kj].

Thus, we want to show that (1) when Si = 55, EU [Not Invest|Si] = EU [Invest|Si, kj = 55];

(2) when Si < 55, EU [Not Invest|Si] < EU [Invest|Si, kj = 55]; and (3) when Si > 55,

EU [Not Invest|Si] > EU [Invest|Si, kj = 55].

By Lemma 1, EU [Not Invest|Si] = E[θ|Si] = αSi+(1−α)µθ where α ≥ 0. Note also that

EU [Invest|Si, kj = 55] = 47 + (63 − 47)Pr[Sj < kj = 55|Si]. First, we prove (1). Assume

Si = 55. We want to show that EU [Not Invest|Si] = EU [Invest|Si, kj = 55]. By Lemma 1,

EU [Not Invest|Si = 55] = αSi + (1 − α)µθ = α(55) + (1− α)(55) = 55. Thus, the equality

we want to show becomes 55 = 47 + (63 − 47)Pr[Sj < kj = 55|Si = 55]. This equality is

satisfied if and only if Pr[Sj < kj = 55|Si = 55] = 1/2. By A1 and A4 (and linearity of

expectation), E[Sj|Si] = E[θ|Si] = 55. By A5, the density of of Sj|Si is symmetric. Thus,

the probability Sj takes a value below its posterior mean (55) is 1/2. This proves (1).

Second, we prove (2). Assume Si < 55. By Lemma 1, EU [Not Invest|Si] = αSi +

(1 − α)55. This is smaller than 55 for any positive α. This also means that, by A1 and

A4, E[Sj|Si] = E[θ|Si] < 55. The probability that the opponent invests is the posterior

probability that his signal is below 55 (given Si). Since the conditional distribution of the

opponent’s signal is symmetric around its mean (by A5), the median is equal to the mean.

This means that the conditional CDF of the opponent signal equals 1/2 at the posterior

mean, is greater than 1/2 for values of Sj above the mean and is lower than 1/2 for values of

Sj below the mean. Since the posterior mean of the opponent’s signal is lower than 55, the

probability that player j’s signal is lower than 55 (conditional on Si < 55) is greater than

1/2. Thus, EU [Invest|Si, kj = 55] = 47 + (63 − 47)Pr[Sj < kj = 55|Si] > 55. This proves

that EU [Invest|Si, kj = 55] > 55 > EU [Not Invest|Si]. (3) can be proven analogously.
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Appendix C: Derivation of Efficient Coding Assumption

Here we adapt the theoretical derivation of efficient coding from Khaw, Li and Woodford

(Forthcoming) to our framework where the distribution of θ is normal rather than lognormal.

Suppose that the internal representation S of θ is drawn from

S|θ ∼ N(m(θ), σ2
S) (9)

where the encoding rule, m(θ), is a linear transformation of θ, m(θ) = ξ +ψθ. Parameters ξ

and ψ are endogenous while the precision parameter σS is exogenous. We assume that the

cognitive process producing the internal representation is subject to a “power constraint”

E[m2] ≤ Ω2 ≤ ∞ (10)

The efficient coding hypothesis requires that the encoding rule m(θ) is chosen (among all

linear functions satisfying the constraint) so as to maximize the system’s objective function,

for a given prior distribution of θ. As in Khaw, Li and Woodford (Forthcoming), we assume

that the system produces an estimate of θ on the basis of S, θ̃(S), and that the goal of the

design problem is to have a system that achieves as low as possible a mean squared error

of this estimate. Given a noisy internal representation, the estimate which minimizes the

mean squared error is the mean of the posterior distribution of θ, that is, θ̃(S) = E[θ|S]

for all S. The goal of the design problem is, thus, to minimize the variance of the posterior

distribution of θ.

Consider the transformed internal representation, S̃ ≡ (S − ξ)/ψ. The distribution of

the transformed internal representation conditional on θ is S̃|θ ∼ N(θ, σ2
S/ψ

2). Thus, the

distribution of θ given the (transformed) internal representation is

θ|S̃ ∼ N

(
µθ +

σ2
θ

σ2
θ + (σ2

S/ψ
2)

(S̃ − µθ),
σ2
θ(σ

2
S/ψ

2)

σ2
θ + (σ2

S/ψ
2)

)
(11)
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The variance of the posterior distribution of θ is strictly increasing in the variance of

S̃, σ2
S/ψ

2. Thus, it is desirable to make ψ as large as possible (in order to make the mean

squared error of the estimate as small as possible) consistent with the power constraint.

When the distribution of θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω (12)

The largest value of ψ consistent with this constraint is achieved when

ξ = −ψµθ , ψ =
Ω

σθ
(13)

Thus, m?(θ) = − Ω
σθ
µθ + Ω

σθ
θ and

S̃|θ ∼ N

(
θ,
σ2
S

Ω2
σ2
θ

)
(14)

Defining ω ≡ σ2
S

Ω2 , we recover the noisy internal representation posited in Assumption 2.

The same optimal coding rule obtains under an alternative goal of the system. Consider

the more conventional hypothesis from sensory perception literature, whereby the encoding

rule is assumed to maximize the Shannon mutual information between the objective state

θ and its subjective representation S. Denote with ρθ the precision of θ and with ρS the

precision of S. We have θ ∼ N
(
µx,

1
ρθ

)
, S|θ ∼ N

(
ξ + ψθ, 1

ρS

)
, S̃|θ ∼

(
θ, 1

ρS̃

)
, and θ|S̃ ∼

N
(
ρθµθ+ρS̃ S̃

ρθ+ρS̃
, 1
ρθ+ρS̃

)
, where S̃ = S−ξ

ψ
and ρS̃ = ψ2/σ2

S. The Shannon mutual information

between θ and S̃ is

I(θ, S̃) =
1

2
log2

(
σ2
θ

σ2
θ|S̃

)
=

1

2
log2

(
1 +

ρS̃
ρθ

)
(15)

which is strictly increasing in ρS̃ and, thus, strictly decreasing in σ2
S̃
. This means that, as for

the previous goal, it is desirable to make ψ as large as possible (consistent with the power

constraint).
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Appendix D: Additional Experimental Results

Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.384∗∗∗ -0.389∗∗∗ -0.364∗∗∗ -0.447∗∗∗

(0.039) (0.041) (0.036) (0.047)

(θ − 55) x Low -0.266∗∗∗ -0.275∗∗∗ -0.285∗∗∗ -0.299∗∗∗

(0.051) (0.054) (0.052) (0.063)

Low -0.317 -0.356 -0.129 -0.207

(0.276) (0.285) (0.283) (0.317)

Constant 1.067∗∗∗ 1.202∗∗∗ 0.993∗∗∗ 1.174∗∗∗

(0.181) (0.199) (0.192) (0.217)

Observations 4,263 4,053 3,677 3,255

Rounds of Experience with Game (θ) 3 4 5 6

Table 3: Mixed Effects Logistic Regressions Estimates. Note: The dependent variable takes
value 1 if the subject chooses to Invest, and 0 otherwise. The variable Low takes value 1 if
the round belongs to the low volatility condition and 0 otherwise. Only data from rounds
where 46 < θ < 64 are included. There are random effects on (θ − 55) and the intercept.
Standard errors of the fixed effect estimates are clustered at the subject level. ***, **, *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

43



Appendix E: Experimental Instructions and Pre-Registrations

Experiment 1
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1) X is in the range [47, 63]; 2) the round number is greater than 30
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