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Introduction

Endogenous selection⇒ need bounds on ATE.

Lee (2009): covariate set X map to a class of bounds on ATE

I any covariate subset X ′ ⊆ X maps to a pair of valid bounds

I the full set X maps to sharp (the tightest possible) bounds

Sharp bounds are difficult to estimate, non-sharp bounds may not be very

useful.
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Lee (2009): notation

Potential employment and wage outcomes

I D = 1 if subject wins a lottery

I S(d) = 1 if employed when D = d for d ∈ {1, 0}

I Y (d) wage when D = d for d ∈ {1, 0}

Observed data are (X ,D,S,S · Y ). Y exists only if S = 1.

Target population is the always-takers

S(1) = S(0) = 1 a.s.

Target parameter

ATE = E[Y (1)− Y (0) | S(1) = S(0) = 1]

Lee’s monotonicity assumption

S(0) = 1⇒ S(1) = 1.
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Lee (2009): basic bounds

E[Y (0) | S(0) = 1] is point-identified. E[Y (1) | S(0) = 1] is not.

Always-takers’ share among the treated

p0 =
Pr[S = 1|D = 0]

Pr[S = 1|D = 1]
∈ (0, 1)

The borderline wage in the worst and the best case

The ATE bounds are trimmed means

β̂L
basic = 0.78 and β̂U

basic = 1.19
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Lee (2009): covariate-based bounds



Lee (2009): covariate-based bounds, cont.



Lee (2009): covariate-based bounds, cont.

lower bound β̂discrete = 1/2(2.0− 1.2) + 1/4(2.3− 1.4) + 1/4(2.4− 1.5) = 0.85



Lee (2009): covariate-based bound, cont.

β̂discrete = 1/2(2.0− 1.2) + 1/4(2.3− 1.4) + 1/4(2.4− 1.5) = 0.85

β̂discrete = 0.85 > β̂basic = 0.78

Vira Semenova



Lee (2009): degenerate cell example

β̂discrete = 1/2(2.0− 1.2) + 1/4(2.3− 1.4) + 1/4(?− 1.5) =?
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Lee (2009): heterogeneous monotonicity example

β̂discrete = 1/2(2.0− 1.2) + 1/4(2.3− 1.4)+? =?
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Better Lee Bounds: the probability of employment

employment probability

Pr(S = 1 | D,X ) = Logit(γ0 + D · γ1 + X · γ2 + D · X · γ3)



Better Lee Bounds: the always-takers’ share among the treated

always-takers’ share among the treated

p(X ) =
Logit(γ0 + X · γ2)

Logit(γ0 + γ1 + X · (γ2 + γ3))



Better Lee Bounds: the worst case for the always-takers

worst case: the always-takers’ wages are below the compliers’ wages for

every age



Better Lee Bounds: the borderline always-takers’ wage

quant(X , u) is u-quantile of the treated wages

the borderline wage is quant(X , p(X )) for each X



Better Lee Bounds: the trimmed wage sample

β̂better = Ȳtreated − Ȳcontrol = 0.83

β̂better = 0.83 ≈ β̂discrete = 0.85
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Better Lee Bounds: conditional monotonicity

employment probability

s(D,X ) = Pr(S = 1 | D,X ) = Logit(γ0 + D · γ1 + X · γ2 + D · X · γ3)



Better Lee Bounds: conditional monotonicity, cont.

Xpos = {X : s(0,X ) < s(1,X )} and Xneg = {X : s(0,X ) > s(1,X )}



Better Lee Bounds: anatomy of bounds under conditional monotonicity

the always-takers’ share is p(X ) = s(0,X )/s(1,X ) if X ∈ Xpos and 1/p(X )

otherwise

the borderline wage is

quant1(X , p(X )) X ∈ Xpos

quant0(X , 1− 1/p(X )) X ∈ Xneg



Better Lee Bounds: conditional monotonicity, cont.

I Conditional monotonicity as in Kolesar (2013)

either Pr(S(1) ≥ S(0) | X ) = 1 or Pr(S(1) ≤ S(0) | X ) = 1 a.s.

I weakest form of monotonicity assumption. It is untestable

I This paper: assumes that subjects are correctly classified into Xpos and

Xneg

I Future work: allow for incorrect classification as in (Andrews, Kitagawa,

McCloskey, 2018)

I Future work: cond. monotonicity induces a smaller distortion than the

unconditional one



Better Lee Bounds: many covariates

Sparsity: few (out of many) covariates are relevant for employment and wage

I logistic and quantile series⇒ logistic and quantile LASSO

I automated penalty choice as in (Belloni et al (ECMA, 2017))

I bias correction to account for regularization

No sparsity: agnostic approach (Chernozhukov, Demirer, Duflo,

Fernandez-Val, 2017)

I bounds width is proportional to first-stage R2 ⇒ rank covariates by

explained variance!

I sharpness is not guaranteed, but tighter in practice
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JobCorps: overview of the program

I JobCorps is a training program that helps youth ages 16 through 24 to

get a better job, make more money, and gain control over their lives (U.S.

Department of Labor, 2005b).

I N = 9, 145 applicants – the sample sample as in Lee (2009)

I p = 5, 177 baseline covariates = demographics, reasons for joining
JobCorps, medical, arrest, and drug use records, wage history

I Lee (2009): 28 demographic covariates

I Lee (2009): week 90 wage effect is [0.048, 0.049]
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JobCorps: monotonicity failure demonstration

week 90: JobCorps helps (hurts) employment for 50 % of subjects

Lee’s week 90 estimates = [0.048, 0.049]



JobCorps: Better Lee Bounds on week 90 wage effect

(1) (2) (3) (4)

series lasso union agnostic

est. bounds [-0.005, 0.091] [0.040, 0.046] [0.041, 0.059] [0.041, 0.043]

95 % CI (-0.05, 0.135) (0.001, 0.078) (-0.02, 0.112) (-0.02, 0.101)

# emplmnt

covs

28 5 177 (9) 15 12

# wage covs 28 421 (6) 15 12

1. 28 Lee’s covs

2. 5, 177 = all covs, (9) = emplpyment equation, (6) = wage equation

3. 15 = union of employment and wage covs selected in Column 2

4. 12 covs selected on the sample Lee excluded



JobCorps: Better Lee Bounds on week 90 wage effect

(1) (2) (3) (4)

series lasso union agnostic

est. bounds [-0.005, 0.091] [0.040, 0.046] [0.041, 0.059] [0.041, 0.043]

95 % CI (-0.05, 0.135) (0.001, 0.078) (-0.02, 0.112) (-0.02, 0.101)

# emplmnt

covs

28 5 177 (9) 15 12

# wage covs 28 421 (6) 15 12

1st stage :

28 Lee’s covs = age, race, education, parental educ., income, earnings at baseline

logit Employed D (X1 − X28) D ∗ (X1 − X28)

qreg LogWage D (X1 − X28) D ∗ (X1 − X28) if Employed == 1
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# wage covs 28 421 (6) 15 12

1st stage :

12 covs explaining most variation in wage

logit Employed D (X1 − X12) D ∗ (X1 − X12)

qreg LogWage D (X1 − X12) D ∗ (X1 − X12) if Employed == 1

Vira Semenova



Final thoughts

Today: Lee bounds→ Better Lee Bounds

discrete bounds→ smooth interpolations

monotonicity→ conditional monotonicity

This paper:

+ unknown propensity score (e.g., quasi-experiments)

+ non-compliance

+ multiple outcomes / short panels

+ achieved nearly point-identification in Finkelstein et al. (2012) and

Angrist et al, (2002)
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Future work

This paper: relax monotonicity

I point-identified⇒ bounded always-takers’ share

I justify “better" in identification sense: conditional monotonicity induces a

smaller distortion than the unconditional one

Other bounds types

I sharp bounds 6= tightest CI!

I strong partial ID < very tight bounds < point ID
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