
Immigration and Regional Specialization in AI

Gordon Hanson∗

Harvard Kennedy School and NBER

August 2021

Abstract

I examine the specialization of US commuting zones in AI-related occupations
over the 2000 to 2018 period. I define AI-related jobs based on keywords in Census
occupational titles. Using the approach in Lin (2011) to identify new work, I measure
job growth related to AI by weighting employment growth in AI-related occupations
by the share of job titles in these occupations that were added after 1990. Overall,
regional specialization in AI-related activities mirrors that of regional specialization
in IT. However, foreign-born and native-born workers within the sector tend to clus-
ter in different locations. Whereas specialization of the foreign-born in AI-related
jobs is strongest in high-tech hubs with a preponderance of private-sector employ-
ment, native-born specialization in AI-related jobs is strongest in centers for military
and space-related research. Nationally, foreign-born workers account for 55% of job
growth in AI-related occupations since 2000. In regression analysis, I find that US
commuting zones exposed to a larger increases in the supply of college-educated im-
migrants became more specialized in AI-related occupations and that this increased
specialization was due entirely to the employment of the foreign born. My results
suggest that access to highly skilled workers may constrain AI-related job growth
and that immigration of the college-educated may help relax this constraint.
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1 Introduction

There is immense academic and policy interest in how artificial intelligence (AI) will affect
labor markets. Given the disruptive impacts of technological change on earnings and
employment in recent decades, such interest is understandable. The rapid pace of skill-
biased technical change after 1980 is credited with raising the earnings premia for workers
with college degrees (Katz & Autor, 1999), which contributed to greater income inequality
in many high-income countries. Amid these changes, the automation of routine tasks
shifted employment away from middle-skill jobs, leaving a more hollowed-out earnings
distribution in its wake (Autor & Dorn, 2013; Goos et al., 2014). The expanding use of
industrial robots (Acemoglu & Restrepo, 2020) and employment of contract workers via
Uber-like platforms (Abraham et al., 2019; Chen et al., 2019) are the most recent ways
in which new technology is upending the world of work. With the potential for AI to
convert many job tasks into algorithmic routines that can be performed by machines, yet
another wave of disruption may be on the horizon (Autor et al., 2020).

In this paper, I turn my attention not to the labor-market consequences of AI but to the
forces governing where AI itself is being created. Three innovations have helped make
AI possible (Varian, 2018). One is new approaches to machine learning, another is ad-
vances in high-speed and special-purpose computing, and a third is the proliferation of
very large data sets in digital format. Machine learning combines techniques from statis-
tics and computer science to predict outcomes or learn patterns from raw data. When
embedded in a system that feeds in data, applies domain expertise, and governs learn-
ing, AI is the result (Taddy, 2018). This process requires specialized teams of computer
scientists, data scientists, electrical and computer engineers, network systems analysts,
and software programmers, as well as workers with knowledge of the domains in which
AI will operate. The need for high-speed computing arises from the non-linearity and
high dimensionality of prediction models, which require large data sets for training, val-
idation, and testing. Of the key inputs to AI, it is the final stage of machine learning and
systems engineering that appears to be the most location specific. Creating AI involves
computer hardware manufactured elsewhere, data collected from disparate sources, and
teams of specialists who tend to work in close proximity.

If AI comes anywhere close to its forecasted potential, there will be an enormous mar-
ket for AI-related goods and services. Just as employment in new technology tends to be
highly geographically concentrated (Moretti, 2012, 2019; Bloom et al., 2020), it is natural
to expect AI-related activities to exhibit strong patterns of spatial agglomeration. Under-
standing emerging comparative advantage in jobs related to AI is therefore important for

1



evaluating how the technology will change national and global trade patterns. Trade in
AI-related services is poorly measured, both because it is new and because revenue flows
from trade in technology services are hard to detect in conventional data. To study what
comparative advantage in the production of AI might look like, I take US commuting
zones as my unit of analysis (Tolbert & Sizer, 1996). A regional focus allows me to mea-
sure comparative advantage via abundantly available employment data rather than via
poorly documented trade flows. Because the US is at the frontier of innovations in AI
and IT, it is where regional comparative advantage in new technology is likely to mani-
fest itself first. Even with this focus, the newness of AI creates measurement challenges.
I study the occupations that appear to encompass AI-related activities, recognizing that
such categories will also include jobs in IT that do not necessarily involve AI. The analysis
is therefore subject to the maintained hypothesis that the spatial allocation of employment
in AI will resemble that in non-AI jobs that require AI-like skills.

My aim is to understand regional changes in US AI-related employment over the last
two decades. Although machine learning dates to the 1950s (Cockburn et al., 2018), the
field did not begin to flourish until the 1990s. It was not until after 2000, and especially
after 2010, that it came into widespread use (Taddy, 2018). The first step in the analysis
is to identify occupations likely to be involved in the production of AI. Within occupa-
tions associated with STEM disciplines, I select the occupational codes that are likely to
contain AI-producing jobs based on their associated Census-defined job titles having at
least one term from each of the two following sets: computer, data, or software; and de-
sign/designer, engineer, research/researcher, or science/scientist. This procedure iden-
tifies 30 occupational titles, out of 707 total titles in the broader STEM category, as being
AI-related. The selected job titles include, for example, “artificial intelligence specialist”
and “information scientist.” Using a wider filter identifies 146 AI-related titles. Because
employment can be measured at the occupational code but not at the title level, I focus
on the codes that contain these titles. Within these codes, I use results in Lin (2011) to
identify the occupational titles that were created after 1990, which is when advances in
AI began to accelerate. Following his work, I interpret new job titles as evidence of the
creation of new types of work.1 The creation of new work in AI-related occupations is a
signal of AI-related innovations in employment. To measure employment growth in AI
jobs over 2000 to 2018, I weight employment growth in AI-related occupations over the
period by the share of job titles within an occupation that were new as of 2000. By varying
the restrictiveness of the filters used to define AI-related jobs, I check the robustness of

1For literature that examines the creation of new work across all occupations and over longer time spans,
see Atalay et al. (2020) and Autor et al. (2020).
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the findings to the definition of AI-related activities.
An alternative way to measure employment in AI would be to use job postings that

explicitly mention the application of artificial intelligence. A rapidly emerging literature
takes this approach to examine changes in labor-market outcomes for the occupations
that appear likely to be disrupted by AI (see, e.g., Brynjolfsson et al., 2018; Felten et al.,
2018; Acemoglu et al., 2020; Bloom et al., 2020; Webb, 2020). Less work is devoted to
figuring out which jobs are involved in the creation of AI and its applications. Acemoglu
et al. (2020) use job-posting data from Burning Glass to measure the expansion of jobs in
AI-producing activities. The advantage of these data is that job postings contain explicit
mention of skills related to AI (e.g., computer vision, deep learning, machine learning).2

Disadvantages include job postings being unavailable in complete form until 2010 and a
lack of information on the ultimate number of hires that result from postings. My focus on
employment growth in AI-related jobs since 2000 explains my choice to define AI-related
occupations using the the Census Bureau list of occupational titles.

The second step in the analysis is to examine regional specialization in AI-related oc-
cupations. Two patterns stand out in the data. One is that regional specialization in AI-
related jobs is greatest in commuting zones that became hubs for technology jobs in the
1980s or 1990s. These CZs include Austin, Boston, Oakland, San Jose, Seattle, and Wash-
ington, DC. Their specialization in AI-related occupations was already substantial in 2000
and became more substantial still by 2018. These are the same cities in which high-tech
startups and patenting in high-tech domains are also concentrated (Chatterji et al., 2014;
Moretti, 2019). A second pattern is that increased specialization in AI-related jobs in tech-
oriented CZs is due primarily to the employment of foreign-born men. Whereas the CZs
in which native-born workers are most concentrated in AI-related jobs include cities spe-
cialized in government-funded military research (Colorado Springs, CO; Alexandria, VA)
and space research (Melbourne, FL; Huntsville, AL), those in which foreign-born men are
most concentrated in AI-related fields account for the largest AI employment clusters and
are the ones in which private firms dominate the high-tech landscape. Looking across the
origin countries of these foreign-born workers, there is wide variation in revealed com-
parative advantage in AI-related jobs. Comparative advantage in AI-related occupations
is strongest for workers born in East and South Asia and weakest for workers born in
Latin America and the Caribbean and the US. Although women account for a relatively
small share of employment in AI-related occupations, their revealed comparative advan-
tage in AI by country of birth is similar to that for men.

2Bloom et al. (2020) develop a conceptually related approach to identify new technology by tracking the
presence of key words or phrases in company earnings calls and Burning Glass job postings.
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It is well known that across occupations specialization varies among foreign-born
workers by their country of origin and that immigrants from specific countries tend to
concentrate in specific US cities (see, e.g., Patel & Vella 2013; Hanson & Liu 2017; Burstein
et al. 2020). These regularities are also manifest in the case of AI-related activities. Because
the skills required to create artificial intelligence and related innovations in information
technology are scarce and because some countries seem better than others at producing
workers capable of acquiring the required skills, the regions that are best positioned to
attract high-skilled foreign-born workers appear to be the ones most likely acquire com-
parative advantage in AI. Over the period 2000 to 2018, foreign-born workers accounted
for 54.6% of the increase in hours worked in AI-related activities.

The third step in the analysis is to identify the factors behind regional employment
growth in AI-related jobs. Motivated by the importance of highly educated foreign-born
workers in AI-related employment, I model changes in regional specialization in AI as a
function of the change in college-educated immigrant labor supply confronting each re-
gion. I estimate the change in the CZ share of employment of prime-age college-educated
workers in AI-related occupations over the 2000 to 2018 period as a function of the pro-
jected local increase in college-educated immigrants. Inspired by the shift-share approach
of Altonji & Card (1991) and Card (2001), I predict the increase in the supply of college-
educated immigrants in a CZ using national growth in college-educated immigrants from
each origin country (outside of the CZ) and the initial-period share of the CZ in the em-
ployment of college-educated immigrants from each origin country (outside of AI-related
jobs). For men, the immigrant supply shock is strongly positively correlated with em-
ployment growth in AI-related occupations. This effect comes entirely from increased
employment of the foreign born. The impact of the immigrant labor-supply shock on the
employment of native-born men is small and imprecisely estimated, indicating that arriv-
ing foreign-born workers neither crowd-in nor crowd-out the native-born in AI-related
activities. Results are similar for the employment of women in AI-related occupations,
though coefficient magnitudes are smaller, consistent with relatively weaker specializa-
tion in AI-related jobs on the part of foreign-born females. I find similar results whether
using worker counts or hours worked to measure employment and whether using a nar-
row or a broad definition of AI-related occupations.

Whereas in earlier decades computer power and data availability were binding con-
straints on the advancement of AI, today computer power and data availability are vastly
improved. The supply of workers sufficiently skilled to design the computing architec-
ture, devise the learning algorithms, apply the domain science, and construct the business
systems necessary to create AI is likely to be a constraining factor. Not surprisingly, build-
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ing successful teams involves a global search for talent (Hanson & Slaughter, 2018). My
results suggest that the US regions that are best positioned to attract foreign talent are
those that are acquiring a stronger comparative advantage in AI-related activities. Three
important actors in the global talent search are the US government, which regulates the
supply of visas to high-skilled immigrants (Lazear, 2021); US universities, which admit
many future US foreign-born tech workers as students (Bound et al., 2017, 2021); and US
technology companies, whose recruitment strategies also help bring skilled foreign work-
ers to the US (Kerr & Lincoln, 2010). The interdependent choices of these actors create a
business ecosystem in which innovation in AI has been able to flourish. However, it does
not appear to be the only ecosystem that is conducive to such innovation. To create AI,
China is taking a more state-directed approach, including trade protection for domestic
technology firms (Goldfarb & Trefler, 2018), and is relying mostly on domestic talent. In
terms of academic journal publications and awarded patents, its approach has had some
success (Xie & Freeman, 2020). When it comes to projecting my results to the world as a
whole, one needs to address how these different ecosystems will fare in global competi-
tion with each other, a subject on which my analysis is silent.

The empirical results connect to several bodies of literature. A first is analysis of
the labor market consequences of regional labor-supply shocks related to immigration.
My finding that arriving immigrant workers neither crowd in nor crowd out native-born
workers in AI-related jobs is consistent with results in Burstein et al. (2020) across all oc-
cupations dedicated to tradable activities.3 Because arriving immigrant workers can be
absorbed into the production of exports (i.e., AI routines), they need not displace existing
native-born workers. A second body of related work addresses the occupational compar-
ative advantage of immigrants. Foreign-born workers from non-English-speaking coun-
tries tend to avoid jobs that are intensive in communication-based tasks (Dustmann &
Fabbri, 2003; Peri & Sparber, 2009; Oreopoulos, 2011), and to specialize in STEM fields
(Hunt & Gauthier-Loiselle, 2010), especially those related to computing and engineer-
ing (Hunt, 2015). Specialization in STEM may account for the over-representation of the
foreign-born among US inventors (Kerr & Lincoln, 2010; Hunt, 2011; Bernstein et al., 2018)
and for the positive correlation between growth in college-educated immigrant labor sup-
ply and regional productivity growth (Peri et al., 2015). The concentration of foreign-born
workers in AI-related activities is the latest manifestation of the propensity for immigrant
labor to specialize in technology-oriented fields in the US labor market.

My analysis does not address why immigrants with skills applicable to AI are drawn

3See Borjas & Doran (2012) for evidence on how arriving Russian mathematicians displaced US scholars
working in subfields of mathematics in which Soviet-era research was relatively specialized.
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to the US. The concentration of leading IT firms in the US is one explanation for the at-
traction. Another is that the highly educated are drawn to the US because it offers re-
wards to skill that are large relative to other high-income destination countries (Grogger
& Hanson, 2011). Nor does my work account for why workers from particular countries
appear to excel in AI fields. Hanson & Liu (2021) find that immigrants specializing in jobs
more intensive in abstract and quantitative reasoning tend to come from countries that
deliver higher quality K-12 education, as evidenced by their students achieving higher
PISA exam scores. Similar forces may be at work regarding specialization in AI. It is
also unclear whether the specialization of foreign-born workers in AI will translate into a
comparative advantage in AI in their countries of origin. Whereas China is both a major
source of AI talent to the US labor market and the home to leading AI firms, India checks
the first box but not the second (at least as far as conventional data reveal). By implica-
tion, the presence of firms with core capabilities in computing (or protection from foreign
firms with such capabilities) may be necessary for AI to develop.

In Section 2, I describe how I measure AI-related employment; in Section 3, I present
descriptive evidence on specialization in AI-related jobs across US commuting zones; in
Section 4, I present empirical analysis of how immigrant labor-supply shocks affect re-
gional employment in AI-related occupations; and in Section 5, I conclude.

2 Measuring Employment in AI-Related Occupations

Artificial intelligence distinguishes itself by requiring technical skills in computer science,
engineering, math, and related disciplines, and by being new (or at least new at a scale to
become detectable by employment surveys). My approach to measuring employment in
AI-related occupations keys on both of these features: the technical definitions of occupa-
tions and their newness. Of course, new work in AI-related fields may include new work
in IT that is not exclusive to AI. I therefore refer to my measures as capturing growth in
“AI-related” jobs rather than in jobs that are solely dedicated to AI.

2.1 Defining AI-Related Occupational Categories

The Census Bureau defines occupational codes by grouping together workers who per-
form similar tasks on the job. Over time, it modifies the codes, with most major revisions
occurring during census years. To measure employment growth for a uniform set of occu-
pations over a multi-decade period, I use Census occupational codes for 1990, as harmo-
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nized by Dorn (2009), Autor & Dorn (2013), and Deming (2017).4 Each occupational code
has an attached set of jobs, which are defined in the Census Alphabetical List of Occupation
Titles. I use these titles to create filters to capture AI-related job growth.

The creation of AI combines the efforts of workers with training across a wide range
of technical disciplines, including computer engineering, computer science, data science,
and software engineering. Supporting the workers who construct machine-learning algo-
rithms and design their implementation on dedicated computer hardware are specialists
who create and manage large databases, provide expertise in relevant domains (e.g., on-
cologists and radiologists for the use of AI to detect cancer), and develop and market AI
products, among other tasks. In order to focus on jobs that are core to innovations in AI,
I target the first group of occupations and not the second.

I define the universe of potential AI-related occupations as those in STEM, using the
STEM definition in Hanson & Slaughter (2018). They take the Census Bureau categoriza-
tion of STEM jobs and remove those in which a relatively high fraction of workers lack
a college degree (e.g., lab technicians, computer support staff, drafters). The resulting
set of occupations includes all computer programmers, computer scientists, engineers,
mathematical scientists, network systems analysts, and life and physical scientists.5

To define AI-related jobs, I apply a progressively finer set of filters to these broad
STEM categories, which creates four versions of occupations:

• V.0 (version 0) occupations: I remove occupation codes from the Hanson & Slaugh-
ter (2018) definition that appear to be related to administrative or supportive roles
or that are tied to scientific disciplines that appear to be far removed from AI.6 The
resulting set of modified STEM occupations had 707 titles in 2000, of which 137 were
added between 1990 and 2000, as seen in Table 2.

• V.1 occupations: I select from V.0 occupations those whose titles have at least one of
the following terms: analyst (subject to restrictions), architect, designer/design, de-
veloper, engineer, programmer, researcher/research, scientist, or statistician/statistical.
The resulting set of potential AI occupations had 325 titles in 2000, of which 68 were
added after 1990.

4These codes were modified slightly to accommodate work in military-related occupations.
5To this list, I add financial and management analysts, which may include workers engaged in quanti-

tative finance (an active area of AI). These categories are dropped in V.2, which contains broad AI titles.
6The excluded occupations, based on their 2000 Census codes, are: computer and information systems

managers, engineering managers, financial specialists (all other), computer support specialists, database
administrators, network and computer systems administrators, engineering technicians, computer opera-
tors, data entry keyers, and computer control programmers and operators. Among life and physical scien-
tists, I exclude agricultural and food scientists, chemists and materials scientists, conservation and forestry
scientists, and surveyors, cartographers, and mapping scientists.
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• V.2 occupations: I select from V.1 occupations those whose titles have at least one of
the following terms: designer/design, developer, programmer, researcher/research,
scientist, and statistician/statistical; and engineer plus computer, data, or software.
The resulting set had 146 titles across 18 occupation codes in 2000, of which 48 titles
were added after 1990. This version is my broad definition of AI-related jobs.

• V.3 occupations: I select from V.2 occupations those that have at least one term from
the group {designer/design, researcher/research, scientist, or statistician/statistical}
and one term from the group {computer, data, software}. The resulting set has 30
titles across five occupation codes in 2000, of which 16 titles were added after 1990.
This version is my narrow definition of AI jobs and is the baseline for the analysis.
V.3 codes and titles appear in Appendix Table A.1.

Table 1 describes the application of the V.0 to V.3 filters to modified Census 1990 occu-
pation codes and shows the total number of job titles as of 2000 for each version. In the
empirical analysis, I use V.2 and V.3 occupations only.7 Throughout the text, for notational
clarity, I refer to the sets of occupations that contain AI titles as V.0t-V.3t for each version
in a given year t. Similarly, the sets of occupation titles are denoted V.0.Tt-V.3.Tt.

Appendix Table A.1 lists job titles for V.3 occupations. This narrow definition includes
five Census 1990 occupations: computer hardware engineers, computer scientists and
systems analysts, computer software engineers, network systems and data communica-
tions analysts, and statisticians.8 The 30 AI-related job titles include artificial intelligence
specialist, information scientist, computer research, computer systems engineer, and soft-
ware applications engineer. Whereas the first two of these are AI-specific jobs, the latter
three are likely to span AI and non-AI-specific activities. Other job titles also appear likely
to include AI and non-AI specific jobs (e.g., software requirements engineer, systems an-
alyst engineer, computer engineer). By targeting job titles created after 1990, as I discuss
in the next section, my approach helps narrow the focus on AI-related activities, but may
do so imperfectly. The resulting measures of AI-related employment growth are therefore
likely to include some non-AI jobs in information technology that nonetheless require AI-
like skills. On the other hand, one may be concerned that designating just 30 job titles as
being AI-related is too narrow. For this reason, I also use the broader V.2 definition of AI
titles as a robustness check in the empirical analysis.

7In unreported results, I perform analysis for V.0 and V.1 occupations and obtain similar results.
8Note that the 30 job titles designated to be AI-related exclude many other titles within the five occu-

pation codes that appear to be support roles, e.g., as indicated by the terms analyst, consultant, developer,
integrator, planner, specialist, tester, or writer.
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Version: V.0 V.1 V.2 V.3

# identified titles: 707 325 146 30

Occupation title filters

Analyst Analyst

Scientist Scientist Scientist Scientist + Software/Data/Computer

Administration/administrator

Researcher/research Researcher/research Researcher/research Researcher/research + Software/Data/Computer

Designer/design Designer/design Designer/design Designer/design + Software/Data/Computer

Architect Architect

Technician

Programmer Programmer Programmer

Developer Developer Developer

Integrator

Engineer Engineer Engineer + Software/Data/Computer Engineer + Software/Data/Computer

Statistician/statistical Statistician/statistical Statistician/statistical

Manager

Planning/planner

Health

Consultant

Specialist

Supervisor

Tester

Installer

Coordinator

Officer

Operator

Investigator

etc.

Table 1: Occupation Title Filters for AI-Related Jobs

This table reports keywords used to define versions V.0 to V.3 of occupational titles. These keywords act as inclusion criteria, subject to discretion.
In particular, “analyst” is used in a wide variety of occupation titles, mandating many exclusions (e.g., “forms analysts”). V.0 applies no keyword
filters; its associated column reports representative keywords that appeared in many of its occupation titles. The V.1 to V.3 filters are based on the
listed keywords. They exclude engineering occupations that appear unconnected to AI (agricultural, biomedical, chemical, civil, environmental,
industrial, marine, materials, mechanical, mining and geological, petroleum, and other engineers).

9



# AI Titles # New, AI Titles
Occupation Total # Occupation Titles V.0 V.1 V.2 V.3 V.0 V.1 V.2 V.3

Computer programmers 22 22 18 18 0 11 10 10 0
Computer systems analysts and computer scientists 162 97 52 34 24 65 32 24 15

Operations and systems researchers and analysts 24 24 9 1 0 6 2 0 0
Engineers and other professionals, n.e.c. 58 58 13 4 0 12 5 2 0

Atmospheric and space scientists 19 19 17 17 0 3 3 3 0
Marine engineers and naval architects 13 13 10 2 0 2 1 1 0

Electrical engineers 60 60 54 9 3 9 5 3 1
Petroleum, mining, and geological engineers 36 36 0 0 0 5 0 0 0

Mathematicians and statisticians 27 27 13 10 3 3 0 0 0
Industrial engineers 46 46 0 0 0 5 0 0 0

Mechanical engineers 41 41 40 9 0 4 4 2 0
Chemical engineers 23 23 16 2 0 2 2 1 0

Physicists and astronomers 29 29 20 20 0 2 2 2 0
Biological scientists 53 53 11 11 0 2 0 0 0

Civil engineers 54 54 0 0 0 2 0 0 0
Management analysts 31 31 7 0 0 1 0 0 0
Aerospace engineers 42 42 37 9 0 1 0 0 0

Other financial specialists 27 11 8 0 0 2 2 0 0
Metallurgical and materials engineers 21 21 0 0 0 0 0 0 0

Table 2: Occupation Codes and Numbers of Associated Titles

This table reports the following values for each occupation that contains job titles in the V.0 to V.3 definitions: the total number of occupation titles
as of 2000 (column 2), the number of column 2 titles that are potentially related to AI (columns 3-6), and the number of column 3-6 titles that were
new as of 2000 (columns 7-10). The final two metrics are shown for V.0 (STEM occupations), V.1 (potential AI occupations), V.2 (broad AI-related
occupations), and V.3 (narrow AI-related occupations) categories. The remaining, unlisted 310 occupations had zero potentially AI-related titles.
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2.2 AI-Related Employment

Although AI as a concept has been around for well over half a century, AI-specific occu-
pations did not become prominent enough to merit their own job titles in public surveys
until more recently. After slow progress in the 1970s and 1980s, advances in the field be-
gan to accelerate in the 1990s (Cockburn et al., 2018).9 I use the creation of new job titles
after 1990 as an indication of the intensity of innovation across occupations.

The Census Bureau tracks how jobs change over time. To account for changes, it adds
and subtracts job titles from occupational codes, where a title defines a specific job per-
formed within an occupation. When the Census adds new titles to occupation codes, it
indicates that there are new lines of work within an occupation that appear at sufficient
frequency to merit official mention. Within my V.3 definition of AI-related jobs, after 1990
the Census added titles for artificial intelligence specialist and information scientist to the
computer scientists and systems analysts occupational category (see Table A.1), which
signified the expansion computer science jobs to include these fields. Lin (2011) uses the
addition of new titles to measure the creation of new work at the level of an occupation
code. Using his categorization, I define new AI-related work within an occupation using
the job titles that were created after 1990 (by his designation) and that are AI-related (by
my designation).10

For occupation codes that register new titles in AI-related activities after 1990, Table
2 reports 1990 occupation categories in the first column, the total number of job titles
for the occupation in 2000 in the second column, the number of titles for V.0 to V.3 oc-
cupations in 2000 in the next four columns, and the number of potentially AI-related
titles added after 1990 for V.0 to V.3 occupations in the final four columns. After 1990,
there were 48 new AI-related job titles added in V.2 occupations, representing a 50.0%
(= |V.2.T2000|−|V.2.T1990|

|V.2.T1990|
= 48

146−48 ) increase in job titles in the category, and 16 new AI-related

job titles in V.3 occupations, representing a 114.3% (= |V.3.T2000|−|V.3.T1990|
|V.3.T1990|

= 16
30−16 )) in-

crease in job titles in the category. For both definitions, the largest increase in job titles
was for computer scientists and systems analysts.

9Perhaps the signature AI achievement of the decade was IBM’s Deep Blue machine-learning-based
system defeating world champion Gary Kasparov in chess in 1997.

10Ideally, one would like to track the creation of new occupational titles separately for each decade. Such
an exercise is unfortunately beyond the scope of this paper.
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2.3 Alternative Approaches to Measuring AI

To provide context for my analysis, I discuss other approaches to measuring AI-related
production and work activities. Bloom et al. (2020) use earnings conference calls and
patent filings to document the rollout of 20 new technologies between 2002 and 2020. For
the 10 most-cited U.S. patents in each year between 1976 to 2016, they apply text analysis
to identify the most common technical bigrams (e.g., word pairs) that appear in the filings
for these patents. From the resulting bigrams, they identify those that appear most fre-
quently in corporate earnings calls over 2002 to 2020 and then collect these terms into 20
technology groups. Of these 20, one is artificial intelligence (whose associated keywords
are artificial intelligence, machine learning, neural networks, deep learning, predictive
analytics, and language processing). Three other new technologies include applications
of AI (driverless, machine vision, virtual reality), while two others are computing tech-
nologies that are used to create AI (cloud, disk drive).

Using this categorization, they calculate the exposure of firms and occupations to new
technologies, where exposure to a specific technology is defined as the share of all techni-
cal bigrams that appear in earnings calls for a firm (from 2002 forward) or Burning Glass
job postings for an occupation (from 2010 forward) that are comprised of the bigrams as-
sociated with that technology. These data allow Bloom et al. (2020) to track exposure to
new technologies across U.S. industries, occupations, and regions. For AI, firm exposure
increased modestly from 2010 to 2015 and rapidly thereafter. As a technology diffuses
over time, the desired education level listed in job postings tends to decline.11

For my purposes, their measure of technology exposure, which is not yet publicly
available, represents a shock to labor demand that may be difficult to sign. For instance,
the two most exposed occupations to virtual reality are computer hardware engineers and
fine artists. One may imagine that the technology represents a strongly positive shock
for engineers but an ambiguous shock for fine artists (e.g., positive for those working in
digital media and negative for those working in non-digital media).

Other work focuses on identifying occupations exposed to the job-displacing impacts
of AI. The measure in Felten et al. (2019) combines the Electronic Frontier Foundation AI
Progress Measurement dataset, which tracks technological progress across categories of
AI activities (e.g., image recognition), with crowdsourced assessments of how well these
categories apply to O*NET ability scales (e.g., depth perception), to measure the vulnera-
bility of occupations to AI, based on the importance of each ability scale to an occupation.

11An amalgam of their approach and mine would be to use Burning Glass data to measure the share of
new jobs for each job title within a Census occupation code, which would improve upon my somewhat
crude metric of effectively treating the number of jobs per title as the same across titles.
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In two related approaches, Brynjolfsson et al. (2019) use crowdsourcing to evaluate the
suitability of machine learning for detailed work activities in O*NET, and then construct
an occupation-level measure of exposure to AI based on occupation intensities in these
activities, while Webb (2020) defines occupation-level exposure by identifying the overlap
between Google Patents Public Data and O*NET tasks. Acemoglu et al. (2020) calculate
exposure to AI at the establishment level by using the establishment intensity of employ-
ment across occupations for each of these three AI occupation-exposure measures.

These advances in measuring occupation or establishment-level exposure to the dis-
ruptive impacts of AI are welcome. None, however, appears to be directly useful for
detecting which occupations are most likely to be engaged in producing AI.

3 Preliminary Analysis

In this section, I examine which U.S. commuting zones are most specialized in AI-related
activities, in which commuting zones are AI-related activities most concentrated, and
how revealed comparative advantage in AI-related activities varies across workers ac-
cording to their region of birth. I focus on prime-age workers (ages 25 to 54) who have
at least four years of college education. I measure employment as hours worked (weeks
worked last year × usual hours worked per week × sampling weight) for individuals
who are not in group quarters and who had positive earnings in the previous year. Data
are from the 2000 Census, the 2005-2009 ACS five-year sample (which I ascribe to 2009),
and the 2014-2018 ACS five-year sample (which I ascribe to 2018).

3.1 CZ Specialization in AI-Related Occupations

Figure 1 shows the share of hours worked by the college-educated in AI-related occupa-
tions for the V.3 definition across commuting zones. Specifically, letting Lg, f

oct refer to hours
worked in a given occupation o, CZ c, year t, and by gender g and foreign born status f ,
this share is given by the expression,

100 ∗ ∑o sV.3.T,o ∗ Lg, f
oct

∑ f ∑o Lg, f
oct

,

where so
V.3.T =

|V.3.To
2000|−|V.3.To

1990|
|V.3.To

2000|
is the share of titles in a given occupation o that are

new and related to AI, thus proxying for the fraction of hours worked in a given occu-
pation that is devoted to new AI-related work. Unreported figures for the V.2 definition
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of occupations are very similar. The first panel shows the share of all CZ workers em-
ployed in AI-related occupations, first for men and then for women; the second panel
shows foreign-born workers employed in AI-related occupations as a share of total CZ
employment; and the third panel shows native-born workers employed in AI-related oc-
cupations as a share of total CZ employment.12 In each graph, the share of CZ employ-
ment in AI-related jobs for 2018 appears on the vertical axis and the corresponding share
for 2000 appears on the horizontal axis. To help identify the individual CZs in the figures,
Appendix Table A.2 lists the top 20 CZs in each of the six plots. Unreported plots for
employment shares using worker counts are very similar.

Three patterns are apparent in the data. The first is that there is persistence in which
CZs are specialized in AI-related activities. In each figure, there is a strong positive cor-
relation between the share of CZ employment in AI-related jobs in 2000 and 2018, as
indicated by the clustering of points along the 45-degree line. Most points are modestly
to substantially above the line, indicating a strengthening of regional specialization in AI-
related activities over time. The second is that across CZs and over time specialization of
men in AI-related activities tends to be much stronger than that for women. Male AI em-
ployment shares tend to be two to three times as large as those for women. This pattern
is consistent with the relatively greater specialization of men in STEM-related jobs across
occupations (e.g., Hanson & Slaughter, 2018).

The third pattern relates to differences in native-born and foreign-born specialization
in AI-related activities across CZs. When considering all workers together in the first
panel, specialization in AI-related activities is strongest in three types of CZs: hubs for
high-tech industry (e.g., San Jose, CA), university towns (e.g., Bloomington, IL), and cities
specialized in government or military research (e.g., Colorado Springs, CO). When I sep-
arate foreign-born and native-born workers, we then see that when it comes to specializa-
tion in AI-related activities the two groups of workers tend to cluster in different places.
The share of foreign-born workers specialized in AI-related activities as a share of CZ
total employment is largest in conventional high-tech hubs (San Jose, CA; Oakland, CA;
Austin, TX; Boston, MA; Seattle, WA), and major cities (New York, NY; Washington, NY;
Dallas, TX). For the native-born, by contrast, the share of their employment in AI-related
activities as a share of CZ total employment is highest in locations that have government,
military, or space-related research facilities (Colorado Springs, CO; Alexandria, VA; Mel-
bourne, FL; Huntsville, AL) or that are university towns (Bloomington, IL; Provo, UT).
For both men and women, the overlap of the top 10 CZs in terms of AI specialization by
the foreign-born and native-born includes just two commuting zones, Washington, DC,

12The shares in the second and third panels add to the total shares shown in the first panel.
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and Raleigh, NC. Because government and military research tends to require higher-level
security clearances, it may be that native-born workers are better positioned to take these
types of jobs. Foreign-born workers appear to excel in taking up jobs in CZs populated
by private employers and non-governmental research entities.

3.2 Concentration of AI-Related Employment in Tech-Oriented CZs

Figure 2 shows the share of commuting zones in national hours worked by the college-
educated in AI-related occupations by the V.3 definition, where figures for the V.2 def-
inition are very similar. The first panel includes all workers, first for men and then for
women; the second panel includes foreign-born workers only; and the third panel in-
cludes native-born workers only. In each graph, the CZ share of national employment in
AI-related jobs for 2018 appears on the vertical axis and the corresponding share for 2000
appears on the horizontal axis. Following notation from Section 3.1, the expression for
these shares is given by,

100 ∗ ∑o sV.3.T,o ∗ Lg, f
oct

∑c ∑o sV.3.T,o ∗ Lg, f
oct

.

To help identify the individual CZs in the figures, Appendix Table A.3 shows the top 20
CZs in each of the six figures. Unreported plots for employment shares using worker
counts are very similar.

The largest hubs account for a substantial share of US AI-related employment. These
patterns are persistent over time, as indicated by the concentration of data points along
the 45-degree line. The top five hubs (Washington, Los Angeles, Oakland, Chicago, San
Jose) accounted for 23.1% of male AI-related employment in 2018 and the top 10 (top five
plus Boston, New York, West New York, Atlanta, Dallas) accounted 40.9% of male AI-
related employment in that year. Figures for women are similar, as are the CZs in which
their employment is concentrated. Consistent with overall patterns of spatial agglomera-
tion in high-tech activities (Moretti, 2012, 2019; Bloom et al., 2020), US employment in jobs
that require AI-like skills are highly geographically concentrated.

As with regional specialization in AI-related jobs, it is again the case that the commut-
ing zones that account for the the largest clusters of AI-related employment differ depend-
ing on whether one is examining foreign-born or native-born workers. For foreign-born
men, San Jose (8.6% in 2018) and Oakland (8.1% in 2018) are the largest clusters of AI-
related employment, whereas for native-born men San Jose (1.8% in 2018) and Oakland
(3.4% in 2018) are ranks 12 and five, respectively. For native-born men, Washington, DC
(4.9% in 2018) and Boston (3.3% in 2018) are the largest clusters of AI-related employment,
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Figure 1: Share of Hours Worked in AI-Related Occupations by Commuting Zone
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(b) Foreign-born Workers
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(c) Native-born Workers

The figures show the share of hours worked (in percentage terms) in AI-related occupations (V.3 definition)
for prime-age, college-educated men or women in a given CZ for 2000 and 2018. AI hours worked is
measured as hours worked in a given AI-related occupation times the share of all 2000 jobs titles in that
occupation that were created after 1990 and that were AI-related. Shares are for all workers in panel (a),
foreign-born workers in panel (b), and native-born workers in panel (c).
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whereas for foreign-born men Washington, DC (5.6% in 2018) and Boston (3.7% in 2018)
are ranks five and eight, respectively. This provides further evidences of differences in
specialization patterns of the foreign and native-born when it comes to AI-related jobs.

3.3 Revealed Comparative Advantage in AI-Related Occupations

In this section, we consider the extent to which foreign and native-born workers differ in
their specialization in AI-related jobs. Existing literature indicates that across all STEM-
related occupations, the foreign-born show stronger patterns of specialization than do the
native-born (Hanson & Liu, 2017; Hanson & Slaughter, 2018). Here, we narrow the focus
to the revealed comparative advantage of the two groups in jobs that are related to AI.
Of course, the specialization of foreign-born workers in AI-related occupations indicates
comparative but not absolute advantage in these jobs. Immigrant specialization in AI
may represent an absolute advantage in the activity. On the contrary, US-born workers
may have an absolute advantage in all occupations, but end up specializing in non-STEM
sectors because of a relatively strong advantage in tasks that require communication and
social skills, which may be relatively important in non-STEM activities.

To begin, Figure 3 shows the share of hours worked by the prime-age and college-
educated in AI-related occupations (V.3 definition) by worker place of birth. I group birth
countries into eight regions based on similarities in education levels and specialization in
STEM occupations: the US; Africa and the Middle East; China and Hong Kong; Europe,
Australia and New Zealand; India; Korea, Japan, and Taiwan; Latin America and the
Caribbean; and Other Asia.13 For men, the share of AI-related jobs (V.3 definition) held
by those born in the US declined from 75.2% in 2000 to 65.2% in 2018. This drop was due
almost entirely to the increased employment of men born in India, whose share of AI-
related employment rose from 7.8% in 2000 to 16.9% in 2018. Over 2000 to 2018, foreign-
born workers accounted for 54.6% of the increase in employment in AI-related jobs, with
workers born India alone accounting for 63.7% (or 35.3% of the nationwide increase) of
this increase. Patterns for women are similar. The share of native-born women in AI-
related employment fell between 2000 and 2018 (from 78.1% to 65.1%), with rising shares
for women born in India (from 4.8% to 16.4%) accounting for most of this decline.

To characterize specialization in AI-related jobs, one needs to adjust for the overall
presence of a national origin group in the economy. I do so by calculating revealed com-
parative advantage in AI-related employment among workers in the U.S. labor market:

13See Appendix Tables A.6 and A.8 for the values reported in these figures as well as values for the V.2
definition of AI-related jobs.
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Figure 2: Share of CZ in National Hours Worked in AI-Related Occupations
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(b) Foreign-born Workers
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(c) Native-born Workers

The figures show the share of a commuting zone in national hours worked (in percentage terms) in AI-
related occupations (V.3 definition) for prime-age, college-educated men or women in a given CZ for 2000
and 2018. AI hours worked is measured as hours worked in a given AI-related occupation times the share
of all 2000 jobs titles in that occupation that were created after 1990 and that were AI-related. Shares are for
all workers in panel (a), foreign-born workers in panel (b), and native-born workers in panel (c).
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RCAn = ln
(

Lai
n /Lai

Ln/L

)
,

where Lai
n /Lai is the share of national-origin group n in US employment (of the college

educated) in AI-related occupations (which is shown in Figure 3) and Ln/L is the share of
national-origin group n in national employment (of the college educated) across all occu-
pations. RCA values for men and women in 2000 and 2018 appear in Figure 4. Workers
born in India display the strongest revealed comparative advantage in AI-related employ-
ment. The log RCA value for Indian men of 1.37 in 2018 indicates that their employment
share in AI was 3.9 (= exp (1.37)) times their employment share across all occupations in
the US. Women born in India display an even stronger revealed comparative advantage
in AI-related activities. For both men and women, China and Hong Kong is the region
with the next strongest RCA in AI-related jobs. Robustly negative log RCA values for
individuals born in the US and Latin America and the Caribbean indicate that among
the college educated their employment shares in AI-related activities were substantially
below their employment shares across all occupations.

Does revealed comparative advantage on the part of Indian and Chinese workers in
AI-related occupations simply reflect a generic comparative advantage across all jobs that
are related to STEM disciplines? Appendix Tables A.4 to A.8 show employment shares
and log RCA values for national origin groups using the V.0 definition of STEM-related
jobs (707 titles), the V.1 definition of potentially AI-related jobs (325 titles), and the V.2
broad definition of AI-related jobs (146 job titles). These categories represent substan-
tially larger employment levels than the 30 AI-related job titles in the V.3 definition. In
2018, workers born in India accounted for 4.3% of total employment of college-educated
men in the US, 10.9% of employment in V.0 occupations, 12.1% of employment in V.1
occupations, and 14.6% of employment in V.2 occupations, as compared to their 16.9%
of employment in V.3 occupations. A similar patterns holds for women born in India,
whose employment shares rise from 2.2% among all college-educated workers to 9.3%
in V.0 occupations and to 16.4% in V.3 occupations. As we narrow the definition of jobs
related to AI, the revealed comparative advantage of workers from India in these occu-
pations intensifies. For men born in China or Hong Kong, their 2018 employment shares
rise from 1.4% across all occupations to 2.7% in V.0 occupations and to 3.4% in V.3 oc-
cupations, while for women born in the region their employment shares rise from from
1.4% across all occupations to 4.3% for V.0 occupations and to 5.3% for V.3 occupations.
For workers born in India and China, specialization in narrowly defined AI-related jobs
is much stronger than specialization in STEM-related occupations overall.
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Figure 3: Share of Hours Worked by the College Educated in AI-Related Occupations by Worker Region of Birth
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Which factors account for the revealed comparative advantage of workers from China
and India in AI-related activities? One possibility is that immigrant specialization in AI
is a result, not of an absolute disadvantage among US-born workers in these jobs, but of
an overwhelming absolute advantage of the U.S.-born workers in non-AI fields. If, for
instance, non-AI jobs place a higher premium on social and communication skills (which
may be relatively unimportant in producing AI) and the U.S. educational system (includ-
ing K-12 schooling) is particularly adept at imparting these skills, then workers born in
the US may specialize in non-AI occupations (and non-STEM occupations in general), de-
spite having an absolute advantage across all trades. For Chinese immigrants, language
barriers may put them at a further disadvantage in non-STEM positions.14

A second factor may be the quality of technical training in engineering and math in
the two countries. China has invested heavily in its university training in STEM (Xie &
Freeman, 2020), while India’s technical institutes excel in engineering and math. Strong
engineering and math skills may have left workers from the countries well-positioned to
move into AI, as the field has expanded.15 A related factor, which may be both a result of
and a contributor to the countries’ revealed occupational comparative advantage in com-
puter science and engineering, is the relatively strong capabilities of Indian and Chinese
firms in technology fields. Indian firms, such as Infosys, Tata Consultancy Services, and
Wipro, are among the leading providers of technology-related services globally. Because
Alphabet, Amazon, Apple, Facebook, Microsoft, and other major US tech companies ap-
pear to excel in all stages of technology production and distribution, Indian firms may
have an incentive to specialize in the relatively narrow category of software program-
ming and related technology services, which are used intensively in AI. Indian tech firms
may offer training for workers who wish to obtain visas to work in the US technology
sector. For its part, China has developed a set of national technology companies in Al-
ibaba, Baidu, Tencent, and others, which occupy similar market niches as the big five US
tech firms. Because of barriers to entry in China, the two groups of companies tend not to
compete head to head in their national markets. Like Indian companies, these firms may
provide a training ground for workers seeking to break into the US job market.

A final factor may be US immigration policy. Prior to 1990, there were few individuals
of Indian or Chinese origin in the US. As a result, few US residents would have been able

14If countries whose spoken languages are more distant from English are better at technical straining,
then language may confound analysis of the impact of education quality on occupational comparative ad-
vantage in the U.S. One measure of the quality of a country’s educational instituions in imparting cognitive
skills is test scores from the Program for Internatoinal Student Assessment (PISA). Hanson & Liu (2021)
report that the correlation between PISA math scores and linguistic distance to the U.S. is just 0.17.

15This would not explain the specialization of Chinese and Indian workers in AI over STEM in general.

22



to sponsor individuals from these countries for family-based immigration visas, which
by law account for the strong majority of permanent visas that the US government gives
out each year. Their primary means of obtaining a US permanent legal residence visa,
or green card, has been through employer-sponsored visas, the supply of which equal
a legally mandated 15% of all restricted visas (i.e., visas other than those awarded to
immediate family members of US residents) awarded in a given year. The need to ob-
tain employer-sponsored green cards may have meant that the Indian and Chinese immi-
grants selected for admission have been disproportionately likely to reflect the types of
high-skilled workers in most demand by US companies, including those in high tech.

H-1B visas, which were introduced in 1990 and allow workers to hold a job in the
US for three years and to renew the visa for a second three-year stay, are claimed over-
whelmingly by workers in technology-related fields (Bound et al., 2017, 2021). These visas
operate as queues for employer-sponsored green cards. One pathway to an employer
sponsored green card is first to obtain an H-1B temporary work visa, which allows a
worker to demonstrate her talents to a US employer before that employer undertakes the
time-consuming task of employment sponsorship. A second and related pathway is to
obtain a student visa, complete an undergraduate or graduate degree in the US, and then
secure an H-1B visa. The need for many Chinese and Indian immigrants to obtain an
H-1B visa to gain entry to the US may create a selection mechanism that favors workers
who excel in jobs that require skills applicable to AI.

4 Regression analysis

In this section, I present the core empirical results of the paper. I estimate the change
in CZ specialization in AI-related activities as a function of the immigrant labor-supply
shock confronting the CZ, defined as local exposure to national growth in the number
of college-educated immigrants. The estimation covers the long-period change 2000 to
2018; results for stacked first differences over 2000 to 2009 and 2009 to 2018 are shown
in the appendix. This time period spans the slower growth in AI-related activities of
the early 2000s and the acceleration in growth after 2010. All specifications control for
regional business cycles and initial-period CZ demographic composition and exposure
technological change, manufacturing decline, and globalization.

Before presenting the specification, it is worth articulating the implicit experiment that
underlies the analysis. After 2000, US technology firms began to invest more heavily in
AI (due to technological breakthroughs). Their footloose nature left them free to locate
where they saw fit. Also after 2000, the US had substantial inflows of highly educated

23



foreign-born workers. Because of historical patterns of immigrant settlement, workers
from specific origin countries tended to congregate in specific US commuting zones; and
because of historical patterns of occupational specialization, workers from specific origin
countries were drawn to specific types of jobs. The quasi-experiment I evaluate is whether
CZs seeing larger inflows of foreign-born workers with a proclivity to work in AI—where
these inflows were the combined byproduct of historical settlement and specialization
patterns—became more specialized in AI-related activities. For the quasi-experiment to
be valid, inflows of foreign-born workers to a CZ must not have been caused by invest-
ments of local firms in AI. A challenge for the estimation is to construct the immigrant
supply shock so as to minimize the potential for such reverse causality.

How would the immigrant labor supply shock affect employment of different types of
workers? We would expect the direct effect to be expanded employment of foreign-born
workers in AI-related jobs. The magnitude of this impact may differ between foreign-born
men and women, if the two groups differ in their tendencies to specialize in AI. The indi-
rect impact of the shock on native-born workers in a CZ is of indeterminate sign. On the
one hand, AI-producing firms may expand employment of native-born workers, either
because foreign and native-born workers are complements in production or because of
agglomeration economies that induce AI firms to expand employment of all factors. On
the other hand, if native and foreign-born workers in AI-related jobs are substitutes, firms
may be inclined to replace native-born workers with foreign-born workers, if the latter
has a comparative advantage in AI-related tasks. Because AI is a tradable, this crowding-
out effect may be attenuated. When studying the adjustment of native-born employment
to immigrant labor supply shocks across all occupations, Burstein et al. (2020) finding nei-
ther crowding in nor crowding out—on net, arriving immigrant workers do not displace
native-born workers within occupations whose services are tradable. With these alterna-
tive adjustment mechanisms in mind, I allow the impact of the immigrant labor supply
shock to differ between men and women and between the native and foreign-born.

4.1 Empirical Specification

The core empirical specification takes the form,

4Yv
cgτ = βg0 + βg14zv

cgτ + βXcgτ + εcgτ, (1)

where 4Yv
cgτ is the change in the share of employment for prime-age, college-educated

workers of gender g (female, male) in commuting zone c (722 CZs in the continental US)
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in AI-related occupations of type v (V.3, V.2) over time period τ (2000-2018).16 I use hours
worked to measure employment in the baseline analysis; results using worker counts
appear in the appendix. I estimate equation (1) separately for men and women. I measure
the employment change in the numerator of the dependent variable to be, alternatively,
for all workers, foreign-born workers, and native-born workers (such that the estimated
βg1 values for the latter two groups sum to that of the first group).

The immigrant labor-supply shock, 4zv
cτ, is defined as follows (where all values are

gender-group specific and hereafter I suppress the gender-group index):

4zv
cτ = ∑

n
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(2)

This shock, which follows the logic of shift-share instruments for immigrant labor supply
developed by Altonji & Card (1991) and Card (2001), is the product of three terms. Term
C is the change in the employment of prime-age, college-educated individuals of a given
gender for national-origin group n outside of CZ c over period τ (e.g., the change in the
number of college-educated Indians in the US living outside of Austin between 2000 and
2018), normalized by the employment of prime-age, college-educated individuals in CZ
c in the initial period. By leaving out quantities of CZ c in the numerator of this term,
I utilize information on immigration of group n, excluding those migrants who chose
CZ c as their destination (and may have been motivated by economic conditions in the
CZ in making their emigration decision). This value therefore summarizes the generic
attraction of college-educated immigrants of national origin group n to the US over time
period τ. An assumption needed for identification is that labor-demand shocks in CZ c
did not affect immigrant inflows in other CZs.17

Term B is the share of workers from national-origin group n employed outside of
AI-occupation-group v that resided in CZ c in the year 2000. Excluding AI-related oc-
cupations in this share captures the initial-period attraction of CZ c to college-educated
immigrants from origin n that is generic to the CZ and not specific to AI-related activities.
Term A is the share of college-educated workers of national origin group n outside of CZ
c that worked in AI occupation group v in the initial time period. Excluding CZ c from
this value captures the generic specialization of national origin group n in AI-related ac-

16Both the dependent variable, 4Yv
cgτ , and the immigration labor-supply shock, 4zv

cgτ , are expressed in
decadalized terms by multiplying them by 10/4t, where4t is the length of time period τ.

17This approach to identification is analogous to assuming “exogeneity of the shifts” as defined by
Borusyak et al. (2020) for shift-share instruments. An alternative would be to assume “exogeneity of the
shares” as elaborated by Goldsmith-Pinkham et al. (2020).
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tivities. Multiplying terms A, B, and C, and then summing across national origin groups
produces the imputed inflow of immigrant workers in AI-related occupations to a CZ,
which is based on the specialization of immigrants in AI-related occupations (outside of
the CZ), the concentration of different immigrant groups in the CZ (outside of AI-related
activities), and national growth in immigrant populations (outside of the CZ). The specifi-
cation in (1) is therefore equivalent to a first-stage regression in which the CZ employment
of workers in AI-related occupations is the endogenous variable and the projected change
in CZ immigrant labor supply is the instrument.

The vector of control variables Xcgτ includes state fixed effects (to control for regional
business cycles); the sum of the shares in (2) (i.e., ∑n AcnBcn which follows the recom-
mendation of Borusyak et al. (2020) when using shift-share shocks as regressors); and CZ
shares for the year 2000 of the college educated in the population, the foreign-born in the
population, women in total employment, employment in manufacturing (to control for
secular trends in the sector), employment in routine-intensive jobs (to control for exposure
to automation and related forms of skill-biased technological change), and employment
in offshorable jobs (to control for exposure to globalization). The third group of controls
follows those used by Autor et al. (2013) in their analysis of local-labor-market adjustment
to trade-related, labor-demand shocks. I cluster standard errors by state and weight re-
gressions by CZ total employment (of prime-age, college educated workers of the given
gender group) in the initial period. Summary statistics for the dependent variables and
immigration-shock measures used in the analysis appear in Appendix Table A.9.

It is important to state what the specification in (1) does and does not allow us to iden-
tify. As a difference-in-difference regression, it allows us to compare changes in special-
ization in CZs with larger versus smaller immigrant labor supply shocks. Any common
impact of immigration on specialization in AI across all CZs is absorbed by the constant
term (and cannot be recovered without imposing further structure on the estimation).
I am thus able to study relative changes in specialization due to relative differences in
immigrant inflows, and not the aggregate impact of immigration on AI employment.

4.2 Baseline Estimation Results

The baseline estimation results appear in Table 3, where AI-related occupations are de-
fined for the narrow V.3 job titles. All coefficients except those for the immigration shock
are suppressed. Consider first the results for all men, shown in column 3 of the first
panel. The coefficient estimate of 1.68 (t-value = 2.56) implies that when comparing CZs
at the 75th and 25th percentiles of exposure to the immigrant labor-supply shock, the more
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exposed CZ would have a 0.08 (= 1.68× (0.08− 0.03)) larger annual percentage-point
increase in the share of college-educated men employed in AI-related activities. This in-
crease represents a full standard-deviation change in the dependent variable.
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Table 3:
Long difference (2000-2018): Immigration Impact on CZ Specialization in AI-Related Occupations (V.3)

DV: 100 × 10
∆t × ∆ AI (v3) hours worked by nativity group

total hours worked

Men Women

Foreign-born Native-born All Foreign-born Native-born All

(1) (2) (3) (4) (5) (6)

Immigrant shock (v3) 1.927 -0.242 1.684 0.776 0.107 0.883
(0.411) (0.324) (0.658) (0.393) (0.262) (0.626)

State FE Yes Yes Yes Yes Yes Yes
Obs. 722 722 722 717 717 717
Adj. R-squared 0.797 0.380 0.541 0.695 0.528 0.304
DV Mean 0.076 0.063 0.139 0.019 -0.018 0.001
DV 25th percentile 0.032 0.026 0.107 0.005 -0.040 -0.020
DV 75th percentile 0.088 0.090 0.167 0.027 -0.002 0.017

The dependent variable is the change in the share of hours worked in AI-related occupations (V.3 definition) for the

long difference 2000-2018 for men (columns 1-3) and women (4-6), shown separately for all workers (columns 5 and

6), foreign-born workers (columns 1 and 2), and native-born workers (columns 3 and 4). The immigrant shock for

AI-related occupations (V.3 definition) is defined in equation (2). The sample is individuals 25 to 54 years old with at

least a bachelor’s degree residing in one of the 722 commuting zones in the continental US. All regressions include

a constant, the summed product of the weights used in the immigration shock, state fixed effects, and initial-period

shares of the college educated in the population, the foreign-born in the population, females in total employment,

employment in manufacturing, employment in routine-intensive jobs, and employment in offshorable jobs. Stan-

dard errors (in parentheses) are clustered by state. Regressions are weighted by CZ employment (of prime-age,

college educated workers of the designated gender) in the initial period.
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Columns 1 and 2 decompose the dependent variable in column 3 into two terms: the
portion due to the increase in CZ employment of the foreign-born and the portion due
to the increase in CZ employment of the native-born. By construction, coefficients in
columns 1 and 2 sum to that in column 3. The highly precise coefficient estimate of 1.93
(t-value = 4.69) in column 1 implies that when comparing CZs at the 75th and 25th per-
centiles of exposure to the immigrant labor-supply shock, the more exposed CZ would
have a 0.09 (= 1.93× (0.08− 0.03)) larger annual percentage-point increase in the share
of college-educated men who are employed in AI-related activities and who are foreign
born, which represents a 1.2 standard-deviation increase in the dependent variable. By
contrast, in column 2 when the dependent variable is the change in native-born men em-
ployed in AI the coefficient on the immigration shock is small, negative, and imprecisely
estimated (β = −0.24, t-value = 0.75). This means that an immigrant labor-suppy shock
at the CZ level works to expand employment in AI-related activities entirely through in-
creased employment of the foreign born. The shock neither crowds in nor crowds out the
employment of native-born men in a CZ’s AI-related occupations.18

The concentrated impact of CZ-level immigrant labor-supply growth on foreign-born
AI employment is notable because nationally foreign and native-born workers have con-
tributed roughly equally to the increase in AI employment. Of the mean change in the
share of men employed in AI over 2000 to 2018 in Table A.9, 54.6% is due to greater
employment of the foreign-born and 45.4% is due to greater employment of the native-
born. Despite this similar contribution, the two groups have responded quite differently
to localized high-skilled immigrant labor-supply shocks. Consistent with the descriptive
evidence in Figures 1, the factors driving expanded AI-related regional employment for
the foreign-born appear to be distinct from those for the native-born.

It is important to note that the results in Table 3 are not mechanical. CZs exposed to
a larger overall increase in college-educated immigration experience larger employment
growth specific to AI-related activities. Because AI-related occupations account for a very
small share of total employment, there is no automatic connection between the expanded
supply of college graduates in a CZ and greater specialization in AI-related activities. The
results for women, to which I now turn, confirm this reasoning.

Estimation results for women appear in the second panel of Table 3. Impacts of the
immigration supply shock on AI-related employment of all college-educated women,
shown in column 6, are positive but imprecisely estimated (β = 0.88, t-value = 1.41). This
overall effect combines a positive but small and imprecise impact on the AI employment

18This finding mirrors the Burstein et al. (2020) result on how native-born employment in tradable occu-
pations (such as AI) adjusts to an immigrant labor supply shock.
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of native-born women in column 5 (β = 0.11, t-value = 0.42) and a larger, positive, and
more precisely estimated impact on the AI employment of foreign-born women in col-
umn 4 (β = 0.78, t-value = 1.98). Given the differential specialization of men and women
in AI-related jobs—over 2000 to 2018, employment shares in AI-related occupations rose
by 0.14 percentage points annually for men but just 0.001 percentage points annually for
women—the immigration labor-supply shock has substantially larger impacts on male
versus female employment. By the same token, the specialization of foreign-born men
in AI-related activities means that increased access to college-educated male immigrants
drives a region to specialize relatively more strongly in AI-related activities.

Burstein et al. (2020) provide a theoretical framework that explains how exogenous in-
creases in the supply of foreign-born workers to specific occupations need neither crowd
in nor crowd out the employment of native-born workers, at least in jobs whose output is
tradable. Tradability implies that firms can absorb immigrant workers in an occupation
(e.g., using machine learning to create AI) by expanding exports to other regions. As long
as a region is small in the sense of its output changes having minimal impacts on prices
in national or global markets, then the expansion in the employment of the foreign born
need not displace any native-born workers, even where foreign and native-born workers
are perfectly substitutable on the job. Because AI-related occupations are highly tradable,
the results in Table 3 appear to be consistent with Burstein et al. (2020) logic.

Beyond the tradable-sector adjustment mechanism, there may be other factors at work
that affect how foreign and native-born workers sort themselves across jobs related to AI.
AI has many applications in national defense, national intelligence, and space-related
research (Allen & Chan, 2017). Jobs in these applications, whether they be for private
employers, universities, non-profit research organizations, or the government, often re-
quire a security clearance. Native-born workers may be better positioned to acquire such
clearances. Although Census and ACS data do identify whether or not workers are em-
ployed by government entities, the data are not sufficiently granular to identify which
private employers are engaged in activities related to national security. One task for fu-
ture research is to evaluate whether greater access to high-skilled immigrant labor leads
a region to adjust the types of AI activities in which it engages.

Additionally, native-born workers with strong cognitive skills may be drawn to highly
paid jobs in finance and away from AI. Because many jobs in investment banking appear
to involve deal making, which may draw on communication and social skills, native-
born workers may have an advantage in securing them. Hanson & Liu (2021) report that
in terms of intensity in abstract and quantitative reasoning, financial managers rank 5th

out of 30 occupations, just behind engineers, mathematicians, and scientists. By contrast,
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when it comes to intensity of interpersonal communication on the job, financial managers
rank 11th, engineers rank 23rd, and scientists and mathematicians rank 28th.

4.3 Robustness Checks

Next, I explore the robustness of the empirical results in three dimensions. First, I use
alternative measures of employment. Appendix Table A.10 displays results using worker
counts, rather than hours worked, to measure employment. For men and women and
all nativity groups, the results in Table A.10 are very similar to those in Table 3. The im-
plication is that the immigration shock has comparable impacts on the intensive margin
(hours worked) and extensive margin (worker counts) of AI employment.

Second, I adjust the definition of time periods used in the analysis. Instead of the 2000
to 2018 long difference, I organize the data in stacked first differences over two time peri-
ods, 2000 to 2009, during which growth in AI was relatively slow, and 2009 to 2018, during
which growth in AI was relatively rapid (Bloom et al., 2020). The results, which appear
in Appendix Table A.12, are very similar in terms of coefficient signs and magnitudes to
those in Table 3. Shortening the time periods and expanding the sample size allows for
more precision in the coefficient estimation. For women, the impact of the immigration
shock on employment in AI-related occupations is now positively and strongly precisely
estimated for all women and for foreign-born women. The impact on native-born women
remains small and imprecisely estimated.

Finally, I broaden the definition of AI-related occupations. The V.3 measure I have
used so far in the estimation defines AI jobs to comprise 30 job titles, of which 16 were
created after 1990. The broader V.2 definition includes 146 job titles, of which 48 were cre-
ated after 1990. Table 4 reports results for V.2 AI-related occupations using employment
measured as hours worked, and the 2000 to 2018 long difference. Appendix Tables A.11
and A.13 show corresponding V.2 results for employment measured using worker counts
and stacked first differences over 2000 to 2009 and 2009 to 2018, respectively. For men,
the results in Tables 3 and 4 are qualitatively similar. For either measure, the high-skilled
immigration shock has a strongly positive impact on employment in AI-related occupa-
tions, which is due entirely to the expanded employment of the foreign born. The results
differ in terms of magnitudes. The coefficient on the immigration shock for V.3 occupa-
tions is twice as large (1.95 = 1.93/0.99) as for V.2 occupations. For women, the change
in coefficient magnitudes is even more substantial. The immigration shock coefficient for
foreign-born women in Table 4 is only one-third (0.36 = 0.78/0.28) as large as in Table 3
and is quite imprecisely estimated (t-value = 0.99).
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Table 4:
Long difference (2000-2018): Immigration Impact on CZ Specialization in AI-Related Occupations (V.2)

DV: 100 × 10
∆t × ∆ AI (v2) hours worked by nativity group

total hours worked

Men Women

Foreign-born Native-born All Foreign-born Native-born All

(1) (2) (3) (4) (5) (6)

Immigrant shock (v2) 0.989 0.217 1.206 0.280 0.119 0.400
(0.260) (0.278) (0.476) (0.283) (0.153) (0.352)

State FE Yes Yes Yes Yes Yes Yes
Obs. 722 722 722 717 717 717
Adj. R-squared 0.675 0.478 0.398 0.637 0.534 0.466
DV Mean 0.102 -0.037 0.065 0.003 -0.130 -0.128
DV 25th percentile 0.027 -0.145 -0.045 -0.029 -0.190 -0.196
DV 75th percentile 0.141 0.046 0.157 0.028 -0.067 -0.065

The dependent variable is the change in the share of hours worked in AI-related occupations (V.2 definition) for the

long difference 2000-2018 for men (columns 1-3) and women (4-6), shown separately for all workers (columns 5 and

6), foreign-born workers (columns 1 and 2), and native-born workers (columns 3 and 4). The immigrant shock for

AI-related occupations (V.2 definition) is defined in equation (2). The sample is individuals 25 to 54 years old with at

least a bachelor’s degree residing in one of the 722 commuting zones in the continental US. All regressions include

a constant, the summed product of the weights used in the immigration shock, state fixed effects, and initial-period

shares of the college educated in the population, the foreign-born in the population, females in total employment,

employment in manufacturing, employment in routine-intensive jobs, and employment in offshorable jobs. Stan-

dard errors (in parentheses) are clustered by state. Regressions are weighted by CZ employment (of prime-age,

college educated workers of the designated gender) in the initial period.
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One interpretation of the finding that the high-skilled immigration shock has a larger
impact on employment shares in narrow versus broad AI-related occupations is that the
supply of skilled labor is a more binding constraint for former than for the latter. Relax-
ing this constraint would then generate larger adjustment in V.3 than in V.2 occupations.
Because narrow V.3 job titles are associated with the more skilled jobs than the broad V.2
titles, this interpretation appears plausible.

5 Discussion

The frenzy over artificial intelligence rivals that surrounding the space race of the 1950s
and 1960s. With applications of AI still in its early stages, observers are free to make
bold claims about how the technology will cause widespread job loss, usher in a future of
driverless transportation, render language barriers obsolete, or bring forth other massive
disruptions. Whatever the future of AI, it is likely to inspire heavy investments in new
ventures for some time to come. Where these investments occur will help determine the
future spatial distribution of activities in IT. Because AI is the current frontier of IT, which
locations host its creation is of enormous interest to government and industry alike.

In the US, the regions that are best able to attract the computer scientists, data sci-
entists, and computer systems engineers who are most adept at machine learning and
related activities are likely to be the ones that acquire a comparative advantage in AI.
Globalization has made it possible to obtain advanced computer hardware just about any-
where. Advances in digital communications now allow data to flow freely across space.
Because these two key AI ingredients are footloose, the location of their production may
have little bearing on the location of AI production. The technical talent that creates AI is
also footloose. In the US, much of this talent is foreign born—and from India and China
in particular. The location choices of newly arrived immigrants, whether low-skilled
or high-skilled, tend to follow the location choices of previous generations of workers
from their origin countries. So too has it been in the case for AI-related workers. US
commuting zones that were most exposed to increases in the supply of college-educated
immigrants—based on the previous specialization patterns of these regions and their his-
torical attraction to foreign-born arrivals—have seen the largest increase in the share of
employment devoted to AI-related jobs. The lesson from this regularity is that access to
high-skilled immigration relaxes the talent constraint that limits the expansion of AI. The
US government, by regulating the volume and composition of high-skilled labor inflows
from abroad, in effect regulates the pace of growth in AI.

The US model of innovation in AI—in which private-sector firms competing in open
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markets make their own investment decisions and hire talent from around the world—
stands in contrast with that of China. China’s tech firms enjoy protection from foreign
competition, receive subsidies for R&D and other performance measures, and benefit
from the government’s appetite for facial recognition and other AI applications. (US
firms, for their part, also receive government subsidies, at least in indirect form through
public funding of basic and applied research and possibly in direct form through govern-
ment procurement.) One presumes that the talent constraint in AI production applies in
China, just as in the US. What remains to be seen is whether the relative openness of the
US to immigration gives it an advantage in the sector.
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Occupation Occupation Title V.3 AI New Occupation Occupation Title V.3 AI New

Computer
scientists
and systems
analysts

Analyst \ n.s.

Network
systems and
data com-
munications
analysts

Chat room host/monitor
Artificial intelligence specialist � � Communications consultant

Business systems analyst Computer consultant, networks
Computer analyst Computer integration

Computer consultant \ n.e.c. or n.s. Data communications analyst
Computer research � � Engineer, network
Computer scientist � Info. technology specialist, internet

Computer systems analyst Info. technology specialist, network services
Computer systems design analyst � � Internet developer

Computer systems designer � Intranet developer
Computer systems, planning Manager, website
Computing systems analyst Multimedia telecom. systems integrator

Consultant, systems, computer or data processing Network analyst
Data processing consultant Network architect

Data processing systems analyst Network consultant
Data processing systems project planner Network designer � �

Digital computer systems analyst Network specialist
Engineering systems analyst Network support

Health systems analyst, computer Network systems analyst
Information scientist � Network systems integrator

Information systems consultant Software consultant, data communications
Information systems specialist Software consultant, networks

Information technology specialist, general or n.s. Systems integrator
Information technology specialist, systems analysis Systems planner

Methods analyst, computer Telecommunications specialist
Scientific systems analyst Web designer � �

Software consultant \ n.e.c. Web developer
Supervisor, computer analyst Web specialist

Systems analyst, computer systems Webmaster
Systems analyst, data processing

Statisticians

Analytical statistician
Systems architect Applied statistician

Technician, computer or computer laboratory Biometrician �

Computer
software
engineers

Applications developer Biostatistician �
C.N.E. (certified Novell engineer) � � Engineer, statistical �
Computer applications developer Mathematical statistician

Computer programmer analyst Sampling expert
Computer specialist, software Statistician

Engineer, Microsoft certified systems (MCSE) � � Survey statistician
Engineer, computer applications � Time study statistician

Engineer, computer software \ n.e.c. �

Computer
hardware
engineers

Computer designer
Engineer, computer software applications � � Computer layout

Engineer, computer software systems � � Computer tester
Engineer, computer systems � Engineer, computer \n.e.c. or n.s. � �
Engineer, software \ n.e.c. � Engineer, computer hardware �

Engineer, software applications � � Engineer, design \ n.s. �
Engineer, software requirements � � Engineer, installation, computers exc. PCs

Engineer, software systems � � Microchip specialist
Engineer, system �

Engineer, system EDP � �
Engineer, systems analyst � �

Info. technology specialist, software engineering, applications
Inf. technology specialist, software engineering, systems

M.C.S.E (Microsoft certified systems engineer) � �
Program analyst

Programmer analyst
Quality assurance specialist, applications

Quality assurance specialist, systems software
Software QA tester

Software applications specialist
Software designer �

Software developer
Software development specialist

Software installer
Software specialist, systems

Software writer
Supervisor, software engineering

Tester, software

Table A.1: Job Titles Associated with AI-Related Occupations (V.3 definition)
This table lists all occupation titles that correspond to Census occupation codes that have at least one AI-
related title by the V.3 definition. Column 3 (4) indicates whether a title is AI-related (added after 1990).
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All workers Foreign-born workers Native-born workers

Rank Men Women Men Women Men Women

1 San Jose-Sunnyvale-Santa Clara, CA San Jose-Sunnyvale-Santa Clara, CA San Jose-Sunnyvale-Santa Clara, CA San Jose-Sunnyvale-Santa Clara, CA Colorado Springs, CO Huntsville, AL

2 Colorado Springs, CO Huntsville, AL Oakland-Fremont-Hayward, CA Oakland-Fremont-Hayward, CA South Arlington-Alexandria Colorado Springs, CO

3 Washington Surrounding Colorado Springs, CO West New York West New York Palm Bay-Melbourne-Titusville, FL Martinsville, VA

4 Bloomington-Normal, IL Washington Surrounding Washington Surrounding Washington Surrounding Bloomington-Normal, IL Palm Bay-Melbourne-Titusville, FL

5 Raleigh-Cary, NC Martinsville, VA Dallas Surrounding Seattle-Bellevue-Everett, WA Huntsville, AL Washington Surrounding

6 Palm Bay-Melbourne-Titusville, FL Palm Bay-Melbourne-Titusville, FL Austin-Round Rock, TX Edison, NJ Raleigh-Cary, NC Bloomington-Normal, IL

7 South Arlington-Alexandria Raleigh-Cary, NC Boston-Quincy, MA Dallas Surrounding Provo-Orem, UT South Arlington-Alexandria

8 Austin-Round Rock, TX South Arlington-Alexandria Edison, NJ Pike County, KY Binghamton, NY Raleigh-Cary, NC

9 Binghamton, NY Oakland-Fremont-Hayward, CA Seattle-Bellevue-Everett, WA Raleigh-Cary, NC Denver-Aurora, CO Denver-Aurora, CO

10 Denver-Aurora, CO Bloomington-Normal, IL Raleigh-Cary, NC Boston-Quincy, MA Washington Surrounding Binghamton, NY

11 Huntsville, AL Binghamton, NY Chicago-Naperville-Joliet, IL Wilmington, DE-MD-NJ San Jose-Sunnyvale-Santa Clara, CA Austin-Round Rock, TX

12 Oakland-Fremont-Hayward, CA Denver-Aurora, CO Los Angeles-Long Beach-Glendale, CA Houston Surrounding Rockingham. Strafford County, NH Baltimore Surrounding

13 Dallas Surrounding Dallas Surrounding Atlanta Surrounding Los Angeles-Long Beach-Glendale, CA Austin-Round Rock, TX San Jose-Sunnyvale-Santa Clara, CA

14 Provo-Orem, UT Seattle-Bellevue-Everett, WA Miami-Miami Beach-Kendall, FL Columbus, OH Rochester, MN Dallas Surrounding

15 Boston-Quincy, MA Boston-Quincy, MA San Diego-Carlsbad-San Marcos, CA Goldsboro, NC Dallas Surrounding Hagerstown-Martinsburg, MD-WV

16 Rockingham. Strafford County, NH Austin-Round Rock, TX Houston Surrounding Chicago-Naperville-Joliet, IL Omaha-Council Bluffs, NE-IA Seattle-Bellevue-Everett, WA

17 Seattle-Bellevue-Everett, WA Baltimore Surrounding New York Surrounding/New York New York Surrounding/New York Baltimore Surrounding Boston-Quincy, MA

18 West New York Wilmington, DE-MD-NJ Columbus, OH Atlanta Surrounding Seattle-Bellevue-Everett, WA Madison, WI

19 Atlanta Surrounding Columbus, OH Bloomington-Normal, IL Sullivan County, MO Boston-Quincy, MA Chaffee County, CO

20 Rochester, MN West New York Wilmington, DE-MD-NJ Kirksville, MO Winchester, VA-WV East Charlotte

Table A.2: Top 20 CZ’s in Terms of Share of CZ Hours Worked in AI-Related Occupations, 2000

This table reports the top 20 commuting zones in terms of the share of CZ hours worked in AI-related occupations (V.3 definition) for prime-age,
college-educated men and women in 2000. AI hours worked is measured as hours worked in a given AI-related occupation times the share of all
2000 jobs titles in that occupation that were created after 1990 and that were AI-related.
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All workers Foreign-born workers Native-born workers

Rank Men Women Men Women Men Women

1 Washington Surrounding Washington Surrounding San Jose-Sunnyvale-Santa Clara, CA San Jose-Sunnyvale-Santa Clara, CA Washington Surrounding Washington Surrounding

2 Los Angeles-Long Beach-Glendale, CA Oakland-Fremont-Hayward, CA Oakland-Fremont-Hayward, CA Oakland-Fremont-Hayward, CA Boston-Quincy, MA Boston-Quincy, MA

3 Oakland-Fremont-Hayward, CA Chicago-Naperville-Joliet, IL West New York Washington Surrounding Chicago-Naperville-Joliet, IL Chicago-Naperville-Joliet, IL

4 Chicago-Naperville-Joliet, IL Boston-Quincy, MA Los Angeles-Long Beach-Glendale, CA West New York Los Angeles-Long Beach-Glendale, CA New York Surrounding/New York

5 San Jose-Sunnyvale-Santa Clara, CA New York Surrounding/New York Washington Surrounding Los Angeles-Long Beach-Glendale, CA Oakland-Fremont-Hayward, CA Oakland-Fremont-Hayward, CA

6 Boston-Quincy, MA Los Angeles-Long Beach-Glendale, CA New York Surrounding/New York New York Surrounding/New York New York Surrounding/New York Los Angeles-Long Beach-Glendale, CA

7 West New York West New York Chicago-Naperville-Joliet, IL Chicago-Naperville-Joliet, IL Atlanta Surrounding West New York

8 New York Surrounding/New York San Jose-Sunnyvale-Santa Clara, CA Boston-Quincy, MA Boston-Quincy, MA Denver-Aurora, CO Atlanta Surrounding

9 Atlanta Surrounding Atlanta Surrounding Dallas Surrounding Seattle-Bellevue-Everett, WA West New York Philadelphia, PA

10 Dallas Surrounding Seattle-Bellevue-Everett, WA Seattle-Bellevue-Everett, WA Dallas Surrounding Seattle-Bellevue-Everett, WA Denver-Aurora, CO

11 Seattle-Bellevue-Everett, WA Philadelphia, PA Atlanta Surrounding Atlanta Surrounding Dallas Surrounding Seattle-Bellevue-Everett, WA

12 Denver-Aurora, CO Dallas Surrounding Houston Surrounding Houston Surrounding San Jose-Sunnyvale-Santa Clara, CA Warren-Farmington Hills-Troy, MI

13 Philadelphia, PA Warren-Farmington Hills-Troy, MI Warren-Farmington Hills-Troy, MI Philadelphia, PA Philadelphia, PA Dallas Surrounding

14 Minneapolis-Bloomington, MN-WI Denver-Aurora, CO Philadelphia, PA Warren-Farmington Hills-Troy, MI Minneapolis-Bloomington, MN-WI Minneapolis-Bloomington, MN-WI

15 Warren-Farmington Hills-Troy, MI Minneapolis-Bloomington, MN-WI Miami-Miami Beach-Kendall, FL Miami-Miami Beach-Kendall, FL Warren-Farmington Hills-Troy, MI Baltimore Surrounding

16 Houston Surrounding Houston Surrounding San Diego-Carlsbad-San Marcos, CA Minneapolis-Bloomington, MN-WI Baltimore Surrounding, Houston Surrounding

17 Raleigh-Cary, NC Baltimore Surrounding Minneapolis-Bloomington, MN-WI Raleigh-Cary, NC Houston Surrounding San Jose-Sunnyvale-Santa Clara, CA

18 Baltimore Surrounding Raleigh-Cary, NC Denver-Aurora, CO San Diego-Carlsbad-San Marcos, CA Raleigh-Cary, NC Raleigh-Cary, NC

19 Hartford, CT Hartford, CT Austin-Round Rock, TX Hartford, CT Hartford CT Hartford, CT

20 San Diego-Carlsbad-San Marcos, CA Phoenix-Mesa-Scottsdale, AZ Hartford, CT Baltimore Surrounding Phoenix-Mesa-Scottsdale, AZ Phoenix-Mesa-Scottsdale, AZ

Table A.3: Top 20 Commuting Zones in Terms of CZ Share of National Hours Worked in AI-Related Occupations

This table reports the top 20 commuting zones in terms of the CZ share of national hours worked in AI-related occupations (V.3 definition) for
prime-age, college-educated men and women in 2000. AI hours worked is measured as hours worked in a given AI-related occupation times the
share of all 2000 jobs titles in that occupation that were created after 1990 and that were AI-related.
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Table A.4: Share of Hours Worked in All Occupations among Prime-Age,
College-educated Workers by Region of Birth

2000 2004-09 2014-18
Men
Native born 86.5 83.1 81.5
Latin America + Caribbean 2.5 3.7 3.9
Africa and Middle East 1.4 1.8 2.1
China + Hong Kong 0.9 1.2 1.4
India 2.1 3.1 4.3
Korea + Japan + Taiwan 1.3 1.4 1.3
Other Asia 1.9 2.2 2.1
Europe + Australia + New Zealand + Canada 3.4 3.6 3.5
Women
Native born 88.4 85.6 84.5
Latin America + Caribbean 2.5 3.6 4.0
Africa and Middle East 0.7 0.9 1.2
China + Hong Kong 0.9 1.2 1.4
India 1.1 1.6 2.2
Korea + Japan + Taiwan 1.1 1.3 1.1
Other Asia 2.5 2.7 2.5
Europe + Australia + New Zealand + Canada 2.7 3.1 3.0

Each cell reports the fraction of hours worked by a particular national origin

group for men and women with at least a college education and who are 25 to

54 years old. The data are from the 2000 Census and the 2005-2009 and 2014-2018

five-year ACS samples.
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Table A.5: Share of Hours Worked in V.0 and V.1 Occupations among Prime-Age, College-educated
Workers by Region of Birth

V.0 Hours V.1 Hours
2000 2004-09 2014-18 2000 2004-09 2014-18

Men
Native born 80.2 75.7 72.9 78.8 74.2 71.4
Latin America + Caribbean 1.9 2.5 3.0 1.9 2.4 2.9
Africa and Middle East 1.5 1.8 2.1 1.5 1.7 2.1
China + Hong Kong 2.1 2.5 2.7 2.4 2.8 2.9
India 5.0 7.8 10.9 5.7 8.9 12.1
Korea + Japan + Taiwan 1.7 1.9 1.5 1.8 2.0 1.6
Other Asia 2.9 3.2 2.6 3.0 3.3 2.7
Europe + Australia + New Zealand + Canada 4.6 4.7 4.3 4.8 4.7 4.3
Women
Native born 80.6 75.9 73.1 79.0 73.9 71.8
Latin America + Caribbean 2.0 2.7 3.0 2.0 2.8 3.1
Africa and Middle East 0.8 1.1 1.3 0.8 1.2 1.3
China + Hong Kong 3.5 4.2 4.3 4.0 4.7 4.5
India 3.3 6.0 9.3 3.8 7.0 10.2
Korea + Japan + Taiwan 2.3 2.1 1.6 2.6 2.3 1.7
Other Asia 3.3 3.6 3.3 3.4 3.9 3.5
Europe + Australia + New Zealand + Canada 4.2 4.4 4.0 4.2 4.4 3.8

Each cell reports the fraction of hours worked by a particular national origin group for men and women with

at least a college education and who are 25 to 54 years old in V.0 or V.1 occupations. Data are from the 2000

Census and the 2005-2009 and 2014-2018 five-year ACS samples.
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Table A.6: Share of Hours Worked in V.2 and V.3 Occupations among Prime-Age, College-educated
Workers by Region of Birth

V.2 Hours V.3 Hours
2000 2004-09 2014-18 2000 2004-09 2014-18

Men
Native born 76.6 71.3 67.5 75.2 68.8 65.2
Latin America + Caribbean 2.0 2.4 2.9 2.1 2.4 3.0
Africa and Middle East 1.6 1.8 2.2 1.6 1.9 2.3
China + Hong Kong 2.7 3.2 3.4 3.0 3.3 3.4
India 6.6 10.4 14.6 7.8 12.6 16.9
Korea + Japan + Taiwan 2.0 2.2 1.7 2.0 2.1 1.6
Other Asia 3.4 3.6 3.1 3.4 3.7 3.0
Europe + Australia + New Zealand + Canada 5.2 5.2 4.6 5.0 5.2 4.7
Women
Native born 76.4 70.3 65.1 78.1 70.8 65.1
Latin America + Caribbean 1.9 2.2 2.8 1.9 2.2 2.7
Africa and Middle East 0.9 1.2 1.4 0.8 1.2 1.4
China + Hong Kong 4.9 5.7 5.6 4.5 5.5 5.3
India 4.7 9.2 15.4 4.8 10.2 16.4
Korea + Japan + Taiwan 2.9 2.4 1.8 2.8 2.2 1.8
Other Asia 3.6 4.3 4.1 3.4 3.9 3.8
Europe + Australia + New Zealand + Canada 4.7 4.7 3.9 3.7 4.0 3.6

Each cell reports the fraction of hours worked by a particular national origin group for men and women with

at least a college education and who are 25 to 54 years old in V.2 or V.3 occupations. Data are from the 2000

Census and the 2005-2009 and 2014-2018 five-year ACS samples.
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Table A.7: Revealed Comparative Advantage in V.0 and V.1 Occupations by Worker Region of Birth

V.0 Hours V.1 Hours
2000 2004-09 2014-18 2000 2004-09 2014-18

Men
Native born -0.08 -0.09 -0.11 -0.09 -0.11 -0.13
Latin America + Caribbean -0.27 -0.39 -0.26 -0.25 -0.42 -0.28
Africa and Middle East 0.05 -0.00 -0.01 0.03 -0.04 -0.01
China + Hong Kong 0.82 0.76 0.67 0.94 0.85 0.75
India 0.89 0.94 0.93 1.02 1.07 1.04
Korea + Japan + Taiwan 0.29 0.28 0.19 0.36 0.33 0.23
Other Asia 0.44 0.36 0.23 0.48 0.39 0.25
Europe + Australia + New Zealand + Canada 0.30 0.26 0.20 0.34 0.28 0.20
Women
Native born -0.09 -0.12 -0.15 -0.11 -0.15 -0.16
Latin America + Caribbean -0.23 -0.28 -0.26 -0.22 -0.26 -0.25
Africa and Middle East 0.17 0.17 0.12 0.19 0.20 0.12
China + Hong Kong 1.35 1.29 1.10 1.49 1.39 1.13
India 1.08 1.35 1.43 1.23 1.50 1.53
Korea + Japan + Taiwan 0.70 0.51 0.36 0.83 0.60 0.43
Other Asia 0.28 0.27 0.27 0.34 0.35 0.32
Europe + Australia + New Zealand + Canada 0.43 0.34 0.30 0.44 0.34 0.26

Calculation is:

RCAkgst = ln(

∑
o∈Ov

(Lkgost)/ ∑
o∈Ov

(Lgost)

∑
o∈O

(Lkgost)/ ∑
o∈O

(Lgost)

)

where L is hours worked and Ov is the set of occupations with a positive share of new STEM or potential AI

work according to V.0 or V.1. This is calculated for each year (t), gender (g), and national origin group (k) among

either men or women 25 to 54 years old with at least a college education. Data are from the 2000 Census and

the 2005-2009 and 2014-2018 five-year ACS samples.

46



Table A.8: Revealed Comparative Advantage in V.2 and V.3 Occupations by Worker Region of Birth

V.2 Hours V.3 Hours
2000 2004-09 2014-18 2000 2004-09 2014-18

Men
Native born -0.12 -0.15 -0.19 -0.14 -0.19 -0.22
Latin America + Caribbean -0.21 -0.43 -0.27 -0.18 -0.42 -0.27
Africa and Middle East 0.09 0.02 0.04 0.11 0.07 0.08
China + Hong Kong 1.06 0.99 0.90 1.14 1.03 0.90
India 1.15 1.22 1.22 1.33 1.42 1.37
Korea + Japan + Taiwan 0.46 0.42 0.31 0.48 0.38 0.25
Other Asia 0.58 0.48 0.37 0.58 0.52 0.36
Europe + Australia + New Zealand + Canada 0.43 0.37 0.26 0.38 0.37 0.27
Women
Native born -0.15 -0.20 -0.26 -0.12 -0.19 -0.26
Latin America + Caribbean -0.27 -0.48 -0.35 -0.29 -0.50 -0.40
Africa and Middle East 0.21 0.26 0.18 0.20 0.25 0.17
China + Hong Kong 1.67 1.59 1.35 1.60 1.56 1.29
India 1.45 1.77 1.94 1.47 1.87 2.00
Korea + Japan + Taiwan 0.95 0.65 0.46 0.89 0.56 0.46
Other Asia 0.38 0.44 0.47 0.32 0.35 0.40
Europe + Australia + New Zealand + Canada 0.54 0.42 0.26 0.29 0.26 0.19

Calculation is:

RCAkgst = ln(

∑
o∈Ov

(Lkgost)/ ∑
o∈Ov

(Lgost)

∑
o∈O

(Lkgost)/ ∑
o∈O

(Lgost)

)

where L is hours worked and Ov is the set of occupations with a positive share of new STEM or potential AI

work according to V.2 or V.3. This is calculated for each year (t), gender (g), and national origin group (k) among

either men or women 25 to 54 years old with at least a college education. Data are from the 2000 Census and

the 2005-2009 and 2014-2018 five-year ACS samples.
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Table A.9: Summary Statistics for Dependent Variables and Immigration Shocks

Variable Obs Mean Std. Dev. P25 P75
Male hours worked
V.3
All 722 .139 .078 .107 .167
Foreign born 722 .076 .073 .032 .088
Native born 722 .063 .052 .026 .09
Immigrant shock 722 .052 .035 .027 .076

V.2
All 722 .065 .178 -.045 .157
Foreign born 722 .102 .131 .027 .141
Native born 722 -.037 .158 -.145 .046
Immigrant shock 722 .153 .101 .078 .219

Male employment
V.3
All 722 .144 .08 .113 .173
Foreign born 722 .08 .076 .033 .096
Native born 722 .064 .054 .024 .094
Immigrant shock 722 .068 .045 .035 .101

V.2
All 722 .058 .187 -.055 .155
Foreign born 722 .106 .139 .028 .157
Native born 722 -.048 .166 -.156 .035
Immigrant shock 722 .2 .131 .104 .296

Female hours
worked
V.3
All 722 .001 .033 -.02 .017
Foreign born 722 .019 .022 .005 .027
Native born 722 -.018 .032 -.04 -.002
Immigrant shock 717 .032 .024 .014 .048

V.2
All 722 -.128 .104 -.196 -.065
Foreign born 722 .003 .053 -.029 .028
Native born 722 -.13 .098 -.19 -.067
Immigrant shock 717 .114 .084 .049 .168

Female employment
V.3
All 722 .005 .031 -.015 .02
Foreign born 722 .019 .022 .006 .026
Native born 722 -.015 .031 -.034 0
Immigrant shock 717 .034 .025 .015 .051

V.2
All 722 -.115 .101 -.18 -.053
Foreign born 722 .005 .054 -.023 .029
Native born 722 -.12 .094 -.173 -.063
Immigrant shock 717 .118 .088 .052 .176

This table reports means of the outcome variables and immigration shocks used in the regression analysis. The
outcomes are changes employment shares (hours worked, worker counts) by gender group (male, female) in
AI-related occupations (V.3, V.2) by nativity group (all workers, foreign-born, native-born) over 2000 to 2018.
The immigration shock (defined in equation (2)) is the projected change in the supply of workers (by gender,
employment definition) in AI-related occupations (by AI definition) relative to total initial-period labor supply
in the CZ over 2000 to 2018. All variables are multiplied by 100 and decadalized (multiplied by 10 divided by
the number of years between time periods). The sample includes individuals 25 to 54 years old with at least a
bachelor’s degree. Results are weighted using CZ total employment of prime-age, college-educated workers of
the gender group in the initial period.
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Table A.10:
Long difference (2000-2018): Immigration Impact on CZ Specialization in AI-Related Occupations (V.3)

DV: 100 × 10
∆t × ∆ AI (v3) employment of nativity group

total employment

Men Women

Foreign-born Native-born All Foreign-born Native-born All

(1) (2) (3) (4) (5) (6)

Immigrant shock (v3) 1.529 -0.269 1.259 0.872 0.027 0.899
(0.341) (0.267) (0.553) (0.373) (0.220) (0.561)

State FE Yes Yes Yes Yes Yes Yes
Obs. 722 722 722 717 717 717
Adj. R-squared 0.787 0.397 0.520 0.705 0.544 0.319
DV Mean 0.080 0.064 0.144 0.019 -0.015 0.005
DV 25th percentile 0.033 0.024 0.113 0.006 -0.034 -0.015
DV 75th percentile 0.096 0.094 0.173 0.026 -0.000 0.020

The dependent variable is the change in the share of workers employed in AI-related occupations (V.3 definition)

for the long difference 2000-2018 for men (columns 1-3) and women (4-6), shown separately for all workers (columns

5 and 6), foreign-born workers (columns 1 and 2), and native-born workers (columns 3 and 4). The immigrant shock

for AI-related occupations (V.3 definition) is defined in equation (2). The sample is individuals 25 to 54 years old with

at least a bachelor’s degree residing in one of the 722 commuting zones in the continental US. All regressions include

a constant, the summed product of the weights used in the immigration shock, state fixed effects, and initial-period

shares of the college educated in the population, the foreign-born in the population, females in total employment,

employment in manufacturing, employment in routine-intensive jobs, and employment in offshorable jobs. Stan-

dard errors (in parentheses) are clustered by state. Regressions are weighted by CZ employment (of prime-age,

college educated workers of the designated gender) in the initial period.

49



Table A.11:
Long difference (2000-2018): Immigration Impact on CZ Specialization in AI-Related Occupations (V.2)

DV: 100 × 10
∆t × ∆ AI (v2) employment of nativity group

total employment

Men Women

Foreign-born Native-born All Foreign-born Native-born All

(1) (2) (3) (4) (5) (6)

Immigrant shock (v2) 0.763 0.088 0.851 0.382 0.091 0.473
(0.224) (0.247) (0.422) (0.270) (0.145) (0.334)

State FE Yes Yes Yes Yes Yes Yes
Obs. 722 722 722 717 717 717
Adj. R-squared 0.667 0.494 0.390 0.648 0.530 0.476
DV Mean 0.106 -0.048 0.058 0.005 -0.120 -0.115
DV 25th percentile 0.028 -0.156 -0.055 -0.023 -0.173 -0.180
DV 75th percentile 0.157 0.035 0.155 0.029 -0.063 -0.053

The dependent variable is the change in the share of workers employed in AI-related occupations (V.2 definition)

for the long difference 2000-2018 for men (columns 1-3) and women (4-6), shown separately for all workers (columns

5 and 6), foreign-born workers (columns 1 and 2), and native-born workers (columns 3 and 4). The immigrant shock

for AI-related occupations (V.2 definition) is defined in equation (2). The sample is individuals 25 to 54 years old with

at least a bachelor’s degree residing in one of the 722 commuting zones in the continental US. All regressions include

a constant, the summed product of the weights used in the immigration shock, state fixed effects, and initial-period

shares of the college educated in the population, the foreign-born in the population, females in total employment,

employment in manufacturing, employment in routine-intensive jobs, and employment in offshorable jobs. Stan-

dard errors (in parentheses) are clustered by state. Regressions are weighted by CZ employment (of prime-age,

college educated workers of the designated gender) in the initial period.
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Table A.12:
Stacked first differences (2000-2009 and 2009-2018): Immigration Impact on CZ Specialization in AI-
Related Occupations (V.3)

DV: 100 × 10
∆t × ∆ AI (v3) hours worked by nativity group

total hours worked

Men Women

Foreign-born Native-born All Foreign-born Native-born All

(1) (2) (3) (4) (5) (6)

Immigrant shock (v3) 1.835 -0.203 1.631 0.729 0.285 1.014
(0.260) (0.232) (0.444) (0.242) (0.181) (0.369)

State × Year FE Yes Yes Yes Yes Yes Yes
Obs. 1444 1444 1444 1438 1438 1438
Adj. R-squared 0.719 0.453 0.564 0.550 0.420 0.388
DV Mean 0.092 0.112 0.203 0.023 0.002 0.025
DV 25th percentile 0.031 0.065 0.142 0.004 -0.019 -0.005
DV 75th percentile 0.109 0.139 0.244 0.034 0.022 0.044

The dependent variable is the change in the share of hours worked in AI-related occupations (V.3 definition) for

stacked first differences over 2000-2009 and 2009-2018 for men (columns 1-3) and women (4-6), shown separately

for all workers (columns 5 and 6), foreign-born workers (columns 1 and 2), and native-born workers (columns 3

and 4). The immigrant shock for AI-related occupations (V.3 definition) is defined in equation (2). The sample is

individuals 25 to 54 years old with at least a bachelor’s degree residing in one of the 722 commuting zones in the

continental US. All regressions include a constant, the summed product of the weights used in the immigration

shock, state fixed effects, and initial-period shares of the college educated in the population, the foreign-born in the

population, females in total employment, employment in manufacturing, employment in routine-intensive jobs, and

employment in offshorable jobs. Standard errors (in parentheses) are clustered by state. Regressions are weighted

by CZ employment (of prime-age, college educated workers of the designated gender) in the initial period.

51



Table A.13:
Stacked first differences (2000-2009 and 2009-2018): Immigration Impact on CZ Specialization in AI-
Related Occupations (V.2)

DV: 100 × 10
∆t × ∆ AI (v2) hours worked by nativity group

total hours worked

Men Women

Foreign-born Native-born All Foreign-born Native-born All

(1) (2) (3) (4) (5) (6)

Immigrant shock (v2) 1.099 0.202 1.300 0.279 0.333 0.612
(0.199) (0.209) (0.350) (0.239) (0.150) (0.284)

State × Year FE Yes Yes Yes Yes Yes Yes
Obs. 1444 1444 1444 1438 1438 1438
Adj. R-squared 0.566 0.398 0.375 0.429 0.371 0.362
DV Mean 0.116 0.045 0.161 0.007 -0.083 -0.076
DV 25th percentile 0.013 -0.078 0.052 -0.035 -0.142 -0.143
DV 75th percentile 0.169 0.154 0.251 0.038 -0.029 -0.009

The dependent variable is the change in the share of hours worked in AI-related occupations (V.2 definition) for

stacked first differences over 2000-2009 and 2009-2018 for men (columns 1-3) and women (4-6), shown separately

for all workers (columns 5 and 6), foreign-born workers (columns 1 and 2), and native-born workers (columns 3

and 4). The immigrant shock for AI-related occupations (V.2 definition) is defined in equation (2). The sample is

individuals 25 to 54 years old with at least a bachelor’s degree residing in one of the 722 commuting zones in the

continental US. All regressions include a constant, the summed product of the weights used in the immigration

shock, state fixed effects, and initial-period shares of the college educated in the population, the foreign-born in the

population, females in total employment, employment in manufacturing, employment in routine-intensive jobs, and

employment in offshorable jobs. Standard errors (in parentheses) are clustered by state. Regressions are weighted

by CZ employment (of prime-age, college educated workers of the designated gender) in the initial period.
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