Dynamic Banking and the Value of Deposits

Patrick Bolton
Ye Li
Neng Wang
Jinqiang Yang

Columbia & Imperial College
OSU
Columbia
SUFIE
Deposit accounts commit a bank to accept inflows and outflows

- That's how we can use deposits as means of payment
Deposit accounts commit a bank to accept inflows and outflows

- That's how we can use deposits as means of payment
- Depositors accept a low rate for payment convenience ("money premium")
- Banks face uncertainty in deposit flows

A dynamic model of depository institution with endogenous risk-taking, deposit-taking, short-term borrowing, payout policy, equity issuance.
A Model of Depository Institutions

- Deposit accounts commit a bank to accept inflows and outflows
 - That’s how we can use deposits as means of payment
 - Depositors accept a low rate for payment convenience ("money premium")
 - Banks face uncertainty in deposit flows

- Deposit inflow brings cheap financing & uncertainty in future earnings
Deposit accounts commit a bank to accept inflows and outflows
- That’s how we can use deposits as means of payment
- Depositors accept a low rate for payment convenience (“money premium”)
- Banks face uncertainty in deposit flows

Deposit inflow brings cheap financing & uncertainty in future earnings
- Equity issuance costs \rightarrow bank is endogenously risk-averse \rightarrow deposit inflow destroys shareholders’ value when bank equity is low, close to issuance
A Model of Depository Institutions

- Deposit accounts commit a bank to accept inflows and outflows
 - That’s how we can use deposits as means of payment
 - Depositors accept a low rate for payment convenience ("money premium")
 - Banks face uncertainty in deposit flows

- Deposit inflow brings cheap financing & uncertainty in future earnings
 - Equity issuance costs → bank is endogenously risk-averse → deposit inflow destroys shareholders’ value when bank equity is low, close to issuance
 - A dynamic model of depository institution with endogenous risk-taking, deposit-taking, short-term borrowing, payout policy, equity issuance
US banks

Cash-rich US banks move to reduce corporate deposits

JPMorgan Chase and Citigroup take unusual step to avoid additional capital requirement

Imani Moise in New York MAY 4 2021

Banks including JPMorgan Chase and Citigroup have held conversations with some large corporate clients about putting cash into money market funds rather than in deposits, according to people briefed on the talks.

Deposits held at the three largest US banks by assets — JPMorgan, Bank of America and Citi — climbed $243bn in the first three months of the year, on top of a record $1tn inflow last year. In 2019 they rose by $92bn.
Introduction

Model

Results
Model: The Setup

- A_t loans: return $\frac{dA_t}{A_t} = (r + \alpha_A) \, dt + \sigma_A \, d\mathcal{W}_t^A$

- B_t short-term bonds: interest expenses $r \, dt$
 - The bank issues bonds when $B_t > 0$ and holds risk-free asset when $B_t < 0$
Model: The Setup

- A_t loans: return \[\frac{dA_t}{A_t} = (r + \alpha_A) \, dt + \sigma_A d\mathcal{W}_t^A \]

- B_t short-term bonds: interest expenses $r \, dt$
 - The bank issues bonds when $B_t > 0$ and holds risk-free asset when $B_t < 0$

- X_t deposits: \[\frac{dX_t}{X_t} = - (\delta_X \, dt - \sigma_X d\mathcal{W}_t^X) + n (i_t) \, dt, \text{ with } n' (i_t) > 0 \]
 - Net withdrawal rate: $\delta_X \, dt - \sigma_X d\mathcal{W}_t^X$, corr. $(d\mathcal{W}_t^X, d\mathcal{W}_t^A) = \phi \, dt$
 - Effectively deposits have long duration (Drechsler, Savov, Schnabl, 2021)
Model: The Setup

- A_t loans: return $\frac{dA_t}{A_t} = (r + \alpha_A) dt + \sigma_A d\mathcal{W}^A_t$

- B_t short-term bonds: interest expenses $r dt$
 - The bank issues bonds when $B_t > 0$ and holds risk-free asset when $B_t < 0$

- X_t deposits: $\frac{dX_t}{X_t} = -(\delta_X dt - \sigma_X d\mathcal{W}^X_t) + n(i_t) dt$, with $n'(i_t) > 0$
 - Net withdrawal rate: $\delta_X dt - \sigma_X d\mathcal{W}^X_t$, $corr. (d\mathcal{W}^X_t, d\mathcal{W}^A_t) = \phi dt$
 - Effectively deposits have long duration (Drechsler, Savov, Schnabl, 2021)
 - The costs of running deposit franchise: $C(n(i_t), X_t) dt$
Model: The Setup

- A_t loans: return \(\frac{dA_t}{A_t} = (r + \alpha_A) \, dt + \sigma_A d\mathcal{W}_t^A \)

- B_t short-term bonds: interest expenses $r \, dt$
 - The bank issues bonds when $B_t > 0$ and holds risk-free asset when $B_t < 0$

- X_t deposits: \(\frac{dX_t}{X_t} = -\left(\delta_X \, dt - \sigma_X d\mathcal{W}_t^X \right) + n \left(i_t \right) \, dt \), with $n' \left(i_t \right) > 0$
 - Net withdrawal rate: $\delta_X \, dt - \sigma_X d\mathcal{W}_t^X$, corr. \(d\mathcal{W}_t^X, d\mathcal{W}_t^A \) = $\phi \, dt$
 - Effectively deposits have long duration (Drechsler, Savov, Schnabl, 2021)
 - The costs of running deposit franchise: $C \left(n \left(i_t \right), X_t \right) \, dt$

- The law of motion of equity capital K_t: \[dK_t = A_t \left[(r + \alpha_A) \, dt + \sigma_A d\mathcal{W}_t^A \right] - B_t r dt - X_t i_t dt - C \left(n \left(i_t \right), X_t \right) dt - dU_t + dF_t \]
 - U_t is the cumulative payout and F_t is the cumulative issuances
Model: The Setup

- A_t loans: return $\frac{dA_t}{A_t} = (r + \alpha_A) \ dt + \sigma_A dW^A_t$

- B_t short-term bonds: interest expenses $r \ dt$
 - The bank issues bonds when $B_t > 0$ and holds risk-free asset when $B_t < 0$

- X_t deposits: $\frac{dX_t}{X_t} = - (\delta_X dt - \sigma_X dW^X_t) + n(i_t) \ dt$, with $n'(i_t) > 0$
 - Net withdrawal rate: $\delta_X dt - \sigma_X dW^X_t$, corr. $(dW^X_t, dW^A_t) = \phi dt$
 - Effectively deposits have long duration (Drechsler, Savov, Schnabl, 2021)
 - The costs of running deposit franchise: $C(n(i_t), X_t) \ dt$

- The law of motion of equity capital K_t:
 $$dK_t = A_t \left[(r + \alpha_A) \ dt + \sigma_A dW^A_t \right] - B_t r dt - X_t i_t dt - C(n(i_t), X_t) \ dt - dU_t + dF_t$$
 - U_t is the cumulative payout and F_t is the cumulative issuances
 - Under equity issuance costs H_t: max $\mathbb{E} \left[\int_{t=0}^{\infty} e^{-\rho t} (dU_t - dF_t - dH_t) \right]$
Introduction

Model

Results
Results: Endogenous Risk Aversion, Payout Policy and Equity Issuance

- 2 state variables: equity capital K_t and deposit stock X_t
 - A transformation from (K_t, X_t) to (k_t, X_t) where $k_t = K_t / X_t$
 - The value function $V_t = V(K_t, X_t) = v(k_t)X_t$

- Equity-to-deposit ratio, $k_t \equiv K_t / X_t \in [k, k_0]$ drives the choice variables
Results: Endogenous Risk Aversion, Payout Policy and Equity Issuance

- 2 state variables: equity capital K_t and deposit stock X_t
 - A transformation from (K_t, X_t) to (k_t, X_t) where $k_t = K_t / X_t$
 - The value function $V_t = V(K_t, X_t) = v(k_t)X_t$
 - Equity capital marginal q: $V_K(K_t, X_t) = v'(k)$
 - Deposit marginal q: $V_X(K_t, X_t) = v(k) - v'(k)k$

Equity-to-deposit ratio, $k_t \equiv K_t / X_t \in [k*, k]$, drives the choice variables.
Results: Endogenous Risk Aversion, Payout Policy and Equity Issuance

- 2 state variables: equity capital K_t and deposit stock X_t
 - A transformation from (K_t, X_t) to (k_t, X_t) where $k_t = K_t / X_t$
 - The value function $V_t = V(K_t, X_t) = v(k_t) X_t$
 - Equity capital marginal q: $V_K(K_t, X_t) = v'(k)$
 - Deposit marginal q: $V_X(K_t, X_t) = v(k) - v'(k)k$

- Equity-to-deposit ratio, $k_t \equiv K_t / X_t \in [k, \bar{k}]$, drives the choice variables
 - 5 control variables: risky asset A_t (*liquid → no coordination failure/run*), short-term borrowing B_t, deposit rate i_t, payout dU_t, equity issuance dF_t
Results: Endogenous Risk Aversion, Payout Policy and Equity Issuance

- 2 state variables: equity capital \(K_t \) and deposit stock \(X_t \)
 - A transformation from \((K_t, X_t)\) to \((k_t, X_t)\) where \(k_t = K_t / X_t \)
 - The value function \(V_t = V(K_t, X_t) = v(k_t) X_t \)
 - Equity capital marginal q: \(V_K (K_t, X_t) = v'(k) \)
 - Deposit marginal q: \(V_X (K_t, X_t) = v(k) - v'(k) k \)

- Equity-to-deposit ratio, \(k_t = K_t / X_t \in [k, k] \), drives the choice variables
 - 5 control variables: risky asset \(A_t \) (liquid → no coordination failure/run), short-term borrowing \(B_t \), deposit rate \(i_t \), payout \(dU_t \), equity issuance \(dF_t \)
 - \(V_K (K_t, X_t) = v'(k_t) = 1 \) at dividend payout boundary \(k_t = k \)
Results: Endogenous Risk Aversion, Payout Policy and Equity Issuance

- 2 state variables: equity capital K_t and deposit stock X_t
 - A transformation from (K_t, X_t) to (k_t, X_t) where $k_t = K_t / X_t$
 - The value function $V_t = V(K_t, X_t) = v(k_t) X_t$
 - Equity capital marginal q: $V_K(K_t, X_t) = v'(k)$
 - Deposit marginal q: $V_X(K_t, X_t) = v(k) - v'(k) k$

- Equity-to-deposit ratio, $k_t \equiv K_t / X_t \in [k, \bar{k}]$, drives the choice variables
 - 5 control variables: risky asset A_t (liquid \rightarrow no coordination failure/run), short-term borrowing B_t, deposit rate i_t, payout dU_t, equity issuance dF_t
 - $V_K(K_t, X_t) = v'(k_t) = 1$ at dividend payout boundary $k_t = \bar{k}$
 - $V_K(K_t, X_t) = v'(k_t) > 1$ for $k_t \in [k, \bar{k})$, highest at issuance boundary k
Results: Endogenous Risk Aversion, Payout Policy and Equity Issuance

- 2 state variables: equity capital K_t and deposit stock X_t
 - A transformation from (K_t, X_t) to (k_t, X_t) where $k_t = K_t/X_t$
 - The value function $V_t = V(K_t, X_t) = v(k_t)X_t$
 - Equity capital marginal q: $V_K(K_t, X_t) = v'(k)$
 - Deposit marginal q: $V_X(K_t, X_t) = v(k) - v'(k)k$

- Equity-to-deposit ratio, $k_t \equiv K_t/X_t \in [k, \bar{k}]$, drives the choice variables
 - 5 control variables: risky asset A_t (liquid \rightarrow no coordination failure/run), short-term borrowing B_t, deposit rate i_t, payout dU_t, equity issuance dF_t
 - $V_K(K_t, X_t) = v'(k_t) = 1$ at dividend payout boundary $k_t = \bar{k}$
 - $V_K(K_t, X_t) = v'(k_t) > 1$ for $k_t \in [k, \bar{k})$, highest at issuance boundary k
 - $V_{kK}(K_t, X_t) < 0$, risk-averse towards K_t fluctuation under issuance costs (Brunnermeier, Sannikov, 2014; Klimenko, Pfeil, Rochet, Nicolo, 2016; Phelan, 2016)
Results: Optimal Deposit Rate

\[i(k) = \frac{V_X(X,K)}{V_K(X,K)} \frac{1}{\theta \omega} = \frac{v(k) - v'(k)k}{v'(k)} \frac{1}{\theta \omega} \]

- \(\omega \): semi-elasticity of deposit demand (Drechsler, Savov, Schnabl, 2017)
 - The rate-dependent component of deposit flow: \(n(i)dt = \omega idt \) calibration

- \(\theta \): the convex cost of running deposit franchise \(C(n(i), X) = \frac{\theta n(i)^2}{2} X \)
Results: Optimal Deposit Rate

\[i(k) = \frac{V_X(X,K)}{V_K(X,K)} - \frac{1}{\omega} = \frac{\nu(k) - \nu'(k)k}{\nu'(k)} - \frac{1}{\omega} \]

- \(\omega \): semi-elasticity of deposit demand (Drechsler, Savov, Schnabl, 2017)
 - The rate-dependent component of deposit flow: \(n(i) dt = \omega idt \) (calibration)

- \(\theta \): the convex cost of running deposit franchise \(C(n(i), X) = \frac{\theta n(i)^2}{2} X \)

- Hayashi “investment” policy, investing in sticky depositor/customer base
 - Adjusted \(Q \), \(\frac{V_X(X,K)}{V_K(X,K)} \): building the deposit base vs. earnings
Results: Optimal Deposit Rate

\[i(k) = \frac{V_X(X,K)}{V_K(X,K)} - \frac{1}{\omega} \]
\[= \frac{\nu(k) - \nu'(k)k}{\nu'(k)} - \frac{1}{\omega} \]

- \(\omega \): semi-elasticity of deposit demand (Drechsler, Savov, Schnabl, 2017)

- The rate-dependent component of deposit flow: \(n(i)dt = \omega idt \) calibration

- \(\theta \): the convex cost of running deposit franchise \(C(n(i),X) = \frac{\theta n(i)^2}{2} X \)

- Hayashi “investment” policy, investing in sticky depositor/customer base

- Adjusted Q, \(\frac{V_X(X,K)}{V_K(X,K)} \): building the deposit base vs. earnings

- Deposit-rate lower bound: \(i(k) \geq 0 \) (Heider, Saidi, Schepens, 2019)
Results: Deposit Marginal ϕ and Optimal Deposit Rate

A: Deposit Marginal ϕ

B: Deposit Rate
Results: The Mechanism of Dynamic Deposit Marginal q

\[dK_t = A_t \left[(r + \alpha A) dt + \sigma A dW^A_t \right] - B_t r dt - X_t i_t dt - C (n(i_t), X_t) dt - dU_t + dF_t \]

\[C(n(i_t), X_t) = \frac{\theta}{2} n(i_t)^2 X_t \] and balance-sheet identity \(X_t + K_t = A_t - B_t \) \(\Rightarrow \)

\[dK_t = K_t r dt + A_t (\alpha A dt + \sigma A dW^A_t) + X_t \left[r - i_t - \frac{\theta}{2} n(i_t)^2 \right] dt - dU_t + dF_t \]

\(\text{net deposit spread} > 0 \)
Results: The Mechanism of Dynamic Deposit Marginal q

\[dK_t = A_t \left[(r + \alpha_A) dt + \sigma_A dW_t^A \right] - B_t r dt - X_t i_t dt - C (n (i_t) , X_t) dt - dU_t + dF_t \]

\[C (n (i_t) , X_t) = \frac{\theta}{2} n(i_t)^2 X_t \] and balance-sheet identity \(X_t + K_t = A_t - B_t \) \(\Rightarrow \)

\[dK_t = K_t r dt + A_t \left(\alpha_A dt + \sigma_A dW_t^A \right) + X_t \left[r - i_t - \frac{\theta}{2} n(i_t)^2 \right] dt - dU_t + dF_t \]

\[\text{net deposit spread} > 0 \]

\[dX_t = X_t \left(n (i_t) - \delta_X \right) dt + X_t \sigma_X dW_t^X \]

Deposit inflows are cheap sources of funds, so the bank earns the deposit spread. Add risk to the future trajectory of equity capital:

\[dW \] net deposit spread > 0

The risk concern dominates when the bank is undercapitalized. The bank is endogenously risk averse under equity issuance costs, so the deposit marginal \(q, V_{X} (X_t, K_t) \), turns negative as \(k \) falls to \(k_{7/10} \).
Results: The Mechanism of Dynamic Deposit Marginal q

\[dK_t = A_t \left[(r + \alpha_A) dt + \sigma_A dW_t^A \right] - B_t r dt - X_t i_t dt - C \left(n(i_t), X_t \right) dt - dU_t + dF_t \]

\[C \left(n(i_t), X_t \right) = \frac{\theta}{2} n(i_t)^2 X_t \]

and balance-sheet identity \(X_t + K_t = A_t - B_t \) \(\Rightarrow \)

\[dK_t = K_t r dt + A_t \left(\alpha_A dt + \sigma_A dW_t^A \right) + X_t \left[r - i_t - \frac{\theta}{2} n(i_t)^2 \right] dt - dU_t + dF_t \]

\[dX_t = X_t \left(n(i_t) - \delta X \right) dt + X_t \sigma X dW_t^X \]

- Deposit inflows ...
 - are cheap sources of funds, so the bank earns the deposit spread
 - add risk to the future trajectory of equity capital: \(dW_t^X < 0 \rightarrow E_t[dK_t] \downarrow \)
Results: The Mechanism of Dynamic Deposit Marginal q

\[dK_t = A_t \left[(r + \alpha_A) dt + \sigma_A d\mathcal{W}_t^A \right] - B_t r dt - X_t i_t dt - C \left(n(i_t), X_t \right) dt - dU_t + dF_t \]

\[C \left(n(i_t), X_t \right) = \frac{\theta}{2} n(i_t)^2 X_t \] and balance-sheet identity $X_t + K_t = A_t - B_t \quad \Rightarrow \]

\[dK_t = K_t r dt + A_t \left(\alpha_A dt + \sigma_A d\mathcal{W}_t^A \right) + X_t \left[r - i_t - \frac{\theta}{2} n(i_t)^2 \right] dt - dU_t + dF_t \]

\[dX_t = X_t \left(n(i_t) - \delta_X \right) dt + X_t \sigma_X d\mathcal{W}_t^X \]

- Deposit inflows ...
 - are cheap sources of funds, so the bank earns the deposit spread
 - add risk to the future trajectory of equity capital: $d\mathcal{W}_t^X < 0 \rightarrow \mathbb{E}_t [dK_t] \downarrow$

- The risk concern dominates when the bank is undercapitalized
 - The bank is endogenously risk averse under equity issuance costs
Results: The Mechanism of Dynamic Deposit Marginal q

\[dK_t = A_t \left[(r + \alpha_A) dt + \sigma_A dW_t^A \right] - B_t r dt - X_t i_t dt - C \left(n(i_t), X_t \right) dt - dU_t + dF_t \]

\[C \left(n(i_t), X_t \right) = \frac{\theta}{2} n(i_t)^2 X_t \]

and balance-sheet identity $X_t + K_t = A_t - B_t \Rightarrow$

\[dK_t = K_t r dt + A_t \left(\alpha_A dt + \sigma_A dW_t^A \right) + X_t \left[r - i_t - \frac{\theta}{2} n(i_t)^2 \right] dt - dU_t + dF_t \]

\[dX_t = X_t \left(n(i_t) - \delta_X \right) dt + X_t \sigma_X dW_t^X \]

- Deposit inflows ...
 - are cheap sources of funds, so the bank earns the deposit spread
 - add risk to the future trajectory of equity capital: $dW_t^X < 0 \Rightarrow E_t[dK_t] \downarrow$

- The risk concern dominates when the bank is undercapitalized
 - The bank is endogenously risk averse under equity issuance costs
 \[\rightarrow \text{Deposit marginal } q, V_X(X, K), \text{ turns negative as } k \text{ falls to } k \]
Results: Banking in a Low Interest Rate Environment

- The level of r determines the bank’s flexibility in adjusting its deposit rate i.
Results: Banking in a Low Interest Rate Environment

- The level of r determines the bank’s flexibility in adjusting its deposit rate i
 - Away from k (costly equity issuance), the bank tunes up i so that when k falls, it can tune down i to reduce deposits and de-risk
The level of r determines the bank’s flexibility in adjusting its deposit rate i

- Away from k (costly equity issuance), the bank tunes up i so that when k falls, it can tune down i to reduce deposits and de-risk

- A high r means the bank can adjust i to a high level to build up flexibility when k is high and still earn a positive deposit spread $r - i$
Results: Banking in a Low Interest Rate Environment

- The level of r determines the bank’s flexibility in adjusting its deposit rate i
 - Away from k (costly equity issuance), the bank tunes up i so that when k falls, it can tune down i to reduce deposits and de-risk
 - A high r means the bank can adjust i to a high level to build up flexibility when k is high and still earn a positive deposit spread $r - i$

- The distance between r and 0 measures the flexibility in managing deposits
 - Low r: deposit risk management is more difficult and bank value declines
Results: Risk-Taking

\[\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k)\sigma_A^2} + \frac{\sigma_X}{\sigma_A} \phi \]

- Merton’s portfolio choice, wealth \(K \) (equity) and risky asset \(A \) (loans)
- \(\gamma(k) \equiv \frac{-V_{KK}(X,K)K}{V_K(X,K)} = -\frac{v''(k)k}{v'(k)} \) decreases in \(k = K/X \)
Results: Risk-Taking

\[
\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k)\sigma_A^2} + \frac{\sigma_X}{\sigma_A} \phi
\]

- Merton’s portfolio choice, wealth \(K \) (equity) and risky asset \(A \) (loans)

- \(\gamma(k) \equiv -\frac{V_{KK}(X,K)K}{V_K(X,K)} = -\frac{v''(k)k}{v'(k)} \) decreases in \(k = K/X \)

 - \(\frac{A}{K} \) increases in \(k \), so capital requirement limits procyclicality in risk-taking

- Evidence from Copeland, Duffie, and Yang (2021): intraday payment risk

\[\sigma_X \rightarrow \gamma(k) \rightarrow \text{bank demands safe assets, i.e., } B < 0 \]

- A large literature on the synergy between deposit-taking and lending

- Dynamic Optimization under Parametric Choices

- \(A/K \) Graphs (State Space)

- \(A/K \) Graphs (Long Run)

- \(B \) Graphs

9 / 10
Results: Risk-Taking

\[
\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k) \sigma_A^2} + \frac{\sigma_X}{\sigma_A} \phi
\]

- Merton’s portfolio choice, wealth \(K\) (equity) and risky asset \(A\) (loans)

- \(\gamma(k) \equiv -\frac{V_{KK}(X,K)K}{V_K(X,K)} = -\frac{v''(k)k}{v'(k)}\) decreases in \(k = K/X\)
 - \(\frac{A}{K}\) increases in \(k\), so capital requirement limits procyclicality in risk-taking
 - A high-\(k\) bank uses \(B > 0\) to amplify leverage

Evidence from Copeland, Duffie, and Yang (2021): intraday payment risk \(\sigma_X\) \(\gamma(k)\) \(\phi\): Hedging the “background risk” in deposit-flow uncertainty

A large literature on the synergy between deposit-taking and lending

Dynamic Optimization under Parametric Choices

\(A/K\) Graphs (State Space)

\(A/K\) Graphs (Long Run)

\(B\) Graphs
Results: Risk-Taking

\[\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k)\sigma^2_A} + \frac{\sigma_X}{\sigma_A} \phi \]

- Merton’s portfolio choice, wealth \(K \) (equity) and risky asset \(A \) (loans)

- \(\gamma(k) \equiv \frac{-V_{KK}(X,K)K}{V_K(X,K)} = -\frac{v''(k)k}{v'(k)} \) decreases in \(k = K/X \)

 - \(\frac{A}{K} \) increases in \(k \), so capital requirement limits procyclicality in risk-taking

 - A high-\(k \) bank uses \(B > 0 \) to amplify leverage

 - A low-\(k \) bank uses \(B < 0 \) (i.e., hold bonds) to de-risk asset side of B/S
Results: Risk-Taking

\[
\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k)\sigma^2_A} + \frac{\sigma_X}{\sigma_A}\phi
\]

- Merton’s portfolio choice, wealth \(K \) (equity) and risky asset \(A \) (loans)

- \(\gamma(k) \equiv -\frac{V_{KK}(X,K)K}{V_K(X,K)} = -\frac{\nu''(k)k}{\nu'(k)} \) decreases in \(k = \frac{K}{X} \)

 - \(A/K \) increases in \(k \), so capital requirement limits procyclicality in risk-taking

 - A high-\(k \) bank uses \(B > 0 \) to amplify leverage

 - A low-\(k \) bank uses \(B < 0 \) (i.e., hold bonds) to de-risk asset side of B/S

- Evidence from Copeland, Duffie, and Yang (2021): intraday payment risk

 \(\sigma_X \to \gamma(k = \frac{K}{X}) \to \) bank demands safe assets, i.e., \(B < 0 \)
Results: Risk-Taking

\[
\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k)\sigma_A^2} + \frac{\sigma_X}{\sigma_A} \phi
\]

- Merton’s portfolio choice, wealth \(K \) (equity) and risky asset \(A \) (loans)

- \(\gamma(k) \equiv -\frac{V_{KK}(X,K)K}{V_K(X,K)} = -\frac{v''(k)k}{v'(k)} \) decreases in \(k = \frac{K}{X} \)
 - \(\frac{A}{K} \) increases in \(k \), so capital requirement limits procyclicality in risk-taking
 - A high-\(k \) bank uses \(B > 0 \) to amplify leverage
 - A low-\(k \) bank uses \(B < 0 \) (i.e., hold bonds) to de-risk asset side of B/S
 - Evidence from Copeland, Duffie, and Yang (2021): intraday payment risk
 \(\sigma_X \rightarrow \gamma(k = \frac{K}{X}) \rightarrow \) bank demands safe assets, i.e., \(B < 0 \)

- \(\frac{\sigma_X}{\sigma_A} \phi \): Hedging the “background risk” in deposit-flow uncertainty
 - A large literature on the synergy between deposit-taking and lending
Results: Risk-Taking

\[
\frac{A}{K} = \frac{K + X + B}{K} = \frac{\alpha_A}{\gamma(k)\sigma^2_A} + \frac{\sigma_X}{\sigma_A} \phi
\]

- Merton’s portfolio choice, wealth \(K \) (equity) and risky asset \(A \) (loans)
- \(\gamma(k) \equiv -\frac{V_{KK}(X,K)}{V_K(X,K)} = -\frac{v''(k)k}{v'(k)} \)
 decreases in \(k = K/X \)
 - \(\frac{A}{K} \) increases in \(k \), so capital requirement limits procyclicality in risk-taking
 - A high-\(k \) bank uses \(B > 0 \) to amplify leverage
 - A low-\(k \) bank uses \(B < 0 \) (i.e., hold bonds) to de-risk asset side of B/S
 - Evidence from Copeland, Duffie, and Yang (2021): intraday payment risk
 \(\sigma_X \to \gamma(k = \frac{K}{X}) \to \) bank demands safe assets, i.e., \(B < 0 \)
- \(\frac{\sigma_X}{\sigma_A} \phi \): Hedging the “background risk” in deposit-flow uncertainty
 - A large literature on the synergy between deposit-taking and lending
The supplementary leverage requirement (SLR) was relaxed in 2020.
Results: Total Leverage Regulation and Reaching For Yield

- The supplementary leverage requirement (SLR) was relaxed in 2020
 - For an undercapitalized bank ($B_t < 0$), SLR requires $\frac{K_t}{X_t + K_t} = \frac{k}{1+k} > 5\%$
The supplementary leverage requirement (SLR) was relaxed in 2020

- For an undercapitalized bank \((B_t < 0)\), SLR requires \(\frac{K_t}{X_t + K_t} = \frac{k}{1+k} > 5\% \)

- Relaxing SLR allows the bank to postpone costly equity issuance
Results: Total Leverage Regulation and Reaching For Yield

- The supplementary leverage requirement (SLR) was relaxed in 2020
 - For an undercapitalized bank ($B_t < 0$), SLR requires $\frac{K_t}{X_t + K_t} = \frac{k}{1+k} > 5\%$
 - Relaxing SLR allows the bank to postpone costly equity issuance
 - Short-term: $\gamma(k) \downarrow$ (more lending) and $V_X(K_t, X_t) \uparrow$ (deposit taking)

SLR was restored in 2021 (to prevent banks being "lazy", holding bonds?)
- Banks will take risk, and the outcome depends on what kind of risk
Results: Total Leverage Regulation and Reaching For Yield

- The supplementary leverage requirement (SLR) was relaxed in 2020
 - For an undercapitalized bank \((B_t < 0)\), SLR requires \(\frac{K_t}{X_t + K_t} = \frac{k}{1+k} > 5\%
 - Relaxing SLR allows the bank to postpone costly equity issuance
 - Short-term: \(\gamma(k) \downarrow\) (more lending) and \(V_X(K_t, X_t) \uparrow\) (deposit taking)
 - Long-term: less frequent equity issuance \(\rightarrow\) incentive to boost ROE to compensate (occasionally incurred) issuance costs \(\downarrow\) \(\rightarrow\) risk-taking declines

SLR was restored in 2021 (to prevent banks being “lazy”, holding bonds?)

- Banks will take risk, and the outcome depends on what kind of risk
The supplementary leverage requirement (SLR) was relaxed in 2020

- For an undercapitalized bank ($B_t < 0$), SLR requires $\frac{K_t}{X_t + K_t} = \frac{k}{1+k} > 5\%$

- Relaxing SLR allows the bank to postpone costly equity issuance

- Short-term: $\gamma(k) \downarrow$ (more lending) and $V_X(K_t, X_t) \uparrow$ (deposit taking)

- Long-term: less frequent equity issuance \Rightarrow incentive to boost ROE to compensate (occasionally incurred) issuance costs $\downarrow \Rightarrow$ risk-taking declines

- Tightening SLR leads to more risk-taking in the long run (reaching for yield)
Results: Total Leverage Regulation and Reaching For Yield

- The supplementary leverage requirement (SLR) was relaxed in 2020
 - For an undercapitalized bank \((B_t < 0)\), SLR requires \(\frac{K_t}{X_t+K_t} = \frac{k}{1+k} > 5\%
 - Relaxing SLR allows the bank to postpone costly equity issuance
 - Short-term: \(\gamma(k) \downarrow\) (more lending) and \(V_X(K_t, X_t) \uparrow\) (deposit taking)
 - Long-term: less frequent equity issuance \(\Rightarrow\) incentive to boost ROE to compensate (occasionally incurred) issuance costs \(\downarrow\) \(\Rightarrow\) risk-taking declines
 - Tightening SLR leads to more risk-taking in the long run (reaching for yield)

- SLR was restored in 2021 (to prevent banks being “lazy”, holding bonds?)
 - Banks will take risk, and the outcome depends on what kind of risk
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - $r + r$ - deposit rate
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - $r + r$ - deposit rate
 - Lending $\alpha_A = \text{loan return} - r$ comes with lending risk $d\mathcal{W}_t^A$
Net interest margin: loan return - \(r + r \) - deposit rate

- Lending \(\alpha_A = \) loan return - \(r \) comes with lending risk \(d\mathcal{W}^A_t \)
- Deposit spread \(r - i_t \) comes with deposit risk \(d\mathcal{W}^X_t \) (deposits as money)
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - \(r + r - \text{deposit rate} \)
 - Lending \(\alpha_A = \text{loan return} - r \) comes with lending risk \(d\mathcal{W}_t^A \)
 - Deposit spread \(r - i_t \) comes with deposit risk \(d\mathcal{W}_t^X \) (deposits as money)
 - Deposits as sources of profit → deposit risk propagates into equity dynamics
Net interest margin: loan return - r + r - deposit rate

- Lending $\alpha_A = \text{loan return} - r$ comes with lending risk $d\mathcal{W}_t^A$.
- Deposit spread $r - i_t$ comes with deposit risk $d\mathcal{W}_t^X$ (deposits as money).
- Deposits as sources of profit \rightarrow deposit risk propagates into equity dynamics.

Deposit risk management is important under equity issuance costs ...
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - \(r + r \) - deposit rate
 - Lending \(\alpha_A = \) loan return - \(r \) comes with lending risk \(d\mathcal{W}^A_t \)
 - Deposit spread \(r - i_t \) comes with deposit risk \(d\mathcal{W}^X_t \) (deposits as money)
 - Deposits as sources of profit \(\rightarrow \) deposit risk propagates into equity dynamics

- Deposit risk management is important under equity issuance costs ...
 - even without coordination failure or bank runs.
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - \(r + r \) - deposit rate
 - Lending \(\alpha_A = \text{loan return} - r \) comes with lending risk \(d\mathcal{W}^A_t \)
 - Deposit spread \(r - i_t \) comes with deposit risk \(d\mathcal{W}^X_t \) (deposits as money)
 - Deposits as sources of profit \(\rightarrow \) deposit risk propagates into equity dynamics

- Deposit risk management is important under equity issuance costs ...
 - even without coordination failure or bank runs.
 - Deposit inflow can reduce bank value for undercapitalized banks by shifting probability mass into tails and raising the likelihood of costly equity issuance
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - $r + r -$ deposit rate
 - Lending $\alpha_A = $ loan return - r comes with lending risk $d\mathcal{W}_t^A$
 - Deposit spread $r - i_t$ comes with deposit risk $d\mathcal{W}_t^X$ (deposits as money)
 - Deposits as sources of profit \rightarrow deposit risk propagates into equity dynamics

- Deposit risk management is important under equity issuance costs ...
 - even without coordination failure or bank runs.
 - Deposit inflow can reduce bank value for undercapitalized banks by shifting probability mass into tails and raising the likelihood of costly equity issuance
 - Deposit risk management is more difficult when r is low
Summary: Deposit Risk Management under Equity Issuance Costs

- Net interest margin: loan return - \(r + r - \) deposit rate
 - Lending \(\alpha_A = \) loan return - \(r \) comes with lending risk \(d\mathcal{W}_t^A \)
 - Deposit spread \(r - i_t \) comes with deposit risk \(d\mathcal{W}_t^X \) (deposits as money)
 - Deposits as sources of profit \(\rightarrow \) deposit risk propagates into equity dynamics

- Deposit risk management is important under equity issuance costs ...
 - even without coordination failure or bank runs.
 - Deposit inflow can reduce bank value for undercapitalized banks by shifting
 probability mass into tails and raising the likelihood of costly equity issuance
 - Deposit risk management is more difficult when \(r \) is low

- A dynamic model of depository institution with practical applications:
 - (1) procyclical risk-taking; (2) procyclical short-term debt; (3) procyclical
 dividend payout; (4) countercyclical equity issuance; (5) jump risk
Equity Capital Marginal q and Risk-Taking

A: Marginal Value of Equity Capital

B: Loans/Capital

Back to Risk-Taking
Stationary Distribution of Capital-Deposit Ratio

A: Stationary Probability Density

B: Cumulative Distribution Function
Capital requirement does not always bind (Gropp, Heider, 2010; Begenau, Bigio, Majerovitz, Vieyra, 2019)
Short-Term Debts

A: Bonds/Deposits

\[\frac{B}{X} \]

Capital/Deposits \(k \)

B: Bonds/Deposits (Distribution)

\[\frac{B}{X} \]

c.d.f.\((k) \)

Back to Risk-Taking
Introducing Jump Risk in Loan Returns

A: Deposit Marginal q

B: Deposit Rate

C: Loans/Capital

D: Bonds/Deposits
What Happened during Covid-19 – Deposit Influx

$865 Billion in April 2020

Source: FDIC
What Happened during Covid-19 – Weakened Capital

Quarterly loan-loss provisions

Source: FDIC
What Happened during Covid-19 – Depressed Valuation

S&P 500

KBW Bank Index

Back to Summary
Literature

- Deposits pay an interest rate below the prevailing risk-free rate
 - Banks have deposit market power (Drechsler, Savov, and Schnabl, 2017) but deposits are short-term debts
 - Deposits as means of payment: short-term debts with convenience yield
Literature

- Deposits pay an interest rate below the prevailing risk-free rate
 - Banks have deposit market power (Drechsler, Savov, and Schnabl, 2017) but deposits are short-term debts
 - Deposits as means of payment: short-term debts with convenience yield

- There exists uncertainty in deposit inflow/outflow (Bianchi and Bigio, 2014) but deposits are short-term debts
Literature

- Deposits pay an interest rate below the prevailing risk-free rate
 - Banks have deposit market power (Drechsler, Savov, and Schnabl, 2017) but deposits are short-term debts
 - Deposits as means of payment: short-term debts with convenience yield

- There exists uncertainty in deposit inflow/outflow (Bianchi and Bigio, 2014) but deposits are short-term debts

- Deposits are effectively long-term debts as banks’ deposit base is sticky (Drechsler, Savov, and Schnabl, 2018) but not random
Literature

- Deposits pay an interest rate below the prevailing risk-free rate
 - Banks have deposit market power (Drechsler, Savov, and Schnabl, 2017)
 but deposits are short-term debts
 - Deposits as means of payment: short-term debts with convenience yield

- There exists uncertainty in deposit inflow/outflow (Bianchi and Bigio, 2014) but deposits are short-term debts

- Deposits are effectively long-term debts as banks’ deposit base is sticky (Drechsler, Savov, and Schnabl, 2018) but not random

- Deposits are long-term contracts with random maturity (Diamond and Dybvig, 1983) but such risk does not appear in the no-run equilibrium
Deposits pay an interest rate below the prevailing risk-free rate
- Banks have deposit market power (Drechsler, Savov, and Schnabl, 2017)
 but deposits are short-term debts
- Deposits as means of payment: short-term debts with convenience yield

There exists uncertainty in deposit inflow/outflow (Bianchi and Bigio, 2014) but deposits are short-term debts

Deposits are effectively long-term debts as banks’ deposit base is sticky (Drechsler, Savov, and Schnabl, 2018) but not random

Deposits are long-term contracts with random maturity (Diamond and Dybvig, 1983) but such risk does not appear in the no-run equilibrium

→ Marginal value of deposits is positive and banks only worry about outflows
Literature

- Deposits pay an interest rate below the prevailing risk-free rate
 - Banks have deposit market power (Drechsler, Savov, and Schnabl, 2017) but deposits are short-term debts
 - Deposits as means of payment: short-term debts with convenience yield

- There exists uncertainty in deposit inflow/outflow (Bianchi and Bigio, 2014) but deposits are short-term debts

- Deposits are effectively long-term debts as banks’ deposit base is sticky (Drechsler, Savov, and Schnabl, 2018) but not random

- Deposits are long-term contracts with random maturity (Diamond and Dybvig, 1983) but such risk does not appear in the no-run equilibrium

→ Marginal value of deposits is positive and banks only worry about outflows

- Deposit marginal \(q \) can be negative, and inflow implies future risk
Calibration

Table: Parameter Values

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>risk-free rate</td>
<td>r</td>
<td>1%</td>
<td>FRED: Fed Fund Rate</td>
</tr>
<tr>
<td>discount rate</td>
<td>ρ</td>
<td>4.5%</td>
<td>Literature</td>
</tr>
<tr>
<td>bank excess return</td>
<td>α_A</td>
<td>0.2%</td>
<td>FRED: Bank ROA</td>
</tr>
<tr>
<td>asset return volatility</td>
<td>σ_A</td>
<td>10%</td>
<td>Literature</td>
</tr>
<tr>
<td>deposit flow (mean)</td>
<td>δ_X</td>
<td>0</td>
<td>Literature</td>
</tr>
<tr>
<td>deposit flow (volatility)</td>
<td>σ_X</td>
<td>5%</td>
<td>Literature</td>
</tr>
<tr>
<td>deposit maintenance cost</td>
<td>θ</td>
<td>0.5</td>
<td>Deposits/Total Liabilities</td>
</tr>
<tr>
<td>deposit demand semi-elasticity</td>
<td>ω</td>
<td>5.3</td>
<td>Literature</td>
</tr>
<tr>
<td>corr. between deposit and asset shocks</td>
<td>ϕ</td>
<td>0.8</td>
<td>Prob.(Capital Requirement Binds)</td>
</tr>
<tr>
<td>equity issuance fixed cost</td>
<td>ψ_0</td>
<td>0.1%</td>
<td>Issuance-to-Equity Ratio</td>
</tr>
<tr>
<td>equity issuance propositional cost</td>
<td>ψ_1</td>
<td>5.0%</td>
<td>Literature</td>
</tr>
<tr>
<td>SLR requirement parameter</td>
<td>ξ_L</td>
<td>20</td>
<td>Regulation</td>
</tr>
<tr>
<td>capital requirement parameter</td>
<td>ξ_K</td>
<td>14.3</td>
<td>Regulation</td>
</tr>
</tbody>
</table>
Model: Optimization – HJB Equation

- Payout, \(dU_t \), and issuance, \(dF_t \), set boundaries for bank capital \(K_t \)
 - In the interior region, the value function satisfies the HJB equation

\[
\rho V(X, K) = \max_{\pi^A, i} \left(V_X(X, K) \left[-X \delta_X + n(i) X \right] + \frac{1}{2} V_{XX}(X, K) X^2 \sigma_X^2 \right.
\]
\[
+ \left. V_K(X, K) (X + K) \left(r + \pi^A \alpha_A \right) - V_K(X, K) \left[iX + C(n(i), X) \right] \right)
\]
\[
+ \frac{1}{2} V_{KK}(X, K) (X + K)^2 \left(\pi^A \sigma_A \right)^2 + V_{XK}(X, K) (X + K) \pi^A \sigma_A X \sigma_X \phi .
\]

- The bank controls \(\pi^A = A / (X + K) \) and \(i \)
 - Given states \(X \) and \(K \), B/S identity, \(A = X + B + K \), implies \(B \)
The bank raises equity only if

\[V(X, K + dF_t) - V(X, K) \geq dF_t + dH_t = \psi_0 X + (1 + \psi_1) M_t. \]

Capital raised: \(dF_t = M_t \), given by \(V_K(X, K + M_t) = 1 + \psi_1 \)

Issuance costs: \(dH_t = \psi_0 X + \psi_1 M_t \)
- Fix cost scaled by \(X \) for value function be homogeneous in \(X \)

The bank pays out dividend only if

\[V(X, K) - V(X, K - dU_t) \leq dU_t \text{ i.e., } V_K(X, K) \leq 1. \]
- Optimality and smooth-pasting condition: \(V_{KK}(X, K) = 0 \)
Model: Optimal Risk-Taking

\[
\frac{A}{K} = \min \left\{ \frac{\alpha_A + \epsilon (X, K) \sigma_A \sigma_X \phi}{\gamma (X, K) \sigma_A^2}, \, \zeta_K \right\}
\]

Endogenous Risk Aversion: \(\gamma (X, K) \equiv -\frac{V_{KK} (X, K) K}{V_K (X, K)} \)

Hedging Motive: \(\epsilon (X, K) \equiv \frac{V_{XK} (X, K) X}{V_K (X, K)} \)

\(\gamma \): Concavity, \(V_{KK} (X, K) < 0 \), from the equity issuance costs

\(\epsilon \): Hedging motive from background risk in the randomness of deposit flow
Model: Optimal Deposit Rate

\[V_X (X, K) \cdot n' (i) = V_K (X, K) \left[1 + C_n (n (i), X) \cdot n' (i) \right] . \]

LHS: Marginal benefit of adding deposits

RHS: Marginal cost of paying deposit rates and deposit maintenance costs (from adding more deposits)

Back to Optimization
Model: Solution under Homogeneity

- State space transformation: \((K_t, X_t) \rightarrow (k_t, X_t)\) where
 \[k_t = \frac{K_t}{X_t}\]

- Value function: \(V(X, K) = v(k)X\) and HJB equation (ODE)
 \[
 \rho v(k) = \max_{\pi^A, i} \left[v(k) - v'(k)k \right] (-\delta X + \omega i) + \frac{1}{2} v''(k) k^2 \sigma_X^2 \\
 + v'(k) (1 + k) \left(r + \pi^A \alpha_A \right) + \frac{1}{2} v''(k) (1 + k)^2 \left(\pi^A \sigma_A \right)^2 \\
 - v'(k) \left[i + \frac{\theta}{2} (\omega i)^2 \right] - v''(k) k (1 + k) \pi^A \sigma_A \sigma_X \phi.
 \]

- The bank controls \(\pi^A = A / (X + K)\) and \(i\)
 - Given states \(X\) and \(K\), B/S identity, \(A = X + B + K\), implies \(B\)
The bank pays out dividend at $k_t = \bar{k}$ with the ODE boundary

$$v'(\bar{k}) = 1,$$

- Optimality and smooth-pasting condition: $v''(\bar{k}) = 0$ to pin down \bar{k}

The bank raises equity at $k_t = \underline{k}$ with the ODE boundary

$$v'(\underline{k} + m) = 1 + \psi_1,$$

- Capital raised: $dm = M_t / X_t$, given by $v(\underline{k} + m) - v(\underline{k}) = \psi_0 + (1 + \psi_1) m$
- Determining \underline{k}: $v(\underline{k})$ is globally concave so $\underline{k} = 0$
- SLR: the bank raises equity to stay in compliance $(X + K) / K = \frac{1}{\underline{k}} + 1 \leq \zeta_L$