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Abstract

Analyses of AI adoption focus on its adoption at the individual task level. What has

received significantly less attention is how AI adoption is shaped by the fact that organ-

isations are composed of many interacting tasks. AI adoption may, therefore, require

system-wide change which is both a constraint and an opportunity. We provide the

first formal analysis where multiple tasks may be part of a modular or non-modular

system. We find that reliance on AI, a prediction tool, increases decision variation

which, in turn, raises challenges if decisions across the organisation interact. Modu-

larity, which leads to task independence rather than system-level inter-dependencies,

softens that impact. Thus, modularity can facilitate AI adoption. However, it does this

at the expense of synergies. By contrast, when there are mechanisms for inter-decision

coordination, AI adoption is enhanced when there is a non-modular environment. Con-

sequently, we show that there are important cases where AI adoption will be enhanced

when it can be adopted beyond tasks but as part of a designed organisational system.
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1 Introduction

Over the past decade, artificial intelligence (AI) has emerged as a potential general purpose

technology (Cockburn et al. (2019)). Spurred on by advances in machine learning, the cost of

prediction across various domains has started to fall at an accelerating pace (Agrawal et al.

(2018a)). This raises interesting questions of where AI will be adopted and also its potential

disruptive impact on employment and businesses (Gans and Leigh (2019), Frey and Osborne

(2017), Brynjolfsson and McAfee (2017)).

To date, our conception of AI adoption has mainly operated at the level of a task or

decision (e.g., Frank et al. (2019); Acemoglu and Restrepo (2018)). To forecast the potential

impact of AI on employment, for example, there have been numerous exercises designed to

identify jobs at risk from AI, the tasks that comprise jobs that are at risk, and the more

general impact of automation on the workplace (Webb (2020); Brynjolfsson and Mitchell

(2017); Brynjolfsson et al. (2018); Felten et al. (2018)). That said, some have questioned

whether this task-level focus is appropriate. Bresnahan (2020) argues that AI is an informa-

tion technology and traditionally such technologies have required organisational redesign to

be fully adopted. This is readily apparent in patterns of adoption of earlier generations of

IT (Bresnahan and Greenstein (1996); Bresnahan et al. (2002); Aral et al. (2012); Dranove

et al. (2014)).

Bresnahan (2020) challenges the idea that AI adoption can be analysed at the task level

independent of the organisational context the task lies in. Bresnahan identifies the degree

of modularity in the organisation as a predictor of AI adoption. When an organisation is

non-modular, changing the nature of decision-making in one part – as would arise with AI

adoption – can require changes in decision-making and practices elsewhere. The need for

adjustment throughout a non-modular organisation can, he argues, cause a barrier to the

adoption of AI. Instead, Bresnahan forecasts that AI will be primarily adopted in exist-

ing modular organisations and might only be adopted in other organisations should those

organisations be redesigned to be modular.

We build a model of the role of modularity in AI adoption. We consider a firm where

value arises from the outcomes of two decisions (akin to tasks). Modularity is the degree to

which the firm receives a payoff from one decision even if the two decisions are not properly

aligned. In the baseline model, the decision-makers do not know the external state and hence

do not know the correct action. Therefore, they select the action with the highest likelihood

of being correct. There is no reason for the decision-makers to communicate, irrespective of

the degree of modularity. They both do the same action at all times and are often, but not

always, correct.

2



AI helps decision-making by providing information on the correct choice for one of the

decisions. In this respect, AI adoption itself occurs with respect to a single task. With the

AI, there can be a benefit to deviating from the focal action. However, if the organisational

structure is unchanged with no improvements to intra-organisational communication, we find

that AI adoption is more valuable in modular organisations. This result is consistent with

Bresnahan’s intuition: It is easier to adopt AI in modular organisations because modularity

means less need to coordinate. One decision-maker can respond to incoming information

without affecting the outcomes for the other decision-maker.

We next consider communication as a type of organisational change.1 With communi-

cation, AI is especially valuable to non-modular organisations that can take advantage of

the ability to get the first decision right (because of the AI) and then coordinate the second

decision. With communication, AI will benefit non-modular organizations and these organi-

sations will benefit even more than modular organisations, with or without communication.

We see this framework as informing when to focus on AI adoption with a task versus a

systems lens. It is appropriate to focus on AI adoption at the task level when examining

modular organisations that do not change. In contrast, a systems focus is appropriate when

the organisation can change how it operates, for example by facilitating communication and

hence coordination. In this case, AI adoption cannot be analysed without considering the

potential for systems-level change to enable non-modular organisations to succeed.

Throughout, we provide examples from the retail industry, emphasizing how AI is already

enabling modular organisations and how, with better communication, it could also enable

non-modular organisations.

2 Model Set-Up

The model here is inspired by Van den Steen (2017), although it addresses a distinct re-

search question.2 Suppose that an organisation’s return, R, depends on the outcomes of two

decisions, {D1, D2}, indexed by k.3 Each decision results in the choice of an action, ak ∈ Ak,

1One interpretation of investment in communication within an organisation is that this is a co-invention
that enables AI; see Bresnahan and Greenstein (1996); Bresnahan et al. (2002); Aral et al. (2012); and
Dranove et al. (2014).

2Van den Steen (2017) examines the role of strategic leadership in coordinating actions within an or-
ganisation and seeks to identify the set of decisions that a leader will focus on. The present paper does not
examine such strategy at all and instead focuses upon a question of technology adoption and the organisa-
tional developments that may complement it. Thus, the model here is more specific in some dimensions and
more general in others than Van den Steen’s.

3Van den Steen (2017) considers a model that can comprise more than two decisions. While that is
possible for the model considered here, this dimension proves unnecessary for any qualitative conclusions
drawn below and so we chose to focus on just two decisions.
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a set with Mk elements. D1 is a focal decision whose “correctness” depends upon matching

an action with an external state. A stand-alone correct D1 results in an increment to return

of α compared with an incorrect decision. D2 is a ”supporting” decision that creates value

when aligned with the focal decision. If two decisions, {D1, D2}, are correctly aligned, then

this results in an incremental return of γ relative to the case where those decisions are incor-

rectly aligned (see Figure 1).4 Throughout, we consider the example of a retailer, in which

the decisions are what to stock in inventory and what to recommend to the customer.

The “correctness” of a decision is modelled here in a reduced form way. We suppose

that the correct stand-alone decision is associated with a state, T1 ∈ A1, knowledge of which

reveals the correct decision. This state could be driven by an assessment of the external

environment for a decision and/or an agent’s judgment regarding the trade-offs and risks

associated with particular actions. For instance, a retail manager may be considering a

decision of how much to stock based on a prediction of future demand as well as the relative

costs associated with errors in that forecast (inventory holding costs versus lost sales due to

stock outs). Based on that prediction, at a given time, there is an assessment of the state

and associated optimal action. If that state is correctly identified and the associated action

taken, there is a boost to the organisation’s return of α. If not, there is no such boost.5

We treat the correctness of the supporting decision similarly. We suppose that whether

{D1, D2} are aligned is associated with a state T12 ∈ {A1, A2}. If {a1, a2} = T12, then

the decision is “correct” and it contributes γ to project return. Otherwise, there is no

contribution. We assume that T12 is a bijection (i.e., a one-to-one correspondence) where for

every a1 there exists an action a2 that creates alignment. Thus, so long as this relationship

is known, there is an alignment incentive to choose the actions that selected that state for

{D1, D2}. It is assumed that α, γ > 0.

The stand-alone and alignment contributions, α and γ, can be realised if D1 and D2

are chosen correctly. We assume that if both D1 and D2 are correct – that is, a1 ∈ T1 and

{a1, a2} ∈ T12 – a contribution of β > α + γ can be generated. We will call β a synergistic

contribution. As we will note shortly, this particular opportunity defines both the benefit of

non-modular systems as well as driving the difficulty in managing non-modular systems.

4In Van den Steen (2017), the alignment value can be different depending upon which decision-maker is
doing the alignment. Here, however, we will assume that alignment is the responsibility of the agent who
has authority over D2. This is a special case of Van den Steen (2017) when the alignment value arising from
D1 is very small or the agent responsible for D1 has no knowledge of the action chosen for D2 or knowledge
of what the correct alignment action would be.

5In many decisions, the “distance” from the optimal or correct decision matters. Here we abstract from
those considerations, but it could be imagined that αk is a measure of the loss from deviating from the
optimum, and a tolerance for errors would be reflected in a relatively low αk.
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Figure 1: Decisions and Contributions
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2.1 Modularity

What are the characteristics of an organisation that may impact on AI adoption? Bresnahan

(2020) argues that a modular organisation will face fewer barriers to adopting AI than

one that is not modular. Modularity does not have a commonly agreed upon definition

(Campagnolo and Camuffo (2010)). In the study of organisations, its origins are most

associated with Simon (1962) and then developed by Baldwin and Clark (2000). In a modular

system, actions taken in one component of the system do not impact on those taken in other

components and vice versa. At an organisational level, modularity relates to how loosely

different parts of the organisation are coupled together (Schilling (2000)).

As a general matter, the main trade-off between a modular and a non-modular organisa-

tion is that the former is easier to manage than the latter; it does this by sacrificing certain

opportunities for creating synergistic value. However, it is also the case that modularity

makes it easier for decisions to create value by being aligned. In our case, an alignment

contribution of γ captures this possibility, while the synergistic contribution of β captures

the additional challenge of coordination when the focal decision may itself be varying. In

this sense, the degree of modularity is a measure of the weight placed on achieving α and γ

rather than β.6

We choose a particular functional form for the organization’s return, R, that allows us

to clearly capture these trade-offs. Specifically, we assume that:

R = m(αIa1=T1 + γI{a1,a2}=T12) + (1−m)βIa1=T1I{a1,a2}=T12

Here m ∈ [0, 1] is the degree of modularity in the organisation. Note that as m rises,

more weight is placed on being able to realise value from D1 and D2 independently of the

correctness or performance of other decisions. As Baldwin and Clark (2000) note, a modular

organisation simplifies the level of interactions and communication needed to align different

6In the appendix, we consider an amended model where agent 2 can choose whether to align with D1 or
not. This allows us to consider modularity by act (rather than just modularity by design, which operates
through m). We show that all of the conclusions regarding modularity derived below carry through to this
more expansive treatment of modularity.
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components or reduce conflicts between them by being tolerant for errors made elsewhere.

By contrast, absent these factors, decisions might be tightly coupled and overall performance

becomes more sensitive to mistakes made in one area.7

The definition of modularity here links organisational performance to the joint correctness

of the decisions in the organisation. It is useful to interpret this in the context of an example.

For instance, Bresnahan (2020) argued that Amazon had a modularised online store. In

particular, if Amazon’s recommendation engine changed how it recommended products to

different customers, this “would not require changing other elements extensively because

of the modularisation.” He does not outline these other elements, but one could imagine

elements such as what products to stock, how to distribute those products to customers,

and so on. He attributes this to things that Amazon already put in place that allowed it to

scale its operations. Note that this does not mean that other parts of Amazon’s organisation

do not have to be aligned with what it is recommending. Indeed, it makes little sense to

recommend products to customers that Amazon does not stock. Thus, a stocking decision

is arguably correct so long as what is being recommended is in stock. This enables Amazon

to generate a contribution such as γ.

But what happens if Amazon recommends a product to a customer that isn’t the best

match for that customer? In this case, is there any value to having the recommended item

in stock? Bresnahan argues that there is because the convenience benefits of Amazon means

that a customer may well order a product that isn’t its best match if it is in stock. Thus,

α may not be realised (because the customer is not as satisfied as they might be) but γ is

generated if the recommended item is in stock. Thus, how well D1 (the recommendation

decision) performs does not impact, in Bresnahan’s telling, the value that can be realised by

an alignment decision (D2).

By contrast, what if consumers would not order a product unless it is their best match?

In that situation, having the recommended item in stock is not enough to generate an order

and some contribution to the organisation. Instead, it is important that the recommended

item be the best match to generate an order and realise the value of having the item in

stock. When the performance of D1 impacts on the performance of D2, we say that the

organisation is not modular. In effect, the operation of the online store cannot have high

performance independently of the performance of the recommendation engine. Only when

high performance happens jointly is the contribution (in this case, β) realised. This happens,

for example, for an online service such as StitchFix, which sends customers clothing items

each month. If they were to send clothing items that the customer does not want and thus

7The baseline structure in Van den Steen (2017) assumes that m = 1 and does not consider situations
where value requires both a decision to be correct and other decisions to be correctly aligned.
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returns, then the fact that those items were procured by StitchFix and shipped in the first

place does not generate value. Perform well and the customer keeps the product without the

inconvenience of shopping (generating value of β rather than α+ γ that would be earned in

a store where the customer has to shop).

2.2 Information Structure

Van den Steen (2017), assumes that each of T1 and T12 are equally likely and drawn from an

infinite set, with Mk → ∞ for all k. Thus, there is a zero probability that one agent could

guess the “correct” action in the absence of knowledge of the relevant state. We retain that

assumption here.8

There are two agents in the model, each responsible for D1 and D2 respectively, with

their main distinction being what they can observe rather than differing objectives (i.e., each

shares the objective of maximising R). We will assume that agent 1, who “owns” a decision,

D1, is the only agent who can potentially observe, in the absence of communication, the

outcome T1. Thus, agent 2 does not know 1’s correct stand-alone decision. With respect to

alignment, we assume that only agent 2 can know T12 and they possess this knowledge for

any given a1.
9 Agent 2, however, does not directly observe a1. Thus, achieving alignment

requires agent 2 to correctly infer or predict agent 1’s choice so as to select the a2 that will

align with that choice from T12. Recall, that T12 is a bijection. Thus, there is an a2 that will

generate a contribution if aligned with the correct a1.

Finally, it is assumed that for D1 there is a focal action; that is, there is one action, aS,

that is included in T1 with probability ρ(> 1
M1−1), while the other actions are in T1 with

probability (1 − ρ) 1
M1−1 → 0 as M1 → ∞. Thus, in the absence of information, agent 1

can always generate a contribution of at least mρα by choosing the focal action, aS. For

example, if a retailer does not know who is shopping, they are likely to recommend their

most popular product to everyone.

2.3 Equilibrium with no prediction

AI adoption will involve a prediction of T1 and agent 1 following that prediction (Agrawal

et al. (2018b)). To begin we consider the outcome without AI; i.e., the (Nash) equilibrium

8If each Mk is finite, then this introduces the possibility of alignment by “chance.” While that may
meaningfully reflect a more simple environment, it is strategically uninteresting, and not accounting for this
would not change the qualitative results below.

9It is possible that agent 2 does not have this knowledge, which introduces a challenge in aligning.
However, accounting for the possibility that 2 only knows T12 with some probability adds complexity without
altering the qualitative results below.
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outcome when agent 1 does not know T1. In this case, the fact that D1 has a focal action, aS,

that is the correct stand-alone action more frequently than any other makes this a natural

choice to focus on in considering equilibrium outcomes. We assume that both agents act to

maximise R.10

The following proposition characterises a Nash equilibrium outcome.

Proposition 1 There exists a Nash equilibrium where a1 = aS always with equilibrium

payoffs

R = m(ρα + γ) + (1−m)ρβ

Proof. We begin by assuming that agent 1 will always choose aS in the absence of infor-

mation regarding T1. (We will establish below that they choose this in equilibrium). Thus,

E[Ia1=T1 ] = ρ. Agent 2 will use this information, choosing their action to align with D1.

Specifically, as agent 2 knows T12, then E[I{a1,a2}=T12 ] = 1. Given this, the expected payoff

is as stated in the proposition.

Can agent 1 improve this payoff by selecting another action, a1 6= aS? In this case, if

agent 2 is expecting a1 = aS, they will not align with D1 and so E[Ia1=T1 ] = 0. Thus, R falls

to mρα. Thus, in this case, the conjectured equilibrium is an actual equilibrium.

Proposition 1 shows that, in the focal point equilibrium (where a1 = aS always), agent 2

is able to align with that action. Modularity (m) impacts on this payoff. Note that the

equilibrium payoff without prediction is increasing in m if:

ρα + γ > ρβ =⇒ γ

β − α
> ρ (1)

If ρ is low, this means that the loss from there being no ability of agent 1 to forecast the

correct state of the world is high. In this situation, an organisation that is more modular

generates a higher payoff as the challenges to realise synergies are correspondingly higher.

This captures the trade-off noted earlier that modularity makes it easier to realise the value

of decisions when coordinating their performance is challenging due to uncertainty.

The equilibrium in Proposition 1 is not, however, the only equilibrium outcome. If agent

1 chooses, with certainty, any action, then agent 2 will optimally align to that action. Agent

1’s expected stand-alone contribution will be lower. Thus, all other equilibrium outcomes

result in a lower R. For that reason, we will focus on the ”focal point” equilibrium outcome

where agent 1 chooses the action most likely to be the correct action.

10An alternative outcome would be that they maximised the own contribution to R. We focus here instead
on the team outcome to avoid introducing other incentive considerations.
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It is important to emphasise here that having a focal action that is consistently chosen

by agent 1 allows for alignment to occur without any explicit coordinating mechanism such

as communication or centralised direction. This will be important because if agent 1 has a

prediction for the correct action and chooses to act on that, this will disrupt the ability of

agent 2 to align with that choice and will enhance the value of having an explicit coordinating

mechanism.

3 The AI Adoption Decision

We now turn to consider how this equilibrium outcome changes whether the organisation

should adopt AI so that agent 1 receives a signal or prediction of T1. First, we examine

how the choices and performance of the organisation change as a result of being able to

receive that prediction. Answering this question is a precursor to examining whether the

organisation will choose to adopt AI or not.

We assume that there exists a perfect prediction of T1, i.e., a signal that reveals which

action is the correct stand-alone action for D1.
11 In this case, should agent 1 choose the

signaled action, the stand-alone contribution will be α. Thus, compared with no information,

a perfect prediction allows agent 1 to take advantage of new opportunities and choose actions

other than aS. This results in an increment (1− ρ)α relative to the no information case.

What happens to agent 2’s alignment choices? In this model, it turns out that agent 2

will continue to align as if agent 1 was choosing aS.

Lemma 1 Agent 2 will maximise their alignment contribution by aligning to a1 = aS re-

gardless of agent 1’s actual choice.

Proof. Suppose that the probability that agent 1 chooses aS is p. Suppose that agent 2

chooses to align to a1 = aS and that agent 1 chooses a1 = aS. As agent 2 knows T12, then

they will choose the appropriate correctly aligned action and earn at least mγ.

Suppose now that agent 2 chooses to align to a1 = aS and that agent 1 chooses a1 6= aS.

Because agent 2 was expecting agent 1 to choose aS, their realised contribution then falls to

0, as they would have matched incorrectly.

Putting these together, for agent 2, if they behave as if 1 has chosen aS, their expected

alignment contribution is pmγ. The alternative is for agent 2 to choose instead their stand-

alone correct action, which gives them an expected alignment contribution of 0. Thus, agent

11It would be possible to assume that the prediction is perfect with only some probability but, like our
earlier simplifying assumptions, relaxing this would add complications without additional qualitative insight.
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2 finds it optimal to align as if 1 is always choosing aS.

Lemma 1 demonstrates that if agent 2 chooses to maximise their alignment contribution,

they will do so by continuing to align to a1 = aS, even if agent 1’s choice may vary.12

Under perfect prediction, 1’s stand-alone choice is correct if they follow the prediction.

If this is done, given agent 2’s inability to coordinate on that choice, what is the expected

outcome?

Proposition 2 The total payoff if agent 1 follows the prediction is:

R = m(α + ργ) + (1−m)ρβ

Proof. As agent 1 follows the prediction, E[Ia1=T1 ] = 1. Agent 2 does not know 1’s ac-

tion. It will, however, maximise its probability of alignment (by Lemma 1) by aligning with

a1 = aS. Thus, as agent 2 knows T12, then E[I{a1,a2}=T12 ] = ρ. Given this, the expected

payoff is as stated in the proposition.

If agent 1 follows the prediction, this means that their action will vary with the external state.

Proposition 2 shows that this makes agent 2’s ability to align with that decision more difficult.

This happens both for achieving the alignment contribution in a modular organisation but

also for achieving the synergistic contribution, each of which are only realised with probability

ρ.

To complete our analysis of the equilibrium with prediction, we need to examine whether

agent 1 will choose to follow the prediction or not. If agent 1 does follow the prediction,

then the organisation will adopt AI. Otherwise it will not.

Proposition 3 In equilibrium, agent 1 will follow the AI prediction rather than set a1 = aS

if α > γ.

The proof follows from comparing the various expected returns in Propositions 1 and 2.

The benefit of AI adoption is that the stand-alone performance of agent 1 is increased by

m(1− ρ)α. However, the variability this implies for agent 1’s action makes it more difficult

for agent 2 to align correctly. Thus, their alignment contribution falls by m(1− ρ)γ.

This implies that, even in a modular organisation as defined here (with m = 1), AI adop-

tion creates alignment challenges. This result arises because the R depends on mI{a1,a2}=T12γ

12In the appendix, we demonstrate that the qualitative results do not change if agent 2 also has a direct
contribution.
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rather than just mγ. The rationale for that specification is that, even in a modular organi-

sation, there is value to decisions in one part of the organisation aligning with others. Thus,

even in the example of Amazon, if a new recommendation engine suggests products that are

out of stock or more expensive to handle, those will require some coordination. If, instead,

alignment is based on whether the ”focal” action such as recommending the most popular

product, aS, is taken, then with probability 1− ρ it will be harder (in this case, impossible)

to realise γ.

It may be that, in the case of Amazon, the recommendation engine is doing a better job

in matching to customers the products that Amazon already has in stock and possesses the

ability to distribute as easily as any other. In this case, one might argue that γ is low or that

R depends on mγ rather than mI{a1,a2}=T12γ. Either of these specifications would mean that

AI adoption would be more likely to occur. The point here is that the need for coordination

is a constraint on AI adoption when such adoption leads to greater variability in one decision,

which in turn makes it more difficult to align some other decisions in the organisation. Note,

however, that the payoff generated if AI is adopted is increasing in γ. Thus, while a higher

γ is a constraint on AI adoption, it is not something that an organisation that adopted AI

would choose to reduce.

However, in terms of the synergistic contribution, which is more directly tied to the

general understanding of modularity, Proposition 3 shows that AI adoption does not impact

on the likelihood of that contribution at all. Instead, the increase in the quality of agent 1’s

decision raises that contribution, but it is offset by the fact that whenever agent 1 chooses

something other than aS, 2 cannot correctly align with it. Thus, there is no improvement in

synergies. In other words, this type of modularity is not a constraint on the adoption of AI.

The question then becomes: if an organisation adopts AI, will it want to restructure itself

for a higher m, as Bresnahan (2020) contends? Under AI adoption, it is preferable to have

a more modular organisation if:

α + ργ > ρβ =⇒ α

β − γ
> ρ (2)

Note that, when α > γ, the LHS of (2) is greater than the LHS of (1) as β > α + γ.

Thus, when AI adoption is an equilibrium outcome, the returns to having a more modular

organisation are higher than when there is no prediction. Nonetheless, if β or ρ are sufficiently

high, then you want to reduce modularity even if you adopt AI.

These choices for modularity are depicted in Figure 2. In the lower left, where alignment

payoff γ is low and the likelihood that the focal state is correct is low, then it is optimal to

have a modular organization with AI, as in Amazon’s recommendation engine. The upper
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Figure 2: AI Adoption and Modularity Choice
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left, where alignment payoff is high and the likelihood that the focal state is correct is low,

is similar to traditional retail, where recommendations and inventory choices are largely

separate, AI doesn’t provide decision support, and modularity is high. On the right, the

focal state is likely to be correct. Both agent 1 and agent 2 benefit from choosing the focal

state, getting both the alignment payoff and the stand-alone payoff, regardless of whether

AI is adopted. Given that they both choose the focal state, they will choose a non-modular

organization so that they capture β > α+ γ. AI provides no additional value because agent

1 will always choose the focal state. This business model is similar to the Book of the Month

Club, which launched in 1926 and sent the same book to every subscriber. Since the most

desired item was consistent across customers, it was possible to integrate the recommendation

and shipping decisions with little risk of a mistake.

Generally, AI is only useful for improving outcomes in the bottom left quadrant, where

the organisation will also choose to be modular. Modularity is best when the likelihood of the

focal state is relatively low. If the focal action is relatively unlikely to be the correct action,

then the AI will have an impact on the ex post decision more often. This is consistent with

the intuition in Bresnahan (2020), AI is useful in modular organisations. In non-modular

organizations, it offers no benefit and will not be adopted if it has a cost.

4 System Change

An interesting implication of the result that organisations that are more modular or become

more modular will adopt AI is that the AI adoption choice itself impacts on a particular

12



decision. Thus, to the extent that AI adoption is a substitution of machine for human

prediction, it is at the individual task-level. Indeed, to the extent it involves system-wide

change, that change is to make the organisation operate less like a system with more weight

given to operation within modules.

It is well-known that the difficulties in managing coordination across decision-makers in

an organisation can be mitigated through communication (e.g., Becker and Murphy (1992),

Dessein and Santos (2006)). Adoption of superior communication systems is, of course,

costly. Nonetheless, the returns to adopting such systems increase as coordination becomes

more difficult in their absence. The question we turn to now is whether the adoption of

AI will trigger more systemic change in an organisation and drive investment in superior

communication across decision-makers. If so, then arguably adopting AI will likely require

architectural innovation that builds a new organisational structure from the ground up. This

process takes time and is one of the reasons why adoption of general purpose technologies

can be slow (David (1990)).

We focus on communication as the primary means by which system change is observed.

Rather than decision-makers trying to align without a coordination mechanism, we now

assume that, with a cost per message of c > 0, communication is possible – in particular,

agent 1’s prediction or their choice of action can be communicated to other decision-makers.

The very fact that the prediction is generated by AI makes such communication feasible in

a way that prediction undertaken by human decision-makers is not.

Suppose, therefore, that agent 1’s prediction (or intended action) can be costlessly com-

municated to agent 2. We will assume that such communication is perfect and so the message

is both received and clear.13

Note that such communication is of no value if there is no prediction. In this situation,

as was shown earlier, agent 1 always chooses aS and agent 2 acts as if this the case so there

is no value to communicate. Indeed, having agent 1 (predictably) always choose the same

action could be seen as obviating the need for communication. Thus, an organisation not

adopting AI will not communicate and will not incur the cost, c.

By contrast, if agent 1 is following the AI prediction, there is such a value. To see this,

suppose that agent 1 chooses to communicate an action if they know that T1 6= aS. This

happens with probability, 1− ρ. Given this, it is reasonable to assume that agent 2 believes

that aS will be chosen unless they receive a message to the contrary. With communication,

agent 2 can coordinate on agent 1’s chosen action. Thus, with communication, the expected

13Once again the model could incorporate imperfections in communication with the cost of additional
notation but without any substantive qualitative insights.
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payoff should AI be adopted is:

R = m(α + γ) + (1−m)β − (1− ρ)c

Note that when T1 = aS, agent 1 need not send a message to agent 2. Thus, c is only

incurred with probability 1− ρ.

Given this, we can prove the following:

Proposition 4 If mmin{α, γ} + (1 − m)β ≥ c, agent 1 will always choose to follow the

AI prediction with communication. When AI with communication is adopted, the expected

payoff is always higher as m falls.

The proof is straightforward and thus omitted. Note that AI adoption can occur even if

α < γ for c is sufficiently small. Proposition 4 shows that when system change is possible,

this alleviates the constraints on adopting AI.

In terms of the choice of modularity, when AI with communication is adopted, it is

optimal for the organisation to be non-modular; i.e., set m = 0. Thus, the expected returns

from the adoption of AI are β−(1−ρ)c. From this perspective, if coordination is possible, AI

adoption offers the ability to earn greater synergistic returns than is possible in its absence.

This analysis demonstrates that AI adoption will be complemented by system-wide change

in the form of an increase in communication.

In retail, StitchFix provides an example of such a non-modular organisation that inte-

grates AI recommendations with inventory and shipping decisions. The AI can change the

decision from the focal action often, but communication means that the full coordination

benefit is realised.

5 Conclusions

This paper provides a model of AI adoption with potential system level effects. Starting with

the understanding that the current excitement around AI is driven by prediction technology,

we examine the decision to adopt AI in an organisation with two decisions. When the

decisions are coordinated, there is an extra benefit. AI allows more precise decisions, but

it makes it more difficult for the two decisions to coordinate. In this case, AI will only

be adopted when the benefit of getting the first decision correct outweighs the benefit of

coordination. When organisations are modular, the benefit of coordination is relatively

small. When better prediction can override the default decision more often, modularity is

particularly beneficial.
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If, however, the organisation can change the way it operates, by enabling communication

between the decision-makers, then AI adoption can have an even larger impact on outcomes

in non-modular organisations. In other words, non-modular organisations benefit when the

organisation changes. Put in the context of the information technology adoption literature,

AI adoption has the biggest benefit in non-modular organisations, but only when there is

system-wide change in the way the organisation operates.
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6 Appendix: Modularity by Act

In our baseline model, D2 creates value by aligning with D1. Here we present a model,

closer to the spirit of Van den Steen (2017), where D2 involves a choice between pursuing a

separate value contribution or aligning with D1. Thus, we suppose that both D1 and D2 can

create stand-alone contributions of α1 and α2, respectively, As before, creating α1 requires

that D1 is “correct” in that a1 ∈ T1. We now assume that α2 can be similarly generated if

a2 ∈ T2. T2 and T12 are observed by agent 2 and, in contrast to T1, agent 2 knows T2 with

certainty. The tension for agent 2 arises because Pr[a2 ∈ T12|a2 ∈ T2] = 0. Thus, agent 2

can choose to align with D1 or alternatively generate α2.

When there is no prediction of T1, we have seen that agent 1 always chooses aS. Thus, if

agent 2 chooses to align with aS, mγ + (1 −m)ρβ is generated, while if they do not do so,

α2 is generated. This means that the expected payoff becomes:

R = mρα1 + max{mγ + (1−m)ρβ, α2}

By contrast, if there is a perfect prediction of T1, agent 1, if they follow the prediction,

always generates a contribution of α1 while, agent 2, if they choose to align with D1, aligns

to aS, creating a contribution of mργ + (1 − m)ρβ. Thus, the expected payoff if agent 1

follows the prediction is:

R = mα1 + max{mργ + (1−m)ρβ, α2}

The difficulty in achieving alignment causes agent 2 to be less likely to choose to align with

D1.

Given this, note that agent 1 will choose to follow the AI prediction if:

α1 ≥
max{mγ + (1−m)ρβ, α2} −max{mργ + (1−m)ρβ, α2}

m

Thus, the extent to which agent 2 chooses to align with D1 in the absence of prediction

creates a cost to following the AI (that is, whenever, mγ+ (1−m)ρβ > α2). Note, however,

that, as before, adopting AI creates a higher return to increasing m.

While a choice of m is a choice of modularity by design, agent 2’s choice of whether

to align or not is modularity by act. In other words, the adjustment to the model now

creates an outcome where the agents in the organisation can choose to shield themselves

from uncertainty created elsewhere (in this case, the uncertainty that arises for agent 2

when agent 1 chooses a more variable action that 2 cannot observe). If α2 is low, this choice
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does not bind, and the adjusted model is the same as our main model. But as α2 becomes

larger – reflecting the ability of other parts of the organisation to insulate themselves from

variation arising from D1 – then the models have different outcomes. In particular, if α2 is

very high, the organisation is modular by act, and so it makes sense to also be modular in

design (with m = 1), since this enhances the realised stand-alone contribution from D1.

Finally, suppose that a communication infrastructure can be adopted so that agent 2 is

communicated T1 at a cost of c per message. In this case, agent 2 will choose to align with

D1 if mγ + (1 − m)β − ρc ≥ α2. So long as c is not too high, this represents agent 2’s

strongest incentive to align with D1. Moreover, this incentive is higher as m becomes lower.

In this case, the expected payoff is:

R = mα1 + max{mγ + (1−m)β − ρc, α2}

When c is low, there is always an incentive to adopt AI and if this is done, it is optimal to

set m = 0 as long as α2 < β − ρc.
Thus, the inclusion of modularity by act only reinforces our conclusions regarding the

interaction between modularity and the adoption of AI.
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