How Important is Health Inequality for Lifetime Earnings Inequality?

Roozbeh Hosseini

Karen Kopecky

Kai Zhao

University of Georgia and FRB Atlanta*

FRB Atlanta* and Emory University

University of Connecticut

NBER Summer Institute 2021 Micro Data and Macro Models

*The views expressed do not necessarily reflect the position of the Federal Reserve Bank of Atlanta or the Federal Reserve System.

Introduction

- Poor health impacts individuals through several channels:

reduces labor productivity

increases costs of working, mortality risk, medical expenses

increases chance of access to social insurance programs (SSDI/SSI)

Introduction

- Poor health impacts individuals through several channels:

reduces labor productivity increases costs of working, mortality risk, medical expenses increases chance of access to social insurance programs (SSDI/SSI)

- Individuals in poor health have lower earnings and labor supply

Introduction

- Poor health impacts individuals through several channels:

reduces labor productivity increases costs of working, mortality risk, medical expenses increases chance of access to social insurance programs (SSDI/SSI)

- Individuals in poor health have lower earnings and labor supply

- Question: How important is health inequality for lifetime earnings inequality?
- What are key channels?

availability/generosity of Soc Ins – vs – higher costs/lower productivity of work

To answer these questions

1. Construct an objective measure of "health"

- frailty index: cumulative sum of past adverse health events

To answer these questions

1. Construct an objective measure of "health"

- frailty index: cumulative sum of past adverse health events

2. Empirical Analysis: dynamic panel estimation using PSID data

- estimate effect of health on current earnings
- assess impact of health on each margin: hours, wages, participation

To answer these questions

1. Construct an objective measure of "health"

- frailty index: cumulative sum of past adverse health events

2. Empirical Analysis: dynamic panel estimation using PSID data

- estimate effect of health on current earnings
- assess impact of health on each margin: hours, wages, participation

3. Quantitative Analysis: structural model consistent with empirical findings

- agents in the model have heterogeneous and risky health profiles
- use model to assess
 - impact of health inequality on lifetime earnings inequality relative importance of each channel through which health operates

Related Literature

- Impact of health on labor supply/earnings: Bound et al. (1999), Blundell et al. (2017), French (2005), Garcia-Gomez et al. (2013), Lenhart (2019).
- SSDI and disability: Aizawa et al. (2020), French and Song (2014), Kitao (2014), Low and Pistaferri (2015), Meyer and Mok (2019), Michaud and Wiczer (2017).
- Health and inequality and income distribution: Capatina (2015), Capatina et al. (2020), Kim and Rhee (2020), O'Donnell et al. (2015), Prados (2017).
- Frailty index: Dalgaard and Strulik (2014), Hosseini et al. (2021), Schunemann et al. (2017a, 2017b), Searle et al. (2008).
- Impact of income/employment/wealth on health: Adda et al. (2009), Smith (1999, 2004, 2007), Schaller and Stevens (2015).
- Dynamic panel estimation: Blundell and Bond (1998), Blundell and Bond (2000), Arellano and Bond (1991), Arellano and Bover (1995), Al-Sadoon et al. (2019), Bond (2002), Roodman (2009).
- Health and savings: De Nardi et al. (2010), Kopecky and Koreskhova (2014), Porterba et al. (2017), Scholz and Seshadri (2013).
- Welfare costs of bad health: Cole et al. (2018), De Nardi et al. (2017), Rios-Rull and Pijoan-Mas (2019).

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

Calibration Highlights

Quantitative Exercise

How we measure health

- Frailty index: cumulative sum of all adverse health events (deficits)
 - Proposed and widely used in gerontology literature.

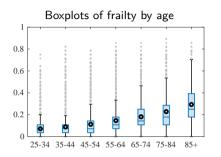
▶ gerontology literature

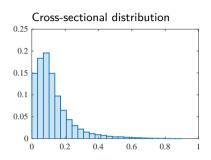
- Type of deficit variables used to construct frailty index in PSID:
 - Difficulties with ADL and IADL (eating, dressing, using phone, etc)
 - Diagnosis (ever had heart disease, psychological problems, loss of memory, etc)
 - Body measurements (BMI over 30, etc)
- Assign value of 1 whenever one of these conditions exists, and value of 0 o/w.
- Add them up and normalize to a number between 0 and 1.

Why use frailty index?

- 1. Need objective measure of health to study health-contingent policies.
- 2. Easy to construct, univariate, and highly predictive of health-related outcomes: mortality, nursing home stay, DI recipiency, medical expenditures.

▶ tables

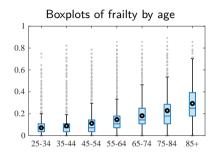

3. Better than self-reported health at predicting decline in health with age.

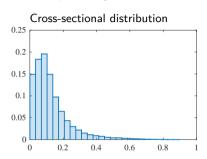


- 4. Measures health on finer scale. Important for observing variation in health in the unhealthy tail and its effects.
 - ▶ graph
- 5. Can be treated as continuous variable \rightarrow useful for estimating marginal effects.
- 6. Consistent measure of health across multiple datasets: PSID, MEPS, HRS.

Summary Stats for Frailty

Sample: 2003-2017 PSID household heads + spouses, ages 25-94

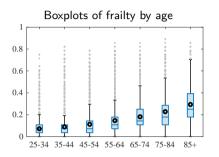


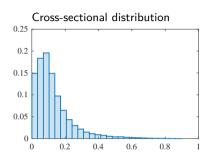

Mean	0.11	Median	0.07
by gender:		Standard deviation	0.11
male	0.11	Wave-to-wave:	
female	0.12	$+\Delta$ frailty	0.29
by education:		$-\Delta$ frailty	0.13
HS dropouts	0.16		
HS grads	0.12	Effect of 1 additional deficit	+0.037
college grads	0.08		

 Mean frailty increases with age and decreases with education.

Summary Stats for Frailty

Sample: 2003-2017 PSID household heads + spouses, ages 25-94




Mean	0.11	Median	0.07
by gender:		Standard deviation	0.11
male	0.11	Wave-to-wave:	
female	0.12	$+\Delta$ frailty	0.29
by education:		$-\Delta$ frailty	0.13
HS dropouts	0.16		
HS grads	0.12	Effect of 1 additional deficit	+0.037
college grads	0.08		

Cross-sectional distribution is right-skewed both overall and by age.

Summary Stats for Frailty

Sample: 2003–2017 PSID household heads + spouses, ages 25–94

an lard deviation to-wave: \(frailty	0.07 0.11 0.29
-to-wave:	*
	0.29
frailty	0.29
a manity	
∆ frailty	0.13
1	+0.037
or I additional deficit	
	ct of 1 additional deficit

Both positive and negative changes in frailty from wave to wave.

Plan of the Talk

How we measure health

Empirical Analysis

Structural Mode

Calibration Highlights

Quantitative Exercise

Empirical Analysis: Question

- What is the effect of health measured by frailty on earnings and what are the important margins?
- We estimate the following regression

$$y_{i,t} = b_i + \gamma f_{i,t} + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \delta \mathbf{Z}_{i,t} + \varepsilon_{i,t}$$

using Blundell-Bond System GMM estimator and PSID sample (ages 25-64)

 $y_{i,t}$ is log of earnings (or hours, or wages)

 $Z_{i,t}$ is vector of exogenous controls: marital status, marital status \times gender, # of kids, # of kids \times gender, cubic in age, and year dummies

Empirical Analysis: Question

- What is the effect of health measured by frailty on earnings and what are the important margins?
- We estimate the following regression

$$y_{i,t} = b_i + \gamma f_{i,t} + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \delta \mathbf{Z}_{i,t} + \varepsilon_{i,t}$$

using Blundell-Bond System GMM estimator and PSID sample (ages 25-64)

 $y_{i,t}$ is log of earnings (or hours, or wages)

 $Z_{i,t}$ is vector of exogenous controls: marital status, marital status \times gender, # of kids, # of kids \times gender, cubic in age, and year dummies

- Why dynamic panel?
 - Want fixed effects to control for unobserved heterogeneity.
 - Earnings and frailty are both highly persistent variables.
 - Concerns of endogeneity/simultaneity.

Empirical Analysis: Question

- What is the effect of health measured by frailty on earnings and what are the important margins?
- We estimate the following regression

$$y_{i,t} = b_i + \gamma f_{i,t} + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \delta \mathbf{Z}_{i,t} + \varepsilon_{i,t}$$

using Blundell-Bond System GMM estimator and PSID sample (ages 25-64)

 $y_{i,t}$ is log of earnings (or hours, or wages)

 $Z_{i,t}$ is vector of exogenous controls: marital status, marital status \times gender, # of kids, # of kids \times gender, cubic in age, and year dummies

- Report $\gamma/27$: response of earnings/hours to one more deficit.

Effect of Frailty on Earnings

		Everyone			Workers		
	(1)	(2)	(3)	(4)	(5)	(6)	
$\log(earnings_{t-1})$	0.283 (0.364)						
$\log(earnings_{t-2})$	0.396 (0.298)						
frailty _t	- 0.199*** (0.061)						

frailty ↑	by	1	deficit
\downarrow			
earnings	\	19	.9%

AR(1) test (p-value)	0.455
AR(2) test (p-value)	0.380
Hansen test (p-value)	0.796
Diff-in-Hansen test (p-value)	0.652

p < 0.1; p < 0.05; p < 0.05; p < 0.01

Effect of Frailty on Earnings

		Everyone			Workers	5
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(earnings_{t-1})$	0.283 (0.364)	0.370 (0.319)	0.220 (0.362)			
$\log(earnings_{t-2})$	0.396 (0.298)	0.318 (0.259)	0.444 (0.297)			
$frailty_t$	-0.199*** (0.061)					
$frailty_t imes HSD$		- 0.232** (0.066)				
$frailty_t \times HSG$		- 0.207*** (0.058)				
$frailty_t \times CG$		- 0.093* (0.052)				
$frailty_t imes Bad \; Health$			- 0.193*** (0.065)			
$frailty_t imes Good Health$			- 0.071 (0.178)			
AR(1) test (p-value)	0.455	0.319	0.497			
AR(2) test (p-value)	0.380	0.474	0.298			
Hansen test (p-value)	0.796	0.132	0.826			
Diff-in-Hansen test (p-value)	0.652	0.360	0.827			

Concentrated in less educated and those in bad health

*p < 0.1; **p < 0.05; ***p < 0.01

Note:

Effect of Frailty on Earnings

		Everyone			Workers	
	(1)	(2)	(3)	(4)	(5)	(6)
$log(earnings_{t-1})$	0.283 (0.364)	0.370 (0.319)	0.220 (0.362)	1.474*** (0.509)	1.371*** (0.400)	1.293*** (0.410)
$\log(earnings_{t-2})$	0.396 (0.298)	0.318 (0.259)	0.444 (0.297)	- 0.640 (0.454)	-0.569 (0.356)	-0.498 (0.377)
$frailty_t$	-0.199*** (0.061)			- 0.036** (0.017)		
$frailty_t \times HSD$		- 0.232** (0.066)			- 0.068** (0.030)	
$frailty_t \times HSG$		- 0.207*** (0.058)			- 0.046*** (0.002)	
$frailty_t \times CG$		- 0.093* (0.052)			- 0.021 (0.018)	
$frailty_t \times Bad \; Health$			- 0.193*** (0.065)			- 0.036** (0.017)
$frailty_{t} \times Good Health$			- 0.071 (0.178)			- 0.065 (0.066)
AR(1) test (p-value) AR(2) test (p-value)	0.455 0.380 0.796	0.319 0.474 0.132	0.497 0.298 0.826	0.030 0.130 0.434	0.010 0.082 0.826	0.021 0.138 0.543
Hansen test (<i>p</i> -value) Diff-in-Hansen test (<i>p</i> -value)	0.796	0.132	0.826	0.434	0.826	0.543

Primarily due to extensive margin

*p < 0.1; **p < 0.05; ***p < 0.01

Note:

Effect of Frailty on Hours

		Everyone		Workers		
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(hours_{t-1})$	0.399 (0.322)	0.383 (0.319)	0.386 (0.317)	0.003 (0.345)	0.074 (0.313)	0.040 (0.311)
$log(hours_{t-2})$	0.263 (0.257)	0.269 (0.253)	0.272 (0.253)	0.304 (0.218)	0.168 (0.221)	0.282 (0.219)
$frailty_t$	-0.144*** (0.044)			0.003 (0.009)		
$frailty_t \times HSD$		-0.177*** (0.049)			-0.001 (0.013)	
$frailty_t \times HSG$		-0.159*** (0.045)			0.001 (0.010)	
$frailty_t imes CG$		-0.082** (0.041)			0.009 (0.009)	
$frailty_t \times Bad \; Health$			-0.137*** (0.046)			0.001 (0.010)
$frailty_t \times Good \; Health$			-0.082 (0.128)			-0.002 (0.034)
AR(1) test (p-value)	0.287	0.290	0.289	0.409	0.286	0.335
AR(2) test (p-value) Hansen test (p-value)	0.596 0.971	0.569 0.317	0.565 0.838	0.273 0.060	0.572 0.166	0.312 0.174
Diff-in-Hansen test (<i>p</i> -value)	0.944	0.597	0.636	0.080	0.062	0.174
Note:				*p < 0.1;	**p < 0.05;	***p < 0.0

Similar findings for hours

▶ Other Results

Effect of Frailty on Wages of Workers

		Everyone		Workers			
	(1)	(2)	(3)	(4)	(5)	(6)	
$\log(wage_{t-1})$				0.212 (0.541)	0.122 (0.368)	0.303 (0.449)	
$\log(wage_{t-2})$				0.532 (0.489)	0.600* (0.328)	0.461 (0.419)	
$frailty_t$				-0.023** (0.010)			
$frailty_t \times HSD$					-0.069*** (0.023)		
$frailty_t \times HSG$					-0.033*** (0.011)		
$frailty_t imes CG$					-0.008 (0.011)		
$frailty_t \times Bad Health$						-0.022	
$frailty_t \times Good \; Health$						0.013	
AR(1) test (p-value)	0.651	0.518	0.552				
AR(2) test (p-value)	0.454	0.189	0.474				
Hansen test (p-value) Diff-in-Hansen test (p-value)	0.085 0.044	0.374 0.145	0.207 0.082				
Note:	*p < 0.1;	**p < 0.05;	***p < 0.01				

Average effect of frailty on wages is small

Significant negative effect for less educated workers

▶ Other Results

Effect of Earnings on Frailty

		Ev	veryone	_	
	(1)	(2)	(3)	(4)	
$frailty_{t-1}$	0.445 (0.463)	0.334 (0.435)	-0.152 (0.528)	-0.456 (0.400)	
$frailty_{t-2}$	0.602 (0.447)	0.661 (0.443)	1.124** (0.495)	1.446*** (0.404)	
$log(earnings_t)$	0.004* (0.002)				
$log(earnings_t) \times HSD$		0.003 (0.002)			
$log(earnings_t) \times HS$		-0.008 (0.039)			
$log(earnings_t) \times CL$		0.000 (0.001)			
$log(earnings_t) \times Bad Health$			0.002 (0.002)		
$log(earnings_t) \times Good \; Health$			0.000 (0.003)		
$log(earnings_t) \times Young$				-0.000 (0.001)	
$log(earnings_t) \times Old$				-0.000 (0.002)	
AR(1) test (p-value)	0.531	0.573	0.501	0.001	
AR(2) test (p-value)	0.333	0.260	0.061	0.002	
Hansen test (p-value) Diff-in-Hansen test (p-value)	0.269 0.450	0.842 0.852	0.621 0.894	0.129 0.132	

No statistically significant effect of earnings on frailty

Note: *p < 0.1; **p < 0.05; ***p < 0.01

Empirical Findings — **Summary**

- Increases in frailty reduce earnings and hours.
- The effect is
 - primarily driven by employment margin.
 - concentrated in less educated and less healthy individuals.
- These findings suggest that
 - health inequality may be an important source of lifetime earnings inequality.
 - social insurance may play an important role.
- To quantify the impact of health inequality on lifetime earnings inequality (and importance of various channels) we build a structural model.

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

Calibration Highlights

Quantitative Exercise

Quantitative Model Overview

- J period, OLG, GE model.
- Individuals are subject to exogenous shocks:
 - frailty, productivity, and job separation.
- If separated, can choose to pay a one-time wage cost and go back to work.
- Frailty impacts an individual's
 - Labor productivity
 - Mortality
 - OOP medical expenditures
 - Disutility of working
 - Probability of becoming DI beneficiary.

Quantitative Model Overview

- Individuals:

Employed:

- If young: can choose to switch to non-employment.
- If old: can choose to retire.

- Non-employed:

- Become a DI beneficiary with some probability.
- Can choose to go to employed state.

- DI beneficiaries:

- Collect SSDI/SSI benefits until retirement at age R.
- DI benefits have a guaranteed minimum (SSI).

- Retirees:

- Collect social security benefits and do not work.
- Government: collects taxes (capital, income, payroll)
 - Pays out SS, SSDI, SSI, and means-tested transfers + exogenous government purchases.

Problem of Young Employed Individual

Employed individual with j < R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \geq 0} u(c, v(f)) + \sigma \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{N}(x', 0)\right\}\right] + (1 - \sigma) \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 0), V^{N}(x', 0)\right\}\right]$$

subject to ...

- individual state variable $x = (j, a, s, f, \epsilon, \bar{e})$

j: age

a: assets

s: education

f: frailty $\equiv \psi(j, s, \varepsilon_f)$ where ε_f is frailty shocks and fixed effect

 ϵ : productivity shock and fixed effect

ē: average past earnings

Problem of Young Employed Individual

Employed individual with j < R - 1 solves

$$\begin{split} V^{E}\left(x, \underline{\textit{i}}_{s}\right) &= \max_{c, a' \geq 0} u\left(c, v(f)\right) + \sigma\beta p\left(j, f, s\right) E\left[\max\left\{V^{E}\left(x', \mathbf{1}\right), V^{N}\left(x', \mathbf{0}\right)\right\}\right] \\ &+ (1 - \sigma)\beta p\left(j, f, s\right) E\left[\max\left\{V^{E}\left(x', \mathbf{0}\right), V^{N}\left(x', \mathbf{0}\right)\right\}\right] \end{split}$$

subject to

$$\frac{a'}{1+r} + c + m^{E}(j, f, s) = a + w\eta(j, f, s, \epsilon) - T(w\eta) - \chi(w\eta)i_{s} + Tr(x, i_{s}),$$

$$\bar{e}' = [(j-1)\bar{e} + w\eta]/j$$

- is: indicates the worker is coming from separation

Problem of Young Employed Individual

Employed individual with j < R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \geq 0} u(c, v(f)) + \sigma \beta p(j, f, s) E\left[\max \{V^{E}(x', 1), V^{N}(x', 0)\}\right] + (1 - \sigma) \beta p(j, f, s) E\left[\max \{V^{E}(x', 0), V^{N}(x', 0)\}\right]$$

subject to ...

- Utility function is

$$u(c,v(f)) = \frac{\left(c^{\mu}\left(1-v(f)\right)^{1-\mu}\right)^{1-\gamma}}{1-\gamma},$$

where
$$v(f) = \phi_0 + \phi_1 f^{\phi_2}$$
, $\phi_0 \ge 0$, $\phi_1 \ge 0$, and $\phi_2 \ge 0$.

Problem of Old Employed Individual

Employed individual with j > R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \geq 0} u(c, v(f)) + \sigma p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{R}(x')\right\}\right] + (1 - \sigma) \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 0), V^{R}(x')\right\}\right]$$

subject to

$$\frac{a'}{1+r} + c + m^{R}(j, f, s) = a + w\eta(j, f, s, \epsilon) + SS(\bar{e}) - T(w\eta)$$
$$-\chi(w\eta)i_{s} + Tr(x, i_{s}),$$

$$\bar{e}'=\bar{e}$$

Problem of Young Non-employed Individual

Non-employed individual with i < R - 1 solves

$$\begin{split} V^{N}\left(x, \textit{\textit{n}}_{\textit{\textit{a}}}\right) &= \max_{c, \textit{\textit{a}}' \geq 0} u\left(c\right) + \theta\left(f, \textit{\textit{n}}_{\textit{\textit{a}}}\right) \beta p\left(j, f, s\right) E\left[V^{D}\left(x', 0\right)\right] \\ &+ \left[1 - \theta\left(f, \textit{\textit{n}}_{\textit{\textit{a}}}\right)\right] \beta p\left(j, f, s\right) E\left[\max\left\{V^{E}\left(x', 1\right), V^{N}\left(x', \textit{\textit{n}}_{\textit{\textit{a}}} + 1\right)\right\}\right] \end{split}$$

subject to

$$\frac{a'}{1+r}+c+m^{N}(j,f,s)=a+Tr(x).$$

- n_a: number of periods in non-employment.
- Probability of successful DI application: $\theta(f, n_a) = \min\{1, \kappa_0 f^{\kappa_1} n_a^{\kappa_2}\}$

Problem of a DI Beneficiary

- DI beneficiary with j < R - 1 solves

$$V^{D}\left(x, \mathbf{n_{d}}\right) = \max_{c, a' \geq 0} u\left(c\right) + \beta p\left(j, f, s\right) E\left[V^{D}\left(x', \mathbf{n_{d}} + 1\right)\right]$$

subject to

$$\frac{a'}{1+r}+c+m^{D}(j,f,s,n_{d})=a+SS(\bar{e})+Tr(x,n_{d}).$$

- n_d: number of periods on DI.

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

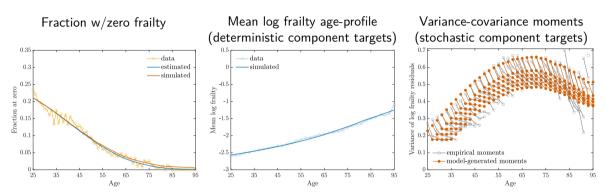
Calibration Highlights

Quantitative Exercise

Calibration Strategy Overview

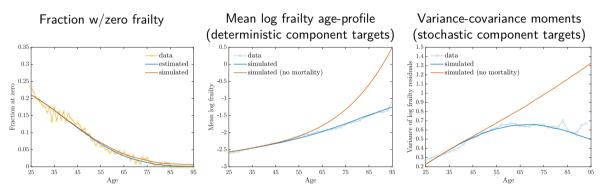
- Model period is 1 year.
- Agents live from j = 1 (age 25) to a maximum J = 70 (age 94).
- Frailty affects earnings through five channels:
- 1. Survival rate
- 2. Out of pocket medical expenditures
- 3. Labor productivity proxied by hourly wages
- 4. Probability of successful DI application
- 5. Preferences disutility of work

estimated outside mode


calibrated using model

Stochastic process for frailty

- Assume positive fraction of people with zero frailty at age 25.
- Each period, frailty remains zero with probability P(age) and becomes positive with probability 1 - P(age).
- If positive, log frailty is sum of
 - deterministic component: age poly
 - stochastic component: fixed effect, transitory shock, and AR(1) shock
- Estimate separately for each education group.
- To account for selection due to mortality, estimation uses
 - auxiliary simulation model
 - simulated method of moments


Stochastic frailty process for high school graduates

Stochastic frailty process for high school graduates

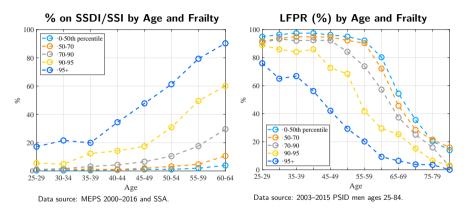
Important to account for selection: effects of mortality on mean and variance of log frailty are large at older ages.

Stochastic process for productivity

- By education, log productivity (wage) is sum of
 - deterministic component: age poly and quadratic frailty effect
 - stochastic component: fixed effect and AR(1) shock
- Frailty effects are estimated using dynamic panel system GMM estimator.
- Correct for selection bias using a procedure recommended by Al-Saddoon et al. (2019).
- Effect of an additional deficit on wage:

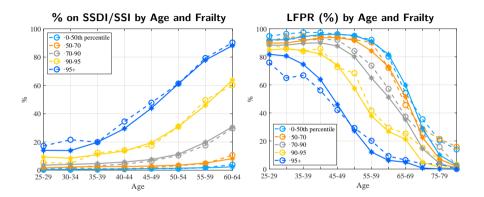
	HSD	HSG	COL	COL
	1130	1130	(frailty $<$ 76th prctile)	(frailty = 95th prctile)
Before correction	-4.2%	-2.5%	0%	-2.6%
After correction	-4.4%	-2.7%	0%	-2.8%

Capturing severe disability

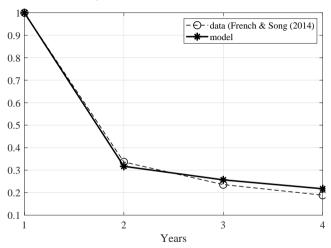

- Productivity process estimation doesn't capture the effects of severely working-limiting lifelong disability.
- To capture these effects we assume:
 - individuals face small probability of being born severely disabled (having zero productivity)
 - probability depends on frailty and education
 - pinned down by the fractions of 25 year-olds on SSI/SSDI in the data (2.3% overall)

Disutility of Work vs DI Probabilities

Identification Strategy


- DI probability and disutility of work parameters calibrated using the model.
- Calibration targets:
 - DI recipiency rates by age and frailty for ages 25 to 64.
 - Labor force participation by age and frailty for ages 25 to 74.
 - Relative DI acceptance rate by year since initial application.
- **Idea:** DI process does not directly affect labor supply after age 65.
 - Dispersion in LFPR's by frailty for 65-74 year-olds pins down frailty effect on work disutility.

DI and LFP by Age and Frailty: Model vs Data


- Target more moments in the unhealthy tail of frailty distribution.

DI and LFP by Age and Frailty: Model vs Data

- Target more moments in the unhealthy tail of frailty distribution.
- Model matches moments well including the dispersion in LFPR's by frailty for 65-74 year-olds.

DI acceptance rate: Model vs. Data

Data source: French and Song (2014)

- Model also matches rate of decline in DI acceptance by year since initial application

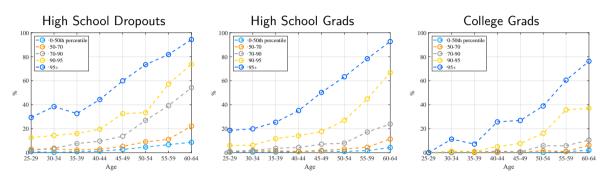
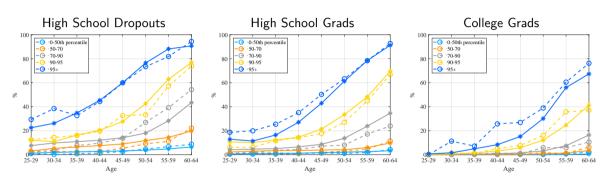
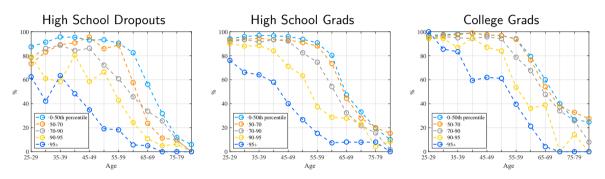

Calibrated Values

Table: DI Probability and Disutility Parameter Values

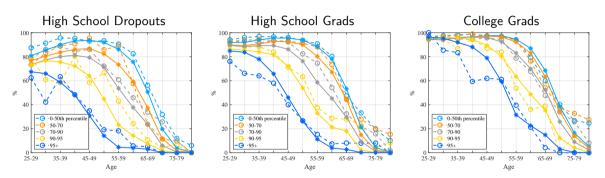
Parameter	Description	Value
κ_0	level	198
κ_1	elasticity w.r.t. frailty	5.7
κ_2	elasticity w.r.t. 'number of attempts'	0.6
ϕ_0	level	0.7
ϕ_{1}	frailty level effect	3.9
ϕ_2	elasticity w.r.t frailty	5.4


- DI probability $\theta(f, n_a) = \min\{1, \kappa_0 f^{\kappa_1} n_a^{\kappa_2}\}$ increases in frailty and increases in number of years since initially applied.
- Disutility from working $v(f)=\phi_0+\phi_1 f^{\phi_2}$ is increasing and convex in frailty.

Assessment: % on DI by frailty, age, and education


Assessment: % on DI by frailty, age, and education

- The model matches levels and patterns of DI recipiency education.



Assessment: LFP by frailty, age, and education

Assessment: LFP by frailty, age, and education

- The model matches levels and patterns of LFP by education.

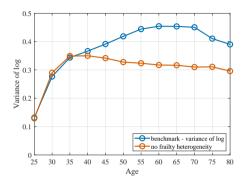
Plan of the Talk

How we measure health

Empirical Analysis

Structural Mode

Calibration Highlights


Quantitative Exercise

Quantitative Exercise

- To understand the impact of health inequality on lifetime earnings inequality:
 - Consider a counterfactual economy where everyone has the same (average) frailty profile.
 - What is the impact on lifetime earnings inequality?

lifetime earnings at each age = sum of all earnings up to that age

Lifetime earnings inequality by age: Variance of log

	Age 45	Age 55	Age 65	Age 75
Benchmark	0.391	0.444	0.454	0.411
No frailty heterogeneity	0.342	0.324	0.316	0.311
$\triangle \downarrow$	12.7%	27.1%	30.2%	24.3%

Quantitative Model Results: Decomposition

- How important are each of the 5 channels through which health affects individuals?
 - 1. Probability of getting DI
 - 2. Labor productivity
 - 3. Disutility
 - 4. Medical expenses
 - 5. Survival probability
- To assess the importance of each channel:
 - Run 5 counterfactuals
 - Counterfactual 1: Equivalent to baseline except probability of DI is determined by average frailty profile.
 - And so on...

Computational Experiments: Decomposition

Table: Effect of removing frailty variation in each channel on the variance of log lifetime earnings

	age 45	age 55	age 65	age 75
1. DI channel	↑0.0%	↓ 14.0%	↓ 20.9%	↓ 19.8%
2. Labor prod channel	↓ 2.2%	↓ 3.6%	\downarrow 4.1%	↓ 4.4%
3. Disutility channel	↓ 0.4%	↓ 0.8%	$\downarrow 1.0\%$	↓ 0.9%
4. Med exp channel	$\downarrow 0.1\%$	$\downarrow 0.1\%$	↓ 0.0%	$\uparrow 0.1\%$
5. Surv prob channel	↓ 0.9%	↑ 0.2%	↑ 8.2%	↑ 5.8%

- These three channels are least important.

Computational Experiments: Decomposition

Table: Effect of removing frailty variation in each channel on the variance of log lifetime earnings

	age 45	age 55	age 65	age 75
1. DI channel	↑ 0.0%	↓ 14.0%	↓ 20.9%	↓ 19.8%
2. Labor prod channel	↓ 2.2%	↓ 3.6%	\downarrow 4.1%	↓ 4.4%
3. Disutility channel	↓ 0.4%	↓ 0.8%	$\downarrow 1.0\%$	↓ 0.9%
4. Med exp channel	$\downarrow 0.1\%$	$\downarrow 0.1\%$	↓ 0.0%	\uparrow 0.1%
5. Surv prob channel	↓ 0.9%	† 0.2%	† 8.2%	† 5.8%

- Removing DI channel increases inequality at younger ages and decreases it at older ages.

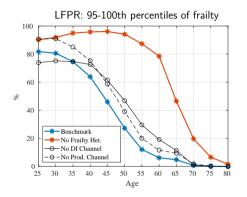
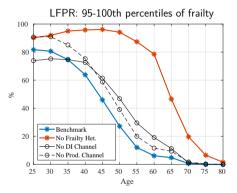

Computational Experiments: Decomposition

Table: Effect of removing frailty variation in each channel on the variance of log lifetime earnings

	age 45	age 55	age 65	age 75
1. DI channel	↑ 0.0%	↓ 14.0%	↓ 20.9%	↓ 19.8%
2. Labor prod channel	↓ 2.2%	↓ 3.6%	\downarrow 4.1%	↓ 4.4%
3. Disutility channel	↓ 0.4%	↓ 0.8%	$\downarrow 1.0\%$	↓ 0.9%
4. Med exp channel	$\downarrow 0.1\%$	$\downarrow 0.1\%$	$\downarrow 0.0\%$	$\uparrow 0.1\%$
5. Surv prob channel	$\downarrow 0.9\%$	↑ 0.2%	↑ 8.2%	↑ 5.8%

- Removing DI channel increases inequality at younger ages and decreases it at older ages.
- Removing productivity channel reduces lifetime earnings inequality at all ages.


LFP of Highly Frail in Counterfactural Economies

- Without DI channel:

- Frail individuals no longer qualify for SSDI w/ high probability \Rightarrow Highly frail old's LFP \uparrow
- Less incentive to work to accumulate SSDI earnings credits ⇒ Highly frail young's LFP ↓.

LFP of Highly Frail in Counterfactural Economies

- Without productivity channel:
 - Wages of frail individuals $\uparrow \Rightarrow$ Highly frail LFP \uparrow at all ages.

Welfare effects of eliminating the SSDI program

- SSDI/SSI is primary channel through which health inequality leads to ↑ lifetime earnings inequality. Should we eliminate it?

Welfare effects of eliminating the SSDI program

- SSDI/SSI is primary channel through which health inequality leads to ↑ lifetime earnings inequality. Should we eliminate it?
- No, removing DI program reduces ex-ante welfare.

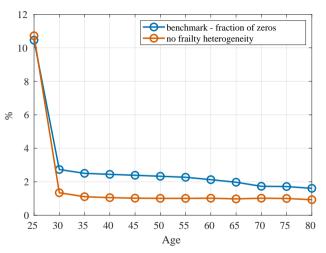
Ex-ante welfare changes (% of lifetime consumption)

	(,,			·· <i>,</i>
	Average	HSD	HSG	COL
No DI program (PE) no benefits or DI payroll taxes	-1.15%	-3.13%	-1.80%	0.74%
No DI program (GE), prop. increase in income taxes	-1.79%	-3.69%	-2.44%	0.05%
No DI program (GE), reduction of consumption floor	-2.49%	-5.80%	-3.21%	0.09%

Conclusion

- Document empirically:
 - Large response of earnings to incremental changes in frailty: mostly driven by participation.
 - Wage effects for less educated workers.
- Results from structural model:
 - Health inequality accounts for approximately 30% of lifetime earnings inequality at age 65.
 - Reduced participation due to increased access to SSDI when health is poor plays an important role.
 - Yet, SSDI program is ex-ante welfare improving.

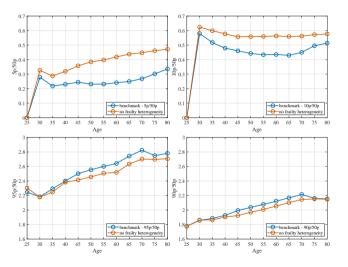
The End


Thank You!

Plan of the Talk

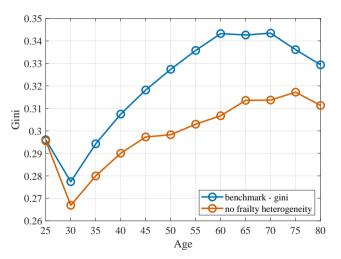
back up

Back Up Slides


Fraction at zero: Model vs Data

- Removing frailty heterogeneity also reduces the fraction with zero lifetime earnings.

Lifetime earnings inequality by age: Ratios



- Impact is concentrated in the bottom of the lifetime earnings distribution.

Quantitative Model Results

Lifetime earnings inequality by age: Gini

- Removing frailty heterogeneity reduces the Gini of lifetime earnings at age 65 by 8.5%.

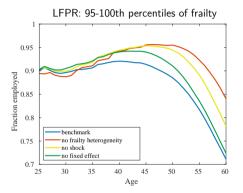
Lifetime earnings inequality by age: Variance decomposition

Contribution of Ex-ante Heterogeneity vs. Frailty Shocks					
	Age 45	Age 55	Age 65	Age 75	
Benchmark	0.391	0.444	0.454	0.411	
No frailty heterogeneity $\triangle \downarrow$	0.342 12.7%	0.324 27.1%	0.316 30.2%	0.311 24.3%	
No frailty fixed effect $\triangle \downarrow$	0.351 10.2%	0.391 12.0%	0.393 13.4%	0.368 10.4%	
No frailty shock	0.340	0.341	0.353	0.350	

- Health shocks account for $\approx 2/3$'s of the impact of health inequality on lifetime earnings inequality.

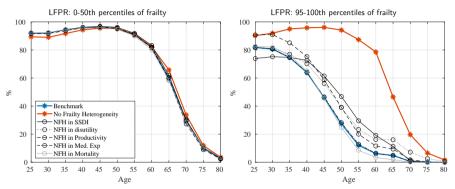
13.1%

23.3%

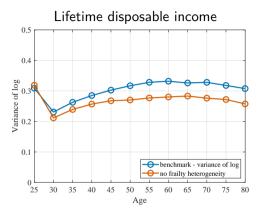

22.2%

14.8%

- Removing heterogeneity vs risk vs both impacts both amount and timing of lifecycle labor supply.

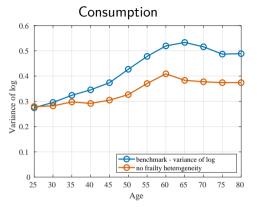

Removing heterogeneity vs shocks vs both: Fraction employed

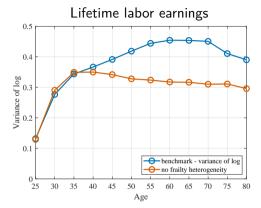
- No fixed effect, shocks, or both: lifetime labor supply $\uparrow \Rightarrow$ lifetime earnings inequality \downarrow
- No fixed effects and no shocks: labor supply of young $\downarrow \Rightarrow$ lifetime earnings inequality \uparrow
- No fixed effects **or** no shocks: labor supply of young $\uparrow \Rightarrow$ lifetime earnings inequality \downarrow


LFP in Counterfactural Economies

- LFP effects of removing frailty inequality are very small in healthy half of distribution.
- Without DI channel: LFP is lower at young ages and higher at older ages.
- Without productivity channel: LFP of highly frail is higher at all ages.

Alternative measures of inequality: Variance of log





	Age 45	Age 55	Age 65	Age 75
Benchmark	0.303	0.328	0.326	0.318
No frailty heterogeneity	0.268	0.277	0.283	0.272
$\triangle \downarrow$	11.5%	15.6 %	13.1%	14.5%

Consumption inequality: Variance of log

	Age 45	Age 55	Age 65	Age 75
Benchmark	0.374	0.478	0.533	0.487
No frailty heterogeneity	0.305	0.371	0.383	0.374
$\triangle \downarrow$	18.5%	22.4 %	28.1%	23.2%

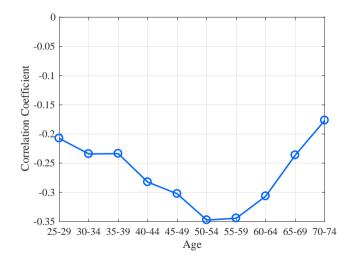
Aggregate effects of frailty heterogeneity

	NFH in	NFH in	NFH in	NFH in	NFH in	NFH in
	model	SSDI	Disutility	Labor prod.	Med. Exp.	Mortality
		%	change rela	tive to benchm	ark	
GDP	2.14	2.39	0.59	1.75	0.13	-0.72
Consumption	0.91	1.33	0.46	1.14	0.09	-1.54
Capital	2.14	2.39	0.59	1.75	0.13	-0.72
Labor input	2.14	2.39	0.59	1.75	0.13	-0.72
Hours	3.44	2.76	0.79	2.22	0.17	-0.49
GDP per Hour	-1.26	-0.37	-0.20	-0.46	-0.04	-0.23

Note: NFH: no frailty heterogeneity.

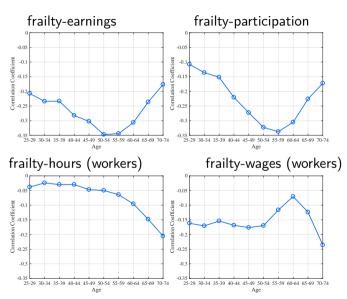
- Removing frailty heterogeneity increases GDP per capita.
- Effects of higher LFP larger than effect of lower mortality.

Alternative Inequality Measure


Inequality in lifetime disposable income by age: Variance of Log

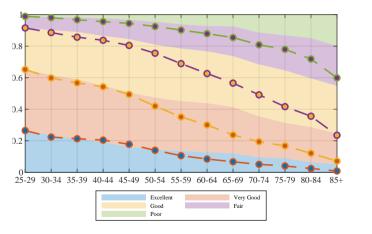
	Age 45	Age 55	Age 65	Age 75
Benchmark	0.303	0.328	0.326	0.318
No frailty heterogeneity	0.268	0.277	0.283	0.272
$\triangle\downarrow$	11.5%	15.6 %	13.1%	14.5%
No frailty shock	0.262	0.277	0.286	0.276
$\triangle\downarrow$	13.4%	15.6%	12.3%	13.3%
No frailty fixed effect	0.265	0.288	0.286	0.275
$\triangle \downarrow$	12.3%	12.4%	12.1%	13.7%

- Both shocks and fixed effect have a large effect on disposable income inequality.



Frailty-Earnings Correlation by Age

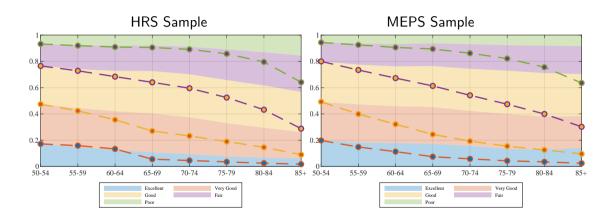
Frailty Correlations by Age



Gerontology Literature

- Mitnitski et al. (2001); Mitnitski et al. (2002)
- Mitnitski et al. (2005); Goggins et al. (2005)
- Searle et al. (2008); Yang and Lee (2010)
- Woo et al. (2005); Rockwood and Mitnitski (2007)
- Rockwood et al. (2007); Mitnitski et al. (2004)
- Kulminski et al. (2007a); Kulminksi et al. (2007b)

Frailty and SRHS over the Life Cycle


Data: Household heads and spouses in 2003–2015 PSID

- Area shows share reporting each SRHS at each age.
- We partition frailty distribution at each age.
- Choose cutoffs to match dist. of SRHS at 25-29.
- Hold cutoffs fixed.
 Health declines faster after age
 50 when measured by frailty.

Frailty and SRHS over the Life Cycle

Probit: Becoming a DI recipient (HRS)

	Pa	nel A: every	one		Panel B: by	SRHS heal	Ith at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.070 (0.049)		-0.085 (0.053)					
$good_{t-1}$	0.418*** (0.046)		0.015 (0.051)					
$fair_{t-1}$	0.984*** (0.046)		0.306*** (0.053)					
$poor_{t-1}$	1.597*** (0.049)		0.555*** (0.058)					
$frailty_{t-1}$		7.275*** (0.253)	6.098*** (0.273)	6.572*** (1.256)	4.310*** (0.879)	4.676*** (0.613)	5.381*** (0.518)	4.806*** (0.725)
$frailty_{t-1}^2$		-4.929*** (0.368)	-4.387*** (0.384)	-3.297 (2.478)	-0.388 (1.806)	-0.792 (1.036)	-3.438*** (0.735)	-3.550*** (0.833)
Controls Observations	YES 76,513	YES 76,513	YES 76,513	YES 12,478	YES 25,409	YES 23,486	YES 11,679	YES 3,461
Pseudo R ²	0.178	0.239	0.252	0.211	0.116	0.161	0.111	0.064

Data: HRS respondents under age 66. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t-1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses.

Probit: Becoming a DI recipient (PSID)

	Panel	A: younger	than 66		Panel B: by	SRHS heal	th at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
$very\;good_{t-1}$	0.080 (0.073)		-0.054 (0.077)					
$good_{t-1}$	0.487*** (0.067)		0.208*** (0.072)					
$fair_{t-1}$	1.013*** (0.069)		0.484*** (0.076)					
$poor_{t-1}$	1.622*** (0.078)		0.745*** (0.089)					
$frailty_{t-1}$		7.380*** (0.385)	5.992*** (0.408)	6.061*** (2.310)	5.595*** (1.300)	5.361*** (0.879)	5.672*** (0.830)	4.232*** (1.212)
$frailty_{t-1}^2$		-5.558*** (0.654)	-4.879*** (0.676)	-7.942 (7.899)	-3.237 (3.188)	-2.366 (1.928)	-4.030*** (1.352)	-3.262** (1.572)
Controls Observations	YES 45,906	YES 45,906	YES 45,906	YES 9,240	YES 16,816	YES 14,271	YES 4,542	YES 1,037
Pseudo R ²	0.187	0.232	0.251	0.145	0.118	0.151	0.111	0.077

Data: PSID respondents under age 66. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t-1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses.

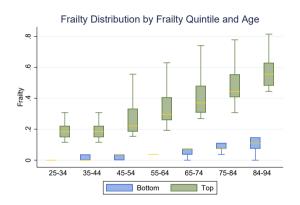
Probit: Becoming a DI recipient - under 45 only (PSID)

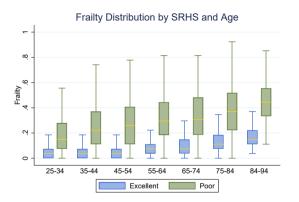
	Panel	A: younger	than 45		Panel B: by	SRHS healt	th at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.113 (0.100)		-0.024 (0.105)					
$good_{t-1}$	0.330*** (0.097)		0.055 (0.104)					
$fair_{t-1}$	0.999*** (0.099)		0.479*** (0.110)					
$poor_{t-1}$	1.550*** (0.125)		0.627*** (0.146)					
$frailty_{t-1}$		6.964*** (0.651)	5.838*** (0.687)	4.036 (2.863)	5.788*** (1.803)	4.022*** (1.407)	6.242*** (1.381)	9.881*** (3.044)
$frailty_{t-1}^2$		-4.370*** (1.175)	-3.910*** (1.209)	-5.259 (9.696)	-0.602 (4.266)	0.691 (2.964)	-4.022* (2.243)	-9.945** (4.085)
Controls Observations	YES 23,475	YES 23,475	YES 23,475	YES 5,693	YES 9,062	YES 6,650	YES 1,775	YES 295
Pseudo R ²	0.153	0.218	0.237	0.097	0.158	0.149	0.152	0.149

Data: PSID respondents under age 66. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t-1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses.

Probit: Mortality

	Pa	nel A: every	one		Panel B: by	SRHS healt	th at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.053** (0.024)		-0.007 (0.025)					
$good_{t-1}$	0.293*** (0.023)		0.120*** (0.024)					
$fair_{t-1}$	0.649*** (0.023)		0.300*** (0.025)					
$poor_{t-1}$	1.186*** (0.024)		0.570*** (0.027)					
$frailty_{t-1}$		2.970*** (0.098)	1.886*** (0.107)	2.595*** (0.452)	2.377*** (0.267)	2.456*** (0.215)	1.345*** (0.233)	0.499 (0.350)
$frailty_{t-1}^2$		-0.490*** (0.120)	0.105 (0.126)	0.295 (0.651)	0.463 (0.368)	0.164 (0.275)	1.000*** (0.265)	1.406** (0.350)
Controls Observations	YES 212,978	YES 212,978	YES 212,978	YES 23,689	YES 53,552	YES 57,117	YES 34,890	YES 14,109
Pseudo R ²	0.217	0.241	0.251	0.259	0.233	0.220	0.188	0.148


Data: HRS. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t-1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses.


Probit: Entering Nursing Home

	Pai	nel A: every	one/		Panel B: by	SRHS healt	h at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.008 (0.044)		-0.064 (0.046)					
$good_{t-1}$	0.139*** (0.042)		-0.044 (0.045)					
$fair_{t-1}$	0.360*** (0.043)		0.012 (0.047)					
$poor_{t-1}$	0.700*** (0.045)		0.125** (0.052)					
$frailty_{t-1}$		1.975*** (0.211)	1.798*** (0.227)	2.580** (1.010)	1.445** (0.577)	2.089*** (0.470)	0.574 (0.469)	-0.437 (0.667)
$frailty_{t-1}^2$		0.160 (0.269)	0.160 (0.279)	-0.791 (1.641)	1.449 (0.908)	-0.113 (0.661)	1.437** (0.562)	2.212*** (0.683)
Controls Observations	YES 168,412	YES 168,412	YES 168,412	YES 19,602	YES 49,875	YES 53,616	YES 33,040	YES 12,279
Pseudo R ²	0.231	0.261	0.263	0.369	0.288	0.256	0.218	0.166

Why use frailty index?

Lots of action in the tails: need for finer grid.

Summary Statistics for PSID Sample

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016
Panel A: Mean (median) [standard	deviation] of	sample charac	eristics						
Age	44.33 (43) [15.24]	44.28 (43) [15.53]	44.34 (43) [15.67]	44.58 (43) [15.8]	44.74 (43) [16.01]	45.02 (43) [16.08]	45.4 (43) [16.04]	45.54 (42) [15.99]	44.65 (43) [15.71]
Frailty	0.1 (0.07) [0.1]	0.1 (0.07) [0.11]	0.11 (0.07) [0.11]	0.11 (0.07) [0.11]	0.12 (0.07) [0.12]	0.12 (0.07) [0.12]	0.12 (0.1) [0.12]	0.12 (0.07) [0.12]	0.11 (0.07) [0.12]
Annual Earnings	\$35,623.31 (27,231.43) [68,179.23]	\$35,992.43 (27,247.63) [63,875.82]	\$36,313.91 (27,474.38) [62,243.45]	\$36,712.28 (26,544.91) [74,320.19]	\$33,658.89 (22,987.3) [57,064.71]	\$34,072.19 (23,000) [87,518.92]	\$33,635.38 (23,339.49) [65,135.22]	\$35,303.67 (24,978.14) [51,803.91]	\$35,095.34 (25,564.01) [64,377.99]
Annual Hours	1,531.6 (1,888) [1,035.63]	1,528.01 (1,880) [1,049.47]	1,517.57 (1,880) [1,042.58]	1,448.99 (1,813.5) [991.18]	1,377.42 (1,700) [1,033.49]	1,411.74 (1,783) [1,045.86]	1,434.46 (1,814) [1,057.89]	1,471.19 (1,872) [1,059.13]	1,476.92 (1,840.5) [1,037.86]
Hourly Wage	\$23.43 (17.67) [37.64]	\$24.31 (17.77) [57.69]	\$24.35 (17.67) [61.27]	\$24.76 (18.74) [36.63]	\$24.14 (17.76) [29.94]	\$23.59 (17) [40.69]	\$23.11 (17.23) [31.39]	\$24.03 (18) [28.38]	\$23.78 (17.68) [40.52]
Panel B: Fraction of sample by cha	racteristics								
Male	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
$+\Delta$ Frailty $-\Delta$ Frailty	-	0.3 0.13	0.33 0.13	0.32 0.13	0.3 0.14	0.29 0.14	0.28 0.14	0.29 0.14	0.3 0.14
	11,777	12,210	12,727	13,177	13,473	13,524	13,294	14,092	104,274 21,024 4.86

Note: The summary statistics are for ages 25 to 94 of household heads and spouses. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

Summary Statistics for PSID Sample

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016			
Panel A: Mean (median) [standard	Panel A: Mean (median) [standard deviation] of sample characteristics											
Age	44.33	44.28	44.34	44.58	44.74	45.02	45.4	45.54	44.65			
	[15.24]	[15.53]	[15.67]	[15.8]	[16.01]	[16.08]	[16.04]	[15.99]	[15.71]			
Frailty	0.1	0.1	0.11	0.11	0.12	0.12	0.12	0.12	0.11			
	[0.1]	[0.11]	[0.11]	[0.11]	[0.12]	[0.12]	[0.12]	[0.12]	[0.12]			
Annual Earnings	\$35,623.31	\$35,992.43	\$36,313.91	\$36,712.28	\$33,658.89	\$34,072.19	\$33,635.38	\$35,303.67	\$35,095.34			
	[68,179.23]	[63,875.82]	[62,243.45]	[74,320.19]	[57,064.71]	[87,518.92]	[65,135.22]	[51,803.91]	[64,377.99]			
Annual Hours	1,531.6	1,528.01	1,517.57	1,448.99	1,377.42	1,411.74	1,434.46	1,471.19	1,476.92			
	[1,035.63]	[1,049.47]	[1,042.58]	[991.18]	[1,033.49]	[1,045.86]	[1,057.89]	[1,059.13]	[1,037.86]			
Hourly Wage	\$23.43	\$24.31	\$24.35	\$24.76	\$24.14	\$23.59	\$23.11	\$24.03	\$23.78			
	[37.64]	[57.69]	[61.27]	[36.63]	[29.94]	[40.69]	[31.39]	[28.38]	[40.52]			
Panel B: Fraction of sample by cha	racteristics											
Male	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46			
High School Dropouts (HSD)	15.16	14.92	14.28	13.96	13.9	13.91	13.61	13.89	14.58			
High School Graduates (HS)	55.76	55.19	55.04	54.89	54.43	54.09	54.32	53.7	54.88			
College Graduates (CL)	29.08	29.89	30.68	31.15	31.67	32	32.07	32.41	30.55			
$+\Delta$ Frailty $-\Delta$ Frailty		0.3 0.13	0.33 0.13	0.32 0.13	0.3 0.14	0.29 0.14	0.28 0.14	0.29 0.14	0.3 0.14			
Observations (N) # of Individuals (n) Average # of Years Observed (T)	11,777	12,210	12,727	13,177	13,473	13,524	13,294	14,092	104,274 21,024 4.86			

Note: The summary statistics are for ages 25 to 94 of household heads and spouses. Individuals included in the sample are in at least 2 consecutive waves in PSID. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

26 of 90

Summary Statistics for Dynamic Panel Sample

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016
Panel A: Mean (median) [standard	deviation] of	sample charac	teristics						
Age	40.75	41.2	41.73	42.36	42.97	43.77	45.64	47.53	42.65
	(41)	(42)	(42)	(42)	(42)	(42)	(44)	(46)	(42)
	[11.11]	[11.77]	[12.33]	[12.85]	[13.34]	[13.7]	[13.7]	[13.69]	[12.72]
Frailty	0.08	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.11
	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.10)	(0.10)	(0.07)
	[0.09]	[0.09]	[0.1]	[0.1]	[0.11]	[0.11]	[0.12]	[0.12]	[0.11]
Annual Earnings	\$39,913.5	\$39,951.17	\$39,779.58	\$39,670.04	\$36,294.58	\$36,659.7	\$36,554.79	\$38,088.25	\$38,526.71
	(30,944.81)	(30,446.27)	(30,277.88)	(29,730.3)	(26,121.94)	(25,100)	(26,256.93)	(27,860.24)	(29,174.36)
	[73,161.16]	[68,148.32]	[65,088.35]	[77,401.9]	[58,809.46]	[92,687.86]	[70,310.25]	[56,168.13]	[68,482.15]
Annual Hours	1,698.71	1,675.51	1,647.33	1,550.34	1,466.27	1,492.25	1,495.81	1,482.53	1,590.6
	(1,960)	(1,960)	(1,944)	(1,880)	(1,820)	(1,856)	(1,872)	(1,888)	(1,920)
	[965.19]	[990.17]	[989.62]	[949.76]	[1,011.75]	[1,030.75]	[1,051.32]	[1,064.97]	[999.24]
Hourly Wage	\$22.84	\$23.27	\$23.03	\$24.38	\$24.01	\$23.27	\$23.67	\$25.27	\$23.50
	(17.84)	(17.94)	(17.74)	(18.96)	(18.09)	(17.56)	(18.04)	(18.89)	(18.06)
	[25.85]	[28.3]	[23.46]	[27.15]	[26.59]	[25.73]	[23.07]	[26.81]	[25.37]
Panel B: Fraction of sample by cha	aracteristics								
Male	0.45	0.45	0.45	0.45	0.45	0.45	0.44	0.44	0.45
High School Dropouts (HSD)	13.47	13.31	13.06	13.02	13.04	13.04	13.12	12.86	13.21
High School Graduates (HS)	55.62	55.06	54.56	54.33	53.97	53.47	53.49	53.42	54.51
College Graduates (CL)	30.91	31.63	32.39	32.66	32.99	33.48	33.39	33.72	32.28
$+\Delta$ Frailty $-\Delta$ Frailty	-	0.28 0.13	0.32 0.13	0.3 0.13	0.28 0.13	0.28 0.13	0.27 0.14	0.27 0.14	0.29 0.13
Observations (N) # of Individuals (n) Average # of Years Observed (T)	9,665	10,100	10,647	11,174	11,536	11,663	10,809	10,206	85,800 14,269 6.01

Note: The summary statistics are for ages 25 to 64 of household heads and spouses. Individuals included in the sample are in at least 2 consecutive waves in PSID. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are

► Go Back 90

Summary Statistics for Dynamic Panel Sample, Workers

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016
Panel A: Mean (median) [standard	deviation] of	sample charac	teristics						
Age	38.69	38.95	39.39	39.77	40.14	40.66	42.42	44.34	40.10
	(39)	(39)	(39)	(39)	(39)	(39)	(40)	(42)	(39)
	[9.61]	[10.26]	[10.79]	[11.33]	[11.83]	[12.13]	[12.1]	[12.14]	[11.19]
Frailty	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.08
	(0.04)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)
	[0.06]	[0.06]	[0.06]	[0.07]	[0.07]	[0.07]	[0.08]	[0.08]	[0.07]
Annual Earnings	51,857.65	53,167	53876.26	54,826.77	52,899.68	54,881.27	55,503.18	58,201.99	53,757.76
	(39609.35)	(41,463.79)	(41,491.91)	(42,471.86)	(41,585.08)	(40,000)	(42,789.07)	(45,152.8)	(41,463.79)
	[84,044.28]	[64,951.95]	[59,016.86]	[63,531.05]	[64,581.51]	[120,948.31]	[87,450.06]	[64,377.8]	[75,912]
Annual Hours	2124.32	2140.36	2122.89	2034.56	2037.7	2081.94	2106.28	2096.56	2095.49
	(2065.5)	(2080)	(2064)	(2000)	(2024)	(2040)	(2050)	(2056)	(2040)
	[654.65]	[671.24]	[649.82]	[593.82]	[637.21]	[642.07]	[634.54]	[645.84]	[639.66]
Hourly Wage	23.9	24.72	24.72	26.35	25.57	25.31	26.02	27.78	25.29
	(19.06)	(19.35)	(19.42)	(20.42)	(19.8)	(19.32)	(19.98)	(21.52)	(19.67)
	[22.37]	[27.64]	[22.21]	[27.6]	[25.85]	[27.99]	[24.33]	[26.21]	[25.09]
Panel B: Fraction of sample by cha	aracteristics								
Male	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.54
High School Dropouts (HSD)	8.82	8.02	7.28	6.84	6.68	6.59	6.64	6.5	7.4
High School Graduates (HS)	50.35	49.77	49.47	49.27	49.46	48.99	48.89	48.87	49.61
College Graduates (CL)	40.82	42.21	43.25	43.89	43.86	44.42	44.48	44.63	42.99
$+\Delta$ Frailty $-\Delta$ Frailty	-	0.24 0.11	0.28 0.10	0.26 0.10	0.23 0.11	0.24 0.11	0.23 0.10	0.23 0.11	0.24 0.10
Observations (N) # of Individuals (n) Average # of Years Observed (T)	4794	4937	5237	5557	5869	6119	5742	5355	43610 7,539 5.78

Note: The summary statistics are for ages 25 to 64 of household heads and spouses. Individuals included in the sample are in at least 2 consecutive waves in PSID. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

► Go Back

Blundell-Bond System GMM Estimation

- In short panels, fixed effect estimator biases can be severe (Nickell (1981 ECTA)).
- Following Blundell-Bond (1998, JoEtrics), we estimate the following using GMM

$$\begin{bmatrix} y_{i,t} \\ \Delta y_{i,t} \end{bmatrix} = \gamma \begin{bmatrix} f_{i,t} \\ \Delta f_{i,t} \end{bmatrix} + \alpha_1 \begin{bmatrix} y_{i,t-1} \\ \Delta y_{i,t-1} \end{bmatrix} + \alpha_2 \begin{bmatrix} y_{i,t-2} \\ \Delta y_{i,t-2} \end{bmatrix} + \delta \begin{bmatrix} \mathbf{Z}_{i,t} \\ \Delta \mathbf{Z}_{i,t} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i,t} \\ \Delta \varepsilon_{i,t} \end{bmatrix}$$

- Full sample:
 - Use $f_{i,t-k}$, $y_{i,t-k}$, k = 4,5 as instruments for differences
 - Use $\Delta f_{i,t-k}$, $\Delta y_{i,t-k}$, k=4,5 as instruments for levels
- Workers k = 5,6 and frailty (reverse causality) k = 6,7,8.
- Use system estimator because earnings and frailty are close to random walk.

Blundell-Bond System GMM Estimation

- For our instruments to be valid is must be that:
 - lagged levels are uncorrelated with current error term.
 - correlation between endogenous variables and the unobserved (fixed) effect is constant over time.
- To check these assumptions we run the following tests:
 - AR(1) test for no ser corr in error terms (of diff eqn): this should be rejected (by construction)
 - AR(2) test for no second-order ser corr in error terms (of diff eqn): this should not be rejected
 - Hansen test for validity of level instruments: this should not be rejected
 - Diff-in-Hansen test for validity of diff instruments: this should not be rejected
- Also do additional robustness checks.

Dynamic Panel Additional Robustness Checks

- Perform Diff-in-Hansen test on y-lag set only.
- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Effect of Frailty on Earnings

Full Set of Diagnostic Tests

		Everyone				Workers			
	(1)	(2) By Educ	(3) By Health	(4) By Age	(5)	(6) By Educ	(7) By Health	(8) By Age	
AR(1) test (p-value)	0.455	0.319	0.497	0.104	0.030	0.010	0.021	0.008	
AR(2) test (p-value)	0.380	0.474	0.298	0.949	0.130	0.082	0.138	0.160	
Hansen test (p-value)	0.796	0.132	0.826	0.752	0.434	0.826	0.543	0.465	
Diff-in-Hansen test (p-value)	0.652	0.360	0.827	0.464	0.255	0.484	0.259	0.214	
Diff-in-Hansen test (p-value), Y-lag set	0.796	0.516	0.960	0.479	0.434	0.388	0.283	0.249	
Starting IV Lag t-k (k=)	4	4	4	4	5	5	5	5	
Ending IV Lag t-k (k=)	5	5	5	5	6	6	6	6	

Dynamic Panel Additional Robustness Checks

- Perform Diff-in-Hansen test on y-lag set only.
- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Effect of Frailty on Earnings

		Everyone			Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(earnings_{t-1})$	0.564***	0.206***	0.283	0.555***	0.098***	1.474***
	(0.006)	(0.004)	(0.364)	(0.013)	(0.006)	(0.509)
$\log(earnings_{t-2})$	0.188***	-0.021***	0.396	0.240***	-0.031***	-0.640
	(0.006)	(0.005)	(0.298)	(0.012)	(0.006)	(0.454)
$frailty_t$	-4.973***	-8.818***	-5.374***	-0.519***	-0.471***	-0.978**
	(0.138)	(0.235)	(1.653)	(0.044)	(0.084)	(0.447)
Observations R^2	64,965 0.580	64,965 0.432	64,965	34,274 0.601	34,274 0.080	34,274

Effect of Frailty on Earnings - Young vs Old

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(earnings_{t-1})$	0.564***	0.206***	0.628**	0.555***	0.098***	1.127***
	(0.006)	(0.004)	(0.291)	(0.013)	(0.006)	(0.302)
$\log(earnings_{t-2})$	0.188***	-0.021***	0.115	0.241***	-0.031***	-0.308
	(0.006)	(0.005)	(0.239)	(0.012)	(0.006)	(0.273)
$frailty_t \times Young$	-4.870***	-8.547***	-4.992***	-0.660***	-0.483***	-1.650**
	(0.202)	(0.297)	(1.784)	(0.061)	(0.099)	(0.673)
$frailty_t imes Old$	-5.034***	-8.943***	-4.030***	-0.376***	-0.463***	-0.293
	(0.161)	(0.249)	(1.317)	(0.054)	(0.091)	(0.365)
Observations R^2	64,965 0.580	64,965 0.433	64,965	34,274 0.601	34,274 0.080	34,274

Effect of Frailty on Earnings - Education

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(earnings_{t-1})$	0.560***	0.206***	0.370	0.544***	0.097***	1.371***
	(0.006)	(0.004)	(0.319)	(0.013)	(0.006)	(0.400)
$\log(earnings_{t-2})$	0.183***	-0.022***	0.318	0.233***	-0.031***	-0.569
	(0.006)	(0.005)	(0.259)	(0.011)	(0.006)	(0.356)
$frailty_t imes HSD$	-6.143***	-8.533***	-6.269***	-1.340***	-0.742***	-1.846**
	(0.213)	(0.526)	(1.777)	(0.111)	(0.254)	(0.807)
$frailty_t imes HS$	-5.215***	-9.586***	-5.591***	-0.762***	-0.712***	-1.239***
	(0.155)	(0.289)	(1.574)	(0.052)	(0.107)	(0.460)
$frailty_t \times CL$	-3.003***	-6.900***	-2.519*	0.053	-0.014	-0.558
	(0.209)	(0.457)	(1.402)	(0.053)	(0.132)	(0.484)
Observations R^2	64,965 0.581	64,965 0.435	64,965	34,274 0.605	34,274 0.089	34,274

Effect of Frailty on Earnings – Good Health vs Bad Health Comparison of OLS, FE, and BB

		Everyone		Workers			
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM	
$\log(earnings_{t-1})$	0.564***	0.206***	0.220	0.555***	0.097***	1.293***	
	(0.006)	(0.004)	(0.362)	(0.013)	(0.006)	(0.410)	
$\log(earnings_{t-2})$	0.188***	-0.021***	0.444	0.240***	-0.031***	-0.498	
	(0.006)	(0.005)	(0.297)	(0.012)	(0.006)	(0.377)	
$frailty_t \times Good \; Health$	-3.076***	-6.816***	-1.930	-0.610***	-0.230*	-1.765	
	(0.305)	(0.499)	(4.816)	(0.082)	(0.135)	(1.775)	
$frailty_t \times Bad Health$	-4.818***	-8.607***	-5.207***	-0.522***	-0.446***	-0.963**	
	(0.137)	(0.239)	(1.745)	(0.044)	(0.085)	(0.469)	
Observations R^2	64,965 0.580	64,965 0.433	64,965	34,274 0.601	34,274 0.079	34,274	

Effect of Frailty on Hours Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.554***	0.200***	0.399	0.332***	-0.027***	0.003
	(0.006)	(0.004)	(0.322)	(0.008)	(0.006)	(0.345)
$\log(hours_{t-2})$	0.180***	-0.028***	0.263	0.157***	-0.090***	0.304
	(0.006)	(0.004)	(0.257)	(0.007)	(0.006)	(0.218)
$frailty_t$	-3.626***	-6.655***	-3.887***	-0.175***	-0.442***	0.070
	(0.100)	(0.172)	(1.188)	(0.028)	(0.056)	(0.246)
Observations R^2	64,965 0.556	64,965 0.400	64,965	34,274 0.234	34,274 0.001	34,274

Effect of Frailty on Hours - Young vs Old

		Everyone			Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.554***	0.200***	0.669***	0.332***	-0.027***	0.382
	(0.006)	(0.004)	(0.257)	(0.008)	(0.006)	(0.318)
$\log(hours_{t-2})$	0.180***	-0.028***	0.048	0.157***	-0.090***	0.254
	(0.006)	(0.004)	(0.206)	(0.007)	(0.006)	(0.246)
$frailty_t \times Young$	-3.457***	-6.411***	-3.564***	-0.200***	-0.484***	-0.286
	(0.149)	(0.217)	(1.325)	(0.039)	(0.066)	(0.387)
$frailty_t \times Old$	-3.726***	-6.767***	-3.131***	-0.151***	-0.414***	0.144
	(0.116)	(0.182)	(0.936)	(0.036)	(0.060)	(0.259)
Observations R^2	64,965 0.556	64,965 0.401	64,965	34,274 0.234	34,274 0.001	34,274

Effect of Frailty on Hours - Education

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.550***	0.200***	0.383	0.331***	-0.027***	0.074
	(0.006)	(0.004)	(0.319)	(0.008)	(0.006)	(0.313)
$\log(hours_{t-2})$	0.176***	-0.028***	0.269	0.156***	-0.091***	0.168
	(0.006)	(0.004)	(0.253)	(0.007)	(0.006)	(0.221)
$frailty_t \times HSD$	-4.433***	-6.526***	-4.770***	-0.403***	-0.942***	-0.533
	(0.157)	(0.385)	(1.320)	(0.078)	(0.169)	(0.356)
$frailty_t imes HS$	-3.732***	-7.241***	-4.303***	-0.189***	-0.440***	-0.033
	(0.112)	(0.211)	(1.224)	(0.032)	(0.071)	(0.281)
$frailty_t imes CL$	-2.380***	-5.119***	-2.219**	-0.092***	-0.311***	0.248
	(0.150)	(0.334)	(1.118)	(0.035)	(0.088)	(0.254)
Observations R^2	64,965 0.557	64,965 0.402	64,965	34,274 0.234	34,274 0.001	34,274

Effect of Frailty on Hours - Good Health vs Bad Health

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.553***	0.200***	0.386	0.332***	-0.027***	0.040
	(0.006)	(0.004)	(0.317)	(0.008)	(0.006)	(0.311)
$\log(hours_{t-2})$	0.180***	-0.028***	0.272	0.157***	-0.091***	0.282
	(0.006)	(0.004)	(0.253)	(0.007)	(0.006)	(0.219)
$frailty_t \times Good \; Health$	-1.957***	-5.137***	-2.216	-0.046	-0.292***	-0.060
	(0.222)	(0.365)	(3.455)	(0.049)	(0.090)	(0.910)
$frailty_t \times Bad \; Health$	-3.491***	-6.494***	-3.707***	-0.171***	-0.426***	0.026
	(0.099)	(0.175)	(1.242)	(0.028)	(0.056)	(0.258)
Observations R^2	64,965 0.556	64,965 0.402	64,965	34,274 0.234	34,274 0.001	34,274

Wage regression Comparison of OLS, FE, and BB

		Eve	ryone		Workers				
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM			
$\log(wage_{t-1})$				0.525*** (0.010)	0.067*** (0.006)	0.212 (0.541)			
$\log(wage_{t-2})$				0.288*** (0.009)	-0.028*** (0.006)	0.532 (0.489)			
frailty _t				-0.378*** (0.037)	-0.028 (0.073)	-0.623** (0.263)			
Observations R^2*				34,170 0.592	34,170 0.056	34,170			

Wage regression – Young vs Old Comparison of OLS, FE, and BB

		Eve	ryone		Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(wage_{t-1})$				0.525*** (0.010)	0.067*** (0.006)	0.511 (0.399)
$\log(wage_{t-2})$				0.289*** (0.009)	-0.029*** (0.006)	0.272 (0.359)
$frailty_t \times Young$				-0.481*** (0.050)	0.028 (0.086)	-1.106** (0.463)
$frailty_t \times Old$				-0.274*** (0.045)	-0.064 (0.079)	-0.414 (0.295)
Observations R^2*				34,170 0.592	34,170 0.055	34,170

Wage regression – Education

	OLS	Eve FE	ryone SYS-GMM	OLS	Workers FE	SYS-GMM
$\log(wage_{t-1})$				0.514*** (0.010)	0.067***	0.122 (0.368)
$\log(wage_{t-2})$				0.279*** (0.009)	-0.029*** (0.006)	0.600* (0.328)
$frailty_t \times HSD$				-1.040*** (0.102)	0.191 (0.222)	-1.854*** (0.616)
$frailty_t \times HS$				-0.602*** (0.043)	-0.268*** (0.094)	-0.889*** (0.307)
$frailty_t \times CL$				0.123*** (0.046)	0.298*** (0.116)	-0.216 (0.309)
Observations R^2*				34,170 0.596	34,170 0.063	34,170

Wage regression - Good Health vs Bad Health

	Everyone			Workers		
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$log(wage_{t-1})$				0.525*** (0.010)	0.067*** (0.006)	0.303 (0.449)
$\log(wage_{t-2})$				0.288*** (0.009)	-0.028*** (0.006)	0.461 (0.419)
$frailty_t \times Good \; Health$				-0.561*** (0.071)	0.061 (0.118)	0.348 (1.685)
$frailty_t \times Bad \; Health$				-0.384*** (0.037)	-0.019 (0.074)	-0.581* (0.332)
Observations R^2*				34,170 0.592	34,170 0.055	34,170

Dynamic Panel Additional Robustness Checks

- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Dynamic Panel Additional Robustness Checks

F-tests instrument power results

Dynamic Panel Additional Robustness Checks

- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Effect of Frailty on Earnings – Education

Robustness to instrument set

	Everyone	Everyone	Everyone
$\log(earnings_{t-1})$	0.676*** (0.110)	0.370 (0.319)	0.055 (0.264)
$log(earnings_{t-2})$	0.050 (0.046)	0.318 (0.259)	0.632*** (0.210)
$frailty_t \times HSD$	-5.133*** (1.809)	-6.269*** (1.777)	-5.772*** (2.050)
$frailty_t imes HS$	-5.009*** (1.610)	-5.591*** (1.574)	-6.532*** (1.876)
$frailty_t imes CL$	-3.237** (1.313)	-2.519* (1.402)	-3.125* (1.743)
AR(2) test (p-value)	0.156	0.474	0.024
Hansen test (p-value)	0.022	0.132	0.116
Diff-in-Hansen test (p-value)	0.015	0.360	0.151
Diff-in-Hansen test (p-value), Y-lag set	0.053	0.516	0.516
Starting IV Lag t-k (k=)	3	4	5
Ending IV Lag t-k (k=)	4	5	6

Effect of Frailty on Earnings

		Everyone		Workers		
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(earnings_{t-1})$	0.283 (0.364)	0.628** (0.291)				
$log(earnings_{t-2})$	0.396 (0.298)	0.115 (0.239)				
$frailty_t$	- 0.199*** (0.061)					
$frailty_t \times Young \; (age \leq 45)$		- 0.185*** (0.066)				
$frailty_t \times Old (age > 45)$		- 0.149*** (0.049)				

Similar effect for young and old

AR(1) test (p-value)	0.455	0.104	
AR(2) test (p-value)	0.380	0.949	0.057
Hansen test (p-value)	0.796	0.752	0.352
Diff-in-Hansen test (p-value)	0.652	0.464	0.192

p < 0.1; p < 0.05; p < 0.01; p < 0.01

Note:

Effect of Frailty on Hours - Young v. Old

	Everyone		Wo	rkers
	(1)	(2)	(3)	(4)
$\log(hours_{t-1})$	0.399 (0.322)	0.669*** (0.257)	0.003 (0.345)	0.382 (0.318)
$\log(hours_{t-2})$	0.263 (0.257)	0.048 (0.206)	0.304 (0.218)	0.254 (0.246)
$frailty_t$	-0.144*** (0.044)		0.003 (0.009)	
$frailty_t \times Young \; (age \leq 45)$		-0.132*** (0.049)		$-0.011 \ (0.014)$
$frailty_t \times Old \; (age > 45)$		$-0.116^{***} \ (0.035)$		0.005 (0.010)
AR(1) test (p-value)	0.287	0.043	0.409	0.180
AR(2) test (p-value)	0.596	0.706	0.273	0.642
Hansen test $(p ext{-value})$ Diff-in-Hansen test $(p ext{-value})$	0.971 0.944	0.811 0.545	0.060 0.080	0.051 0.037

Note:

 $^{^*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Effect of Frailty on Wages of Workers - Young v. Old

	Workers			
	(1)	(2)		
$\log(wages_{t-1})$	0.212 (0.541)	0.511 (0.399)		
$\log(wages_{t-2})$	0.532 (0.489)	0.272 (0.359)		
$frailty_t$	$-0.023^{**} \ (0.010)$			
$frailty_t \times Young$		-0.041** (0.017)		
$frailty_t imes Old$		-0.015 (0.011)		
AR(1) test (p-value)	0.651	0.362		
AR(2) test $(p$ -value)	0.454	0.734		
Hansen test $(p$ -value)	0.085	0.170		
Diff-in-Hansen test (<i>p</i> -value)	0.044	0.104		
Note:	*p < 0.1; **	<i>p</i> < 0.05; *** <i>p</i> < 0.01		

Problem of Young Nonemployed Individual at R-1

- Nonemployed individual with j = R - 1 solves

$$V^{N}\left(x,n_{a}\right)=\max_{c,a'\geq0}u\left(c\right)+\beta p\left(j,f\right)E\left[\max\left\{ V^{E}\left(x',1\right),V^{R}\left(x'\right)\right\} \right]$$

subject to

$$\frac{a'}{1+r} + c + m^{N}(j, f, s) = a + Tr(x, n_a)$$

Problem of a DI Beneficiary at R-1

- DI beneficiary with j = R - 1 solves

$$V^{D}\left(x, \mathbf{n_{d}}\right) = \max_{c, a' \geq 0} u\left(c\right) + \beta p\left(j, f, s\right) E\left[V^{R}\left(x'\right)\right]$$

subject to

$$\frac{a'}{1+r}+c+m^{D}(j,f,s,n_{d})=a+SS(\bar{e})+Tr(x,n_{d}).$$

- n_d : number of periods on DI.

Problem of a Retiree

- Retiree solves

$$V^{R}(x) = \max_{c,a' \geq 0} u(c) + \beta p(j,f) E\left[V^{R}(x')\right]$$

subject to

$$\frac{a'}{1+r}+c+m^{R}(j,f,s)=a+SS(\bar{e})+Tr(x)$$

Equilibrium

- Return on assets, r, is exogenously given (small open economy)
- There is an aggregate production function

$$Y = AK^{\alpha}L^{1-\alpha}$$

where L is aggregate labor input = sum of hours×productivity

- Wage per efficient unit of labor = marginal product
- Consolidated government budget holds with exog. purchases g
- All measures are stationary usual definition

Parametrization: Tax and Transfers

- Taxes includes

- Proportional capital tax au_K paid by firm
- Federal income tax HSV tax function
- SS retirement & disability payroll tax statutory tax formula
- Medicare payroll tax

$$T(e) = e - \lambda e^{1-\tau} + \tau_{ss} \min\{e, 2.47\bar{e}_a\} + \tau_{med}e$$

- Transfers include
 - SS retirement & disability benefit statutory benefit formula
 - SSI benefits to guarantee minimum DI payment \underline{b}
 - Welfare programs to guarantee minimum consumption floor \underline{c}

Estimation of Frailty Process: Deterministic Component

$$Prob(f_{ij} = 0) = \Phi(quad(age) + \nu_{ij})$$

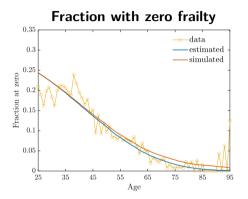
$$\begin{aligned} & \text{In } f_{ij} = quartic(age) + R_{ij}, \\ & R_{ij} = \alpha_i + z_{ij} + u_{ij}, \\ & z_{ij} = \rho z_{ij-1} + \varepsilon_{ij}, \end{aligned}$$

- Run OLS to remove time/sample duration effects
- Estimate zero frailty probit
- Estimate deterministic component of log frailty via SMM
- Calculate cohort-adjusted vars/covars of $R_{i,j}$
- Estimate process for $R_{i,j}$ using SMM
- Separate estimation for each educ group

Estimation of Frailty Process: Deterministic Component

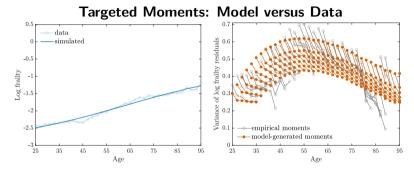
	HS Dropout	HS Graduates	Col Graduates
age	1.26	0.988	0.999
	(0.095)	(0.030)	(0.064)
age^2	2.19	1.40	2.04
	(0.492)	(0.146)	(0.305)
age^3	-0.607	-1.39	-0.838
	(0.951)	(0.380)	(0.585)
age^4	3.03	8.77	3.05
	(0.636)	(0.307)	(0.403)
const.	-2.50	-2.57	-2.83
	(0.006)	(0.003)	(0.004)

Note: age is scaled so that age = (age-25)/100.

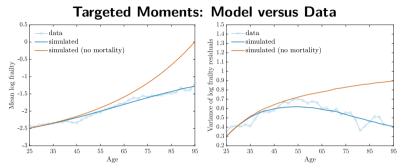

Estimation of Frailty Process: Stochastic Component

results of estimating the shock process

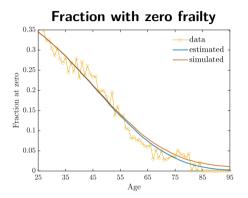
	HS Dropout	HS Graduates	Col Graduates
$\overline{\rho}$	0.979	1.001	0.9690
	(0.002)	(0.001)	(0.002)
σ_{lpha}^2	0.2232	0.1542	0.1270
	(0.0107)	(0.005)	(0.0050)
σ_u^2	0.0368	0.0506	0.0357
	(0.0039)	(0.002)	(0.0023)
$\sigma_{arepsilon}^2$	0.0286	0.0162	0.0250
	(0.0018)	(0.001)	(0.0012)


Stochastic frailty process for high school dropouts

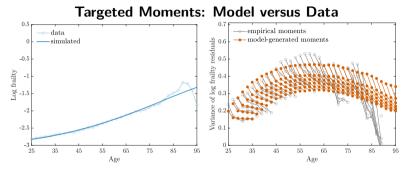
- Mortality has little impact on the fraction at zero by age.


Stochastic frailty process for high school dropouts

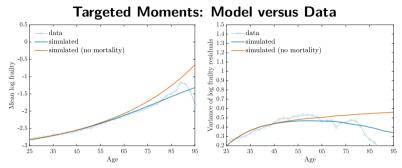
- Deterministic age polynomial targets mean frailty by age in data.
- Stochastic component targets variance-covariance profile of frailty residuals.


Stochastic frailty process for high school dropouts

- Effects of mortality on mean and variance of frailty are large at older age.


Stochastic frailty process for college graduates

- Mortality has little impact on the fraction at zero by age.


Stochastic frailty process for college graduates

- Deterministic age polynomial targets mean frailty by age in data.
- Stochastic component targets variance-covariance profile of frailty residuals.

Stochastic frailty process for college graduates

- Effects of mortality on mean and variance of frailty are large at older ages.

Calibration: What is done outside the model

- Utility parameters : γ and μ
- Technology parameters: capital share α , depreciation δ
- Job separation rate σ , return on asset r, pop. growth ν
- Tax progressivity au, payroll tax rates (au_{ss}, au_{med}) , capital tax au_K
- SS, SSDI, and SSI benefits, and minimum consumption \underline{c}
- The following processes
 - Stochastic processes for frailty and labor productivity
 - Out of pocket medical expenditures
 - Survival rates

▶ Ex-ante parameter

Calibration: Predetermined Parameters

Parameter	Description	Values/source
Demograph	ics	
J	maximum age	70 (94 y/o)
R	retirement age	41 (66 y/o)
ν	population growth rate	0.02
Preferences		
γ	curvature of utility function	2
μ	weight on consumption	0.5
	(implies CRRA of 1.5)	
Job Separat	ion	
σ	annual layoffs/separations in JOLTS	0.15
Technology		
α , δ , r	capital share, depreciation, return on assets	0.33, 0.07, 0.04
Government	policies	
au	tax progressivity (Guner et al (2014))	0.036
$ au_{K}$	captial tax (Gomme and Rupert (2007)	0.3
$ au_{ss}, au_{med}$	payroll tax rates	0.124, 0.029
<u>b</u>	SSI payment (% of ave. earning)	13
<u>c</u> G	minimum consumption (% of ave. earning)	11
G	government purchases (% of GDP)	17.5

Parametrization: Survival and OOP Med. Expenditure

- For survival: estimate (probit)

$$s_{ij} = \text{quad. poly. on age} + \text{quad. poly. on frailty} + \text{edu} + \text{gender}$$

Dataset: HRS

- For out of pocket medical expenditures: estimate

$$oop_{ij} = cubic poly.$$
 on age $+ cubic poly.$ on frailty

separate for each edu. & labor market status.

Dataset: MEPS

- Education: HSD, HSG, CG
- Labor market status: employed, non-employed and on Medicare, non-employed and not on Medicare

Step 1: exclusion restriction

- Following Low & Pistaferri (2014) assume "potential" government transfers have different work disincentives for people w/ different health levels.
 - These effects are captured by interactions
- We regress participation on
 - log wage (1 and 2 lags), lag of frailty interacted educ., poly. on age, year dummies
 - interaction term: state \times # of kids \times marital status \times frailty
 - fixed effect
- We use estimated fixed effects in step 2

Step 2: bias correction

- Follow: Al-Saddoon, Jimenez-Martin, & Labeaga (2019)
- Run log wage on
 - 2 lags of log wage
 - edu. interacted w/quad. of lag of frailty (treated exogenous given our earlier findings)
 - age poly. + year dummies
 - fixed effects estimated in step 1

Estimation of frailty effect

	Lin	ear	Quad	ratic						
	w/o correction	w/ correction	w/o correction	w/ correction						
$\log(wage_{ extsf{-}}t-1)$	1.044***	1.034***	1.039***	1.024***						
	(0.298)	(0.295)	(0.298)	(0.295)						
$\log(wage_{-}t - 2)$	-0.263	-0.262	-0.265	-0.259						
	(0.270)	(0.262)	(0.268)	(0.260)						
$frailty_t \times HSD$	-1.128**	-1.201**	-1.952**	-2.056**						
	(0.453)	(0.469)	(0.900)	(0.923)						
frailty $_t^2 \times HSD$			3.477*	3.555*						
			(1.999)	(2.018)						
$frailty_t \times HSG$	-0.662***	-0.741***	-1.048**	-1.173**						
,,	(0.235)	(0.251)	(0.441)	(0.467)						
$frailty_t^2 \times HSG$			1.658	1.810*						
,,			(1.015)	(1.037)						
$frailty_t \times COL$	0.052	0.025	0.397*	0.358*						
,,	(0.119)	(0.119)	(0.223)	(0.217)						
$frailty_t^2 \times COL$			-2.058**	-2.071**						
,,			(0.843)	(0.834)						
selection term		0.076**		0.090**						
		(0.035)		(0.038)						
Observations	23,874	23,755	23,874	23,755						
AR(2) test (p-value)	0.182	0.163	0.182	0.163						
Hansen test (p-value)	0.107	0.096	0.107	0.096						
Diff-in-Hansen test (p-value)	0.307	0.417	0.307	0.417						
How Important	is Health Inequal	ity for Lifetime I	Earnings Inequalit	How Important is Health Inequality for Lifetime Earnings Inequality?						

Steps 3 and 4: estimating shock process

- Using results in step 2, remove effect of frailty
- Run the remainder (separate for college and non-college) on
 - quadratic in age
 - year dummies
- Estimate age profile for 25-49 using PSID and 50+ using HRS
- Back out residuals
- Estimate a RIP process for residuals using GMM and PSID

Step 3: Deterministic component estimates

	Ages 25-49		Ages 50+		
	Non-college	Col Graduates	Non-college	Col Graduates	
age	0.050	0.092	0.080	0.006	
	(0.003)	(0.005)	(0.018)	(0.029)	
age^2	-0.0005	-0.0009	-0.0008	-0.0002	
	(0.0004)	(5.2e-6)	(0.0001)	(0.0002)	
constant	1.878	1.196	1.224	3.932	
	(0.075)	(0.108)	(0.574)	(0.924)	

Step 4: Shock process estimates

	Non-college	Col Graduates
var. of transitory shock	0.0824	0.0985
	(0.0115)	(0.0122)
var. of permanent shock	0.0165	0.0181
	(0.0049)	(0.0059)
var. of fixed effect	0.0920	0.1254
	(0.0145)	(0.0234)
persistence	0.9218	0.9730
	(0.0231)	(0.0114)

Comparison with Low & Pistaferri (2014)

- Low & Pistaferri (2014) estimate the effect of disability on wages
- They have three disability groups d = 0, 1, 2
 - d = 0: those with no work limitation
 - d = 2: those with severe work limitation
 - d = 1: the rest
- We calculate mean frailty for each of these categories in our sample
 - d = 0 has mean frailty of 0.07
 - d = 1 has mean frailty of 0.18
 - d=2 has mean frailty of 0.28
- Using these values and our estimated coefficients, we can compute effects that are comparable to Low & Pistaferri (2014)

Comparison with Low & Pistaferri (2014)

Table: Effect of work limitation on wages (% decline in wages relative to no limitation)

	mean	Low & Pistaferri (2014)	Our estimation			
	frailty	non-college	non-college	HSD	HSG	College
No limitation	0.07					
Moderate limitation	0.18	-5.7	-9.0	-13.1	-8.1	-5.8
Severe limitation	0.28	-17.7	-18.0	-26.1	-16.1	-13.9

- Note Low and Pistaferri's estimates are based on non-college sample only.

Robustness to Exogenous Frailty

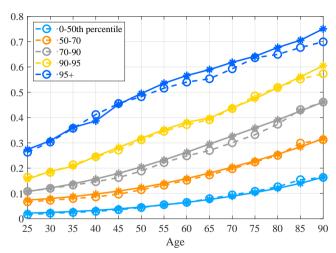
Estimation of frailty effect (men only)

	ENDOGENOUS No Correction	ENDOGENOUS stateXkidsXmar	ENDOGENOUS +Xfrail	EXOGENOUS No Correction	EXOGENOUS stateXkidsXmar	EXOGENOUS +Xfrail
$\log(wage_{ extcolor{t}} - 1)$	0.863*** (0.172)	0.859*** (0.170)	0.853*** (0.170)	1.044*** (0.298)	1.043*** (0.296)	1.034*** (0.295)
$\log(wage_{-}t - 2)$	-0.093 (0.158)	-0.091 (0.161)	-0.088 (0.159)	-0.263 (0.270)	-0.274 (0.264)	-0.262 (0.262)
frail_hsd (one add. deficit)	-0.037 (0.024)	-0.039 (0.024)	-0.039 (0.024)	-0.042** (0.017)	-0.044** (0.017)	-0.044** (0.017)
frail_hsgp (one add. deficit)	-0.019 (0.018)	-0.026 (0.020)	-0.026 (0.019)	-0.025*** (0.009)	-0.027*** (0.009)	-0.027*** (0.009)
frail_col (one add. deficit)	0.000 (0.021)	-0.003 (0.022)	-0.002 (0.021)	0.002 (0.004)	0.001 (0.005)	0.001 (0.004)
eta		0.038 (0.152)	0.059 (0.141)		0.046 (0.032)	0.076** (0.035)
Controls	YES	YES	YES	YES	YES	YES
Observations	23,874	23,755	23,755	23,874	23,755	23,755
AR(1) test (p-value)	0.000	0.000	0.000	0.010	0.008	0.009
AR(2) test (p-value)	0.195	0.183	0.189	0.182	0.152	0.163
Hansen test (p-value)	0.228	0.169	0.172	0.107	0.096	0.096
Diff-in-Hansen test (p-value)	0.370	0.324	0.356	0.307	0.385	0.417
Diff-in-Hansen test (p-value), Y-lag set	0.122	0.070	0.079			
Starting IV Lag t-k (k=)	5	5	5	5	5	5
Ending IV Lag t-k (k=)	7	7	7	7	7	7

[▶] Go Back

Robustness to Exogenous Frailty

Estimation of quadratic frailty effect (men only)


						•
	ENDOGENOUS	ENDOGENOUS	ENDOGENOUS	EXOGENOUS	EXOGENOUS	EXOGENOU
	No Correction	stateXkidsXmar	+Xfrail	No Correction	stateXkidsXmar	+Xfrail
$\log(wage_t - 1)$	0.749***	0.738***	0.734***	1.039***	1.032***	1.024***
	(0.157)	(0.156)	(0.155)	(0.298)	(0.295)	(0.295)
$\log(\text{wage_}t - 2)$	0.007	0.018	0.020	-0.265	-0.270	-0.259
	(0.141)	(0.140)	(0.139)	(0.268)	(0.261)	(0.260)
frail_hsd	-1.923	-2.660	-2.584	-1.952**	-2.051**	-2.056**
	(2.617)	(2.387)	(2.371)	(0.900)	(0.931)	(0.923)
frail_hsd_sq	3.631	4.883	4.682	3.477*	3.576*	3.555*
	(6.762)	(6.075)	(6.037)	(1.999)	(2.049)	(2.018)
frail_hsgp	-1.101	-1.931	-1.880	-1.048**	-1.153**	-1.173**
	(1.428)	(1.346)	(1.346)	(0.441)	(0.463)	(0.467)
frail_hsgp_sq	2.891	4.634	4.515	1.658	1.785*	1.810*
	(4.364)	(4.039)	(4.066)	(1.015)	(1.038)	(1.037)
frail_col	0.902	0.434	0.490	0.397*	0.377*	0.358*
	(1.198)	(1.148)	(1.150)	(0.223)	(0.228)	(0.217)
frail_col_sq	-4.486	-3.831	-3.912	-2.058**	-2.095**	-2.071**
	(3.189)	(2.966)	(3.032)	(0.843)	(0.855)	(0.834)
eta		0.114 (0.155)	0.132 (0.147)		0.061* (0.033)	0.090** (0.038)
Controls	YES	YES	YES	YES	YES	YES
Observations	23,874	23,755	23,755	23,874	23,755	23,755
AR(1) test (p-value)	0.000	0.000	0.001	0.010	0.009	0.009
AR(2) test (p-value)	0.452	0.463	0.471	0.178	0.155	0.166
Hansen test (p-value)	0.347	0.339	0.347	0.107	0.096	0.096
Diff-in-Hansen test (p-value)	0.200	0.233	0.251	0.309	0.403	0.435
Diff-in-Hansen test (p-value), Y-lag set	0.051	0.039	0.042		-	
Starting IV Lag t-k (k=)	5	5	5	5	5	5
Ending IV Lag t-k (k=)	7	7	7	7	7	7

^{*} p < .1, ** p < .05, *** p < .01

77 of 90

Frailty: Model vs Data

- Frailty process in model generates mean frailty levels by age and percentile groups that align closely with those in the data.

Assessment: DI and LFP by Education Groups

DI recipiency	rate	(%),	ages	25–64
---------------	------	------	------	-------

	HS Dropout	HS Graduates	Col Graduates
Data	11.8	6.6	2.7
Model	12.3	7.4	2.6

LFPR (%), ages 25-64

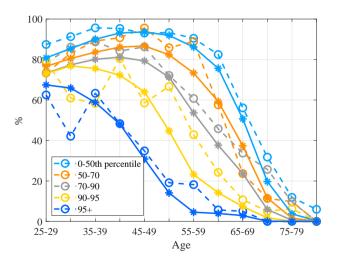
	HS Dropout	HS Graduates	Col Graduates
Data	78	87	94
Model	76	86	94

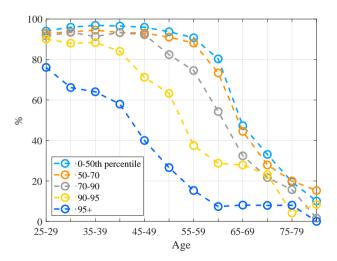
- The model matches levels and patterns of DI recipiency and LFP by education.

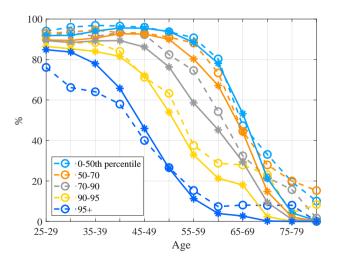
Calibration: What is Chosen to Match Targets

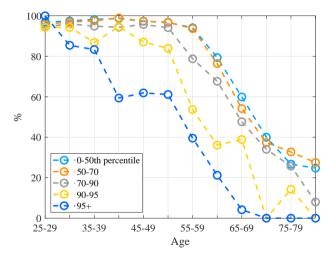
- Prob. of DI acceptance parameters: $\theta\left(f,n_{a}\right)=\min\left\{1,\kappa_{0}f^{\kappa_{1}}n_{a}^{\kappa_{2}}\right\}$
 - Targets:
 - SSDI enrollment by frailty percentiles and 5-year age group (ages 25-64)
 - Rate of decline in DI acceptance by year since initial application (French and Song, 2014)
- Disutility of work parameters: $v(f) = \phi_0 + \phi_1 f^{\phi_2}$
 - Targets: LFP by frailty percentiles for age group 25 to 74.
- Discount factor β
 - Target: wealth to output ratio of 3.2.
- Average tax parameter λ
 - Target: federal income tax as % of GDP = 8%.

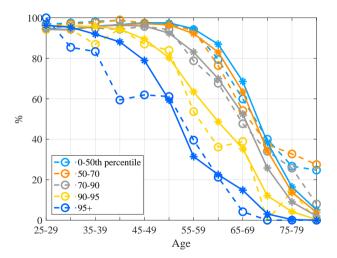


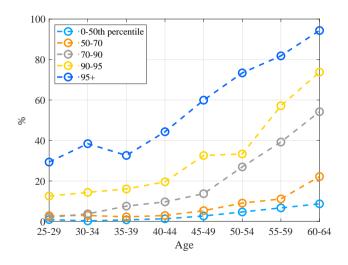

Calibration: Parameters Chosen using the Model

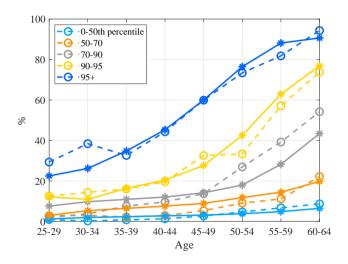

Table: Additional Parameters and Targets: Values

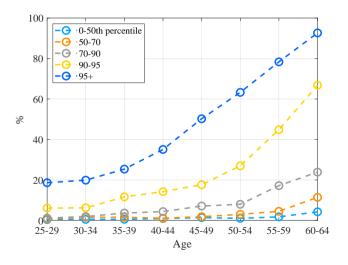

Parameter	Description		Value
β	discount factor		0.982
λ	HSV tax parameter		0.119
Moment		Target	Model
Wealth-output ratio		3.2	3.2
Federal Inc. Tax (% of GDP)		8.0	8.0

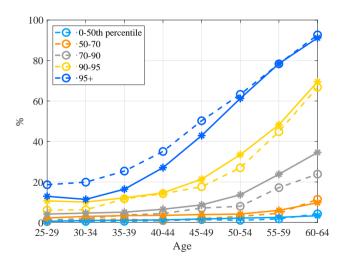


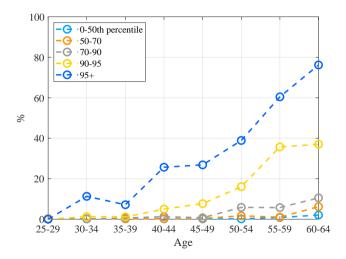


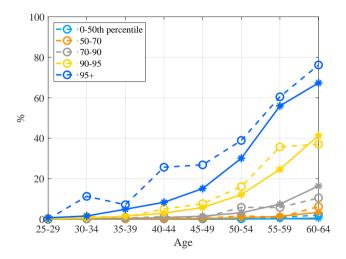





Assessment:% on DI by Frailty and Age

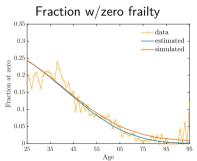

Assessment: % on DI by Frailty and Age

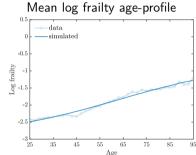

Assessment:% on DI by Frailty and Age

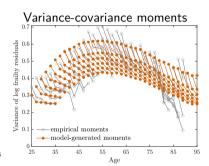

Assessment: % on DI by Frailty and Age

Assessment:% on DI by Frailty and Age

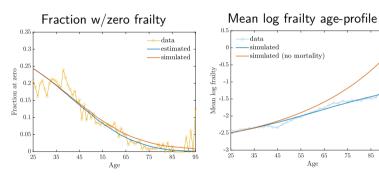
Assessment: % on DI by Frailty and Age

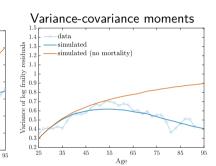



Sample Details

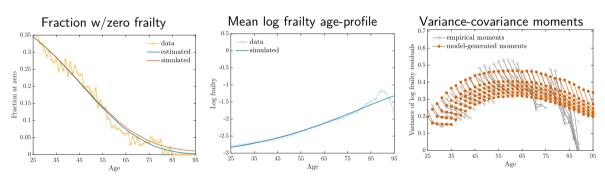

- Use PSID 2003-2017 (years 2002-2016)
 - Cannot construct frailty index in earlier waves.
- Sample consists of household heads and spouses aged 25–64 with non-missing labor earnings.
- Workers are defined as follows:
 - $LF_t = 1$ if hours ≥ 260 AND wages > \$3/hour
 - Worker = 1 if $LF_t = 1$ for all time periods observed
 - Wages = Annual labor earnings/Annual hours worked
 - Annual hours worked = $(52 weeks unemployed) \times average weekly hours$
- Good/Bad health: frailty below/above 75th percentile

Stochastic frailty process for high school dropouts

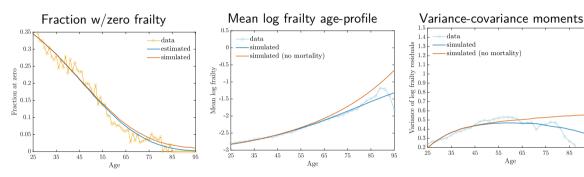




Stochastic frailty process for high school dropouts



85


Stochastic frailty process for college graduates

Stochastic frailty process for college graduates

75 85