The Long-Run Labor Market Effects of CUSFTA

Allison Devlin University of Toronto Brian K. Kovak Carnegie Mellon University NBER,IZA Peter M. Morrow University of Toronto

July 12th, 2021

NBER Summer Institute (ITI)

Research Questions

- 1. What happens to labor markets when two high-income but asymmetric countries reduce legislated bilateral trade barriers?
- 2. What are the long-run labour market effects of trade policy on individual workers?
 - Increased import competition from domestic tariff reductions
 - Increased demand for exports from foreign tariff reductions

The 1988 Canada-U.S. Free Trade Agreement (CUSFTA)

Approach

- ▶ 21 years of administrative linked employer-employee data tracking Canadian worker outcomes.
- ► Compare evolution of outcomes for Canadian workers initially in industries facing differential tariff cuts by Canada or the U.S. as legislated by the CUSFTA.
- Outcomes
 - Layoff
 - Years worked
 - Lifetime earnings
- Heterogeneity
 - ► Low- vs. high-attachment workers
 - Small vs. large initial employers
 - Low- vs. high-income workers

Findings

- Initial Firm and Initial Industry:
 - Canadian tariff cuts increase layoffs and reduce earnings.
 - ▶ U.S. tariff cuts reduce layoffs and increase earnings.
- ▶ Minimal overall effects of tariff cuts due to shifts to industries/sectors.
 - $\sim \%\Delta$ low attachment initial firm earnings from Canadian cuts: -4%
 - \blacktriangleright % Δ low attachment lifetime earnings from Canadian cuts: -1.9%
 - ► Accounting for U.S. concessions leads to even smaller effects: -0.2%
- What is behind these small effects?
 - Speedy transitions into less affected industries,
 - No effect on mass layoffs,
 - ► Changes in industry employment primarily through new entrants, not incumbents.
- ► Large effects for low-attachment workers at large firms, but still offsetting effects of Canadian and U.S. tariff cuts.

Literature: trade and labor using worker-level data

	Demand/Supply Shocks	Changes in Policy		
		Topolova (2007, 2010), Harrigan and		
		Barrows (2009), Kovak (2013), Utar		
Imports	ADH strain of "China Shock",	(2014,2018), Dix-Carneiro (2014),		
imports	Ebenstein et al. (2014)	Hakobyan and McLaren (2016), Piero		
		and Schott (2016), Dix-Carneiro and		
		Kovak (2018)		
Exports	Footstra Ma and VII (2010)	McCaig (2011), Brambilla et al. (2012		
Exports	Feenstra, Ma, and Xu (2019)	McCaig and Pavcnik (2018)		
	Biscourp and Kramarz (2007), Dauth,			
	Findeisen, and Suedekum			
$E{\times}ports/Imports$	(2014,2020,2021), Hummels, Jørgensen,	THIS PAPER		
	Munch, and Xiang (2014), Costa, Garred,			
	and Pessoa (2016)			

CUSFTA

Policy background

- ▶ Negotiations began Sep 1985; signed Jan 2, 1988; in effect Jan 1, 1989
- Passage uncertain 1988 Parliamentary election
- ▶ Cut all tariffs outside agriculture to zero by 1998.

Favorable research setting

- ▶ Not part of broader reform package or result of a crisis (Trefler 2004)
- Observe policy changes.
- ► Tariffs uncorrelated with industry pre-trends (pre-trends)

Import Penetration Ratio for Canadian Imports from China and the U.S.

Notes: This shows Figure 1 of the paper. The y-axis plots the change in Canadian import penetration accounted for by Chinese or U.S. imports from 1988 to the year on the x-axis by by plotting (imports $_1^c$ -imports $_{1988}^c$)/(absorption $_{1988}$) from Autor et al. (2014) equation (1), where $c \in \{\text{China}, \text{U.S.}\}$ and absorption is industry output plus imports minus exports. All values deflated to 2002 dollars using the Canadian CPI.

Tariff Cuts and Bilateral Trade: Canada (left) and United States (right)

Notes: This shows figure 2 of the paper. Each figure plots the change in log bilateral trade against the tariff cut in the importing country from 1988 to 1998 for each of 78 4-digit NAICS manufacturing industries. The left panel plots the change in log imports into Canada from the U.S. against negative one times the change in log one plus the Canadian tariff; the associated regression line has a slope of 2.66 (s.e. 1.33, p=0.05). The right panel plots the change in log exports from Canada to the U.S. against negative one times the change in log one plus the U.S. tariff from 1988-1989; the associated regression line has a slope 10.48 (s.e. 2.44, p<0.01).

Data

Statistics Canada matched T2-LEAP-LWF dataset

- ▶ LWF (Longitudinal Worker File): 10% sample of all Canadian workers 1984-2004.
 - ▶ Wage income, firm tax ID, province, basic demographic information.
 - Records of employment (ROEs)
 - ▶ Industry affiliation (2007 NAICS-4): 328 industries (85 manufacturing)
- ► LEAP (Longitudinal Employment Analyses Program)
 - Firm (total) employment over time
- ► T2 (Corporate Tax Return)
 - Firm balance sheet information, sales, capital stock, investment, etc.

What we don't have

- ▶ Workers' non-labour income (except El payments).
- ▶ No information on occupation or education.
- ▶ Geographic information is only the province of the firm.
- ► Firm exports/imports.

Sample

- Unit of observation is a worker
- ▶ Born between 1940 and 1964 (age 22-64 during 1986-2004)
- ▶ Positive earnings in at least one year during 1986-1988 (to set initial firm)
- ▶ Initially employed in manufacturing (though we follow into any sector)
- ▶ 78 industries

High Attachment and Low Attachment

High Attachment: earnings in every year between 1985 and $1988 \ge$ equivalent of 1,600 annual hours worked at the provincial minimum wage.

Low Attachment: the remainder in-sample workers (initially in manuf., worked during 1986-88, prime-age)

- $ightharpoonup \approx 75\%$ of the sample is high attachment
- ▶ Women and younger workers are less likely to be high attachment.

Research Design: Estimating Equation

$$Y_{ifjk} = eta_0 - \underbrace{eta_1 \Delta \ln(1 + au_j^{ ext{CAN}})}_{ ext{Canada Cut}} - \overbrace{eta_2 \Delta \ln(1 + au_j^{ ext{US}})}^{ ext{U.S. Cut}} + \mathbf{X}_i' eta_3 + \mathbf{X}_f' eta_4 + \mathbf{X}_j' eta_5 + arepsilon_{ifjk}.$$

 \emph{i} - worker, \emph{f} - initial firm, \emph{j} - initial industry, \emph{k} - time period

- Y_{ifjk} : outcome: separation indicator, cumulative earnings, years worked, or transition indicator during time period k (1989-1993,1989-1998, 1989-2004)
- \mathbf{X}_i' worker controls: gender, birth year indicators, log real average earnings 1986-1988, change in log real earnings 1986-1988, indicators for labor market experience and initial firm tenure, initial province of employment, worker initial age x log real average earnings.
- X'_f initial firm controls: firm employment size bins (0-99, 100-999, 1000+), average log 1988 real income per worker within firm, average change log worker real income within firm 1986-1988.
- X'_j initial industry controls: log share of workers earning less than 1988 median income, average 1988 log income per worker, 1988 log capital-labor ratio, change in log share of aggregate employment 1986-1988, mean change in log worker income 1986-1988, cyclicality control, MFN tariff cuts, pre-trends in dependent variables interacted with initial firm size and worker tenure indicators, change in China IPR in initial industry 1988-2004, and 2-digit NAICS FE.

	Low At	tachment_	High Att	achment
	(1)	(2)	(3)	(4)
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	0.0731		0.124	
,	(0.159)			
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (small firm)				
,				
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)				
,				
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (large firm)				
•				
$-\Delta \ln(1+ au_i^{ ext{US}})$	-0.155			
, , ,	(0.194)			
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	(
, , , , , , ,				
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)				
, , , , , , , , , , , , , , , , , , , ,				
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)				
, , , , , ,				
Observations	20,577	20,577	63,128	63,128
R-Squared	0.067			

	Low At	tachment_	High Att	achment
	(1)	(2)	(3)	(4)
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	0.0731		0.124	
,	(0.159)		(0.180)	
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (small firm)				
,				
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)				
,				
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (large firm)				
,				
$-\Delta \ln(1+ au_i^{ ext{US}})$	-0.155		-0.0297	
(') /	(0.194)		(0.284)	
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	((/	
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)				
, , , , , , , , , , , , , , , , , , , ,				
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)				
, , , , , , , ,				
Observations	20,577	20,577	63,128	63,128
R-Squared	0.067		0.037	

	Low At	tachment_	High Att	achment
	(1)	(2)	(3)	(4)
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	0.0731		0.124	
,	(0.159)		(0.180)	
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (small firm)		-0.480		
,		(0.337)		
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)		0.225		
,		(0.195)		
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (large firm)		0.475**		
,		(0.205)		
$-\Delta \ln(1+ au_i^{ ext{US}})$	-0.155		-0.0297	
, ,	(0.194)		(0.284)	
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	, ,	0.633**	, ,	
, , , , , , , , , , , , , , , , , , , ,		(0.318)		
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)		-0.472*		
. , , , , , , , , , , , , , , , , , , ,		(0.271)		
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)		-Ò.796* [*]		
. ,		(0.353)		
Observations	20,577	20,577	63,128	63,128
R-Squared	0.067	0.068	0.037	

	Low At	tachment_	High Att	achment
	(1)	(2)	(3)	(4)
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	0.0731		0.124	
,	(0.159)		(0.180)	
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (small firm)		-0.480		-0.263
,		(0.337)		(0.289)
$-\Delta \ln(1+ au_j^{ ext{CAN}})*\mathbb{1}$ (medium firm)		0.225		-0.0300
,		(0.195)		(0.219)
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (large firm)		0.475**		0.382
,		(0.205)		(0.271)
$-\Delta \ln(1+ au_i^{ ext{US}})$	-0.155		-0.0297	
. , ,	(0.194)		(0.284)	
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	` ,	0.633**	, ,	0.481
, , , , , , , , , , , , , , , , , , , ,		(0.318)		(0.337)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)		-0.472*		0.0970
*		(0.271)		(0.337)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)		-0.796**		-0.651
,		(0.353)		(0.445)
Observations	20,577	20,577	63,128	63,128
R-Squared	0.067	0.068	0.037	0.037

	(1) Total	(2) Initial Firm	(3) Initial Ind.	(4) Manuf.	(5) Constr.	(6) Mining	(7) Agric.	(8) Services	(9) Unknown
Panel A: Low Atta	chment (n=	=20,577)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.013	-6.477**							
` , ,	(1.284)								
$-\Delta \ln(1+ au_i^{ ext{US}})$	-3.030								
, , ,	(2.319)								
D	0.006	0.100	0.040	0.040	0.046	0.000	0.007	0.060	0.000
R-squared	0.096	0.132	0.048	0.048	0.046	0.022	0.027	0.062	0.008
Panel B: High Att $-\Delta \ln(1+\tau_j^{\mathrm{GAN}})$ $-\Delta \ln(1+\tau_j^{\mathrm{US}})$			-2.899* (1.724) 5.095	4.907 (3.254) -9.907*	0.955 (0.737) 0.385	0.460 (0.427) -0.292	-0.588* (0.325) -0.734	1.054 (1.410) -6.132**	0.0521 (0.0368) -0.0186

	(1) Total	(2) Initial Firm	(3) Initial Ind.	(4) Manuf.	(5) Constr.	(6) Mining	(7) Agric.	(8) Services	(9) Unknown
Panel A: Low Atta	chment (n=	=20,577)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.013	-6.477**	-2.661						
$-\Delta \ln(1+ au_i^{ ext{US}})$	(1.284) -3.030	(2.701) 4.551	(1.712) 6.807**						
, ,	(2.319)	(3.884)	(3.064)						
R-squared	0.096	0.132	0.048	0.048	0.046	0.022	0.027	0.062	0.008
$rac{Panel B: High\ Att}{-\Delta \ln(1+ au_j^{\scriptscriptstyle{\mathrm{CAN}}})}$	2.338*	-1.602							
$-\Delta \ln(1+ au_j^{ ext{US}})$									
R-squared	0.058	0.102	0.035	0.042	0.022	0.028	0.015	0.061	0.004

	(1) Total	(2) Initial Firm	(3) Initial Ind.	(4) Manuf.	(5) Constr.	(6) Mining	(7) Agric.	(8) Services	(9) Unknowr
Panel A: Low Atta	chment (n=	=20,577)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.013	-6.477**	-2.661	2.598	1.635**	0.467	-0.657	4.014**	0.0686
$-\Delta \ln(1+ au_j^{ ext{US}})$	(1.284) -3.030	(2.701) 4.551	(1.712) 6.807**	(1.766) -9.483***	(0.766) 0.841	(0.358) -0.181	(0.549) -0.0663	(1.567) -5.425*	(0.0445) -0.0728
. ,	(2.319)	(3.884)	(3.064)	(2.844)	(1.731)	(0.576)	(0.993)	(2.955)	(0.0689)
R-squared	0.096	0.132	0.048	0.048	0.046	0.022	0.027	0.062	0.008
$rac{Panel\;B\colonHigh\;Att}{-\Delta\ln(1+ au_i^{\scriptscriptstyle\mathrm{CAN}})}$	achment (n: 2.338*	= 63,128) -1.602							
$-\Delta \ln(1+ au_j^{ ext{US}})$									
R-squared	0.058	0.102	0.035	0.042	0.022	0.028	0.015	0.061	0.004

	(1) Total	(2) Initial Firm	(3) Initial Ind.	(4) Manuf.	(5) Constr.	(6) Mining	(7) Agric.	(8) Services	(9) Unknown
Panel A: Low Atta	chment (n=	=20,577)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.013	-6.477**	-2.661	2.598	1.635**	0.467	-0.657	4.014**	0.0686
$-\Delta \ln(1+ au_j^{ ext{US}})$	(1.284) -3.030	(2.701) 4.551	(1.712) 6.807**	(1.766) -9.483***	(0.766) 0.841	(0.358) -0.181	(0.549) -0.0663	(1.567) -5.425*	(0.0445) -0.0728
. ,	(2.319)	(3.884)	(3.064)	(2.844)	(1.731)	(0.576)	(0.993)	(2.955)	(0.0689)
R-squared	0.096	0.132	0.048	0.048	0.046	0.022	0.027	0.062	0.008
$rac{Panel\;B\colonHigh\;Att}{-\DeltaIn(1+ au_j^{\scriptscriptstyle\mathrm{CAN}})}$	2.338*	= 63,128) -1.602							
$-\Delta \ln(1+ au_j^{ ext{US}})$	(1.206) -3.071 (1.890)								
R-squared	0.058	0.102	0.035	0.042	0.022	0.028	0.015	0.061	0.004

	(1) Total	(2) Initial Firm	(3) Initial Ind.	(4) Manuf.	(5) Constr.	(6) Mining	(7) Agric.	(8) Services	(9) Unknowr
Panel A: Low Atta	chment (n=	=20,577)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.013	-6.477**	-2.661	2.598	1.635**	0.467	-0.657	4.014**	0.0686
$-\Delta \ln(1+ au_i^{ ext{US}})$	(1.284) -3.030	(2.701) 4.551	(1.712) 6.807**	(1.766) -9.483***	(0.766) 0.841	(0.358) -0.181	(0.549) -0.0663	(1.567) -5.425*	(0.0445) -0.0728
, ,	(2.319)	(3.884)	(3.064)	(2.844)	(1.731)	(0.576)	(0.993)	(2.955)	(0.0689)
R-squared	0.096	0.132	0.048	0.048	0.046	0.022	0.027	0.062	0.008
$rac{Panel\;B\colonHigh\;Att}{-\Delta\ln(1+ au_i^{\scriptscriptstyle\mathrm{CAN}})}$	achment (n: 2.338*	=63,128) -1.602	-2.899*						
, ,	(1.206) -3.071	(4.364) 8.532	(1.724) 5.095						
$-\Delta \ln(1+ au_j^{ ext{US}})$	(1.890)	8.532 (7.705)	(4.677)						
R-squared	0.058	0.102	0.035	0.042	0.022	0.028	0.015	0.061	0.004

	(1) Total	(2) Initial Firm	(3) Initial Ind.	(4) Manuf.	(5) Constr.	(6) Mining	(7) Agric.	(8) Services	(9) Unknown
Panel A: Low Atta	chment (n=	=20,577)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.013	-6.477**	-2.661	2.598	1.635**	0.467	-0.657	4.014**	0.0686
$-\Delta \ln(1+ au_i^{ ext{US}})$	(1.284) -3.030	(2.701) 4.551	(1.712) 6.807**	(1.766) -9.483***	(0.766) 0.841	(0.358) -0.181	(0.549) -0.0663	(1.567) -5.425*	(0.0445) -0.0728
, , ,	(2.319)	(3.884)	(3.064)	(2.844)	(1.731)	(0.576)	(0.993)	(2.955)	(0.0689)
R-squared	0.096	0.132	0.048	0.048	0.046	0.022	0.027	0.062	0.008
Panel B: High Atta $-\Delta \ln(1+ au_i^{\mathrm{CAN}})$	achment (n= 2.338*	=63,128 <u>)</u> -1.602	-2.899*	4.907	0.955	0.460	-0.588*	1.054	0.0521
$-\Delta \ln(1+ au_j^{ ext{US}})$	(1.206) -3.071	(4.364) 8.532	(1.724) 5.095	(3.254) -9.907*	(0.737) 0.385	(0.427) -0.292	(0.325) -0.734	(1.410) -6.132**	(0.0368) -0.0186
	(1.890)	(7.705)	(4.677)	(5.376)	(1.499)	(0.479)	(0.522)	(2.525)	(0.0616)
R-squared	0.058	0.102	0.035	0.042	0.022	0.028	0.015	0.061	0.004

Magnitudes: interquartile comparisons

- \blacktriangleright % Δ in outcome using interquartile comparisons across industries.
- $Q_3(\Delta \ln(1+ au_j^{ ext{CAN}})) Q_1(\Delta \ln(1+ au_j^{ ext{CAN}}))$: 0.064
- $ightharpoonup Q_3(\Delta \ln(1+ au_j^{ ext{US}})) Q_1(\Delta \ln(1+ au_j^{ ext{US}}))$: 0.024
- ▶ The effect of Canadian cuts on total years worked (LA worker mean: 11.6):

$$100\left(rac{-1.013 imes0.064}{11.6}
ight) = -0.56\%$$
 fewer years worked $\ (<1 ext{mo})$

Percent Change in Years Worked Relative to the Mean: Low Attachment

Notes: This shows Panels (a) and (b) of Figure 3 of the text that show the effect of interquartile tariff cut comparisons. The mean of years worked for low attachment workers is 11.6 years. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Percent Change in Years Worked Relative to the Mean: Low Attachment

Notes: This shows Panels (a) and (b) of Figure 3 of the text that show the effect of interquartile tariff cut comparisons. The mean of years worked for low attachment workers is 11.6 years. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Percent Change in Normalized Cumulative Earnings: Low Attachment

Notes: This shows Panels (a) and (b) of Figure 4 of the text that show the effect of interquartile tariff cut comparisons. The mean of normalized cumulative earnings for low attachment workers is 21.01. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Understanding Our Small Estimated Effects

- ► Why?
- Quick escapes from affected industries.
- ▶ No mass layoffs
 - Unlike the China shock.
- Adjustment was among entrants.
 - ▶ The China shock affected employment for both entrants and incumbent workers.

Evolution of Canadian Tariff-Cut Exposure: Low Attachment Workers

Notes: This shows Figure 5 of the text. It shows the tariff of current industry employment for workers divided into terciles of the Canadian tariff in the initial industry of employment.

| High Attachment | ADHS Figures |

Probability of a Mass Layoff (1989-2004)

Depvar:	Prob. of M	1ass Layoff
	(1)	(2)
$-\Delta \ln(1+ au_i^{CAN})$	-0.309	
,	(0.447)	
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (small firm)		-0.523
,		(0.688)
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (medium firm)		-0.165
,		(0.493)
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbbm{1}$ (large firm)		-0.381
,		(1.432)
$-\Delta \ln(1+ au_i^{ ext{US}})$	0.0722	
,	(0.652)	
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)		0.876
,		(1.025)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)		-0.239
,		(0.619)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)		-4.221
,		(2.692)
$\Delta IPR_i^{ ext{CHN}}$	0.193**	0.191**
,	(0.0825)	(0.0859)
R-squared	0.028	0.035

Notes: This shows Table 3 of the text. 4206 observations/firms. The dependent variable is an indicator for a firm having at least one year in 1989-2004 in which employment falls below 70 percent of the firm's 1984-1988 peak employment. All specifications include the full set of firm-level and industry-level controls described in the text. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Aggregate Industry Employment Growth (1988-2004)

	Industry Employment Growth (1)	Employment Growth Components			
		Manufacturing Workers (2)	Non-Manuf. Workers (3)	Previously Unemployed (4)	New Entrants (5)
	(-)	(-)	(0)	(·)	(0)
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-3.816*	-0.565	-0.726	-0.285*	-2.241**
	(2.131)	(0.580)	(0.589)	(0.153)	(1.112)
$-\Delta \ln(1+ au_j^{ ext{US}})$	-0.460	-0.392	0.0271	-0.0729	-0.0225
	(3.460)	(0.941)	(0.956)	(0.248)	(1.805)
$\Delta \mathit{IPR}_j^{\scriptscriptstyle ext{CHN}}$	-0.700**	-0.214**	-0.118	-0.0437*	-0.325*
	(0.333)	(0.0906)	(0.0921)	(0.0239)	(0.174)
R-Squared	0.404	0.403	0.299	0.384	0.469

Notes: This slide presents Table 4 of the text. 78 observations. Each column is a separate regression. All specifications include the dependent variable pre-trend, calculated for 1984-1987, and the full set of industry-level controls described in the text. Standard errors clustered by 4-digit NAICS industry which is equivalent to heteroskedasticity-robust for these industry-level regressions. **** p<0.01, *** p<0.05, ** p<0.1.

One-Year Transitions: Canadian Tariff Cuts, Low Attachment by Firm Size

Notes: This shows Panels (a) and (c) of Figure 6 of the text that show the effect of interquartile tariff cut comparisons. The unconditional probability of a permanent work shortage related separation is 0.167 for a low attachment worker. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, *** p<0.05, * p<0.1.

One-Year Transitions: US Tariff Cuts, Low Attachment by Firm Size

Notes: This shows Panels (a) and (c) of Figure 7 of the text that show the effect of interquartile tariff cut comparisons. The unconditional probability of a permanent work shortage related separation is 0.167 for a low attachment worker. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, *** p<0.05, * p<0.1.

Canadian Tariff Cuts and Earnings: Low Attachment by Firm Size

Notes: This shows Panels (a) and (c) of Figure 8 of the text that show the effect of interquartile tariff cut comparisons. The unconditional mean of normalized cumulative earnings for low attachment workers is 21.01. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

US Tariff Cuts and Earnings: Low Attachment by Firm Size

Notes: This shows Panels (a) and (c) of Figure 9 of the text that show the effect of interquartile tariff cut comparisons. The unconditional mean of normalized cumulative earnings for low attachment workers is 21.01. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Conclusions

- ▶ Effect of import competition and export market access at the **initial employer**:
 - Canadian concessions increase the probability of a layoff and lower earnings.
 - U.S. concessions lower the probability of a layoff and raise earnings
- ▶ Small effects on lifetime incomes; separated workers successfully reallocated.
- ▶ Smaller and less precisely estimated effects for high attachment workers.
- More optimistic findings than in other episodes (e.g. China Shock).
- Different shocks can have very different effects even in the same institutional context

CUSFTA Tariff Cuts

Panel A: Canadian Tariffs Over Time

Panel C: U.S. Tariffs Over Time

Panel B: Canadian Tariff Cuts Against Initial Level

Panel D: U.S. Tariff Cuts Against Initial Level

Notes: This shows Figure A1 of the Appendix of the text.

- ► Tariff cuts ≈ -1 initial level
- Independent variation in Canada vs. U.S. tariff cuts Variation

Records of Employment

- ► Each time a worker experiences an interruption in earnings, their employer must fill out a Record of Employment (ROE).
- ▶ Reason for separations (e.g. firing, return to school, season ends, quit, work shortage). Can isolate work-shortage related interruptions.
- ► Types of separations:
 - ► **Temporary**: returned to firm in the year of separation or following year
 - ▶ Permanent: did not return to firm in the year of separation or following year
 - ► Focus on **permanent separations** in this paper (Flaaen et al. (2019))

Canadian Business Cycle

- ▶ 1974-75: Export decline due to U.S. recession (OPEC, stagflation)
- ▶ 1981-82: U.S. Volker recession and second oil shock, high interest rates
- ▶ 1990-92: Manufacturing decline, Gulf War, new goods and services tax (GST)
- 2000-01: Minimal effects of U.S. dot-com bust
- 2008-09: Declining export demand (Great Recession, financial crisis). Relatively mild in Canada (strong balance sheets, banking regulation)

[Cross and Bergevin 2012]

Sources: Unemployment Rate: Federal Reserve Bank of St. Louis FRED Economic Data - series "Unemployment Rate: Aged 15 and Over: All Persons for Canada." Recession dates: C.D. Howe Institute Business Cycle Council

Canada-US Exchange Rate

Sources: Unemployment Rate: Federal Reserve Bank of St. Louis FRED Economic Data - series "Canada / U.S. Foreign Exchange Rate" Recession dates: C.D. Howe Institute Business Cycle Council

CANADA IMPORTS FROM THE WORLD, 1989

CANADA EXPORTS TO THE WORLD, 1989

CANADA IMPORTS FROM THE US, 1989

CANADA EXPORTS TO THE US, 1989

Trading Partners

SOURCES OF IMPORTS TO CANADA, 1989

Trading Partners

DESTINATIONS OF EXPORTS FROM CANADA, 1989

CUSFTA Tariff Cuts

Table: Tariff Changes 1988-1989

	NAICS	Industry Name	$\Delta_{88-98} \tau_j^{\scriptscriptstyle \mathrm{CAN}}$	$\Delta_{88-98} \ln(1+ au_j^{\scriptscriptstyle{\mathrm{CAN}}})$	$\Delta_{88-98} au_j^{ ext{US}}$	$\Delta_{88-98}\ln(1+ au_j^{ ext{US}})$
1	3152	Cut and Sew Clothing Manufacturing	-0.243	-0.217	-0.168	-0.155
2	3133	Textile and Fabric Finishing and Fabric Coating	-0.233	-0.209	-0.062	-0.060
3	3162	Footwear Manufacturing	-0.225	-0.203	-0.118	-0.112
4	3132	Fabric Mills	-0.225	-0.203	-0.107	-0.101
5	3274	Lime and Gypsum Product Manufacturing	-0.213	-0.193	-0.023	-0.022
42	3361	Motor Vehicle Manufacturing	-0.092	-0.088	-0.000	-0.000
43	3339	Other General-Purpose Machinery Manufacturing	-0.092	-0.088	-0.017	-0.016
44	3363	Motor Vehicle Parts Manufacturing	-0.089	-0.085	-0.015	-0.015
45	3118	Bakeries and Tortilla Manufacturing	-0.088	-0.084	-0.044	-0.043
82	3253	Pesticide, Fertilizer and Other Agricultural Chemical Manufacturing	-0.013	-0.013	-0.001	-0.001
83	3364	Aerospace Product and Parts Manufacturing	-0.005	-0.005	-0.012	-0.012
84	3211	Sawmills and Wood Preservation	-0.001	-0.001	-0.000	-0.000
85	3328	Coating, Engraving, Heat Treating and Allied Activities	0.000	0.000	0.000	0.000
86	3121	Beverage Manufacturing	0.050	0.036	-0.041	-0.040

CUSFTA Tariff Cuts

Effect of CUSFTA on Trade Flows

- ightharpoonup Trefler (2004): Canadian tariff cuts substantially increased U.S. ightharpoonup Canada trade
- ightharpoonup Romalis (2007): U.S. tariff cuts increased Canada ightarrow U.S. trade

Exogeneity of Tariffs

Dependent variable:	In(1+	$- au_{j,1988}^{ ext{CAN}})$	In(1+	$ au_{j,1988}^{ ext{US}})$
$\ln(1+ au_{j,1988}^{ ext{US}})$		0.965***		
•		(0.166)		
$\ln(1+ au_{j,1988}^{ ext{CAN}})$				0.351***
				(0.060)
$\Delta_{1988-1998} \ln(1+ au_j^{ ext{CAN}, ext{MFN}})$		0.644***		-0.186**
		(0.010)		(0.073)
$\Delta_{1988-1998} \ln(1+ au_j^{ ext{US,MFN}})$		0.007		-0.028
, ,		(0.202)		(0.122)
$\Delta_{1998-2004}$ IPR $_i^{ ext{CHN}}$	0.015	0.040**	-0.012	-0.022*
,	(0.029)	(0.020)	(0.014)	(0.012)
Separation prob. _{1985-1988,j}	-0.143	0.042	-0.054	-0.042
	(0.200)	(0.137)	(0.098)	(0.082)
Cyclicality _j	0.008*	-0.003	0.008***	0.006***
	(0.004)	(0.003)	(0.002)	(0.002)
Share below median $income_{j,1988}$	-0.043	-0.006	-0.014	-0.006
	(0.057)	(0.039)	(0.028)	(0.023)
Mean log earnings $_{j,1988}$	-0.075	-0.023	-0.036	-0.015
Lan annital labor matic	(0.047)	(0.032)	(0.023)	(0.020)
Log capital-labor $ratio_{j,1988}$	-0.005 (0.005)	0.002 (0.004)	-0.003 (0.003)	-0.003 (0.002)
/ emp.	(0.005)	(0.004)	()	, ,
$\Delta_{1984-1988} \ln \left(\frac{emp_j}{\sum_{i'} emp_{i'}} \right)$	-0.012	0.033	-0.053***	-0.048***
()) /	(0.037)	(0.027)	(0.018)	(0.015)
$\Delta_{1986-1988}$ Mean log earnings $_j$	-0.186	-0.137	-0.114	-0.029
	(0.147)	(0.103)	(0.072)	(0.063)
R-squared	0.323	0.706	0.417	0.618

Notes: This shows Table A2 of the paper. 78 observations. ***: p < 0.01, **: $0.01 \le p < 0.05$, *: $0.05 \le p < 0.1$. Standard errors clustered at the

Years Worked (1989-1993)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Firm	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown
Panel A: Low Atta	chment (n=2	0,577)							
$-\Delta \ln(1+ au_i^{\scriptscriptstyle \mathrm{CAN}})$	-0.819***	-1.268	-0.732	0.240	0.199	0.0479	-0.227	0.841*	0.0804**
,	(0.299)	(0.772)	(0.443)	(0.446)	(0.245)	(0.0804)	(0.162)	(0.471)	(0.0305)
$-\Delta \ln(1+ au_i^{ ext{US}})$	0.319	0.933	1.890***	-1.950**	0.430	0.0248	0.0554	-1.017	-0.0481
,	(0.519)	(1.204)	(0.688)	(0.839)	(0.514)	(0.120)	(0.297)	(0.905)	(0.0498)
R-squared	0.115	0.175	0.034	0.035	0.037	0.013	0.020	0.056	0.009
Panel B: High Atta									
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	0.935**	0.575	-0.441	0.475	0.227	0.0679	-0.126*	0.142	0.0144
,	(0.389)	(0.922)	(0.366)	(0.764)	(0.165)	(0.0682)	(0.0746)	(0.260)	(0.0258)
$-\Delta \ln(1+ au_i^{ ext{US}})$	-0.685	2.377	0.723	-1.717	-0.0353	-0.115	-0.0682	-1.813***	-0.0370
,	(0.577)	(1.901)	(0.762)	(1.334)	(0.364)	(0.0907)	(0.114)	(0.466)	(0.0504)
R-squared	0.037	0.111	0.017	0.039	0.020	0.012	0.009	0.054	0.004

Notes: This presents Table A4 of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Years Worked (1989-1998)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Firm	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown
Panel A: Low Atta	<u>chment</u> (n=								
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	-1.015	-3.360**	-1.479	1.299	0.688*	0.215	-0.416	1.964**	0.0728**
•	(0.773)	(1.678)	(1.001)	(1.100)	(0.411)	(0.205)	(0.368)	(0.977)	(0.0356)
$-\Delta \ln(1+ au_j^{ ext{US}})$	-0.996	2.565	4.038**	-5.127***	0.719	-0.0664	0.154	-3.254*	-0.0266
, ,	(1.393)	(2.373)	(1.695)	(1.852)	(0.980)	(0.293)	(0.689)	(1.899)	(0.0471)
R-squared	0.103	0.150	0.044	0.041	0.041	0.017	0.023	0.056	0.010
		co 100)							
Panel B: High Atta		=63,128)							
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	1.627**	-0.536	-1.122	2.553	0.532	0.190	-0.349*	0.326	0.0335
,	(0.657)	(2.260)	(0.901)	(1.799)	(0.381)	(0.207)	(0.194)	(0.732)	(0.0272)
$-\Delta \ln(1+ au_i^{ ext{US}})$	-1.468	5.841	2.086	-4.836	0.00433	-0.139	-0.311	-4.071***	-0.0422
, ,	(0.915)	(4.557)	(2.535)	(3.189)	(0.829)	(0.251)	(0.320)	(1.290)	(0.0528)
R-squared	0.041	0.107	0.032	0.042	0.020	0.021	0.012	0.057	0.004

Notes: This presents Table A5 of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Normalized Cumulative Earnings (1989-1993)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Firm	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown
Panel A: Low Attac	<u>chment</u> (n=	=20,577)							
$-\Delta \ln(1+ au_{j}^{ ext{CAN}})$	0.683	-0.796	-1.292*	1.302	0.799**	0.175	-0.353**	1.009	0.0136
,	(1.205)	(1.284)	(0.773)	(1.215)	(0.362)	(0.196)	(0.174)	(0.914)	(0.0804)
$-\Delta \ln(1+ au_i^{ ext{US}})$	2.385	1.388	1.364	-1.909	0.875	0.0686	0.0922	0.329	0.245
, ,	(1.811)	(2.207)	(1.111)	(2.073)	(0.753)	(0.412)	(0.318)	(1.723)	(0.201)
R-squared	0.110	0.065	0.013	0.035	0.024	0.011	0.020	0.087	0.012
Panel B: High Atta	<u>ichment</u> (n=	=63,128)							
$-\Delta \ln(1+ au_i^{ ext{CAN}})$	1.349*	1.161	-0.373	0.372	0.220	0.0743	-0.0799	0.0444	0.00394
, ,	(0.792)	(1.091)	(0.451)	(0.806)	(0.174)	(0.0802)	(0.0659)	(0.350)	(0.0257)
$-\Delta \ln(1+ au_i^{ ext{US}})$	-0.0916	2.413	-0.0705	-1.191	0.104	-0.212	-0.0520	-1.269***	-0.0254
, ,	(0.936)	(1.790)	(0.788)	(1.237)	(0.362)	(0.130)	(0.0913)	(0.476)	(0.0402)
R-squared	0.076	0.077	0.016	0.039	0.019	0.009	0.008	0.055	0.005

Notes: This presents Table A6 of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Normalized Cumulative Earnings (1989-1998)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Firm	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown
Panel A: Low Attac	<u>chment</u> (n=	:20,577)							
$-\Delta \ln(1+ au_{j}^{ ext{CAN}})$	-1.198	-5.336*	-2.418	3.229	1.688**	0.679	-0.706	1.710	-0.0436
•	(3.309)	(2.780)	(2.040)	(2.973)	(0.815)	(0.578)	(0.497)	(2.308)	(0.111)
$-\Delta \ln(1+ au_j^{ ext{US}})$	7.251	5.960	1.616	-4.862	2.479	0.0354	0.0979	1.318	0.606**
, ,	(5.808)	(4.770)	(3.199)	(5.378)	(1.590)	(1.028)	(0.908)	(5.314)	(0.289)
R-squared	0.115	0.059	0.014	0.030	0.025	0.016	0.019	0.105	0.010
	. ,	>							
Panel B: High Atta	chment (n=	=63,128)							
$-\Delta \ln(1+ au_j^{ ext{CAN}})$	0.993	-0.821	-0.688	2.283	0.467	0.200	-0.206	-0.270	0.0260
,	(2.009)	(2.926)	(1.196)	(1.964)	(0.396)	(0.243)	(0.176)	(0.968)	(0.0350)
$-\Delta \ln(1+ au_i^{ ext{US}})$	0.00475	7.419	-0.659	-3.909	0.325	-0.343	-0.328	-2.461*	-0.0379
,	(2.446)	(5.236)	(2.832)	(3.263)	(0.856)	(0.390)	(0.259)	(1.302)	(0.0440)
R-squared	0.087	0.072	0.026	0.046	0.021	0.016	0.011	0.066	0.004

Notes: This presents Table A7 of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, *** p<0.05, * p<0.1.

Normalized Cumulative Earnings (1989-2004)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Total	Initial Firm	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown
<u>chment</u> (n=								
-6.142	-13.21***	-4.455	4.314	4.311**	1.446	-1.203	2.614	0.0449
(6.742)	(4.853)	(3.802)	(5.614)	(1.742)	(1.117)	(0.839)	(4.619)	(0.224)
14.74	12.34	3.107	-7.687	3.783	0.263	-0.858	2.800	0.988
(12.67)	(9.066)	(6.182)	(10.52)	(2.811)	(2.028)	(1.424)	(10.66)	(0.722)
0.141	0.048	0.017	0.038	0.030	0.021	0.017	0.123	0.005
chment (n=	=63,128)							
0.542	-3.007	-2.101	4.822	0.794	0.570	-0.385	-0.195	0.0435
(3.295)	(5.698)	(2.263)	(3.649)	(0.817)	(0.591)	(0.307)	(2.108)	(0.0437)
0.627	11.69	0.285	-8.773	1.216	-0.554	-0.803*	-2.417	-0.0213
(4.197)	(9.409)	(5.188)	(5.849)	(1.700)	(0.847)	(0.435)	(3.020)	(0.0592)
0.121	0.070	0.029	0.052	0.023	0.024	0.014	0.077	0.004
	Total chment (n= -6.142 (6.742) 14.74 (12.67) 0.141 chment (n= 0.542 (3.295) 0.627 (4.197)	Total Initial Firm chment (n=20,577) -6.142 -13.21*** (6.742) (4.853) 14.74 12.34 (12.67) (9.066) 0.141 0.048 chment (n=63,128) 0.542 -3.007 (3.295) (5.698) 0.627 11.69 (4.197) (9.409)	Total Initial Firm Initial Ind. chment (n=20,577) -6.142 -13.21*** -4.455 (6.742) (4.853) (3.802) 14.74 12.34 3.107 (12.67) (9.066) (6.182) 0.141 0.048 0.017 chment (n=63,128) -2.101 0.542 -3.007 -2.101 (3.295) (5.698) (2.263) 0.627 11.69 0.285 (4.197) (9.409) (5.188)	Total Initial Firm Initial Ind. Manuf. chment (n=20,577) -6.142 -13.21*** -4.455 4.314 (6.742) (4.853) (3.802) (5.614) 14.74 12.34 3.107 -7.687 (12.67) (9.066) (6.182) (10.52) 0.141 0.048 0.017 0.038 chment (n=63,128) 0.542 -3.007 -2.101 4.822 (3.295) (5.698) (2.263) (3.649) 0.627 11.69 0.285 -8.773 (4.197) (9.409) (5.188) (5.849)	Total Initial Firm Initial Ind. Manuf. Constr. chment (n=20,577) -6.142 -13.21*** -4.455 4.314 4.311** (6.742) (4.853) (3.802) (5.614) (1.742) 14.74 12.34 3.107 -7.687 3.783 (12.67) (9.066) (6.182) (10.52) (2.811) 0.141 0.048 0.017 0.038 0.030 chment (n=63,128) 0.542 -3.007 -2.101 4.822 0.794 (3.295) (5.698) (2.263) (3.649) (0.817) 0.627 11.69 0.285 -8.773 1.216 (4.197) (9.409) (5.188) (5.849) (1.700)	Total Initial Firm Initial Ind. Manuf. Constr. Mining chment (n=20,577) -6.142 -13.21*** -4.455 4.314 4.311** 1.446 (6.742) (4.853) (3.802) (5.614) (1.742) (1.117) 14.74 12.34 3.107 -7.687 3.783 0.263 (12.67) (9.066) (6.182) (10.52) (2.811) (2.028) 0.141 0.048 0.017 0.038 0.030 0.021 chment (n=63,128) 0.542 -3.007 -2.101 4.822 0.794 0.570 (3.295) (5.698) (2.263) (3.649) (0.817) (0.591) 0.627 11.69 0.285 -8.773 1.216 -0.554 (4.197) (9.409) (5.188) (5.849) (1.700) (0.847)	Total Initial Firm Initial Ind. Manuf. Constr. Mining Agric. chment (n=20,577) -6.142 -13.21*** -4.455 4.314 4.311** 1.446 -1.203 (6.742) (4.853) (3.802) (5.614) (1.742) (1.117) (0.839) 14.74 12.34 3.107 -7.687 3.783 0.263 -0.858 (12.67) (9.066) (6.182) (10.52) (2.811) (2.028) (1.424) 0.141 0.048 0.017 0.038 0.030 0.021 0.017 chment (n=63,128) 0.542 -3.007 -2.101 4.822 0.794 0.570 -0.385 (3.295) (5.698) (2.263) (3.649) (0.817) (0.591) (0.307) 0.627 11.69 0.285 -8.773 1.216 -0.554 -0.803* (4.197) (9.409) (5.188) (5.849) (1.700) (0.847) (0.435)	Total Initial Firm Initial Ind. Manuf. Constr. Mining Agric. Services chment (n=20,577) -6.142 -13.21*** -4.455 4.314 4.311** 1.446 -1.203 2.614 (6.742) (4.853) (3.802) (5.614) (1.742) (1.117) (0.839) (4.619) 14.74 12.34 3.107 -7.687 3.783 0.263 -0.858 2.800 (12.67) (9.066) (6.182) (10.52) (2.811) (2.028) (1.424) (10.66) 0.141 0.048 0.017 0.038 0.030 0.021 0.017 0.123 chment (n=63,128) 0.542 -3.007 -2.101 4.822 0.794 0.570 -0.385 -0.195 (3.295) (5.698) (2.263) (3.649) (0.817) (0.591) (0.307) (2.108) 0.627 11.69 0.285 -8.773 1.216 -0.554 -0.803* -2.417 (4.19

Notes: This presents Table A8 of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

ADHS (2013) Table 9

Table 9. Imports from China and Earnings and Employment by Wage Level and Size of Initial Firm, 1992-2007: 2SLS Estimates.

Dep Vars: 100 x Cum Earnings; 100 x Years with Earnings; 100 x Earnings per Year of Emp (in Multiples of Initial Annual Wage).

	I.	Overall Outco	omes		II. Out	comes at Init	ial Firm	
	Cum	Yrs w/	Earn/		Cum	Yrs w/	Earn/	_
	Earnings	Earn>0	Year		Earnings	Earn>0	Year	
	(1)	(2)	(3)		(4)	(5)	(6)	
		A1. Initial I	Employer: A	vg Fir	m Wage <sar< td=""><td>nple Median</td><td></td><td></td></sar<>	nple Median		
(∆ China Imports)/ US	-12.63	** 0.73	-0.82	**	-9.29	* -4.17	-0.45	~
Consumption ₉₁	(4.85)	(1.09)	(0.29)		(4.17)	(2.55)	(0.23)	
		A2. Initial I	Employer: A	vg Fir	m Wage≥Sar	nple Median		
(∆ China Imports)/ US	-5.16	* -0.55	-0.29	*	-8.52	* -6.53	* -0.22	**
Consumption ₉₁	(2.09)	(0.50)	(0.12)		(3.85)	(3.25)	(0.08)	
		B1. Initia	ıl Employer:	Firm	Size 1-999 E	Imployees		
(∆ China Imports)/ US	-4.34	* 0.05	-0.27	**	-4.47	* -2.31	~ -0.21	**
Consumption ₉₁	(1.85)	(0.43)	(0.11)		(1.85)	(1.26)	(0.08)	
		B2. Initia	l Employer:	Firm	Size 1000+ I	<u>Employees</u>		
(∆ China Imports)/ US	-14.93	** -1.67	-0.81	*	-20.12	* -15.47	* -0.49	*
Consumption ₉₁	(5.78)	(1.32)	(0.34)		(8.49)	(6.38)	(0.22)	

Notes: N=254,126/N=254,003/N=238,131/N=269,998 in panels $\Delta 1/\Delta 2\beta 1/B$ /Re, except slightly smaller samples in in columns 3 and 6. All regressions include a constant and the full vector of control variables from column 9 of Table 1. Robust standard errors in parentheses are clustered on start-of-period 3-digit industry. $\sim p \leq 0.01$, $\approx p \leq 0.05$, $\approx p \leq 0.01$.

- NBER working paper version of Autor, Dorn, Hanson, and Song (2013)
- "Somewhat less expected is the pattern of worker adjustment by initial employer size."
- "... trade impact on cumulative earnings is 2.4 times greater for workers initially employed in larger firms ..."

Percent Change in Years Worked: High Attachment

Notes: This slide shows Panels (c) and (d) of Figure 3 that show the effect of interquartile tariff cut comparisons. The mean of years worked for high attachment workers is 14.64 years. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Percent Change in Years Worked: High Attachment

Notes: This slide shows Panels (c) and (d) of Figure 3 that show the effect of interquartile tariff cut comparisons. The mean of years worked for high attachment workers is 14.64 years. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

High Attachment Percent Change in Cumulative Earnings

Notes: This slide shows Panels (c) and (d) of Figure 4 that show the effect of interquartile tariff cut comparisons. The unconditional mean of normalized cumulative earnings for high attachment workers is 14.64. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Evolution of Canadian Tariff-Cut Exposure: High Attachment Workers

Notes: This slide presents Figure A4 of the text.

Figure IV of Autor et al. (2014) Comparison: Low and High Attachment Workers

Panel (b): High Attachment

Notes: This slide presents Figure A5 of the text. These figures replicate Figure IV of Autor et al. (2014).

Canadian Tariff Cuts and Separations: High Attachment by Firm Size

Notes: This slide presents Panels (b) and (d) of Figure 6 of the text that show the effect of interquartile tariff cut comparisons. The unconditional probability of a permanent work shortage related separation is 0.115 for a high attachment worker. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, *** p<0.05, * p<0.1.

US Tariff Cuts and Separations: High Attachment by Firm Size

Notes: This slide presents Panels (b) and (d) of Figure 7 of the text that show the effect of interquartile tariff cut comparisons. The unconditional probability of a permanent work shortage related separation is 0.115 for a high attachment worker. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, *** p<0.05, * p<0.1.

Canadian Tariff Cuts and Separations: Low Attachment by Firm Size (1989-1993)

	(1) Total	(2) Initial Ind.	(3) Manuf.	(4) Constr.	(5) Mining	(6) Agric.	(7) Services	(8) Unknown	(9) Unemp.
Panel A: Low Attachment (n=20,57	7)								
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(small firm)}$	-0.378	-0.0419	-0.0360	0.000103	_	_	-0.00242	_	-0.401*
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)	(0.260) 0.448**	(0.0330) 0.00199	(0.0640) 0.0319	(0.0303) -0.00744	_	_	(0.0630) 0.0730	_	(0.182) 0.181
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*1$ (large firm)	(0.180) -0.204	(0.0284) -0.0167	(0.0717) 0.0763	(0.0245) 0.0153	_	_	(0.0537) -0.0447	_	(0.179) -0.237
$-\Delta \ln(1+ au_j^{ ext{US}})*\mathbb{1} ext{(small firm)}$	(0.295) 0.516**	(0.0327) 0.101*	(0.0521) -0.0172	(0.0225) 0.0901*	_	_	(0.0514) -0.00172	_	(0.198) 0.295
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	(0.257) -0.611**	(0.0511) 0.0246	(0.0886) -0.0649	(0.0514) 0.0819	0.0101	_	(0.0827) -0.0762	_	(0.210) -0.472
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1} ext{(large firm)}$	(0.280) -0.106	(0.0534) 0.00217	(0.0893) -0.0838	(0.0611) 0.0711	(0.0121) —	_	(0.0838) -0.00503	_	(0.248) -0.393
,	(0.314)	(0.0421)	(0.102)	(0.0455)			(0.0808)		(0.338
R-squared	0.043	0.005	0.006	0.010	0.005	0.005	0.006	0.005	0.047

Notes: This shows Panel (a) of Table A18 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Canadian Tariff Cuts and Separations: Low Attachment by Firm Size (1989-1998)

	(1) Total	(2) Initial Ind.	(3) Manuf.	(4) Constr.	(5) Mining	(6)	(7) Services	(8) Unknown	(9)
B 14 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		initial ind.	ivianur.	Constr.	iviining	Agric.	Services	Unknown	Unemp.
Panel A: Low Attachment (n=20,57									
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (small firm)	-0.513	-0.0394	-0.0262	-0.00804	_	_	0.0253	_	-0.579**
,	(0.316)	(0.0453)	(0.0702)	(0.0335)			(0.0607)		(0.242)
$-\Delta \ln(1+ au_j^{ ext{CAN}})*\mathbb{1}$ (medium firm)	0.304	-0.0218	0.0349	0.0135	_	-	0.0391	_	0.103
,	(0.213)	(0.0391)	(0.0798)	(0.0289)			(0.0688)		(0.225)
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (large firm)	0.550**	0.0173	0.131**	0.0991**	_	-	-0.00802	_	0.369
, ,	(0.217)	(0.0435)	(0.0629)	(0.0463)			(0.0576)		(0.245)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	0.657**	0.156**	-0.0366	0.116*	_	-	-0.00621	_	0.358
, ,	(0.299)	(0.0677)	(0.0914)	(0.0653)			(0.0763)		(0.253)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	-0.543*	0.130	-0.0944	0.0737	0.0105	-	-0.0218	_	-0.615*
, , , , , , , , , , , , , , , , , , , ,	(0.281)	(0.0853)	(0.0881)	(0.0732)	(0.0124)		(0.111)		(0.312)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	-0.892* [*]	-0.0226	-0.150	-0.00607	_ ′	_	-0.0255	_	-ì.094* [*]
, , , , , , , , , , , , , , , , , , , ,	(0.361)	(0.0672)	(0.125)	(0.0652)			(0.0897)		(0.522)
R-squared	0.063	0.008	0.006	0.011	0.005	0.007	0.006	0.005	0.071

Notes: This shows Panel (a) of Table A19 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Canadian Tariff Cuts and Separations: Low Attachment by Firm Size (1989-2004)

	(1) Total	(2) Initial Ind.	(3) Manuf.	(4) Constr.	(5) Mining	(6) Agric.	(7) Services	(8) Unknown	(9) Unemp.
Panel A: Low Attachment (n=20,57	7)								
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(small firm)}$	-0.480	-0.0640	-0.0438	-0.000651	_	-	0.0366	_	-0.542**
$-\Delta \ln(1+ au_i^{ ext{CAN}})*1$ (medium firm)	(0.337) 0.225	(0.0495) -0.0328	(0.0773) 0.00232	(0.0331) 0.00304	_	_	(0.0562) 0.0429	_	(0.257) 0.0505
$-\Delta \ln(1+ au_j^{ ext{CAN}})*\mathbb{1}(ext{large firm})$	(0.195) 0.475**	(0.0411) 0.00904	(0.0780) 0.154**	(0.0336) 0.119**	_	_	(0.0732) 0.00572	_	(0.221) 0.254
$-\Delta \ln(1+ au_j^{ ext{US}})*\mathbb{1} ext{(small firm)}$	(0.205) 0.633**	(0.0427) 0.174**	(0.0622) -0.00310	(0.0543) 0.125*	_	_	(0.0691) -0.0357	_	(0.228) 0.318
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	(0.318) -0.472*	(0.0731) 0.146*	(0.101) -0.0502	(0.0710) 0.111	0.0120	_	(0.0732) -0.0555	_	(0.261) -0.579*
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	(0.271) -0.796**	(0.0863) -0.0360	(0.0947) -0.164	(0.0941) -0.0214	(0.0129) —	_	(0.117) -0.0471	_	(0.321) -0.959*
,	(0.353)	(0.0658)	(0.128)	(0.0787)			(0.118)		(0.483)
R-squared	0.068	0.009	0.007	0.012	0.005	0.007	0.007	0.005	0.076

Notes: This shows Panel (a) of Table A20 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Canadian Tariff Cuts and Separations: High Attachment by Firm Size (1989-1993)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel B: High Attachment (n=63,12	28)								
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (small firm)	-0.142	-0.0465	0.00610	-0.00197	-	-	-0.0586	_	-0.0297
,	(0.184)	(0.0455)	(0.0610)	(0.0287)			(0.0536)		(0.0954)
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)	0.104	-0.0192	0.0167	0.0157	_	_	0.00695	_	0.0647
, ,	(0.137)	(0.0245)	(0.0446)	(0.0196)			(0.0284)		(0.102)
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (large firm)	0.00199	-0.0250	0.0535	0.0293	_	_	0.0165	_	-0.088Ó
, , , , , , , ,	(0.204)	(0.0363)	(0.0585)	(0.0202)			(0.0306)		(0.116)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1} ext{(small firm)}$	0.231	0.0499	-0.0176	0.0884	_	_	0.0788	_	0.0437
, , , , , , , , , , , , , , , , , , , ,	(0.221)	(0.0518)	(0.0730)	(0.0667)			(0.0658)		(0.135)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	-0.159	0.0312	-0.0567	0.0415	_	_	-0.0447	_	-0.0346
, , , , , , , , , , , , , , , , , , , ,	(0.207)	(0.0482)	(0.0670)	(0.0370)			(0.0437)		(0.139)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	-0.306	-0.0169	-0.0788	0.0604	_	_	-0.0935*	_	-0.162
. , , ,	(0.346)	(0.0325)	(0.107)	(0.0514)			(0.0499)		(0.211)
R-squared	0.025	0.007	0.005	0.006	0.003	0.004	0.005	0.001	0.018

Notes: This shows Panel (b) of Table A18 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Canadian Tariff Cuts and Separations: High Attachment by Firm Size (1989-1998)

	(1) Total	(2) Initial Ind.	(3) Manuf.	(4) Constr.	(5) Mining	(6) Agric.	(7) Services	(8) Unknown	(9) Unemp
Panel B: High Attachment (n=63,13	28)								
$-\Delta \ln(1+ au_i^{CAN})*1$ (small firm)	-0.197	-0.0996	-0.0362	-0.00357	_	_	-0.0331	_	-0.0202
, , , , , ,	(0.260)	(0.0602)	(0.0789)	(0.0345)			(0.0653)		(0.125
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)	0.102	-0.0356	0.0352	0.0199	-	_	0.0216	_	0.0372
, ,	(0.211)	(0.0321)	(0.0653)	(0.0217)			(0.0411)		(0.127
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(large firm)}$	0.451*	0.00889	0.169**	0.0931**	_	-	0.0491	-	0.106
,	(0.233)	(0.0424)	(0.0732)	(0.0446)			(0.0472)		(0.195
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1} ext{(small firm)}$	0.394	0.173**	0.0292	0.127	_	-	0.0243	-	0.0648
,	(0.304)	(0.0746)	(0.0939)	(0.0882)			(0.0807)		(0.160
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	-0.145	0.127*	-0.0599	0.0625	_	_	-0.0925	_	-0.085
,	(0.286)	(0.0687)	(0.0864)	(0.0506)			(0.0648)		(0.178
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	-0.738*	-0.0690	-0.162	0.0321	-	_	-0.111*	_	-0.377
,	(0.437)	(0.0593)	(0.123)	(0.0686)			(0.0643)		(0.264
R-squared	0.036	0.015	0.006	0.008	0.002	0.005	0.005	0.001	0.027

Notes: This shows Panel (b) of Table A19 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Canadian Tariff Cuts and Separations: High Attachment by Firm Size (1989-2004)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel B: High Attachment (n=63,13	28)								
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (small firm)	-0.263	-0.106	-0.0614	-0.00588	_	-	-0.0459	_	-0.0577
,	(0.289)	(0.0666)	(0.0872)	(0.0394)			(0.0758)		(0.140)
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (medium firm)	-0.0300	-0.0662*	-0.0174	0.0140	-	-	0.0131	_	-0.00396
,	(0.219)	(0.0370)	(0.0627)	(0.0254)			(0.0417)		(0.130)
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (large firm)	0.382	-0.00223	0.141*	0.103*	-	-	0.0541	-	0.0671
,	(0.271)	(0.0441)	(0.0743)	(0.0542)			(0.0585)		(0.231)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	0.481	0.258***	0.00679	0.164	_	-	0.000381	_	0.112
, , , , , , , , , , , , , , , , , , , ,	(0.337)	(0.0865)	(0.0998)	(0.110)			(0.0890)		(0.179)
$-\Delta \ln(1+ au_i^{\text{US}})*\mathbb{1}$ (medium firm)	0.0970	0.178**	-0.0287	0.102	_	-	-0.0453	_	-0.00326
. ,	(0.337)	(0.0751)	(0.102)	(0.0785)			(0.0714)		(0.200)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	-0.651	-0.0551	-0.173	0.0458	_	_	-0.0912	_	-0.303
, , , , - ,	(0.445)	(0.0608)	(0.123)	(0.0876)			(0.0828)		(0.279)
R-squared	0.037	0.015	0.006	0.009	0.003	0.005	0.006	0.001	0.029

Notes: This shows Panel (b) of Table A20 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Effects of Canadian Tariff Cuts on Worker Earnings: High Attachment

Notes: This slide presents Panels (b) and (d) of Figure 8 of the text that show the effect of interquartile tariff cut comparisons. The unconditional probability of a permanent work shortage related separation is XXXX for a high attachment worker. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, *** p<0.05, * p<0.1.

Effects of US Tariff Cuts on Worker Earnings: High Attachment

Notes: This slide presents Panels (b) and (d) of Figure 7 of the text that show the effect of interquartile tariff cut comparisons. The unconditional probability of a permanent work shortage related separation is 0.115 for a high attachment worker. Results scaled by 16/years in window. Stars indicate statistical significance based on standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Tariff Cuts And Worker Earnings: Low Attachment (1989-1993)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel A: Low Attachment (n=20,57	7)								
$-\Delta \ln(1+ au_i^{\mathrm{CAN}})*\mathbb{1}$ (small firm)	1.735	-1.498	-0.913	0.651	1.217	0.449	-0.627***	2.961	-0.0569
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)	(3.023)	(2.635)	(0.983)	(1.667)	(0.903)	(0.334)	(0.213)	(1.940)	(0.270)
	-0.858	-1.305	-0.912	1.541	0.576	0.0297	-0.337*	-0.423	0.00250
$-\Delta \ln(1+ au_j^{ ext{CAN}})*\mathbb{1}$ (large firm)	(3.274)	(3.304)	(1.031)	(1.344)	(0.685)	(0.174)	(0.191)	(1.832)	(0.0809)
	0.207	-1.781	-2.051***	1.961	0.840	0.0556	-0.122	1.269	0.0917
$-\Delta \ln(1+ au_j^{ ext{US}})*\mathbb{1} ext{(small firm)}$	(2.414)	(3.840)	(0.690)	(1.998)	(0.653)	(0.369)	(0.268)	(1.233)	(0.0925)
	-1.038	1.873	1.845	-2.474	0.654	-0.0159	0.102	-3.445	0.408
$-\Delta \ln(1+ au_j^{ ext{US}}) * \mathbb{1} ext{(medium firm)}$	(3.752)	(3.382)	(1.345)	(2.191)	(1.019)	(0.507)	(0.326)	(2.860)	(0.484)
	3.302	-0.231	1.374	-3.721	1.326	0.366	0.210	4.167*	0.177
$-\Delta \ln(1+ au_j^{ ext{US}})*\mathbb{1}(ext{large firm})$	(4.203)	(4.160)	(1.532)	(2.467)	(1.295)	(0.292)	(0.275)	(2.329)	(0.138)
	4.918	-1.031	-0.376	2.389	1.564	-0.185	0.00729	2.186	0.178
•	(5.724)	(7.077)	(1.024)	(3.222)	(1.104)	(0.455)	(0.642)	(2.659)	(0.151)
R-squared	0.111	0.066	0.014	0.036	0.025	0.011	0.020	0.088	0.013

Notes: This shows Panel (a) of Table A21 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Tariff Cuts And Worker Earnings: Low Attachment (1989-1998)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel A: Low Attachment (n=20,57		miciai ma.	ivianui.	CONST.	IVIIIIIII	Agric.	Services	OHKHOWH	Onemp.
$-\Delta \ln(1+\tau_i^{\text{CAN}})*1 \text{ (small firm)}$	1.888	-6.067	-1.647	1.840	1.932	1.259	-1.181**	5.945	-0.193
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(medium firm)}$	(6.437)	(4.579)	(2.543)	(4.666)	(1.592)	(0.807)	(0.574)	(4.468)	(0.275)
	1.631	-3.967	-0.816	5.886	1.395	0.291	-0.697	-0.328	-0.133
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(large firm)}$	(7.735)	(6.273)	(2.322)	(3.568)	(1.439)	(0.450)	(0.473)	(5.019)	(0.222)
	-6.834	-9.988	-4.716***	3.756	2.120	0.276	-0.345	1.902	0.162
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1} ext{(small firm)}$	(4.404)	(7.487)	(1.755)	(4.349)	(1.459)	(0.908)	(0.780)	(3.180)	(0.131)
	3.492	5.542	3.198	-4.808	3.144	-0.511	0.272	-4.229	0.885
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	(8.730)	(6.743)	(3.319)	(5.699)	(2.108)	(1.216)	(0.838)	(7.103)	(0.552)
	1.666	-1.917	1.497	-10.28	2.673	0.628	0.174	8.247	0.648**
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	(10.63)	(7.328)	(3.702)	(6.434)	(2.691)	(0.666)	(0.650)	(7.157)	(0.314)
	19.98*	10.01	-3.701	6.582	3.219	-0.618	-0.0258	4.302	0.211
,	(11.52)	(15.63)	(2.691)	(7.476)	(2.559)	(1.413)	(1.920)	(6.867)	(0.192)
R-squared	0.116	0.060	0.016	0.031	0.025	0.017	0.019	0.106	0.010

Notes: This shows Panel (a) of Table A22 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Tariff Cuts And Worker Earnings: Low Attachment (1989-2004)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel A: Low Attachment (n=20,57									о
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(small firm)}$	0.811	-10.20	-3.205	-1.891	3.092	2.749*	-2.123*	12.48	-0.0871
$-\Delta \ln(1+ au_{\widetilde{I}}^{ ext{CAN}})*1$ (medium firm)	(11.69)	(7.118)	(4.919)	(9.292)	(3.159)	(1.444)	(1.123)	(9.047)	(0.604)
	1.093	-7.228	-1.719	8.224	3.962**	0.676	-0.584	-2.191	-0.0467
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*1$ (large firm)	(13.71)	(9.890)	(4.529)	(6.848)	(1.893)	(0.880)	(0.933)	(10.26)	(0.319)
	-17.40**	-26.71**	-8.512**	9.028	6.320**	0.279	-1.041	3.005	0.231
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1} ext{(small firm)}$	(7.922)	(10.52)	(3.483)	(7.648)	(2.548)	(1.891)	(1.296)	(6.473)	(0.168)
	8.246	6.866	6.134	-1.591	7.248*	-1.248	-0.393	-10.32	1.548
$-\Delta \ln(1+ au_i^{ ext{US}})*1$ (medium firm)	(18.27)	(11.40)	(6.228)	(13.47)	(4.106)	(2.330)	(1.613)	(13.81)	(1.239)
	5.439	-2.648	2.972	-15.81	2.833	1.031	-1.589	17.74	0.913*
$-\Delta \ln(1+ au_i^{ ext{US}})*1$ (large firm)	(19.63)	(11.90)	(7.313)	(12.04)	(3.675)	(1.306)	(1.120)	(15.04)	(0.498)
	42.68**	28.08	-6.863	4.014	3.779	-0.451	-0.148	13.88	0.388
,	(19.23)	(23.96)	(5.515)	(13.45)	(4.963)	(3.205)	(3.024)	(13.00)	(0.332
R-squared	0.141	0.049	0.019	0.038	0.030	0.021	0.018	0.123	0.005

Notes: This shows Panel (a) of Table A23 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Tariff Cuts And Worker Earnings: High Attachment (1989-1993)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel B: High Attachment (n=63,12	28)								
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (small firm)	1.839	2.103	-0.629	-0.590	0.0876	0.114	-0.155**	1.061*	-0.0383
. , ,	(1.345)	(1.400)	(0.554)	(0.821)	(0.305)	(0.142)	(0.0721)	(0.600)	(0.0584)
$-\Delta \ln(1+ au_j^{ ext{CAN}})*\mathbb{1}$ (medium firm)	-0.484	0.357	-0.533	0.199	0.0697	0.00857	-0.0416	-0.515	-0.0200
	(1.090)	(1.680)	(0.438)	(0.753)	(0.166)	(0.0995)	(0.0629)	(0.669)	(0.0257)
$-\Delta \ln(1+ au_i^{\scriptscriptstyle \mathrm{CAN}})*\mathbb{1}$ (large firm)	2.534***	1.190	-0.548	1.323	0.531**	0.0467	-0.0557	0.0513	0.0423
•	(0.890)	(2.183)	(0.480)	(1.393)	(0.237)	(0.0970)	(0.0944)	(0.636)	(0.0427)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	-2.242	-0.245	1.706**	-1.461	0.403	-0.143	0.0164	-2.680***	0.0175
,	(1.447)	(1.776)	(0.777)	(1.077)	(0.623)	(0.185)	(0.121)	(0.843)	(0.0665)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	2.020	2.431	0.923	-1.861	0.415	-0.108	-0.0584	0.142	0.0277
,	(1.409)	(2.115)	(0.694)	(1.174)	(0.326)	(0.129)	(0.0871)	(0.818)	(0.0368)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	-1.427	1.977	-2.225***	-0.129	0.180	-0.436**	0.00286	-1.144	-0.0878
, ,	(1.866)	(4.652)	(0.766)	(2.699)	(0.341)	(0.212)	(0.191)	(0.741)	(0.0707)
R-squared	0.077	0.078	0.020	0.041	0.020	0.009	0.008	0.055	0.005

Notes: This shows Panel (b) of Table A21 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Tariff Cuts And Worker Earnings: High Attachment (1989-1998)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
Panel B: High Attachment (n=63,12	28)								
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1} ext{(small firm)}$	3.519	3.536	-1.879	-0.259	0.113	0.456	-0.429**	1.973	0.00709
,	(2.883)	(3.814)	(1.750)	(2.238)	(0.655)	(0.320)	(0.202)	(1.644)	(0.104)
$-\Delta \ln(1+ au_i^{ ext{CAN}})*\mathbb{1}$ (medium firm)	-0.462	1.003	-1.523	1.813	0.446	0.0295	-0.186	-2.050	0.00384
,	(2.431)	(4.488)	(1.141)	(2.070)	(0.389)	(0.238)	(0.169)	(1.980)	(0.0258)
$-\Delta \ln(1+ au_i^{\scriptscriptstyle{\mathrm{CAN}}})*\mathbb{1}$ (large firm)	0.149	-5.052	-0.567	4.722	0.922*	-0.0136	-0.0608	0.148	0.0514
,	(2.187)	(4.960)	(1.244)	(3.255)	(0.502)	(0.390)	(0.267)	(1.825)	(0.0479)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (small firm)	-5.820*	-1.758	5.330**	-4.090	0.925	-0.372	-0.116	-5.724***	-0.0142
,	(3.412)	(4.781)	(2.453)	(2.761)	(1.398)	(0.467)	(0.308)	(2.075)	(0.123)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (medium firm)	1.994	2.012	3.829*	-5.614*	0.624	-0.0460	-0.196	1.364	0.0221
,	(3.550)	(5.790)	(2.157)	(3.111)	(0.846)	(0.356)	(0.264)	(2.396)	(0.0399)
$-\Delta \ln(1+ au_i^{ ext{US}})*\mathbb{1}$ (large firm)	-1.794	11.97	-8.812***	-1.681	0.775	-1.091*	-0.320	-2.548	-0.0890
, , , , , , , , , , , , , , , , , , , ,	(4.200)	(12.20)	(3.221)	(6.527)	(0.800)	(0.642)	(0.517)	(1.981)	(0.0741)
R-squared	0.088	0.074	0.035	0.048	0.021	0.016	0.012	0.066	0.004

Notes: This shows Panel (b) of Table A22 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Tariff Cuts And Worker Earnings: High Attachment (1989-2004)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Total	Initial Ind.	Manuf.	Constr.	Mining	Agric.	Services	Unknown	Unemp.
!8)								
5.704	5.269	-3.169	0.920	0.00395	0.926	-0.821**	2.466	0.110
(4.692)	(6.803)	(3.459)	(4.430)	(1.264)	(0.624)	(0.358)	(3.374)	(0.139)
-0.179	2.759	-3.665	3.648	0.681	0.117	-0.378	-3.355	0.0136
(3.869)	(8.173)	(2.286)	(4.027)	(0.761)	(0.415)	(0.276)	(3.956)	(0.0358)
-2.969	-13.00	-2.293	8.858	1.692	0.301	-0.110	1.558	0.0208
(3.715)	(8.372)	(2.267)	(5.384)	(1.122)	(1.103)	(0.460)	(2.852)	(0.0528)
-8.002	-1.824	9.246*	-8.865*	2.530	-0.407	-0.336	-8.260*	-0.0862
(5.818)	(8.409)	(4.723)	(5.177)	(2.648)	(0.954)	(0.495)	(4.307)	(0.173)
2.220	0.983	8.474**	-11.36*	1.715	0.184	-0.483	2.646	0.0614
(5.525)	(10.23)	(4.247)	(5.919)	(1.709)	(0.718)	(0.420)	(4.981)	(0.0642)
-2.101	20.08	-13.59**	-5.846	1.897	-2.447	-1.013	-1.112	-0.0641
(6.489)	(20.80)	(6.032)	(11.22)	(1.626)	(1.480)	(0.868)	(3.788)	(0.0809)
0.121	0.071	0.037	0.054	0.023	0.025	0.014	0.078	0.004
	Total (8) 5.704 (4.692) -0.179 (3.869) -2.969 (3.715) -8.002 (5.818) 2.220 (5.525) -2.101 (6.489)	Total Initial Ind. 181) 5.704 5.269 (4.692) (6.803) -0.179 2.759 (3.869) (8.173) -2.969 -13.00 (3.715) (8.372) -8.002 -1.824 (5.818) (8.409) 2.220 0.983 (5.525) (10.23) -2.101 20.08 (6.489) (20.80)	Total Initial Ind. Manuf. 181 5.704 5.269 -3.169 (4.692) (6.803) (3.459) -0.179 2.759 -3.665 (3.869) (8.173) (2.286) -2.969 -13.00 -2.293 (3.715) (8.372) (2.267) -8.002 -1.824 9.246* (5.818) (8.409) (4.723) 2.220 0.983 8.474** (5.525) (10.23) (4.247) -2.101 20.08 -13.59** (6.489) (20.80) (6.032)	Total Initial Ind. Manuf. Constr. (8) 5.704 5.269 -3.169 0.920 (4.692) (6.803) (3.459) (4.430) -0.179 2.759 -3.665 3.648 (3.869) (8.173) (2.286) (4.027) -2.969 -13.00 -2.293 8.858 (3.715) (8.372) (2.267) (5.384) -8.002 -1.824 9.246* -8.865* (5.818) (8.409) (4.723) (5.177) 2.220 0.983 8.474** -11.36* (5.525) (10.23) (4.247) (5.919) -2.101 20.08 -13.59** -5.846 (6.489) (20.80) (6.032) (11.22)	Total Initial Ind. Manuf. Constr. Mining (8) 5.704 5.269 -3.169 0.920 0.00395 (4.692) (6.803) (3.459) (4.430) (1.264) -0.179 2.759 -3.665 3.648 0.681 (3.869) (8.173) (2.286) (4.027) (0.761) -2.969 -13.00 -2.293 8.858 1.692 -3.012 -1.824 9.246* -8.865* 2.530 (5.818) (8.409) (4.723) (5.177) (2.648) 2.220 0.983 8.474** -11.36* 1.715 (5.525) (10.23) (4.247) (5.919) (1.709) -2.101 20.08 -13.59** -5.846 1.897 (6.489) (20.80) (6.032) (11.22) (1.626)	Total Initial Ind. Manuf. Constr. Mining Agric. (8) 5.704 5.269 -3.169 0.920 0.00395 0.926 (4.692) (6.803) (3.459) (4.430) (1.264) (0.624) -0.179 2.759 -3.665 3.648 0.681 0.117 (3.869) (8.173) (2.286) (4.027) (0.761) (0.415) -2.969 -13.00 -2.293 8.858 1.692 0.301 (3.715) (8.372) (2.267) (5.384) (1.122) (1.103) -8.002 -1.824 9.246* -8.865* 2.530 -0.407 (5.818) (8.409) (4.723) (5.177) (2.648) (0.954) 2.220 0.983 8.474** -11.36* 1.715 0.184 (5.525) (10.23) (4.247) (5.919) (1.709) (0.718) -2.101 20.08 -13.59** -5.846 1.897 -2.447 (6.	Total Initial Ind. Manuf. Constr. Mining Agric. Services 188) 5.704 5.269 -3.169 0.920 0.00395 0.926 -0.821** (4.692) (6.803) (3.459) (4.430) (1.264) (0.624) (0.358) -0.179 2.759 -3.665 3.648 0.681 0.117 -0.378 (3.869) (8.173) (2.286) (4.027) (0.761) (0.415) (0.276) -2.969 -13.00 -2.293 8.858 1.692 0.301 -0.110 (3.715) (8.372) (2.267) (5.384) (1.122) (1.103) (0.460) -8.002 -1.824 9.246* -8.865* 2.530 -0.407 -0.336 (5.818) (8.409) (4.723) (5.177) (2.648) (0.954) (0.495) 2.220 0.983 8.474** -11.36* 1.715 0.184 -0.483 (5.525) (10.23) (4.247) (5.919) <td>Total Initial Ind. Manuf. Constr. Mining Agric. Services Unknown (8) 5.704 5.269 -3.169 0.920 0.00395 0.926 -0.821** 2.466 (4.692) (6.803) (3.459) (4.430) (1.264) (0.624) (0.358) (3.374) -0.179 2.759 -3.665 3.648 0.681 0.117 -0.378 -3.355 (3.869) (8.173) (2.286) (4.027) (0.761) (0.415) (0.276) (3.956) -2.969 -13.00 -2.293 8.858 1.692 0.301 -0.110 1.558 (3.715) (8.372) (2.267) (5.384) (1.122) (1.103) (0.460) (2.852) -8.002 -1.824 9.246* -8.865* 2.530 -0.407 -0.336 -8.260* (5.818) (8.409) (4.723) (5.177) (2.648) (0.954) (0.495) (4.307) 2.220 0.983 8.474*</td>	Total Initial Ind. Manuf. Constr. Mining Agric. Services Unknown (8) 5.704 5.269 -3.169 0.920 0.00395 0.926 -0.821** 2.466 (4.692) (6.803) (3.459) (4.430) (1.264) (0.624) (0.358) (3.374) -0.179 2.759 -3.665 3.648 0.681 0.117 -0.378 -3.355 (3.869) (8.173) (2.286) (4.027) (0.761) (0.415) (0.276) (3.956) -2.969 -13.00 -2.293 8.858 1.692 0.301 -0.110 1.558 (3.715) (8.372) (2.267) (5.384) (1.122) (1.103) (0.460) (2.852) -8.002 -1.824 9.246* -8.865* 2.530 -0.407 -0.336 -8.260* (5.818) (8.409) (4.723) (5.177) (2.648) (0.954) (0.495) (4.307) 2.220 0.983 8.474*

Notes: This shows Panel (b) of Table A23 in the Appendix of the text. All specifications include extensive worker, initial firm, and initial industry controls, described in the text. Estimates suppressed due to data confidentiality concerns are shown as —. Standard errors clustered by 4-digit NAICS industry. *** p<0.01, ** p<0.05, * p<0.1.

Net Effects of Tariff Cuts on Cumulative Earnings: Low Attachment Workers, Large Firms (1989-2004)

Notes: This shows Figure A8 in the Appendix of the text that show the effect of interquartile tariff cut comparisons. Values are expressed relative to the worker group's unconditional average cumulative earnings: 21.0. Industries sorted from most negative to most positive net effect estimate.

Error bars reflect 95 percent confidence intervals. Out of 78 industries, 3 net effect estimates are statistically distinguishable from zero at the 5 percent level.

Net Effects of Tariff Cuts on Earnings at Initial Firm: Low Attachment Workers, Large Firms (1989-2004)

Notes: This shows Figure A9 in the Appendix of the text that show the effect of interquartile tariff cut comparisons. Values are expressed relative to the worker group's unconditional average cumulative earnings: 21.0. Industries sorted from most negative to most positive net effect estimate.

Error bars reflect 95 percent confidence intervals. Out of 78 industries, 25 net effect estimates are statistically distinguishable from zero at the 5 percent level.

Safety Net Comparison

- Canadian Labour Adjustment Benefits much narrower and less generous than US Trade Adjustment Assistance (Lysenko Schwartz 2015)
 - ▶ Eligibility: in approved industry/region combination, age 54-65, "no present prospect of employment" or reemployed with low earnings.
 - Supplemental UI benefits (minimal training or relocation funds)
- ► Canada's unionization rate roughly double that of US for any worker group (Riddell 1993)
- ► Canada's UI system more generous (Card and Riddell 1993)
 - ▶ 10-12 weeks employed to be eligible (US 20 weeks)
 - ▶ 85% of Canadian unemployed get UI (1/3 in US)
 - Replacement rate higher in Canada
 - ▶ UI duration 5-6 weeks longer in Canada
- Canada's Social Assistance Program more generous than AFDC and food stamps combined, and eligibility much broader (Blank and Hanratty 1993)
- All US programs means-tested, but Canada has universal health insurance, pension and family allowance (Blank and Hanratty 1993)