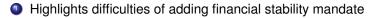
On Speculative Frenzies and Stabilization Policy

Gadi Barlevy


Chicago Fed

July 2021

Disclaimer: The views here are mine and do not represent the views of the Federal Reserve Bank of Chicago or the of Federal Reserve System

- Financial crisis led to calls that central banks act against asset booms
- Would this conflict w/central bank goals of stabilizing prices and output?
 - Bernanke-Gertler (1999) look at exogenous bubble term, find no conflict
 - This paper looks at endogenous asset boom per Harrison-Kreps (1978)
 - Shock that causes asset boom in model leads to a *lower* price level
 - At the same time, asset boom still coincides with an *output* boom
 - Asset boom not always same as aggregate demand shock
- Intuition: Speculators save to buy assets in the future, incl liquid assets

Insights from Model

- Trilemma: can't use liquidity to stabilize output, prices, and asset prices
- More liquidity raises price level, but it boosts either real asset prices or output
- Captures tradeoffs observed during asset booms (e.g. Japan 1980s)

- Paper merges two existing models
 - Harrison and Kreps (1978) model of speculation due to disagreement
 - Rocheteau, Weill, and Wong (2019) model of money and inflation
- Overview of talk:
 - Start with pure monetary model from RWW (2019)
 - Add illiquid asset and allow for disagreement as in HK (1978)
 - Add production and discuss policy trilemma

Rocheteau Weill Wong (2019) Model

- Continuous time model with mass 1 of infinitely-lived households
- Households endowed w/flow y of nondurable good (endogenize later)
- Households enjoy consumption only at random dates {t_n}[∞]_{n=1}
 - Urge to consume follow Poisson arrival w/rate λ , assume LLN holds
 - Assume utility when agents consume is linear, i.e

$$U=\sum_{n=1}^{\infty}e^{-\rho t_n}c_{t_n}$$

- Goods should only go to those with a current urge to consume
- No intertemporal contracts, but agents can trade goods and money
- Fixed money supply \overline{M} endowed according to atomless distrib $F_0(M)$
- Let *P_t* denote price of goods in terms of money at date *t*

Equilibrium

- Eqbm is path for P_t and $F_t(M)$ s.t. agents optimize and markets clear
- Focus on stationary monetary eqbm: $P_t < \infty$ and proportional to \overline{M}
 - Agents without an urge to consume sell y
 - Consuming yields no utility while money has some value

 $\Rightarrow \dot{M}_t = P_t y$ inbetween urges to consume

- Agents with urge to consume must decide how much of their *M* to spend
 - Stationarity implies $\dot{P}_t = 0$, no reason to wait to consume (no better price) Agents with urge to consume spend their entire money holdings *M*

Equilibrium Spending

- Urge to consume independent of money holdings \Rightarrow spending = $\lambda \overline{M}$
- Almost all agents sell goods, so value of goods sold is $Py \Rightarrow P = \frac{\lambda \overline{M}}{v}$
- Agents save with money in order to consume in future

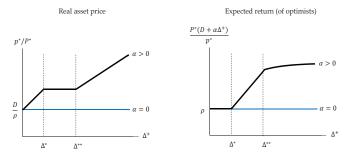
Adding Asset w/Heterogeneous Beliefs

- Add fixed supply of 1 asset w/dividend flow of D goods and price pt
 - Initial endowment of asset for household *i* is a_{i0} where $\int_0^1 a_{i0} = 1$
 - Agents can trade money/goods and money/asset but not goods and assets

 \Rightarrow allocate wealth $W_{it} = M_{it} + p_t a_{it}$ each instant, use only M_{it} to consume

- Trade off: ability to consume vs. earning a return
- Agents disagree on asset as in Harrison and Kreps (1978) to generate trade

Modelling Disagreement


- Agents expect payoff events at random dates {τ_n}[∞]_{n=1}
 - Payoff event arrives independently for each agent at Poisson rate α
 - Agents track different aspects of asset and form beliefs on implications
 - At these dates, agents expect lump-sum payment Δ_n (beyond flow *D*)
 - Optimists expect next payoff $\Delta_n = \frac{\Delta^+}{q} > 0$ w/prob q, else $\Delta_n = 0$
 - Pessimists expect next payoff $\Delta_n = \frac{-\Delta^-}{q} < 0$ w/prob q, else $\Delta_n = 0$
 - Beliefs alternate (next payment positive \rightarrow payment after that negative)
- Assume true $\Delta_n = 0$, so payoff never occurs
 - Optimists expect $\Delta^+ > 0$, see 0 and turn pessimist; vice versa f/pessimist
- Half of agents start as optimists; fraction stays at $\frac{1}{2}$ at all t by symmetry

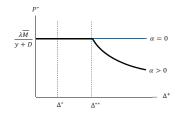
Equilibrium with Disagreement

- If $\alpha = 0$, homogeneous beliefs (disagree on events that never happen)
- Disagreement shock: Unexpectedly move from α = 0 to α > 0
 - Assume $\alpha \Delta^- > D \Rightarrow$ pessimists avoid asset in steady state
 - Pattern of trade in equilibrium:
 - Optimists hold all of *illiquid* asset, might also hold money to consume
 - Pessimists hold money, save to consume or to buy assets later

Disagreement, Asset Prices, Expected Returns

- If $\alpha = 0$, real asset price $\frac{p}{p} = \frac{D}{\rho}$ and return on asset equals ρ for all Δ^+
- If α > 0, optimists keep buying asset until expected return to equal ρ

- Disagreement raises asset price *p*, may raise optimist return above *ρ*
- Real price starts rising again for really large Δ^+ , i.e. if $\Delta^+ > \Delta^{**}$

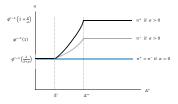

Adding an Asset and Disagreement

Very Large Optimism Δ^+

- If $\Delta^+ > \Delta^*$, asset price *p* equal to wealth \overline{W}^+
- If *P* were constant, expected return $\frac{P(D+\alpha\Delta^+)}{p}$ increases w/o bound

 \Rightarrow Pessimists eventually save for next τ_n rather than consume

- For very large Δ^+ , above some Δ^{**} , price level *P* must adjust
 - P falls until pessimists just indifferent between saving/spending
 - Pessimists save to buy assets, which is why $P < \frac{\lambda \overline{M}}{\gamma + D}$



Endogenous Output

- Instead of fixed endowment y, let agents choose how much to work
- Linear production $y_{it} = n_{it}$ with convex cost of effort

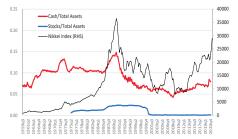
$$U=\sum_{n=1}^{\infty}e^{-\rho t_n}c_{t_n}-\int_0^{\infty}e^{-\rho t}\phi(n_t)$$

• **Proposition:** Disagreement leads to higher *n*⁺ and *n*⁻, so output boom

Optimists work harder given higher expected return; pessimists save

Policy Interventions

- Can monetary policy stabilize output, P, and p w/disagreement shock?
- Consider one-time liquidity injections, i.e., increasing \overline{M} to $(1 + \mu)\overline{M}$
 - Increasing in proportion to current wealth is neutral, raises p and P by μ
 - Directing liquidity to optimists temporarily boosts real price of asset ^P/_P
 - Directing liquidity to pessimists temporarily dampens real price of asset ^p/_p
 ... BUT expected return on asset rises, which leads to higher output


Empirical Relevance

- Several papers identify stock booms and show linked to low inflation
 - Bank of Japan faced tension in 1980s (e.g. Shirakawa speeches)
 - Broader evidence that asset booms historically associated w/low inflation
 - Bordo and Wheelock (2007) confirm this for 5 countries since 1900
 - Christiano et al (2010) confirm this for 18 US stock market booms since 1800
- Can we find evidence of liquidity hoarding channel?
 - Challenging given this is about demand rather than actual liquidity
 - Might be able to look at who holds liquidity (although outside model)

Empirical Relevance

Cash Holdings in Japan

- Look at cash holdings of large Japanese corporations
 - Firms have incentive not to hoard cash (rebate to shareholders/repay debt)

Asset Holdings of Large Non-Financial Corporations

- Large firms held roughly 10% of their assets in cash before 1980s
- Cash holdings increased in 1980s boom (and earlier stock boom)
- Firms engaged in speculation (zaiteku), held more stocks

- Model suggests financial stability can conflict w/other mandates
- Above conflict seems to be relevant in practice
- More work needed before we evaluate tradeoff in terms of welfare