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Abstract

This paper develops methods for tightening Lee (2009) bounds on average

causal effects when the number of pre-randomization covariates is large, poten-

tially exceeding the sample size. These Better Lee Bounds are guaranteed to be

sharp when few of the covariates affect selection and the outcome. If this spar-

sity assumption fails, the bounds remain valid. I propose inference methods that

enable hypothesis testing in either case. My results rely on a weakened monotonic-

ity assumption that only needs to hold conditional on covariates. I show that the

unconditional monotonicity assumption that motivates traditional Lee bounds fails

for the JobCorps training program. After imposing only conditional monotonic-

ity, Better Lee Bounds are found to be much more informative than standard Lee

bounds in a variety of settings.
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1 Introduction

Randomized controlled trials are often complicated by endogenous sample selection

and non-response. This problem occurs when treatment affects the researcher’s ability

to observe an outcome (a selection effect) in addition to the outcome itself (the causal

effect of interest). For example, being randomized into a job training program affects

both an individual’s wage and employment status. As a result, wages in the treatment

and control groups are not directly comparable since wages only exist for the employed

individuals. A common way to estimate the average causal effect is to bound this effect

from above and below, focusing on a partially latent group of subjects whose outcomes

are observed regardless of their treatment status (the always-observed principal strata,

Frangakis and Rubin (2002) or the always-takers, Lee (2009)).

Seminal work by Lee (2009) leverages the monotonicity assumption to bound the av-

erage causal effect for always-takers. For example, if job training cannot deter employ-

ment, the Lee lower bound is the treatment-control difference in wages, where the top

wages in the treated group are trimmed until employment rates in both groups are equal.

If pre-randomization covariates are available, Lee bounds can be tightened by averag-

ing covariate-specific bounds over the always-takers’ covariate distribution. However,

it is hard or impossible to estimate sharp (i.e., the tightest possible) bounds since Lee’s

method requires a positive number of treated and control outcomes for each covariate

value. As a result, empirical researchers spend a lot of energy selecting and discretizing

covariates, a process that is subjective, labor-intensive, and prone to erroneous inference.

In this paper, I propose a generalization of Lee bounds—better Lee bounds—and

provide theoretical, simulation, and empirical evidence that they substantially outper-

form standard Lee bounds. First, better Lee bounds are based on a weaker monotonicity

assumption that only needs to hold conditional on covariates. Specifically, each subject

is allowed to have either a positive or negative selection response, as long as the direc-

tion of this response is identified by a covariate vector. In contrast, standard Lee bounds
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require the same direction of treatment effect on selection response for all subjects. Sec-

ond, better Lee bounds are asymptotically sharp as long as few of the covariates affect

selection and the outcome, permitting the total number of covariates under consideration

to exceed sample size. In contrast, standard Lee bounds are sharp only in a model that

has a handful of covariates. Finally, better Lee bounds accommodate a broad class of

machine learning techniques for estimating the conditional probability of treatment (i.e.,

the propensity score), overcoming a key historical limitation to the widespread adoption

of Lee bounds in quasi-experiments.

As a first step towards sharpness, I represent each bound via a semiparametric mo-

ment equation that depends on the conditional outcome quantile and the conditional

probability of selection. A naïve approach would be to estimate these functions by

quantile and logistic series regressions. If the true functions are sufficiently smooth rel-

ative to the covariate vector’s dimension, these estimators provide a good approximation

to the true outcome quantile. However, the smoothness assumption implicitly restricts

the number of covariates (Stone (1982)). This restriction is problematic for JobCorps

data set (Schochet et al. (2008)), which has 9,145 observations and 5,177 covariates,

and calls for selecting covariates in a data-driven way.

The first main contribution of this paper is a method for estimating and conducting

inference on sharp Lee bounds with a built-in model selection process based on mod-

ern machine learning techniques. For example, if few of the covariates affect selection

and the outcome, `1-regularized logistic (Belloni et al. (2017), Belloni et al. (2016))

and quantile (Belloni and Chernozhukov (2013)) estimators deliver a good approxima-

tion to the true functions. An implicit cost of `1-regularization is bias that converges

slower than the parametric rate. To prevent the transmission of this bias into the bounds,

I propose a Neyman-orthogonal (Neyman (1959)) moment equation for each bound.

Leveraging Neyman-orthogonality and sample splitting ideas, my proposed better Lee

bounds permit inference based on the standard normal approximation. The proposed

bounds are straightforward to compute using the R software package leebounds, avail-
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able at https://github.com/vsemenova/leebounds.

In settings where sparsity is not economically plausible, researchers utilize sam-

ple splitting strategies to leverage machine learning techniques for model selection, al-

though the results will not be as sharp. To account for the uncertainty generated by the

choice of sample split, Chernozhukov et al. (2017) suggests to generate several random

splits and aggregate the lower and upper bounds over various partitions. On the one

hand, this approach aims at less sharp bounds and leads to conservative inference due to

sample splitting. On the other hand, this approach is fully agnostic: it does not require

any assumptions on the model selection procedure.

My main result has several extensions. First, I allow the outcome variable to be

multi-dimensional and show that the sharp identified set for the treatment effect pa-

rameter is compact and convex. Next, I derive an orthogonal moment equation for the

identified set’s boundary (i.e., support function) and provide a large sample approxi-

mation that holds uniformly over the boundary. I also propose a weighted bootstrap

procedure for conducting inference on the boundary. In contrast to conventional boot-

strap techniques, my algorithm is faster to compute since, by virtue of orthogonality,

only the second stage is repeated in the simulation. Second, better Lee bounds accom-

modate within-cluster dependence and panel data. Third, I derive better Lee bounds

for the Intent-to-Treat and Local Average Treatment Effect parameters and provide a

complete set of identification, estimation and inference results. Finally, I provide the

inference methods accommodating unknown propensity score in quasi-experiments.

The paper builds on a growing literature that incorporates modern regularized ma-

chine learning techniques into econometrics, see Mullainathan and Spiess (2017) for a

review. A large body of this literature is devoted to establishing convergence properties

of `1-regularized estimators (Belloni et al. (2016), Belloni and Chernozhukov (2013)),

as well conducting debiased inference on parameters following Lasso model selection

(Belloni et al. (2017), Belloni et al. (2014), Belloni et al. (2016), van der Geer et al.

(2014), Javanmard and Montanari (2014), Zhang and Zhang (2014)). Leveraging the
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work of Belloni et al. (2017), Belloni et al. (2014), Belloni et al. (2016), Chernozhukov

et al. (2016), and Chernozhukov et al. (2018), I derive an orthogonal moment equation

for better Lee bounds and propose asymptotic theory for conducting inference on these

bounds in both one- and multi-dimensional settings. The agnostic approach to inference

is an extension of Chernozhukov et al. (2017)’s general machine learning approach to

heterogeneous treatment effects, adapted for a partial identification problem.

In the final part of the paper, I estimate Lee bounds in three empirical applications.

First, I study the effect of the JobCorps training program on wages and wage growth,

using data from Schochet et al. (2008). After accounting for the differential JobCorps

effect on employment, I find that the average JobCorps effect on the always-takers’

week 90 wages is 4.0–4.6%, which is slightly smaller than Lee’s original estimate of

4.9%. Furthermore, the average JobCorps effect on wage growth from week 104 to

week 208 ranges between −11% and 11%. Thus, the average growth rate is 15% in the

control status and ranges between 4% and 26% in the treated status. Second, I study the

effect of private school subsidies on pupils’ educational achievement, as in Angrist et al.

(2002). I find that the voucher effect on Mathematics, Reading and Writing is smaller

than Angrist et al. (2002)’s original estimate that does not account for selection bias, by

a factor of 0.5 to 0.75. Finally, I study the effect of a Medicaid lottery on applicants’

self-reported healthcare utilization and health, as in Finkelstein et al. (2012). After

accounting for non-response bias, I find that Medicaid exposure and insurance has had a

positive effect on all measures of health, confirming Finkelstein et al. (2012)’s baseline

results. better Lee bounds attain nearly point-identification in all three applications.

In contrast, conventional Lee bounds are too wide to determine the direction of the

treatment effect in any of these settings.

The paper is organized as follows. Section 2 reviews basic Lee bounds and Lee’s

estimator under the standard monotonicity assumption. Section 3 presents evidence

against unconditional monotonicity in the JobCorps training program. Section 4 es-

tablishes the asymptotic properties of better Lee bounds, assuming sparsity. Section 5
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proposes an agnostic approach for conducting inference on Lee bounds when sparsity

fails. Section 6 discusses extensions of my baseline framework to allow for a multi-

dimensional outcome, intent-to-treat and local average treatment effect target parame-

ters, clustered or panel data, and the case when the propensity score is unknown. Section

7 presents a simulation study based on JobCorps data. Section 8 presents empirical ap-

plications. Section 9 concludes. Appendix A contains additional tables and figures sup-

porting the results from the main text. Appendix B contains supplementary theoretical

statements. Appendix C contains proofs. Appendix D contains additional simulations.

Appendix E defines JobCorps covariates and contains supplementary results for Section

3. Appendix F contains supplementary results for all empirical applications.

2 Econometric Framework

In this section, I review the Lee (2009) sample selection model and formally define Lee

bounds. I describe the bounds’ estimator and the confidence region for the identified set.

I then discuss how to tighten Lee bounds by conditioning on baseline covariates.

2.1 Model, Estimators and Confidence Region

I use the standard Rubin (1974) potential outcomes framework. Let D = 1 be an in-

dicator for treatment receipt. Let Y (1) and Y (0) denote the potential outcomes if an

individual is treated or not, respectively. Likewise, let S(1) = 1 and S(0) = 1 be dum-

mies for whether an individual’s outcome is observed with and without treatment. The

random sample (Di,Xi,Si,SiYi)
N
i=1 consists of the treatment status D, a baseline co-

variate vector X , the selection status S = D · S(1) + (1−D) · S(0) and the outcome

S ·Y = S · (D ·Y (1) + (1−D) ·Y (0)) for selected individuals. The object of interest
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is the average treatment effect (ATE)

β0 = E[Y (1)−Y (0)|S(1) = 1,S(0) = 1] (2.1)

for subjects who are selected into the sample regardless of treatment receipt—the always-

takers.

ASSUMPTION 1 (Assumptions of Lee (2009)). The following statements hold.

(1) (Independence). The random vector (Y (1),Y (0),S(1),S(0),X) is independent of D.

(2) (Monotonicity). S(1)≥ S(0) a.s.

Suppose Assumption 1 holds. By monotonicity, any outcome observed in the control

group must belong to an always-taker. Thus, the always-takers’ expected outcome in the

control status is identified:

E[Y (0)|S(1) = 1,S(0) = 1] = E[Y |S = 1,D = 0].

In contrast, a treated outcome can be either an always-taker’s outcome or a complier’s

outcome, but it is not possible to distinguish between the two types in the treated group.

Nevertheless, by Assumption 1, the proportion of the always-takers in the {D= 1,S= 1}

group is identified as

p0 = E[S(1) = 1,S(0) = 1|S = 1,D = 1] =
E[S = 1|D = 0]
E[S = 1|D = 1]

. (2.2)

When the always-takers comprise the top p0 outcome quantile in the treated group, the

ATE (2.1) attains its largest possible value:

β̄U = E[Y |Y ≥ Q(1− p0),D = 1,S = 1]−E[Y |D = 0,S = 1],

where Q(1− p0) is the level-p0 outcome quantile in the treated selected group. The
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lower bound β̄L is defined analogously. Lee’s estimator (̂̄β L,
̂̄
βU) is defined as follows:

̂̄
βU =

∑
N
i=1 DiSiYi1{Yi≥Q̂(1−p̂)}

∑
N
i=1 DiSi1{Yi≥Q̂(1−p̂)}

− ∑
N
i=1(1−Di)SiYi

∑
N
i=1(1−Di)Si

, (2.3)

̂̄
β L =

∑
N
i=1 DiSiYi1{Yi≤Q̂(p̂)}

∑
N
i=1 DiSi1{Yi≤Q̂(p̂)}

− ∑
N
i=1(1−Di)SiYi

∑
N
i=1(1−Di)Si

, (2.4)

Q̂(u) = min
y∈Y

{
y :

∑
N
i=1 DiSi1{Y≤y}

∑
N
i=1 DiSi

≥ u ∈ [0,1]
}
, (2.5)

p̂ =
(∑N

i=1 Si(1−Di))/∑
N
i=1(1−Di)

∑
N
i=1 SiDi/∑

N
i=1(Di)

, (2.6)

where p̂ and Q̂(u) are the sample analogs of p0 and Q(u).

If selection is not exogenous (i.e., p0 6= 1), there are enough observations from above

and below the quantile Q(p0) for it to be well approximated by its empirical analog Q̂(p̂)

in a large sample. A confidence region for the true identified set [βL,βU ] that covers the

set with a pre-specified probability α takes the form

[̂̄β L−N−1/2
Ω̂LLcα/2,

̂̄
βU +N−1/2

Ω̂UU c1−α/2], (2.7)

where Ω̂LL and Ω̂UU are estimates of the asymptotic standard deviations of ̂̄β L and ̂̄βU ,

respectively, and cα is the critical value based on the standard normal approximation. To

conduct inference on the true parameter β0, Imbens and Manski (2004) (IM) propose

an adjustment of (2.7) that covers β0 with a pre-specified probability.

The approach described above can be applied after conditioning on a vector X of

baseline, or pre-randomization, covariates. Define the conditional trimming threshold

as

p0(x) =
E[S = 1|D = 0,X = x]
E[S = 1|D = 1,X = x]

=
s(0,x)
s(1,x)

, x ∈ X. (2.8)
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The conditional outcome quantile Q(u,x) in the treated group is implicitly defined by

Pr(Y ≤ Q(u,x)|D = 1,S = 1,X = x) = u, u ∈ [0,1], x ∈ X. (2.9)

The conditional upper bound is

β̄U(x) = E[Y |D = 1,S = 1,Y ≥ Q(1− p0(x),x),X = x]−E[Y |D = 0,S = 1,X = x].

To aggregate β̄U(x) into an average, I need to reweight β̄U(x) by the probability mass

function in the always-takers group:

βU =
∫

x∈X
β̄U(x) f (x|S(1) = 1,S(0) = 1)dx =

∫
x∈X

β̄U(x) f (x|S = 1,D = 0)dx. (2.10)

Lee (2009) has shown that (2.10) is a sharp (i.e., the smallest possible) upper bound on

β0:

β0 ≤ βU ≤ β̄U . (2.11)

Algorithm 1 Standard Lee bounds with covariates
1: Partition the covariate space X into J discrete cells {C1,C2, . . . ,CJ}.
2: Estimate the vector of cell-specific lower and upper bounds {̂̄β L( j), ̂̄βU( j)}J

j=1 and the prob-
ability mass function { f̂ ( j|S = 1,D = 0)}J

j=1 in the selected control group.
3: Estimate bounds as

β̂L =
J

∑
j=1

̂̄
β L( j) f̂ ( j|S = 1,D = 0), β̂U =

J

∑
j=1

̂̄
βU( j) f̂ ( j|S = 1,D = 0). (2.12)

Algorithm 1 describes Lee’s estimator with covariates. For the estimator (2.12) to be

well-defined, each covariate group must contain both treated and control subjects, and a

non-zero fraction of control subjects must be selected into the sample. Consequently, the

estimator (2.12) can accommodate only coarse partitions of the covariate space. If the

vector X contains many informative covariates, Lee (2009)’s covariate-based estimator
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will not be close to the sharp bound βU in a large sample.

Lee (2009) argues that including covariates can lead to point identification in ex-

treme cases. First, consider the case where selection is exogenous conditional on covari-

ates X . Then, the conditional probability of selection must be the same in the treatment

and control groups:

s(0,x) = s(1,x) ∀x ∈ X.

As a result, the trimming threshold p0(x) = 1 for all covariates x, and

βL = β0 = βU . (2.13)

Second, consider the case where the outcome is a deterministic function of the covari-

ates. Then, the conditional quantile function of Q(u,x) does not vary within covariate

groups, and Q(p0(x),x) = Q(1− p0(x),x) ∀x ∈X. As a result, (2.13) holds. Thus, the

covariates that explain most variation in either selection or outcome are likely to be the

most useful for tightening the bounds.

3 JobCorps revisited

In this section, I review the basics of Lee (2009)’s empirical analysis of JobCorps train-

ing program and replicate Lee’s results. I then discuss how the direction of JobCorps’

effect on employment differs with observed characteristics.

Lee (2009) studies the effect of winning a lottery to attend JobCorps, a federal vo-

cational and training program, on applicants’ wages. In the mid-1990s, JobCorps used

lottery-based admission to assess its effectiveness. The control group of 5,977 appli-

cants was essentially embargoed from the program for three years, while the remaining

applicants (the treated group) could enroll in JobCorps as usual. The sample consists of

9,145 JobCorps applicants and has data on lottery outcome, hours worked and wages

for 208 consecutive weeks after random assignment. In addition, the data contain ed-
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ucational attainment, employment, recruiting experiences, household composition, in-

come, drug use, arrest records, and applicants’ background information. These data

were collected as part of a baseline interview, conducted by Mathematica Policy Re-

search (MPR) shortly after randomization (Schochet et al. (2008)). After converting

applicants’ answers to binary vectors and adding numeric demographic characteristics,

I obtain a total of 5,177 raw baseline covariates, which are summarized in Section C.2.

3.1 Testing framework

Having access to baseline covariates X means that the monotonicity assumption can be

tested. Using the notation of Section 2, let S correspond to employment and Y corre-

spond to log wages. If monotonicity holds, the treatment-control difference in employ-

ment rates

∆(x) = s(1,x)− s(0,x) = Pr(S = 1|D = 1,X = x)−Pr(S = 1|D = 0,X = x), x ∈ X

(3.1)

must be either non-positive or non-negative for all covariate values. Consequently, it

cannot be the case that

Prob(∆(x)> 0)> 0 and Prob(∆(x)< 0)> 0. (3.2)

My first exercise is to estimate s(1,x) and s(0,x) by a week-specific cross-sectional

logistic regression

s(D,X) = Λ(X ′α0 +D ·X ′γ0), (3.3)

where Λ(·) = exp(·)
1+ exp(·)

is the logistic CDF, X is a vector of baseline covariates that

includes a constant, D ·X is a vector of covariates interacted with treatment, and α and
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γ are fixed vectors. I report the average treatment-control difference for the covariate

groups {∆(x)> 0} and {∆(x)< 0} in Figure 1 and the fraction of subjects in the covari-

ate group {∆(x)> 0} in Figure 2.

The second exercise is to test monotonicity without relying on logistic approxima-

tion. For each week, I select a small number of discrete covariates and partition the

sample into discrete cells C j, j ∈ {1,2, . . . ,J}, determined by covariate values. For

example, one binary covariate corresponds to J = 2 two cells. By monotonicity, the vec-

tor of cell-specific treatment-control differences in employment rates, µ = (E[∆(X)|X ∈

C j])
J
j=1, must be non-negative:

H0 : (−1) ·µ ≤ 0. (3.4)

The test statistic for the hypothesis in equation (3.4) is

T = max
1≤ j≤J

(−1) · µ̂ j

σ̂ j
, (3.5)

and the critical value is the self-normalized critical value of Chernozhukov et al. (2019).

3.2 Results

Figure 1 shows the treatment-control difference in employment rates for applicant groups

whose estimated employment effect is positive (black dots) or negative (gray dots) con-

ditional on covariates. The fraction of applicants with a positive employment effect

increases over time. Focusing on week 90, I find that a smaller chance of employment

is associated with being female, black, receiving public assistance before RA, such as

food stamps or other welfare, being raised in a family that has received welfare most or

all the time, being in fair (not excellent or good) health at the moment of RA, and smok-

ing hashish or marijuana a few times each week. In addition, JobCorps is likely to hurt

week 90 employment chances for subjects whose most recent arrest occurred less than
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a year before the baseline interview or who are on probation or parole at the moment of

the interview. Week 90 is a special week since it is the first week where the average em-

ployment effect switches from negative to positive, and the only one out of five horizons

where Lee found the average wage effect on the always-takers to be significant.

Figure 1: Treatment-control differences in employment rate by week.

Notes. The horizontal axis shows the number of weeks since random assignment. The vertical
axis shows the treatment-control difference in employment rate. The black dot represents appli-
cants whose conditional employment effect ∆(x) is positive, and the gray dot is its complement.
(For each week, ∆(x) is defined as in equation (3.1) and estimated as in equation (3.3)). The size
of each dot is proportional to the fraction of applicants. Computations use design weights.

Figure 2 plots the fraction of subjects with a positive JobCorps effect on employ-

ment in each week (that is, the fraction of applicants in black dots in Figure 1). In the

first weeks after random assignment, there is no evidence of a positive JobCorps effect

on employment for any group. By the end of the second year (week 104), JobCorps

increases employment for nearly half of the individuals, and this fraction rises to 0.75

by the end of the study period (week 208). This pattern is consistent with the JobCorps

program description. While being enrolled in JobCorps, participants cannot hold a job,
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which is known as the lock-in effect. After finishing the program, JobCorps graduates

may have gained employment skills that help them outperform the control group.

Figure 2: Fraction of JobCorps applicants with positive conditional employment effect by week.

Notes. The horizontal axis shows the number of weeks since random assignment. The vertical
axis shows the fraction of applicants whose conditional employment effect ∆(x) is positive.
Following week 60, a week is shaded if the test statistic T exceeds the critical value at the
p = 0.01 (dark gray) or p ∈ [0.05,0.01) (light gray) significance level. For each week, ∆(x) is
defined in equation (3.1) and estimated as in equation (3.3), the null hypothesis is as in equation
(3.4), the test statistic T is as in equation (3.5), and the test cells and critical values are as defined
in Table E.9. Computations use design weights.

Figure 2 shows the results of testing the inequality in (3.4) for each week. The

direction of the employment effect varies with socio-economic factors. For example, the

applicants who received AFDC benefits during the 8 months before RA or who belonged

to median income and yearly earnings groups experience a significantly positive (p ≤

0.05) employment effect at weeks 60–89, although the average effect is significantly

negative. As another example, the applicants who answered “1: Very important” to the

question “How important was getting away from community on the scale from 1 (very

important) to 3 (not important)?” and who smoke marijuana or hashish a few times each
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months experience a significantly negative (p≤ 0.05) employment effect at week 117–

152 despite the average effect being positive. Finally, at week 153–186, the average

JobCorps effect is significantly negative for subjects whose most recent arrest occurred

less than 12 months ago, despite the average effect being positive.

Table 1 replicates Lee’s estimates of basic (Column (1)) bounds on JobCorps effect

on the wages of always-takers. In addition, I also compute the covariate-based bounds

using the discretized predicted wage potential covariate that Lee proposed (Column (2)).

Week 90 is the only horizon where Lee found JobCorps effect on wages to be statistically

significant. However, basic Lee bounds do not overlap with the covariate-based ones.

Sharpness fails because one of the five covariate-specific trimming thresholds exceeds

1 and is being capped at 0.999 to impose unconditional monotonicity. Capping corre-

sponds to the researcher’s belief that the covariate-specific threshold exceeded 1 due to

sampling noise, the only belief consistent with unconditional monotonicity. Once this

assumption is weakened, basic Lee bounds do not cover zero in any week (Table 3,

Column 1).

4 Theoretical results

In this section, I introduce better Lee bounds. Section 4.1 presents bounds under a

weakened monotonicity assumption that only needs to hold conditional on covariates.

Section 4.2 formulates the statistical assumptions on the data generating process and

states asymptotic results under these assumptions.

4.1 Identification

ASSUMPTION 2 (Conditional monotonicity). The following statements hold.

(1) (Independence). The vector (Y (1),Y (0),S(1),S(0)) is independent of D conditional

on X.
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Table 1: Estimated bounds on the JobCorps effect on log wages under monotonicity.

Basic Covariate-based
(1) (2)

Week 45 [-0.072, 0.140] [-0.074, 0.127]
(-0.097, 0.170) (-0.096, 0.156)

Week 90 [0.048, 0.049] [0.036, 0.048]
(0.011, 0.081) (0.011, 0.075)

Week 208 [-0.020, 0.095] [-0.014, 0.084]
(-0.050, 0.118) (-0.041, 0.109)

Covariates N/A 5

Notes. The sample (N = 9,145) and the time horizons are the same as in Lee (2009). Each panel
reports estimated bounds (first row), the 95% confidence region for the identified set (second
row) and the 95% Imbens and Manski (2004) confidence interval for the true parameter (third
row). Column (1) reports basic Lee bounds. Column (2) reports covariate-based Lee bounds.
All bounds assume that JobCorps discourages employment in week 45 and helps employment
following week 90. The covariate in Column (2) is a linear combination of 28 baseline covari-
ates, selected by Lee, given in Table E.1. The covariates are weighted by the coefficients from
a regression of week 208 wages on all baseline characteristics in the control group. The five
discrete groups are formed according to whether the predicted wage is within intervals defined
by $6.75, $7, $7.50, and $8.50. Week 90 is highlighted in bold as the only week where Lee
found a statistically significant effect on wages. Computations use design weights.

(2) (Monotonicity). There exists a partition of covariate space X=XhelptXhurt so that

S(1)≥ S(0) a.s. on Xhelp and S(0)≥ S(1) a.s. on Xhurt.

Assumption 2 allows the sign of the treatment effect on employment to vary along

with covariates. A subject with covariate vector X belongs to the covariate group Xhelp

if and only if his treatment-control difference in selection rate is positive conditional on

X :

X ∈ Xhelp ⇔ p0(X)≤ 1 ⇔ S(1)≥ S(0) a.s.,

where p0(x) is defined in (2.8). When there are no covariates, Assumption 2 coincides

with Assumption 1. The more covariates are available, the weaker the assumption is.
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The sharp lower and upper bound are given in equation (B.12) in Appendix B.

ASSUMPTION 3 (Strong Overlap and Endogeneity). The following conditions hold.

(1) (Overlap). There exists 0 < s < s̄ < 1 such that 0 < s < s(d,x)< s̄ < 1 for any x and

d ∈ {1,0}.

(2) (Endogeneity). There exists a set X̄ ⊂ X,Pr(X \ X̄) = 0 and an absolute constant

ε > 0 such that infx∈X̄ : |s(0,x)− s(1,x)|> ε .

Assumption 3 is the price of relaxing Assumption 1(2) to Assumption 2(2). It en-

sures that subjects are correctly assigned into Xhelp and Xhurt when the sample size is

large, with high probability. To attain correct classification, a sufficient condition on the

trimming threshold p0(x) is to have its support bounded away from both zero and one.

In particular, the trimming threshold p0(x) cannot be equal to one (i.e., selection cannot

be conditionally exogenous) with positive probability. Lee’s model implicitly imposes

Assumption 3, requiring that the covariate-specific trimming thresholds are bounded

away from one for each discrete cell. Suppose Assumption 1 holds (i.e., Xhurt = /0).

Assumption 3 is still required for sharpness, to ensure that there are enough data points

above and below the quantile level u = 1− p0(x) to estimate the conditional quantile

Q(u,x).

4.2 Estimation

4.2.1 First Stage

In this subsection, I state the asymptotic results for better Lee bounds. For the sake

of clarity, I derive the results below under Assumption 1 rather than Assumption 2.

Appendix B contains the general-case derivations.

Suppose Assumption 1 holds. Applying Bayes rule (see Lemma B.1), I derive a
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moment equation for βU :

βU = µ
−1
10 E

[
D

Pr(D = 1)
·S ·Y ·1{Y≥Q(1−p0(X),X)}−

(1−D)

Pr(D = 0)
·S ·Y

]
= EmU(W,ξ0),

(4.1)

where W = (D,X ,S,S ·Y ) is the data vector, µ10 = Pr(S = 1|D = 0),

ξ0 = {s(0,x),s(1,x),Q(1− p0(x),x)}

is the first-stage nuisance parameter, and mU(W,ξ ) is a moment function. The nui-

sance parameter ξ0 contains the conditional probability of selection {s(0,x),s(1,x)}

in both the treated and control status, and the conditional quantile function Q(u,x).

For simplicity, the population parameters Pr(D = 0),Pr(D = 1) = 1− Pr(D = 0) and

Pr(D = 0,S = 1) are treated as known; their estimation does not conceptually affect the

results.

ASSUMPTION 4 (First-Stage Rate of Selection Equation). There exist sequences of

numbers εN = o(1), sN = o(N−1/4) and a sequence of sets SN such that the first-stage

estimates ŝ(0,x) of the true function s0(0,x) and ŝ(1,x) of the true function s0(1,x)

belong to SN with probability at least 1−εN . Furthermore, the sets SN shrink sufficiently

fast around the true functions:

sup
s∈SN

(
EX(s(0,X)− s0(0,X))2

)1/2

≤ sN = o(N−1/4), (4.2)

sup
s∈SN

(
EX(s(1,X)− s0(1,X))2

)1/2

≤ sN = o(N−1/4).

Assumption 4 states that the functions s(0,x) and s(1,x) are estimated with sufficient

quality. This is a classic assumption in the semiparametric literature (see, e.g., Newey

(1994)). This assumption rules out any second-order effects of the estimation error
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ŝ(0,X)− s(0,X) and ŝ(1,X)− s(1,X) on the bounds, and allows the researcher to focus

on the first-order terms.

Focusing on the function s(0,x), a common approach to estimate s(0,x) is to con-

sider a logistic approximation

s(0,x) = Λ(B(x)′γ0)+ r(x), (4.3)

where Λ(·) is the logistic CDF, B(x) = (B1(x),B2(x), . . .BpS(x))
′ is a vector of basis

functions (e.g., polynomial series or splines), γ0 ∈ RpS is the pseudo-true value of the

logistic parameter, and r(x) is its approximation error.

Primitive Condition 1 (Smooth Selection Model). The function s(0,x) is continuously

differentiable of the order κ ≥ 7 ·dim(X).

Primitive Condition 1 is a low-level sufficient condition for Assumption 4. If this

condition holds, the logistic series estimator of Hirano et al. (2003) takes the form

γ̂LSE = arg max
γ∈RpS

`(γ), (4.4)

where `(γ) is the logistic likelihood function

`(γ) =
1
N

N

∑
i=1

1{Di=0}

(
log(1+ exp(B(Xi)

′
γ))−SiB(Xi)

′
γ

)
. (4.5)

If the Primitive Condition 1 holds, plugging γ̂ = γ̂LSE delivers an estimator

ŝ(0,x) = Λ(B(x)′γ̂), x ∈ X, (4.6)

which converges at rate sN =
√

pS/N = o(N−1/4).

When dim(X) ≥ logN, a consistent estimate of a smooth function does not exist

in general case (Stone (1982)). To make progress, we need alternative assumptions on
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the structure of the function s(0,x). One possible assumption is approximate sparsity,

which requires that few of the basis functions in the vector B(x) can approximate s(0,x)

sufficiently well.

Primitive Condition 2 (Approximately Sparse Selection Model). There exists a vector

γ0 ∈ RpS with only sγ non-zero coordinates such that the approximation error r(x) in

(4.3) decays sufficiently fast relative to the sampling error:

(
1
N

N

∑
i=1

r2(Xi)

)1/2

.P

√
s2

γ log pS

N
=: sN .

Primitive Condition 2 is a low-level sufficient condition for Assumption 4. If this

condition holds, the `1-regularized logistic series estimator of Belloni et al. (2017) takes

the form

γ̂L = arg max
γ∈RpS

`(γ)+λ‖γ‖1, (4.7)

where λ ≥ 0 is a penalty parameter. This penalty term λ‖γ‖1 prevents overfitting in

high dimensions by shrinking the estimate toward zero. Belloni et al. (2017) provides

practical choices for the penalty λ that provably guard against overfitting. An imminent

cost of applying the penalty λ is regularization, or shrinkage, bias, that does not vanish

faster than root-N rate. To prevent this bias from affecting the second stage, I construct

a Neyman-orthogonal moment equation for each bound.

If Primitive Condition 2 holds with a sufficiently small sγ , both the lasso-logistic

estimator and its post-penalized analog satisfy Assumption 4 with sN =

√
s2

γ log pS

N
=

o(N−1/4). In contrast to the smooth model, the convergence rate sN depends on log pS

rather than pS itself, permitting the number of covariates under consideration to exceed

the sample size.

ASSUMPTION 5 (Quantile First-Stage Rate: One-Dimensional Case). Let Ū be a com-
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pact set in (0,1) containing the support of p0(X) and 1− p0(X). There exist a rate

qN = o(N−1/4), a sequence of numbers εN = o(1) and a sequence of sets QN such that

the first-stage estimate of the quantile function Q(u,x) : [0,1]×X→ R belongs to QN

w.p. at least 1− εN . Furthermore, the set QN shrinks sufficiently fast around the true

value Q0(u,x) uniformly on Ū:

sup
Q∈QN

sup
u∈Ū

(
EX(Q(u,X)−Q0(u,X))2

)1/2

≤ qN = o(N−1/4).

Assumptions 5 is an analog of Assumption 4 for the quantile function. It states that

the conditional quantile function Q(u,x) is estimated at sufficient quality, as measured

by the mean square convergence rate qN = o(N−1/4), and is a classic assumption in non-

parametric literature. A classic approach to estimate Q(u,x) is by quantile regression.

When the function Q(u,x) is a sufficiently smooth function of x, the quantile series

estimator of Belloni et al. (2019) converges at rate qN =

√
pQ

N
= o(N−1/4) uniformly

over U, where pQ is the number of series terms to approach Q(u,x). Likewise, `1-

penalized quantile regression estimate of Belloni and Chernozhukov (2013) satisfies

Assumption 5 with qN =
√

s2
Q log pQ/N = o(N−1/4) under the choice of λ proposed

in Belloni and Chernozhukov (2013) if the model is sufficiently sparse. Appendix B.2

contains a more technical discussion of sufficient primitive conditions on the conditional

quantile function.

4.2.2 Second Stage

In this section, I discuss two well-known ideas: cross-fitting and Neyman-orthogonality

(Neyman (1959)). Combining these two ideas, I propose a better Lee bounds estimator

of sharp Lee bounds (βL,βU).

Cross-fitting. When the first-stage parameter ξ is estimated by `1-regularized meth-

ods, sample splitting is not required for the asymptotic results, but can accommodate
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larger sparsity indices sγ and sQ (Chernozhukov et al. (2018)). For the other machine

learning techniques, I rely on the cross-fitting idea of Chernozhukov et al. (2018) to

establish theoretical guarantees.

Neyman-orthogonality. A two-stage estimation procedure is orthogonal if the second

stage is insensitive (formally, orthogonal) to the first-stage parameter (Neyman (1959)).

Lee’s moment equation (4.1) is not orthogonal. In particular, its derivative with respect

to a local parametrization of the first-stage nuisance parameter ξ at its true value ξ0 is

not equal to zero:

∂ξEmU(W,ξ0)[ξ̂ −ξ0] 6= 0. (4.8)

As a result, the biased estimation error of ξ̂ − ξ0 translates into bias in the moment

equation (4.1).

To prevent transmission of the bias into the second stage, I derive an orthogonal

moment equation for the lower and the upper bound. The proposed moment equations,

given in equations (B.23)-(B.24), obey the zero-derivative property

∂ξEgU(W,ξ0)[ξ̂ −ξ0] = 0. (4.9)

As a result, the first-stage bias does not affect the asymptotic distribution of the bounds

under Assumptions 4 and 5.

Theorem 1 (Asymptotic Theory for Sharp Bounds). Suppose Assumptions 2–5 hold. In

addition, if Xhelp 6= /0 and Xhurt 6= /0, suppose ŝ(d,x) converges to s(d,x) uniformly over

X for each d ∈ {1,0}. Then, the better Lee bounds estimator (β̂L, β̂U) is consistent and
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asymptotically normal,

√
N

 β̂L−βL

β̂U −βU

⇒ N (0,Ω) ,

where Ω is a positive-definite covariance matrix defined as

Ω =

 EgL(W,ξ0)
2 EgL(W,ξ0)gU(W,ξ0)

EgL(W,ξ0)gU(W,ξ0) EgU(W,ξ0)
2

 (4.10)

that can be estimated by a sample analog.

Theorem 1 delivers a root-N consistent, asymptotically normal estimator of (βL,βU)

assuming the conditional probability of selection and conditional quantile are estimated

at a sufficiently fast rate. In particular, this assumption is satisfied when few of the

covariates affect selection and the outcome. By orthogonality, the first-stage estimation

error does not contribute to the total uncertainty of the two-stage procedure. As a result,

the asymptotic variance (4.10) does not have any additional terms due to the first-stage

estimation.

Remark 1 (Sorted Bounds). The sorted estimator (β̃L, β̃U),

β̃L = min(β̂L, β̂U), β̃U = max(β̂L, β̂U).

must converge at least as fast as the original estimator (β̂L, β̂U).

Unlike standard Lee bounds, β̂L and β̂U are not ordered by construction. Cher-

nozhukov et al. (2013a) suggests that sorting the estimated bounds can only improve

the convergence rate. Likewise, sorting the confidence region continues to guarantee

coverage if the original (unsorted) confidence region guarantees coverage. However,

the Imbens and Manski (2004) local super-efficiency assumption no longer holds (Stoye
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(2009)). Instead, one can use Stoye (2009)’s modification of the IM confidence interval,

CIStoye
α =


[

β̂L−
Ω̂

1/2
LL cS

L,α√
N

, β̂U +
Ω̂

1/2
UU cS

U,α√
N

]
, β̂L−

Ω̂
1/2
LL cS

L,α√
N

≤ β̂U +
Ω̂

1/2
UU cS

U,α√
N

,

/0, otherwise,

where cS
L,α and cS

U,α are Stoye’s critical values. If β̂U is too far below β̂L, the interval

CIStoye
α is empty, indicating that Assumptions 4 and 5 are likely to be violated.

5 Agnostic approach

In this section, I relax the sparsity assumption from Section 4. Suppose Assumption 1

holds. Let XA be a subvector of covariates X . By Lemma B.1,

β
A
L ≤ β0 ≤ β

A
U ,

where [β A
L ,β

A
U ] is the sharp identified set for β0 in the model (D,XA,S,S ·Y ) where only

XA covariates are observed.

To select covariates in a data-driven way, randomly split the full sample into an

auxiliary sample A and a main sample M. In the auxiliary sample, select the covariates

by an arbitrary machine learning method. In the main sample, define the target bounds

as the sharp bounds in the model (D,XA,S,S ·Y ) with selected covariates XA. Assuming

Primitive Condition 1 holds for the selected model, let β̂ A
L and β̂ A

U be the estimates of

β A
L and β A

U , based on logistic and quantile series estimates of the first-stage nuisance

parameters. Conditional on the auxiliary sample, the (1− α) confidence region for

[β A
L ,β

A
U ] is

[LA,UA] = [β̂ A
L −|M|

−1/2
Ω̂

1/2
A,LLcα/2, β̂

A
U + |M|−1/2

Ω̂
1/2
A,UU c1−α/2].
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Variational Inference. Different splits (A,M) of the sample {1,2, . . . ,N} yield dif-

ferent target bounds (β A
L ,β

A
U ) and different approximate distributions of these bounds.

If we take the splitting uncertainty into account, the pair of bounds (β A
L ,β

A
U ) is random

conditional on the full data sample. In practice, one may want to generate several ran-

dom splits and aggregate various bounds over various partitions. For reporting purposes,

I use Chernozhukov et al. (2017)’s adjusted point estimator

β̂L = Med[β̂ A
L |Data], β̂U = Med[β̂ A

U |Data].

To quantify the uncertainty of the random split, I use Chernozhukov et al. (2017)’s

adjusted confidence interval of level 1−2α:

[L,U ] =
[

Med[LA|Data], Med[UA|Data]
]
, (5.1)

where Med(X) = inf{x ∈ R : PX(X ≤ x) ≥ 1/2} is the lower median and Med(X) =

sup{x ∈ R : PX(X ≥ x)≥ 1/2} is the upper median. A more formal analysis of agnostic

approach is given in Section B.3.

6 Extensions

In this section, I discuss extensions of my basic setup. In Section 6.1, I extend my setup

to allow for a multi-dimensional outcome, using standardized treatment effect as the

main motivation for this extension. Sections 6.2 and 6.3 derive better Lee bounds for

the Intent-to-Treat and Local Average Treatment Effect parameters. Sections 6.4 and

6.5 generalize my results to settings with multiple observations for each cross-sectional

unit. Section 6.6 considers the case when the propensity score is unknown. The results

I present in the main text summarize the insights from a formal analysis in Appendix B.
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6.1 Multi-dimensional outcome

In this section, I generalize the Lee (2009) sample selection model to allow for a multi-

dimensional outcome variable. As before, the observed sample (Di,Xi,Si,SiYi)
N
i=1 con-

sists of the realized treatment D, the vector of baseline covariates X , the selection out-

come S = D · S(1) + (1−D) · S(0), and outcomes for the selected subjects S ·Y =

S · (D ·Y(1)+ (1−D) ·Y(0)), where S ∈ Rd and Y ∈ Rd are d-vectors. The param-

eter of interest is the average treatment effect

β0 = E[Y(1)−Y(0)|S(1) = S(0) = 1] (6.1)

for a group of subjects who are selected into the sample for each scalar outcome regard-

less of treatment status.

Proposition B.4 shows that the sharp identified set for β0 is compact and convex, and

thus can be summarized by its projections on various directions of economic interest.

For any point q on the unit sphere, the largest admissible value σ(q) of q′β0 consistent

with the observed data, is commonly referred to as the support function. In Appendix B,

I provide a Gaussian approximation for the support function process that is uniform over

the unit sphere and propose a Bayes bootstrap procedure to conduct simultaneous infer-

ence uniformly over the sphere. Examples 1 and 2 explain the use of support function

in applied work.

Example 1. Wage Growth Let S = (St1,St2) be a vector of employment outcomes for

t ∈ {t1, t2}, Y = (Yt1,Yt2) be a vector of log wages, and β0 = (βt1,βt2) be the effect on

log wage in time periods t1 and t2. The sharp upper and lower bounds on the average

wage growth effect from t1 to t2, βt2−βt1 , are given by

[−
√

2σ(−q),
√

2σ(q)], q = (1/
√

2,−1/
√

2). (6.2)

Example 2. Standardized Treatment Effect Let Y be a vector of related outcomes
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and β0 be a vector of average effects. A common approach for summarizing findings is

to consider the standardized treatment effect

STE =
1
d

d

∑
j=1

β j

ζ j
, (6.3)

where ζ j is the standard deviation of the outcome j in the control group. The sharp

lower and upper bounds on STE are given by

[−Cζ σ(q), Cζ σ(q)], (6.4)

where q = ζ/‖ζ‖ and Cζ = ‖ζ‖/d.

Example 2 demonstrates the use of support functions when q = ζ/‖ζ‖ is a popula-

tion parameter. In contrast to Example 1, the direction q= ζ/‖ζ‖ is unknown and needs

to be estimated. Therefore, it is important that that the support function estimator can

be approximated uniformly in some neighborhood of q in addition to the point q itself. I

establish this approximation in Theorem B.7, and give inference methods for hypothesis

testing in Theorem B.9.

6.2 Intent-to-Treat

I consider the standard Intent-to-Treat parameter. Let D = 1 be an indicator of being

offered treatment and let X̄ be a vector of stratification covariates (i.e., fixed effects), so

that D is randomly assigned conditional on X̄ . In addition, X̄ is a saturated vector and

X is a full covariate vector that includes X̄ . The object of interest is the intent-to-treat

effect (ITT)

Y = β0 +β1D+ X̄ ′β2 + ε, S(1) = S(0) = 1, (6.5)
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where β1 is the main coefficient of interest, interpreted as the average causal effect of

being offered treatment to an always-taker. Since only one of S(1) and S(0) is observed,

the parameter β1 is not point-identified. For the sake of simplicity, suppose Xhurt = /0.

A sharp upper bound on β1 is the regression coefficient on D in the truncated regression

on the selected outcomes, where the bottom outcomes in the treated group are trimmed

until selection response rates in both the D = 1 and D = 0 groups are equal to each

other for each value of strata X̄ . (Proposition B.13, Appendix B). Furthermore, any

subvector of X that contains X̄ corresponds to another valid bound on β1 that may not be

sharp. However, a subvector of X that does not contain X̄ does not correspond to a valid

bound. Lemma B.14 in Appendix B extends the orthogonal and agnostic approaches to

the Intent-to-Treat parameter.

6.3 Local Average Treatment Effect

I consider the Local Average Treatment Effect parameter defined in Imbens and Angrist

(1994). Let Z = 1 be a binary instrument indicator, such as an offer of treatment, and

D = 1 be a binary treatment, such as actual treatment receipt, and define X̄ , X , S and Y

as in the previous section. Suppose the potential selection outcome

S(1,z) = S(0,z) = S(z), for any z ∈ {1,0}

is fully determined by the value of the instrument. The object of interest is the av-

erage treatment effect on the subjects who comply with the treatment offer and select

into the sample regardless of the treatment offer. Finally, suppose being a complier is

independent of being an always-taker given on all observed covariates. Then, the tar-

get parameter is identified as the coefficient π1 in the two-stage least squares (2SLS)
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regression

Y = π0 +π1D+ X̄ ′π2 +ν , S(1) = S(0) = 1, (6.6)

where the first-stage equation is

D = δ0 +δ1Z + X̄ ′δ2 +ζ , S(1) = S(0) = 1. (6.7)

As shown in Proposition B.18 in Appendix B, a sharp upper bound on π1 is the 2SLS

effect in the truncated regression on the selected outcomes, where the bottom outcomes

in the treated group are trimmed until selection response rates are the same in D =

1,Z = 1 and D = 0,Z = 1 and Z = 0 groups for each value of strata X̄ . Furthermore,

any subvector of X that contains X̄ corresponds to another valid bound on π1 that may

not be sharp. However, a subvector of X that does not contain X̄ may not correspond to

a valid bound.

6.4 Clustered Data

Suppose that the researcher observes data sampled from G clusters: {Wig, i= 1,2, . . . ,Ng, g=

1,2, . . .G}. Each cluster size is non-random, and 1≤ Ng ≤ N̄ < ∞ for a constant N̄ that

does not depend on sample size G. According to Chiang (2020), the post-lasso-logistic

estimator with the cluster-robust penalty parameter satisfies the analog of Assumption

4 with sG = G−1/4 rate. Generalizing Chiang (2020)’s arguments, one can establish

the analog of Assumption 5 with qG = G−1/4. Under these assumptions, the better Lee

bounds estimator is consistent and asymptotically normal. The cluster-robust estimator

of asymptotic variance Ω in Theorem 1 takes the form

Ω̂cr =

 1/G∑
G
g=1(∑

ng
c=1 gL(Wgc, ξ̂ ))

2 1/G∑
G
g=1(∑

ng
c=1 gL(Wgc, ξ̂ ))(∑

ng
j=1 gU(Wg j, ξ̂ ))

1/G∑
G
g=1(∑

ng
c=1 gL(Wgc, ξ̂ ))(∑

ng
j=1 gU(Wg j, ξ̂ )) 1/G∑

G
g=1(∑

ng
c=1 gU(Wgc, ξ̂ ))

2.


(6.8)
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6.5 Panel Data

Consider a setting where the units (Di,Sit ,SitYit ,Xi)
NT
i=1,t=1 are observed over t = 1,2, . . . ,T

time periods. Using the notation of Section 6.1, let Si := (Si1,Si2, . . .SiT ) be a vector of

selection indicators for an individual i and Yi := (Yi1,Si2, . . .YiT ) be a vector of out-

comes. The target parameter β0 is the average treatment effect

β0 = E[Y(1)−Y(0)|S(1) = S(0) = 1]

for subjects who are selected into the sample in each period regardless of treatment

status. In contrast to the cross-sectional setup of Section 6.1, it is important to allow

the observations to be correlated over time within each individual. In this case, one can

group the observations over time into clusters and use the cluster-robust standard error

derived in Section 6.4 with G = N and Ng = T, g ∈ {1,2, . . .T}.

6.6 Unknown propensity score

In this section, I extend better Lee bounds to accommodate the case when the conditional

probability of treatment is unknown. The orthogonal moment equation (B.18) involves

an additional nuisance parameter

{
E[Y |S = 1,D = 0,X ], E[Y |Y ≤ Q(u,X),S = 1,D = d,X ], d ∈ {1,0}

}

that needs to be estimated. If the sparsity assumption holds, Belloni et al. (2017)’s

linear lasso estimator of the function E[Y |S = 1,D = 0,X ]. The truncated conditional

mean function E[Y |Y ≤Q(u,X),S = 1,D = 1,X ], u∈ {p0(X),1− p0(X)} can be esti-

mated by Chernozhukov et al. (2018)’s automatic debiasing approach, aimed at generic

nuisance functions that emerge as a result of orthogonalization. If few of the covariates

affect selection and the outcome, the assumptions of Chernozhukov et al. (2018)’ setting
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hold, and the proposed estimate obeys an analog of Assumptions 4-5.

7 Simulation Evidence

In this section, I compare the performance of basic, naive and better Lee methods, build-

ing a simulation exercise on the JobCorps data set. The vector X = (1,X1,X2) consists

of a constant and two binary indicators, one for female gender (X1) and one for getting

away from home being a very important motivation for joining JobCorps (X2), taken

from the JobCorps data. An artificial treatment variable D is determined by an unbiased

coin flip. A binary employment indicator S is

S = 1{X ′α +D ·X ′γ +U > 0}, (7.1)

where U is an independently drawn logistic shock. Likewise, log wages are generated

according to the model

Y = (1,X1)
′
κ + ε, ε ∼ N(0, σ̃2), (7.2)

where ε is an independent normal random variable. The parameter vector (α,γ,κ, σ̃2)

is taken to be the estimates of (7.1) and (7.2), where S and Y are week 90 employment

and log wages, respectively, adjusted as described in Appendix D. The sets Xhelp =

{X1 = 0 and X2 = 0} and Xhurt = {X1 6= 0 or X2 6= 0}, as determined by the sign of

the parameter γ . The population data set is taken to be 9,145 observations of baseline

covariates X and the artificial variables D,S,S ·Y , generated for each observation. By

construction, the average treatment effect on the always-takers β0 is zero. The true

sharp identified set is [−0.011,0.018]. Basic Lee bounds are defined as the weighted

average of standard Lee bounds on Xhelp and Xhurt. The true basic identified set is

[−0.014,0.035].
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I compare the performance of four estimators—oracle, basic, naive and better Lee

methods—by drawing random samples with replacement from the population data set.

To mimic the researcher’s covariate selection problem, I augment this data set with 28

covariates selected by Lee. Although these variables are absent from equations (7.1)

and (7.2), they are strongly correlated with X1 and X2, making covariate selection an

interesting problem. The oracle method is the output of Algorithm 1, where the oracle

knows the identities of covariates in vector X and the direction of employment effect on

Xhelp and Xhurt. In contrast, all other methods need to learn Xhelp and Xhurt from the

available sample. The basic method estimates Xhelp by logistic and quantile regression

on 28 raw covariates. It targets basic identified set [−0.014,0.035]. Both the naive and

the better methods target the sharp identified set [−0.011,0.018]. The naive method es-

timates the first-stage functions (2.8) and (2.9) by standard regression methods on all 28

covariates. In contrast, the better method selects covariates by post-lasso-logistic of Bel-

loni et al. (2016) for the employment equation and by post-lasso of Belloni et al. (2017)

for the wage equation. In the second stage, both the naive and the better method rely on

orthogonal moment equations (B.18) for the lower and the upper bound, respectively.

Table 2 reports the finite-sample performance for the oracle, basic, naive and better

methods. I focus on the lower and the upper bound separately to detect any outward

bias or poor coverage of either bound, which is masked when a confidence interval is

considered. On average, the width of oracle bounds ranges from 0.028 to 0.034.

Table 2 presents evidence that the better method outperforms all other methods in

terms of width, precision, and coverage. Indeed, the standard deviations of the naive and

the basic estimates are equal for all sample sizes under consideration. Second, better Lee

bounds are substantially tighter than the basic and the naive ones, by a factor of 3 and

2.5 on average. Third, the 95 % confidence interval for the true lower bound based on

the better method covers it in at least 88% of simulation runs. For the upper bound, the

coverage rate is at least 93%. In contrast, the basic and the naive methods exhibit poor

coverage despite that X is always included into the logistic regression together with
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Table 2: Finite-sample performance of oracle, basic, naive and better Lee methods

Panel A: Lower Bound

Bias St. Dev. Coverage Rate
N Oracle Basic Naive Better Oracle Basic Naive Better Oracle Basic Naive Better

3,000 -0.00 -0.05 -0.06 -0.02 0.01 0.02 0.03 0.03 0.94 0.21 0.64 0.88
5,000 -0.00 -0.04 -0.04 -0.01 0.01 0.01 0.02 0.01 0.94 0.24 0.63 0.88
9,000 0.00 -0.03 -0.03 -0.01 0.01 0.01 0.02 0.01 0.95 0.26 0.65 0.93
10,000 0.00 -0.03 -0.03 -0.01 0.01 0.01 0.01 0.01 0.95 0.25 0.64 0.93
15,000 0.00 -0.02 -0.02 -0.01 0.00 0.01 0.01 0.01 0.95 0.23 0.64 0.92

Panel B: Upper Bound

3,000 0.00 0.05 0.04 0.00 0.01 0.02 0.03 0.02 0.94 0.21 0.64 0.93
5,000 0.00 0.04 0.03 -0.00 0.01 0.01 0.02 0.01 0.95 0.25 0.63 0.95
9,000 -0.00 0.03 0.02 0.00 0.01 0.01 0.01 0.01 0.95 0.28 0.65 0.97
10,000 -0.00 0.03 0.02 -0.00 0.01 0.01 0.01 0.01 0.95 0.29 0.64 0.97
15,000 -0.00 0.02 0.01 -0.00 0.00 0.01 0.01 0.01 0.94 0.28 0.64 0.97

Notes. Results are based on 10,000 simulation runs. In Panel A, the true parameter value is
−0.014 for the basic method, and −0.011 for all other methods. In Panel B, the true parameter
value is 0.035 for the basic method, and 0.018 for all other methods. Bias is the difference
between the true parameter and the estimate, averaged across simulation runs. St. Dev. is the
standard deviation of the estimate. Coverage Rate is the fraction of times a two-sided symmetric
CI with critical values cα/2 and c1−α/2 covers the true parameter, where α = 0.95. N is the
sample size in each simulation run. Oracle, basic, naive and better estimated bounds cover zero
in 100% of the cases. The naive method estimates the first-stage functions (2.8) and (2.9) by
logistic and quantile regression on all 28 covariates.

irrelevant covariates. Although the vector X is not been selected for the employment

equation in at least 90% of simulation runs (i.e., “perfect” model selection by lasso-

logistic rarely occurs), the better estimates prove robust to incorrectly attributing an

observation from Xhelp into Xhurt and vice versa. Table D.1 in Appendix D presents

additional simulation evidence suggesting that the agnostic version of the better method

also outperforms the basic method in terms of width and coverage and has comparable

precision.
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8 Empirical Applications

In this section, I demonstrate how better Lee bounds can achieve nearly point-identification

in three empirical settings. First, I study the effect of JobCorps on wages, as in Lee

(2009). Second, I study the effect of PACES voucher tuition subsidy on pupils’ test

scores, as in Angrist et al. (2002). Finally, I study the effect of Medicaid eligibility

and insurance on self-reported healthcare utilization and health, as in Finkelstein et al.

(2012).

8.1 Lee (2009)

Lee (2009) studies the effect of winning a lottery to attend JobCorps, a federal vocational

and training program, on applicants’ wages. The data set is the same as in Section 3.

Table 3 reports estimated bounds on the JobCorps week 90 wage effect on the

always-takers and the confidence region for the identified set. The basic Lee bounds

cannot determine the direction of the effect (Column (1)). Neither can the sharp bounds

given Lee’s covariates (Column (2)). If few of the covariates affect week 90 employ-

ment and wage, the Column (3) bounds suggest that JobCorps raises week 90 wages by

4.0–4.6% on average, which is slightly smaller than Lee’s original estimate (4.9–5%).

Despite numerical proximity, Lee’s basic estimates (Table 1, Column 1) and better Lee

estimates (Table 3, Column 3) have substantially different reasons for being tight. The

former bounds are tight because week 90 employment is interpreted as unaffected by

the lottery outcome (i.e., the estimated unconditional trimming threshold p̂ is close to

one). In contrast, the better ones account for the differential sign of the JobCorps effect

on applicants’ employment. The better Lee bounds are tight because variation in em-

ployment is well-explained by reasons for joining JobCorps, highest grade completed,

and variation in wages is explained by pre-randomization earnings, household income,

gender and other socio-economic factors.

The bounds in Column (3) assume sparsity, which excludes some wage covariates
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from the employment equation and vice versa. In Column (4), the target bounds are

defined as the sharp bounds given the 15 covariates, selected for either employment or

wage equation in Column (3). The Column (4) are almost the same as the Column (3)

ones, suggesting that it is plausible for week 90 employment and wage equations to be

sparse. However, the Column (4) confidence region does not account for the uncertainty

in how these 15 covariates are selected.

To properly quantify the uncertainty of the Column (4) bounds, I invoke the condi-

tional (Column (5)) and variational (Column (6)) agnostic approaches. In Column (5),

the auxiliary sample is taken to be 6,241 applicants that Lee excluded from considera-

tion due to missing data in weeks other than week 90. The Column (5) bounds target

the sharp bounds given the covariates selected on this auxiliary sample. The estimates

suggest that JobCorps raises week 90 wages by 4.1–4.3%, which is consistent with the

lasso-based findings (Columns (3) and (4)). Furthermore, the 95% confidence region

is almost the same as the Column (4) one, suggesting that the Column (4) confidence

region adequately captures uncertainty of the Column (4) estimate. Column (6) differs

from Column (5) by splitting Lee’s sample into the auxiliary and the main part. The

bounds in Column (6) are slightly wider than the Column (5) ones.

One may argue that the Column (2) bounds could be more robust than the better

estimates because they condition on more covariates in Assumption 2. A closer inspec-

tion of Lee’s covariates suggests this is unlikely to be the case. Indeed, Lee’s covariates

contain several equivalent representations of work experience and income. The Column

(5) bounds are based on the covariates that capture similar information to the one cap-

tured by Lee’s covariates, but with fewer covariates. As a result, these bounds are based

on more precisely estimated first-stage parameters. To conclude, while the bounds in

Columns (4), (5) and (6) are not based on the weakest possible version of Assumption

2, they are based on the same assumption as the Column (2) bounds. Finally, in all

bounds in Table 3, the fraction of subjects with positive conditional employment effect

is consistent with the Figure 2 estimate.
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Table A.7 in Appendix A presents sharp bounds on the average wage effect for all

horizons that Lee considered. Across the board, the sparsity-based better Lee bounds

(Column (3)) are substantially tighter than the bounds based on Lee’s covariates (Columns

(1)-(2)), by a factor of 1.7 (week 45) and 18–21.2 (week 104 onwards). In fact, the better

Lee bounds are strictly included in the original sharp Lee’s estimates (Table 1, Column

(2)) where unconditional monotonicity is erroneously imposed. In addition, the better

Lee bounds are more precisely estimated.

Let Sweek(1) and Sweek(0) be the potential employment outcomes in a given week,

and Yweek(1) and Yweek(0) be the potential log wage outcomes. Let Sweek =D ·Sweek(1)+

(1−D) · Sweek(0) be the realized employment and Yweek be the realized wage. I focus

on a subset of subjects whose treatment effect lower bound, averaged across weeks 80–

120, is positive conditional on the full covariate vector X . My subjects of interest are

XPLB = X
help
PLB∪Xhurt

PLB, where

X
help
PLB = {X ∈ Xhelp :

1
40

120

∑
week=80

E[Yweek|D = 1,Sweek = 1,Yweek ≤ Qweek(pweek(X),X),X ]

(8.1)

−E[Yweek|D = 0,Sweek = 1,X ]> 0},

and Xhurt
PLB is its analog for Xhurt.
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Table 3: Estimated bounds on the JobCorps effect on week 90 log wages

Average Treatment Effect (ATE) ATE on XPLB

(1) (2) (3) (4) (5) (6) (7)

[-0.027, 0.111] [-0.005, 0.091] [0.040, 0.046] [0.041, 0.059] [0.041, 0.043] [0.024, 0.065] [0.047, 0.061]

(-0.058, 0.142) (-0.054, 0.135) (0.001, 0.078) (-0.019, 0.112) (-0.023, 0.101) (-0.05, 0.131) (0.005, 0.100)

Selection covs 28 28 5 177 15 13 12-13 5 177

Post-lasso-log. N/A N/A 9 N/A N/A N/A 9

Wage covs 0 28 470 15 13 12-13 470

Post-lasso N/A N/A 6 N/A N/A N/A 6

Notes. Estimated bounds are in square brackets and the 95% confidence region for the identified set is in parentheses. All subjects are
partitioned into the sets Xhelp = {p̂(X)< 1} and Xhurt = { p̂(X)> 1}, where the trimming threshold p̂(x) = ŝ(0,x)/ŝ(1,x) is estimated as
in equation (3.3). Column (1): basic bounds given 28 Lee’s covariates. Column (2): sharp bounds given 28 Lee’s covariates (i.e., naive
bounds). Column (3): sharp bounds given all covariates assuming few of them affect employment and wage. Column (4): sharp bounds
given the union of raw covariates selected for the employment and wage equations in Column (3). Column (5): sharp bounds given the
covariates selected on the sample that Lee excluded due to missing data in weeks other than 90. Column (6): variational bounds defined in
Section 5 . Column (7): sharp bounds, based on the Column (3) first-stage estimates, for the PLB sample. The PLB sample of N = 7,735
is defined as always-takers whose conditional treatment effect lower bound is positive in at least one of six horizons considered by Lee
(weeks 45, 90, 104, 135, 180, 208). Covariates are defined in Section C.2. First-stage estimates are given in Table F.12 for Columns
(1) and (2), Table F.11 for Columns (3) and (7), Table F.13 for Columns (4), and Table F.14 for Columns (5). Computations use design
weights. See Appendix F.3 for details.
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Figure 3: Estimated bounds on the JobCorps effect on log wages by week.

Notes. The horizontal axis shows the number of weeks since random assignment. The black
(gray) circles are an estimated upper (lower) bound on the average wage effect. The black (gray)
fitted line is estimated by local linear approximation to 201 black (gray) points, respectively. The
sample consists of subjects whose average treatment effect lower bound is positive across weeks
80–120 (N = 4,564), as defined in equation (8.1). Computations use design weights.

Figure 3 plots the average JobCorps effect on wages. The black and gray lines show

the upper and lower bounds on the average wage effect for the always-takers in the XPLB

subgroup. The lower bound sharply increases from −0.122 at week 5 to 0.072 at week

110 and declines to zero afterwards. The upper bound on the wage effect decreases from

0.2 in week 13 to 0.09 around week 80, after which it fluctuates around 0.10.

JobCorps Effect on Wage Growth Rate. I study the JobCorps effect on long-term

wage growth from week 104 to week 208. The 2-year time span between week 104

and week 208 is the longest possible period to consider without encountering short-term

effects. Specifically, week 104 is one of the earliest weeks when the lower bound on the

wage effect has become positive and stopped growing, according to Figure 3.
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Figure 4: Geometric interpretation of the JobCorps effect on wage growth from week 104 to
week 208.

Notes. This figure shows the best circular approximation to the estimated identified set (solid
red perimeter), the best circular approximation to the 95% pointwise confidence region (dashed
red perimeter), the estimated projections of the true sets on the -45-degree line (four black dots),
and the intercepts of the corresponding tangent lines. Computations use design weights. See
Appendix F.2 for the details.
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For the sake of simplicity, I focus on subjects who are always-takers in both 104

and 208 weeks and whose treatment-control difference in the employment rate (3.1)

is positive in both weeks. To sum up, my subjects of interest are the always-takers-

squared-plus:

AT2+ = {S104(1) = 1,S208(1) = 1,S104(0) = 0,S208(0) = 1,∆104(X)> 0,∆208(X)> 0},

(8.2)

where “squared” refers to the two time periods under consideration and “plus” refers

to the positive sign of the treatment-control difference in the employment rate. For the

(AT2+), define the potential wage growth in the treated (d = 1) and control (d = 0)

groups as

ρ(d) = E[Y208(d)−Y104(d)|AT2+], d ∈ {1,0}. (8.3)

The wage growth rate in the control group is identified as

ρ(0) = E[Y208−Y104|S104 = 1,S208 = 1,D = 0,∆104(X)> 0,∆208(X)> 0].

The growth rate in the treated group is not identified, but can be bounded using the

relation

ρ(1) = ρ(0)+β208−β104, (8.4)

where βweek stands for the average treatment effect for the AT2+ group in a particular

week.

A simplistic approach to construct an upper bound on β208−β104 is to subtract the

lower bound on β104 from the upper bound on β208. Since wages in weeks 104 and

208 are likely to be correlated, this upper bound may not be sustained by any data
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generating process consistent with observed data. To obtain the sharp bound, project the

true identified set on the −45 degree line and take the intercepts of the corresponding

tangent lines. In Figure 4, the projection endpoints correspond to the inner black dots,

and the tangent lines passing through them have intercepts equal to −0.11 and 0.12,

respectively. Adding a sample estimate of ρ(0) = 0.149 to the intercepts yields the

bounds on ρ(1), [0.039,0.260].

Figure A.5 reports the upper and lower bounds on the average log wage for the

always-takers in the control status, E[Yweek(0)|Sweek(1) = Sweek(0) = 1] for each week.

The lower (upper) bound grows from 1.45 (1.90) in week 5 to 1.978 (2.036) in week

208. The bounds’ width decreases from 0.45 in week 14 to 0.01 in week 208. The gap

between the lower and the upper bound shrinks over time as the share of applicants with

a positive employment effect, where the average log wage is identified in the control

status, increases. One can interpret Figure A.5 as corroborating the Ashenfelter (1978)

pattern and showing that earnings would have recovered even without JobCorps training.

Therefore, evaluating JobCorps would have been very difficult without a randomized

experiment, as one would need to explicitly model mean reversion in the potential wage

in the control status.

8.2 Angrist et al. (2002)

Angrist et al. (2002) studies the effect of winning a voucher from the Colombia PACES

program, a voucher initiative established in 1991 to subsidize private school education,

on pupils’ test scores. In 1999, Angrist et al. (2002) administered a grade-specific test

and found the voucher effect on the total test score to be equal to 0.2 standard deviations,

a substantial boost equivalent to one additional year of schooling. I examine whether

this finding is robust to the endogeneity of test participation. The sample consists of

N = 3,610 subjects from Bogota’s 1995 applicant cohort and has lottery outcome and

test scores for Mathematics, Reading, and Writing. In addition, the sample has 25 de-
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mographic characteristics, including the applicant’s age and gender, their father’s and

mother’s ages, father’s and mother’s highest grade completed, and a collection of in-

dicators for area of residence. While the number of raw covariates is moderate, the

number of their three-way interactions p = 900 is quite large for logistic and quantile

series methods.

Table 4 reports bounds on the voucher effect on test scores in Mathematics (Panel

A), Reading (Panel B), and Writing (Panel C) for various parameters of interest. The

sharp bounds based on 25 raw covariates (Columns (4)-(5)) cover zero for all three

subjects. Assuming sparsity, the better Lee bounds consider 900 technical covariates

and achieve nearly point-identification for all three subjects (Column (6)). In addition,

the better Lee bounds are more precisely estimated than the Column (4) ones. The width

of 95% confidence region for the true identified set is smaller than its Column (4) analog,

by a factor ranging from 0.38 (Reading) to 0.48 (Mathematics). For Mathematics and

Writing, the average voucher effect on the always-takers comprises 3/4 of respective

Angrist et al. (2002)’s intent-to-treat estimate that does not account for selection bias.

One may wonder whether it is possible to shorten the 95 %-CR for better Lee bounds

by focusing on a non-sharp bound instead of the sharp one. I argue that it is not possible

to do so without imposing either unconditional monotonicity or independence. Indeed,

the conditional test participation probability must be estimated to account for differential

response rates. Since the test participation rate is very low (close to 7%), any estimate

of this parameter will introduce substantial noise. Among the three non-parametric

specifications in Columns (3)–(6), post-lasso-logistic introduces the smallest amount

of noise because it considers more technical covariates but restricts itself to a smaller

covariate set.

8.3 Finkelstein et al. (2012)

Finkelstein et al. (2012) studies the effect of access to Medicaid on self-reported health-
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Table 4: Estimated bounds on the PACES voucher effect on pupils’ test scores

ITT Average Treatment Effect (ATE)

Exogeneity Monotonicity Conditional monotonicity

(1) (2) (3) (4) (5) (6)

Mathematics [0.178, 0.178] [0.075, 0.279] [-0.432, 0.590] [-0.274, 0.545] [-0.169, 0.538] [0.056, 0.084]

(-0.058, 0.413) (-0.243, 0.548) (-0.707, 0.828) (-0.710, 1.016) (-0.603, 0.975) (-0.298, 0.405)

Reading [0.204, 0.204] [0.029, 0.261] [-0.386, 0.783] [-0.333, 0.654] [-0.252, 0.526] [0.163, 0.177]

(-0.021, 0.429) (-0.256, 0.538) (-0.643, 1.031) (-0.849, 1.143) (-0.735, 0.924) (-0.140, 0.460)

Writing [0.126, 0.126] [-0.057, 0.222] [-0.552, 0.433] [-0.396, 0.380] [-0.150, 0.474] [0.086, 0.094]

(-0.101, 0.353) (-0.346, 0.486) (-0.808, 0.679) (-0.855, 0.825) (-0.586, 0.888) (-0.249, 0.396)

N 282 3610 3610 3610 3610 3610

Test-tak. covs N/A N/A 25 25 150 900

Post-lasso-logistic N/A N/A N/A N/A N/A 10

Test score covs N/A N/A 0 25 25 25

Post-lasso N/A N/A N/A N/A N/A 9

Estimated bounds are in square brackets and the 95% confidence region for the identified set is in parentheses. Any test participant (a
pupil who arrives at a testing location) is tested in all three subjects. Column (1): ITT estimate from Angrist et al. (2002), Table 5,
Column 1. Column (2): basic Lee bounds under unconditional monotonicity. In Columns (3)–(6), all subjects are partitioned into the
sets Xhelp = {p̂(X) < 1} and Xhurt = { p̂(X) > 1}, where the trimming threshold p̂(x) = ŝ(0,x)/ŝ(1,x) is estimated as in equation (3.3).
Column (3): basic Lee bounds based on 25 raw covariates. Column (4): sharp Lee bounds based on 25 raw covariates. Column (5) differs
from Column (4) only by adding second-order interactions of 6 continuous covariates into the test-taking equation. Column (6): sharp
Lee bounds, based on the technical covariates selected by post-lasso-logistic for the test participation and on the raw covariates selected
by post-lasso for the test score. Baseline covariates are described in Table F.15. First-stage estimates are given in Table F.16. Selected
covariates are described in Figure F.7. See Appendix F.4 for details.
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care utilization and measures of health. The data come from the Oregon Health Insur-

ance Experiment (OHIE), which allowed a subset of uninsured low-income applicants

to apply for Medicaid in 2008. OHIE used a lottery to determine who was eligible to

apply for Medicaid. One year after randomization, a subset of N = 58,405 applicants

were mailed a survey with questions about recent changes in their healthcare utiliza-

tion and general well-being. The sample contains the lottery outcome, actual Medicaid

enrollment, and survey responses. In addition, the sample has 64 pre-determined charac-

teristics including demographics, enrollment in SNAP and TANF government programs,

and pre-existing health conditions. While the number of raw covariates is moderate, the

number of their pairwise interactions p = 642 = 4,096 is quite large for classic non-

parametric methods. Since the survey response rate is close to 50% and the control

applicants respond 1.07 more likely than the treated ones, Finkelstein et al. (2012)’s

findings are subject to potential nonresponse bias.

Finkelstein et al. (2012) studies the effect of winning the Medicaid lottery using the

intent-to-treat (ITT) framework. If an applicant wins the lottery, all members of their

household become eligible to enroll. As a result, larger households are more likely to

win the lottery than smaller ones. Furthermore, the control applicants were oversampled

in the earlier survey waves. To account for the correlation between household size and

survey wave fixed effects, the intent-to-treat equation takes the form

Yih = β0 +β1Lotteryh + X̄ihβ2 + εih, (8.5)

where i denotes an individual, h denotes a household, Lotteryh = 1 is a dummy for

whether household h was offered access to Medicaid, and X̄ih is a vector of stratification

characteristics (survey wave and household size fixed effects). The coefficient β1 is the

main coefficient of interest interpreted as the impact of being able to apply for Medi-

caid through the Oregon lottery. Finkelstein et al. (2012) also studies the local average
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treatment effect (LATE) of insurance,

Yih = π0 +π1Insuranceih + X̄ihπ2 +νih, (8.6)

where Insuranceih is an applicant-specific measure of insurance coverage defined as

“ever on Medicaid during study period”, and all other variables are as defined in (8.5).

Finkelstein et al. (2012) estimates (8.6) by two-stage least squares (2SLS), using Lotteryh

as an instrument for Insurance and including X̄ih in both the first and the second stages

of 2SLS. The coefficient π1 is the main coefficient of interest: it shows the impact of

insurance coverage on subjects who enroll in Medicaid if and only if they become eli-

gible. If non-response is exogenous for each household size and survey wave, Medicaid

eligibility and enrollment have a positive and significant effect on all measures of health

and healthcare utilization (Tables 5, 6, A.8, A.9, Columns (1) and (4)).

I examine whether the Intent-to-Treat (8.5) and Local Average Treatment Effect

(8.6) equations are robust to non-response bias. Tables 5 and 6 show the results for

self-reported health outcomes. The standard trimming approach is very conservative

and cannot determine the direction of the effect for any of the health outcomes. For

each household size and survey wave stratum, the smallest number of the worst-case

responses is trimmed in the control group until treatment-control difference in response

rate exceeds zero for each strata. Since incorporating the additional 48 baseline covari-

ates requires considering more than 248 discrete cells, it is not possible to incorporate

all of them at once. An ad-hoc choice of three demographic indicators: gender, English

as preferred language, and urban area of residence does not improve standard estimates.

A smoothness assumption on the conditional response probability and the outcome

quantile drastically changes the result. Tables 5 and 6, Columns (3) and (6), suggest that

Medicaid eligibility and insurance has had positive effect on 7 out of 7 health outcomes.

Furthermore, Medicaid insurance is associated with at least 0.981 (std. error 0.577)

more days in good overall health after accounting for non-response bias, which is 75%
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of the baseline LATE estimate (1.317 (std. error 0.562)). Overall, Finkelstein et al.

(2012)’s baseline results are robust to non-response bias.

9 Conclusion

Lee bounds are a popular empirical strategy for addressing post-randomization selection

bias. In this paper, I show that Lee bounds can be improved by incorporating baseline co-

variates and modern regularized machine learning techniques. First, better Lee bounds

accommodate differential selection response. This relaxation is especially important for

JobCorps, since the JobCorps effect on employment is unlikely to be in the same direc-

tion for everyone. Second, better Lee bounds are sharp if few of very many covariates

under consideration affect selection and outcome. In practice, better Lee bounds achieve

nearly point-identification for all three empirical examples under interpretable assump-

tions (i.e., smoothness and sparsity) that are often invoked in point-identified problems.

Therefore, better Lee bounds are expected to deliver stronger conclusions that are also

more robust to violations of monotonicity.
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Table 5: Estimated lower bound on the effect of access to Medicaid on self-reported binary health outcomes

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard ML None Standard ML

Health good /very good/excellent 0.039 -0.013 0.032 0.133 -0.067 0.077
(0.008) (0.013) (0.017) (0.026) (0.044) (0.058)

Health fair/good/very good/excellent 0.029 -0.052 0.019 0.099 -0.195 0.011
(0.005) (0.012) (0.010) (0.018) (0.038) (0.033)

Health same or gotten better 0.033 -0.033 0.015 0.113 -0.138 0.051
(0.007) (0.014) (0.019) (0.023) (0.049) (0.065)

Did not screen positive for depression 0.023 -0.045 0.002 0.078 -0.183 0.007
(0.007) (0.014) (0.010) (0.025) (0.049) (0.065)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 21 N/A 0 21

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported health outcomes for 3 specifi-
cations: no trimming, standard trimming, and the agnostic ML approach. Columns (1)–(3) report the coefficient and standard error on
Lottery from estimating equation (8.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from estimating
equation (8.6) by 2SLS with Lottery as an instrument for Insurance. All regressions include household size fixed effects, survey wave
fixed effects, and their interactions. Trimming methods. None: exact replicate of Finkelstein et al. (2012), Table IX. Standard: the minimal
number of zero outcomes are trimmed in the control group until the treatment-control difference in response rates switches from negative
to non-negative for each strata. Agnostic: Step 1. 21 additional covariates are selected on an auxiliary sample of 4,000 households as
described in Appendix F.5. Step 2. In the main sample of 46,000 households, a zero outcome with covariate vector x is trimmed in the
control group if a flipped coin with success prob. (1− p0(x))/φ0(x) is success, where the trimming threshold p0(x) is defined in (F.4)
and the zero outcome probability φ0(x) is defined in (F.2). Standard errors are estimated by a cluster-robust bootstrap with B = 1000
repetitions. Both the trimming and regression steps are bootstrapped. Computations (the first and the second stage) use survey weights.
Covariates are described in Table F.17. The first-stage estimates for Columns (3) and (6) are given in Table F.18. See Appendix F.5 for
details.
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Table 6: Estimated lower bound on the effect of access to Medicaid on self-reported number of days in good health

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard NP None Standard NP
# of days overall health good, past 30 days 0.381 -1.096 0.272 1.317 -4.411 0.981

(0.162) (0.349) (0.166) (0.562) (1.166) (0.577)

# of days phys. health good, past 30 days 0.459 -1.230 0.272 1.585 -4.929 0.627
(0.174) (0.384) (0.170) (0.605) (1.308) (0.592)

# of days mental health good, past 30 days 0.603 -0.862 0.220 2.082 -3.573 0.750
(0.184) (0.374) (0.179) (0.640) (1.298) (0.624)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 9 N/A 0 9

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported health outcomes for 3 specifica-
tions: no trimming, standard trimming, and the classic nonparametric (NP) approach. Columns (1)–(3) report the coefficient and standard
error on Lottery from estimating equation (8.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from
estimating equation (8.6) by 2SLS with Lottery as an instrument for Insurance. All regressions include household size fixed effects, sur-
vey wave fixed effects, and their interactions. Trimming methods. None: exact replicate of Finkelstein et al. (2012), Table IX. Standard:
the minimal number of control outcomes are trimmed from below for each value of fixed effect until the treatment-control difference
in response rates switches from negative to non-negative for each strata. NP. Step 1. 9 additional covariates are taken as described in
Appendix F.5. Step 2. An outcome with covariate vector x is trimmed if it is less than Q(1− 1/p0(x),x), where the trimming threshold
p0(x) is defined in equation (F.4) and the conditional quantile is defined in equation (2.8). Standard errors are estimated by a cluster-robust
bootstrap with B = 1000 repetitions. Both the trimming and regression steps are bootstrapped. Computations (the first and the second
stage) use survey weights. Covariates are described in Table F.17. See Appendix F.5 for details.
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Table A.7: Estimated bounds on the JobCorps effect on log wages

Average Treatment Effect (ATE) ATE on XPLB

(1) (2) (3) (4)

Week 45 [-0.085, 0.141] [-0.081, 0.136] [-0.048, 0.087] [-0.043, 0.081]

(-0.11, 0.172) (-0.117, 0.172) (-0.081, 0.121) (0.000, 0.118)

Week 104 [-0.027, 0.103] [-0.022, 0.098] [0.027, 0.032] [0.044, 0.055]

(-0.058, 0.133) (-0.074, 0.148) (-0.021, 0.078) (0.000, 0.106)

Week 135 [-0.025, 0.102] [-0.025, 0.098] [0.030, 0.037] [0.059, 0.066]

(-0.066, 0.136) (-0.087, 0.149) (-0.018, 0.076) (0.005, 0.108)

Week 180 [-0.047, 0.109] [-0.042, 0.101] [0.033, 0.063] [0.047, 0.081]

(-0.076, 0.133) (-0.096, 0.149) (-0.014, 0.103) (0.000, 0.125)

Week 208 [-0.019, 0.094] [0.000, 0.091] [0.030, 0.065] [0.032, 0.093]

(-0.051, 0.119) (-0.054, 0.142) (-0.016, 0.106) (0.000, 0.136)

Employment covs 28 28 5 177 5 177

Post-lasso-logistic N/A N/A Varies (10-20) Varies (10-20)

Wage covs N/A 28 470 470

Post-lasso covs N/A N/A Varies (6-10) Varies (6-10)

Notes. Estimated bounds are in square brackets and the 95% confidence region for identified set is in parentheses. All subjects are
partitioned into the sets Xhelp = {p̂(X)< 1} and Xhurt = { p̂(X)> 1}, where the trimming threshold p̂(x) = ŝ(0,x)/ŝ(1,x) is estimated as
in equation (3.3). Column (1): basic bounds based on Lee’s covariates. Column (2): sharp bounds based on Lee’s covariates. Columns (3)
and (4): sharp bounds given all covariates assuming few of them affect employment and wage, where the full sample N = 9,145 is used
in Column (3) and the PLB sample N = 7,735 is used in Column (4). The PLB sample is defined as the always-takers whose conditional
treatment effect lower bound is positive in at least one of six horizons considered by Lee (weeks 45,90,104,135,180,208). Covariates are
defined in Section C.2. Computations use design weights. See Appendix F.3 for details.
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Figure A.5: Estimated bounds on the average wage in the control status by week.

Notes. The horizontal axis shows the number of weeks since random assignment. The black
(gray) circles show the upper (lower) bound on the average untreated log wage for the always-
takers. The black (gray) fitted line is estimated by local linear approximation to 201 black (gray)
points, respectively. Computations use design weights.
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Table A.8: Estimated lower bound on the effect of access to Medicaid on self-reported healthcare utilization: extensive margin

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard ML None Standard ML

Prescription drugs currently 0.025 -0.008 0.017 0.088 -0.036 0.060
(0.008) (0.014) (0.017) (0.029) (0.046) (0.060)

Outpatient visits last six months 0.062 0.005 0.042 0.212 0.001 0.146
(0.007) (0.013) (0.017) (0.025) (0.045) (0.058)

ER visits last six months 0.006 -0.020 -0.004 0.022 -0.076 -0.015
(0.007) (0.008) (0.011) (0.023) (0.030) (0.037)

Hospital admissions last six months 0.002 -0.005 0.002 0.008 -0.020 0.007
(0.004) (0.004) (0.005) (0.014) (0.016) (0.016)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 21 N/A 0 21

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported healthcare utilization outcomes
for 3 specifications: no trimming, standard trimming, and the agnostic ML approach. Columns (1)–(3) report the coefficient and standard
error on Lottery from estimating equation (8.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from
estimating equation (8.6) by 2SLS with Lottery as an instrument for Insurance. All regressions include household size fixed effects,
survey wave fixed effects, and their interactions. Trimming methods. None: exact replicate of Finkelstein et al. (2012), Table V. Standard:
the minimal number of control outcomes are trimmed from below for each value of fixed effect until the treatment-control difference in
response rates switches from negative to non-negative. Agnostic: Step 1. 21 additional covariates are selected on an auxiliary sample of
4,000 households as described in Appendix F.5. Step 2. In the main sample of 46,000 households, a zero outcome with covariate vector
x is trimmed in the control group if a flipped coin with success prob. (1− p0(x))/φ0(x) is success, where the trimming threshold p0(x) is
defined in (F.4) and the zero outcome probability φ0(x) is defined in (F.2). Standard errors are estimated by a cluster-robust bootstrap with
B = 1000 repetitions. Both the trimming and regression steps are bootstrapped. Computations (the first and the second stage) use survey
weights. Covariates are described in Table F.17. See Appendix F.5 for details.
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Table A.9: Estimated lower bound on the effect of access to Medicaid on self-reported healthcare utilization: total utilization

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard NP None Standard NP
Prescription drugs currently 0.100 -0.024 0.077 0.347 -0.124 0.270

(0.051) (0.066) (0.052) (0.175) (0.225) (0.179)

Outpatient visits last six months 0.314 0.121 0.246 1.083 0.372 0.853
(0.054) (0.065) (0.054) (0.182) (0.228) (0.183)

ER visits last six months 0.007 -0.040 -0.008 0.026 -0.152 -0.027
(0.016) (0.019) (0.016) (0.056) (0.065) (0.056)

Hospital admissions last six months 0.006 -0.004 0.003 0.021 -0.014 0.010
(0.006) (0.007) (0.006) (0.021) (0.024) (0.021)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 9 N/A 0 9

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported health outcomes for 3 specifica-
tions: no trimming, standard trimming, and the classic nonparametric approach. Columns (1)–(3) report the coefficient and standard error
on Lottery from estimating equation (8.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from estimating
equation (8.6) by 2SLS with Lottery as an instrument for Insurance. All regressions include household size fixed effects, survey wave
fixed effects, and their interactions. Trimming methods. None: exact replicate of Finkelstein et al. (2012), Table V. Standard: the minimal
number of control outcomes are trimmed from below for each value of fixed effect until the treatment-control difference in response rates
switches from negative to non-negative. NP. Step 1. 9 additional covariates are taken as described in Appendix F.5. Step 2. An outcome
with covariate vector x is trimmed if it is less than Q(1−1/p0(x),x), where the trimming threshold p0(x) is defined in equation (F.4) and
the conditional quantile is defined in equation (2.8). Standard errors are estimated by a cluster-robust bootstrap with B = 1000 repetitions.
Both the trimming and regression steps are bootstrapped. Computations (the first and the second stage) use survey weights. Covariates
are described in Table F.17. See Appendix F.5 for details.
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Appendix B: Supplementary Statements for Sections 4-61

B.1 Definitions

Sharp Lee Bounds: Definition. In this section, I derive the target parameter — sharp

Lee bounds — under Assumption 2. The conditional trimming threshold is

p0(x) =
s(0,x)
s(1,x)

=
E[S = 1|D = 0,X = x]
E[S = 1|D = 1,X = x]

.

The covariate groups Xhelp and Xhurt are

Xhelp = {X : p0(X)< 1}, Xhurt = {X : p0(X)> 1}. (B.1)

By Assumption 3, Pr(X ∈ Xhelp∪Xhurt) = 1. The conditional probability of treatment

(i.e., the propensity score) is

µ1(X) = Pr(D = 1|X), µ0(X) = 1−µ1(X) = Pr(D = 0|X). (B.2)

The conditional quantiles in the selected treated and selected control groups are

Qd(u,x) : Pr(Y ≤ Qd(u,x)|S = 1,D = d,X = x) = u, u ∈ [0,1], d ∈ {1,0}.

(B.3)

Because Q1(u,x) is invoked only for x∈Xhelp and Q0(u,x) is invoked only for x∈Xhurt,

it makes sense to define combined conditional quantile:

Q(u,x) = 1x∈XhelpQ1(u,x)+1x∈XhurtQ0(u,x). (B.4)

1This appendix is for online publication.
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Likewise, the conditional outcome densities in the selected treated and selected control

groups are

fd(t|x) = f (t|S = 1,D = d,X = x), d ∈ {1,0}

and combined conditional density is

f (t|x) = 1x∈Xhelp f1(t|x)+1x∈Xhurt f0(t|x). (B.5)

For x ∈ Xhelp, the conditional upper bound is

β̄
help
U (x) = E[Y |D = 1,S = 1,Y ≥ Q(1− p0(x),x),X = x]−E[Y |D = 0,S = 1,X = x]

(B.6)

and the conditional lower bound is

β̄
help
L (x) = E[Y |D = 1,S = 1,Y ≤ Q(p0(x),x),X = x]−E[Y |D = 0,S = 1,X = x].

(B.7)

For x ∈ Xhurt, the conditional upper bound is

β̄
hurt
U (x) = E[Y |D = 1,S = 1,X = x]−E[Y |D = 0,S = 1,Y ≤ Q(1/p0(x),x),X = x]

(B.8)

and the conditional lower bound is

β̄
hurt
L (x) = E[Y |D = 1,S = 1,X = x]−E[Y |D = 0,S = 1,Y ≥ Q(1−1/p0(x),x),X = x].

(B.9)
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Define the treated and control components of each conditional bound as

β̄
?
∗ (x) = β̄

?
1∗(x)− β̄

?
0∗(x), ∗ ∈ {L,U}, ? ∈ {help,hurt} (B.10)

and the normalizing constants as

µ
help
10 = E[s(0,X)|X ∈ Xhelp], µ

hurt
11 = E[s(1,X)|X ∈ Xhurt]. (B.11)

The sharp Lee bounds βL and βU are:

β∗ = (µ
help
10 )−1 Pr(X ∈ Xhelp) ·E[β̄ help

∗ (X)s(0,X)|X ∈ Xhelp] (B.12)

+(µhurt
11 )−1 Pr(X ∈ Xhurt) ·E[β̄ hurt

∗ (X)s(1,X)|X ∈ Xhurt] ∗ ∈ {L,U}.

Sharp Lee Bounds: Moment Equation If the propensity score µ1(x) in (B.2) is

known, the first-stage nuisance parameter ξ0 is

ξ0 = {s(0,x),s(1,x),Q(u,x)}. (B.13)

Otherwise, ξ0 is

ξ0 = {s(0,x),s(1,x),Q(u,x),µ1(x)} (B.14)

for a non-orthogonal moment equation m∗(W,ξ0), ∗ ∈ {L,U} and

ξ0 = {s(0,x),s(1,x),Q(u,x),µ1(x),β
help
1∗ (x),β help

0∗ (x),β hurt
1∗ (x),β hurt

0∗ (x)}, (B.15)

for an orthogonal moment equation g∗(W,ξ0), ∗∈ {L,U}, described below. Let µ1(X)

and µ0(X) be as in (B.2), µ
help
10 and µhurt

11 as in (B.11). The original (i.e., non-orthogonal)
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moment equation for βU is

mU(W,ξ0) = (µ
help
10 )−11X∈Xhelp

(
D

µ1(X)
·S ·Y 1{Y≥Q(1−p0(X),X)}−

(1−D)

µ0(X)
·S ·Y

)
(B.16)

+(µhurt
11 )−11X∈Xhurt

(
D

µ1(X)
·S ·Y − (1−D)

µ0(X)
·S ·Y 1{Y≤Q(1/p0(X),X)}

)
,

and for βL is

mL(W,ξ0) = (µ
help
10 )−11X∈Xhelp

(
D

µ1(X)
·S ·Y 1{Y≤Q(p0(X),X)}−

(1−D)

µ0(X)
·S ·Y

)
(B.17)

+(µhurt
11 )−11X∈Xhurt

(
D

µ1(X)
·S ·Y − (1−D)

µ0(X)
·S ·Y 1{Y≥Q(1−1/p0(X),X)}

)
.

Sharp Lee Bounds: Orthogonal Moment Equation. An orthogonal moment func-

tion g?(W,ξ0) is

g∗(W,ξ0) = m∗(W,ξ0)+(µ
help
10 )−11X∈Xhelpα

help
∗ (W,ξ0) (B.18)

+(µhurt
11 )−11X∈Xhurtα

hurt
∗ (W,ξ0), ∗ ∈ {L,U}.

The bias correction terms α
help
U (W ;ξ ) and αhurt

U (W ;ξ ) are

α
help
U (W ;ξ0) = Q(1− p0(X),X)

(
(1−D) ·S

µ0(X)
− s(0,X)

)
(B.19)

−Q(1− p0(X),X)p0(X)

(
D ·S

µ1(X)
− s(1,X)

)
+Q(1− p0(X),X)s(1,X)

(
D ·S ·1{Y≤Q(1−p0(X),X)}

s(1,X)µ1(X)
−1+ p0(X)

)
−
(

1
µ2

1 (X)
β

help
1U (X)+

1
(1−µ1(X))2 β

help
0U (X)

)
· s(0,X) · (D−µ1(X))
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α
hurt
U (W ;ξ0) = Q(1/p0(X),X)p0(X)

(
(1−D) ·S

µ0(X)
− s(0,X)

)
(B.20)

+Q(1/p0(X),X)

(
D ·S

µ1(X)
− s(1,X)

)
+Q(1/p0(X),X)s(0,X)

(
(1−D) ·S ·1{Y≤Q(1/p0(X),X)}

s(0,X)µ0(X)
− p0(X)

)
−
(

1
µ2

1 (X)
β

hurt
1U (X)+

1
(1−µ1(X))2 β

hurt
0U (X)

)
· s(1,X) · (D−µ1(X))

α
help
L (W ;ξ0) = Q(p0(X),X)

(
(1−D) ·S

µ0(X)
− s(0,X)

)
(B.21)

−Q(p0(X),X)p0(X)

(
D ·S

µ1(X)
− s(1,X)

)
−Q(p0(X),X)s(1,X)

(
D ·S ·1{Y≤Q(p0(X),X)}

s(1,X)µ1(X)
− p0(X)

)
−
(

1
µ2

1 (X)
β

help
1L (X)+

1
(1−µ1(X))2 β

help
0L (X)

)
· s(0,X) · (D−µ1(X)),

α
hurt
L (W ;ξ0) =−Q(1−1/p0(X),X)p0(X)

(
(1−D) ·S

µ0(X)
− s(0,X)

)
(B.22)

+Q(1−1/p0(X),X)

(
D ·S

µ1(X)
− s(1,X)

)
−Q(1−1/p0(X),X)s(0,X)

(
(1−D) ·S ·1{Y≤Q(1−1/p0(X),X)}

s(0,X)µ0(X)
−1+ p0(X)

)
−
(

1
µ2

1 (X)
β

hurt
1L (X)+

1
(1−µ1(X))2 β

hurt
0L (X)

)
· s(1,X) · (D−µ1(X)),
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where β ?
1∗(x) and β ?

0∗(x) are as in (B.10). When Assumption 1 holds and the propensity

score is known, the bias correction terms simplify to

correctionU(W,ξ0) =
1

Pr(S = 1|D = 0)

[
Q(1− p0(X),X)

(
(1−D) ·S
Pr(D = 0)

− s(0,X)

)
−Q(1− p0(X),X)p0(X)

(
D ·S

Pr(D = 1)
− s(1,X)

)
+Q(1− p0(X),X)s(1,X)

(
D ·S ·1{Y≤Q(1−p0(X),X)}

s(1,X)Pr(D = 1)
−1+ p0(X)

)]
,

(B.23)

and for the lower bound is

correctionL(W,ξ0) =
1

Pr(S = 1|D = 0)

[
Q(p0(X),X)

(
(1−D) ·S
Pr(D = 0)

− s(0,X)

)
−Q(p0(X),X)p0(X)

(
D ·S

Pr(D = 1)
− s(1,X)

)
−Q(p0(X),X)s(1,X)

(
D ·S ·1{Y≤Q(p0(X),X)}

s(1,X)Pr(D = 1)
− p0(X)

)]
. (B.24)

Lemma B.1 (Identification of better Lee bounds). Under Assumption 2, the following

statements hold.

(a) The bounds βL and βU defined in (B.12) are sharp valid bounds on β0 in equation

(2.1). The moment functions (B.16)-(B.17) and (B.18) obey

EgU(W,ξ0) = EmU(W,ξ0) = βU , EgL(W,ξ0) = EmL(W,ξ0) = βL.

(b) If the conditional densities fd(y|x),d ∈ {1,0} in (B.5) have a convex and compact

support almost surely in X and a first derivative that is bounded away from zero

and infinity, the interval [βL,βU ] is a sharp identified set for β0.
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(c) If a stronger version of independence assumption (Assumption 2 (1)) holds:

D⊥ (Y (1),Y (0),S(1),S(0),X) | X̄ ,

(a) and (b) remain true.

Proposition B.2 (Estimation of Sets Xhelp and Xhurt). Suppose Assumption 3 holds.

Furthermore, suppose ŝ(d,x) converges uniformly over X:

sup
x∈X

sup
d∈{0,1}

|ŝ(d,x)− s(d,x)|= oP(1).

Then, for N sufficiently large, Pr(p̂(Xi)< 1⇔ Xi ∈Xhelp ∀i,1≤ i≤N)→ 1 as N→∞.

Proof of Proposition B.2. Step 1. Consider an open set (s/2,1− s̄/2)×(s/2,1− s̄/2).

W.p. 1− o(1), the pair of estimated functions (ŝ(0, ·), ŝ(1, ·)) belongs to this set. The

function f (t1, t2) = t1/t2 has bounded partial derivatives in any direction on this set.

Therefore, supx∈X |p̂(x)− p0(x)|= oP(1) holds.

Step 2. The following statement hold:

Pr
(

p̂(Xi)< 1 < p0(Xi) or p0(Xi)< 1 < p̂(Xi) for some i
)

≤ Pr
(

Xi ∈ X : 0 < |1− p0(Xi)|< |p̂(Xi)− p0(Xi)| for some i
)

≤ Pr
(

sup
x∈X
|p̂(x)− p0(x)|>

ε

2s

)
→ 0.

B.2 Supplementary Statements for Section 4

Let U ∈ (0,1) be an open set that contains the support of p0(X) and 1− p0(X). For

the sake of exposition, suppose Xhurt = /0 and Q(u,x) = Q1(u,x). Suppose that Q1(u,x)
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is a sufficiently smooth function of x relative to its dimension for each u ∈ U, and the

smoothness index is the same for all u ∈ U. Then, Q(u,x) can be approximated by a

linear function

Q(u,x) = Z(x)′δ0(u)+R(u,x), (B.25)

where Z(x) ∈ RpQ is a vector of basis functions, δ0(u) is the pseudo-true parameter

value, and R(u,x) is approximation error. Let N11 = ∑
N
i=1 DiSi. The quantile regression

estimate

Q̂(u,x) = Z(x)′δ̂ (u),

where δ̂ (u),u ∈ U is

δ̂ (u) : = arg min
δ∈RpQ

1
N11

N

∑
Di=1,Si=1

ρu(Yi−Z(Xi)
′
δ )

= arg min
δ∈RpQ

1
N11

N

∑
Di=1,Si=1

(u−1{Yi−Z(Xi)′δ<0}) · (Yi−Z(Xi)
′
δ ), (B.26)

converges at rate qN =

√
pQ

N
= o(N−1/4), as shown in Belloni et al. (2019).

Remark B.1 (`1-regularized quantile regression of Belloni and Chernozhukov (2013)).

For each u ∈ U, suppose there exists a vector δ0(u) ∈ RpQ with only sQ out of pQ non-

zero coordinates,

sup
u∈U
‖δ0(u)‖0 = sup

u∈U

pQ

∑
j=1

1{δ0, j(u)} = sQ� N (B.27)

so that the approximation error R(u,x) is sufficiently small relative to the sampling error
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√
sQ log pQ

N
:

sup
u∈U

(
1

N11

N

∑
Di=1,Si=1

R2(u,Xi)

)1/2

.P

√
sQ log pQ

N

Furthermore, suppose δ0(u) is a Lipshitz function of u. The `1-regularized quantile

regression estimator of Belloni and Chernozhukov (2013) minimizes the `1-regularized

check function

δ̂Lasso(u) = arg min
δ∈RpQ

1
N11

N

∑
Di=1,Si=1

ρu(Yi−Z(Xi)
′
δ )+

λ
√

u(1−u)
N

pQ

∑
j=1

ρ̂ j|δ j|, (B.28)

where λ ≥ 0 is a penalty parameter and ρ̂ j =

(
1

N11
∑

N
Di=1,Si=1 Z j(Xi)

2
)1/2

. If the model

is sufficiently sparse, Assumption 5 is satisfied with qN =

√
s2

Q log pQ

N
= o(N−1/4) under

the choice of λ proposed in Belloni and Chernozhukov (2013).

B.3 Supplementary Statements for Section 5

In this section, I provide formal analysis of the agnostic approach summarized in Section

5.

Algorithm 2 Agnostic Bounds
1: Select covariates X = XA based on the auxiliary sample A.
2: Let βL = β A

L and βU = β A
U be the sharp bounds in the model (D,XA,S,S ·Y ). Report

(β̂ A
L , β̂

A
U ) based on either (1) conventional Lee bounds, (2) non-orthogonal moment

function (B.16), or (3) orthogonal moment function (B.18), and logistic and quantile
series estimators of the first-stage functions sA(d,x) and QA(u,x).

The key advantage of the agnostic approach is that one is not required to use orthog-

onal moment equations (B.18) for the bounds. If XA consists of a few discrete covariates,

one can use conventional Lee (2009) bounds without any smoothness assumptions. If
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smoothness is economically plausible, one can use the original (B.17) moment equation

for the bounds and estimate sA(d,x) and QA(u,x) by classic nonparametric estimators

with under-smoothing. Example 4 in Chernozhukov et al. (2013b) gives explicit condi-

tions on the function QA(u,x) so that a quantile series estimator’s bias due to approxi-

mation error is asymptotically negligible. Likewise, Hirano et al. (2003) gives explicit

conditions on the function sA(u,x) so that a logistic series estimator’s bias due to ap-

proximation error is asymptotically negligible.

Conditional Inference. Conditional on the auxiliary sample DataA, the estimator

(β̂ A
L , β̂

A
U ) is asymptotically normal,

√
|M|

β̂ A
L −β A

L

β̂ A
U −β A

U

⇒ N (0,ΩA) .

A (1−α) conditional CR takes the form

[LA,UA] = [β̂ A
L −|M|

−1/2
Ω̂

1/2
A,LLcα/2, β̂

A
U + |M|−1/2

Ω̂
1/2
A,UU c1−α/2],

where choosing cα as the α-quantile of N(0,1) delivers a confidence region for the

identified set [β A
L ,β

A
U ].

Variational Inference. Different splits (A,M) of the sample {1,2, . . . ,N} yield dif-

ferent target bounds (β A
L ,β

A
U ) and different approximate distributions of these bounds.

If we take the splitting uncertainty into account, the pair of bounds (β A
L ,β

A
U ) are random

conditional on the full data sample. In practice, one may want to generate several ran-

dom splits and aggregate various bounds over various partitions. Suppose the following

regularity condition holds.

ASSUMPTION 6 (Regularity condition). Suppose that A is a set of regular data con-
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figurations such that for all x ∈ [0,1], under the null hypothesis

sup
P∈P
|PrP[pA ≤ x]− x| ≤ δ = o(1),

and infP∈PPP[DataA ∈A]≤ 1− γ = 1−o(1). In particular, suppose that this holds for

the p-values

pA := Φ(Ω̂
−1/2
A,LL (β̂

A
L −β

A
L )), pA := Φ(Ω̂

−1/2
A,UU(β̂

A
U −β

A
U )),

pA := 1−Φ(Ω̂
−1/2
A,LL (β̂

A
L −β

A
L )), pA := 1−Φ(Ω̂

−1/2
A,UU(β̂

A
U −β

A
U ))

Assumption 6 is an extension of PV condition in Chernozhukov et al. (2017). In

comparison to the PV condition in Chernozhukov et al. (2017), Assumption 6 involves

twice as many p-values, 2 p-values for the lower bound and 2 more for the upper bound.

For reporting purposes, I use Chernozhukov et al. (2017)’s adjusted point estimator

β̂L = Med[β̂ A
L |Data], β̂U = Med[β̂ A

U |Data].

To quantify the uncertainty of the random split, I define the confidence region of level

(1−2α):

[L,U ] =
[

Med[LA|Data], Med[UA|Data]
]
, (B.29)

where Med(X) = inf{x ∈ R : PX(X ≤ x) ≥ 1/2} is the lower median and Med(X) =

sup{x ∈ R : PX(X ≥ x)≥ 1/2} is the upper median. I will also consider a related confi-

dence region of level 1−2α:

CR =

{
β ∈ R, pL(β )> α/2, pU(β )> α/2

}
, (B.30)
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where

pL(β ) = Φ(Ω̂
−1/2
A,LL (β̂

A
L −β )), pU(β ) = Φ(Ω̂

−1/2
A,UU(β̂

A
U −β ))

Theorem B.3 (Uniform Balidity of Variational Confidence Region). The confidence

region CR in equation (B.31) obeys CR⊆ [L,U ]. Under Assumption 6,

PrP([β
A
L ,β

A
U ] ∈ CR)≥ 1−2α−2(δ + γ) = 1−2α−o(1). (B.31)

and therefore

PrP(β0 ∈ CR)≥ 1−2α−2(δ + γ) = 1−2α−o(1). (B.32)

B.4 Supplementary Statements for Section 6.1

Multi-Dimensional Outcome: Definitions. The d-dimensional unit sphere is Sd−1 =

{q ∈ Rd,‖q‖= 1}. For a point q of interest on a unit sphere, the data vector is

Wq = (D,X ,S,S ·Yq),

where D and X are as defined in the one-dimensional case, S = 1{S}=1 is equal to one

if and only if each scalar outcome is selected into the sample, and Yq = q′Y . The condi-

tional quantiles in the selected treated and the selected control groups are

Qd(q,u,x) : Pr(Yq ≤ Qd(q,u,x)|S = 1,D = d,X = x) = u, u ∈ [0,1], d ∈ {1,0}

and the combined conditional quantile is

Q(q,u,x) = 1x∈XhelpQ1(q,u,x)+1x∈XhurtQ0(q,u,x).
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Likewise, the combined conditional density is

f (q, t|x) = 1x∈Xhelp f1(q, t|x)+1x∈Xhurt f0(q, t|x),

where fd(q, t|x) is the conditional density of q′Y in S = 1,D = d,X = x group. Depend-

ing on whether µ1(x) is known ot not, the first-stage nuisance parameter ξ0(q) is as in

(B.13)-(B.15), where Q(u,x) is replaced by Q(q,u,x). The sharp upper bound on q′β0

is

σ(q) = EmU(Wq,ξ0(q)) (B.33)

and the sharp identified set B for β0 is

B= ∩q∈Rd :‖q‖=1{b ∈ Rd : q′b≤ σ(q)}. (B.34)

Denote the sample average of a function f (·) as

EN [ f (Wi)] :=
1
N

N

∑
i=1

f (Wi)

and the centered, root-N scaled sample average as

GN [ f (Wi)] :=
1√
N

N

∑
i=1

[ f (Wi)−
∫

f (w)dP(w)].

Let `∞(Sd−1) be the space of almost surely bounded functions defined on the unit sphere

Sd−1 and BL(Sd−1, [0,1]) be a set of real functions on Sd−1 with Lipshitz norm bounded

by 1.

Definition 1 (Cross-Fitting). 1. For a random sample of size N, denote a K-fold ran-

dom partition of the sample indices [N] = {1,2, ...,N} by (Jk)
K
k=1, where K is

the number of partitions and the sample size of each fold is n = N/K. For each
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k ∈ [K] = {1,2, ...,K} define Jc
k = {1,2, ...,N}\ Jk.

2. For each k ∈ [K], construct an estimator ξ̂k(q) = ξ̂(Wi∈Jc
k
)(q) of the nuisance pa-

rameter ξ0 using only the data {Wj : j ∈ Jc
k}.

Definition 2 (Support Function Estimator). Define

σ̂(q) :=
1
N

N

∑
i=1

gU(Wiq, ξ̂ (q)), (B.35)

where g(Wiq, ξ̂ (q)) := g(Wiq, ξ̂k(q)) for any observation i ∈ Jk, k = 1,2, . . . ,K.

Proposition B.4 (Characterization of Identified Set). Suppose Assumption 2 holds. Then,

the set B, defined in (B.34), is a sharp identified set for β0. Furthermore, B is a convex

and compact set, and σ(q), defined in (B.33), is its support function.

Proposition B.4 proves that the sharp identified set B is compact and convex and

proposes a semiparametric moment equation for its support function.

Proposition B.5 (Orthogonal Moment Equation for Support Function). Suppose As-

sumption 2 holds and let gU(W,ξ0) be as in (B.18). Then,

E[σ(q)−gU(Wq,ξ0(q))] = 0 (B.36)

is an orthogonal moment equation for σ(q).

Proposition B.5 establishes that the moment equation (B.36) is orthogonal w.r.t the

nuisance parameter ξ0(q) for each q ∈ Sd−1. Define

h(W,q) = σ(q)−gU(Wq,ξ0(q)).

ASSUMPTION 7 (Quantile First-Stage Rate: Multi-Dimensional Case). (1) For each

q ∈ Sd−1, the conditional density f (q, t|x) exists and is bounded from above and away

from zero and has bounded derivative, where the bounds do not depend on q, almost
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surely in X. (2) Let Ū be a compact set in (0,1) containing the support of p0(X) and

1− p0(X). There exist a rate qN = o(N−1/4), a sequence of numbers εN = o(1) and a

sequence of sets QN such that the first-stage estimate Q̂(q,u,x) of the quantile function

Q(q,u,x) : Sd−1×[0,1]×X→ R belongs to QN w.p. at least 1− εN . Furthermore, the

set QN shrinks sufficiently fast around the true value Q0(u,x) uniformly on Ū and Sd−1:

sup
Q∈QN

sup
q∈Sd−1

sup
u∈(0,1)

(EX(Q̂(q,u,X)−Q(q,u,X))2)1/2 . qN = o(N−1/4).

Assumption 7 is a generalization of Assumption 5 from one- to multi-dimensional

case.

Lemma B.6 (Limit Theory for the Support Function Process). Suppose Assumptions 2,

4, 7 hold. In addition, if Xhelp 6= /0 and Xhurt 6= /0, suppose ŝ(d,x) converges to s(d,x)

uniformly over X for each d ∈ {1,0}. The support function process SN(q) =
√

N(σ̂(q)−

σ(q)) admits an approximation

SN(q) =GN [h(q)]+oP(1)

in `∞(Sd−1). Moreover, the support function process admits an approximation

SN(q) =G[h(q)]+oP(1) in `∞(Sd−1),

where the process G[h(q)] is a tight P-Brownian bridge in `∞(Sd−1) with covariance

function

Ω(q1,q2) = E[h(W,q1)h(W,q2)], q1,q2 ∈ Sd−1

that is uniformly Holder on Sd−1×Sd−1. Furthermore, the canonical distance between

the law of the support function process SN(q) and the law G[h(q)] in `∞(Sd−1) ap-
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proaches zero, namely

sup
g∈BL(Sd−1,[0,1])

|E[g(SN)]−E[g(G[h])]| → 0.

Lemma B.6 says that the Support Function Estimator is asymptotically equivalent

to a Gaussian process and can be used for pointwise and uniform inference about the

support function. By orthogonality, the first-stage estimation error does not contribute to

the total uncertainty of the two-stage procedure. In particular, orthogonality allows me to

avoid relying on any particular first-stage estimator, and to employ modern regularized

techniques to estimate the first-stage.

Theorem B.7 (Limit Inference on Support Function Process). Under the assumptions

of Lemma B.6 hold, for any ĉN = cN +oP(1), cN = OP(1) and f ∈ Fc,

Pr( f (SN)≤ ĉN)−Pr( f (G[h])≤ cN)→ 0.

If cN(1−τ) is the (1−τ)-quantile of f (G[h]) and ĉN(1−τ) = cN(1−τ)+oP(1) is any

consistent estimate of this quantile, then

Pr( f (SN)≤ ĉN(1− τ))→ 1− τ.

Definition 3 (Weighted Bootstrap). Let B represent a number of bootstrap repetitions.

For each b ∈ {1,2, . . . ,B}, repeat

1. Draw N i.i.d. exponential random variables (ei)
N
i=1 : ei ∼ Exp(1).

2. Estimate σ̃b(q) = ENeig(Wi,q, ξ̂i(q)).

Let e0
i = ei−1, h0 = h−E[h], and let Pe be the probability measure conditional on

data.
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Lemma B.8 (Limit Theory for the Bootstrap Support Function Process). Suppose as-

sumptions of Lemma B.6 hold. The bootstrap support function process S̃N(q)=
√

N(σ̃(q)−

σ̂(q)) admits the following approximation conditional on the data:

S̃N(q) =GN [e0
i h0

i (q)]+oPe(1)

in L∞(Sd−1). Moreover, the support function process admits an approximation condi-

tional on the data

S̃N(q) = G̃[h(q)]+oPe(1) in L∞(Sd−1), in probability P,

where G̃[h(q)] is a sequence of tight P-Brownian bridges in L∞(Sd−1) with the same

distributions as the processes GN [h(q)] defined in Lemma B.6, and independent of

GN [h(q)]. Furthermore, the canonical distance between the law of the bootstrap sup-

port function process S̃N(q) conditional on the data and the law of G[h] in `∞(Sd−1)

approaches zero, namely

sup
g∈BL(Sd−1,[0,1])

|EPe [g(SN)]−E[g(G[h])]| →P 0,

where BL(Sd−1, [0,1]) is a set of real functions on Sd−1 with Lipshitz norm bounded by

1.

Lemma B.8 says that weighted bootstrap of Theorem B.7 can be used to approximate

the support function process of Theorem B.7 and conduct uniform inference about the

support function. By orthogonality, I do not need to re-estimate the first-stage parameter

in each bootstrap repetition. Instead, I estimate the first-stage parameter once on an aux-

iliary sample, and plug the estimate into the bootstrap sampling procedure. Therefore,

orthogonal Bayes bootstrap is faster to compute than a non-orthogonal Bayes bootstrap,

where both the first and the second stage are re-estimated in each bootstrap repetition.

73



Theorem B.9 (Bootstrap Inference on the Support Function Process). Suppose assump-

tions of Lemma B.6 hold. For any cN = OP(1) and f ∈ F we have

Pr( f (SN)≤ cN)−Pre( f (S̃N)≤ cN)→P 0.

In particular, if c̃N(1− τ) is the (1− τ)-quantile of f (S̃N) under Pre, then

Pr( f (SN)≤ c̃N(1− τ))→P 1− τ.

Lemmas B.6 and B.8 are a generalization of Theorems 1–4 in Chandrasekhar et al.

(2012). Unlike Chandrasekhar et al. (2012), the support function estimator proposed

here is based on an orthogonal moment equation (B.36). Therefore, I do not rely on

a series estimator of the first-stage nuisance parameter ξ0(q), but allow any machine

learning method obeying Assumption 10 to be used. As a result, this theory can accom-

modate many covariates.

B.5 Supplementary Statements for Section 6.2

In this section, I derive sharp Lee bounds for the Intent-to-Treat parameter given in

equation (8.5). For the sake of exposition, suppose Xhurt = /0. Suppose there exists a

vector X̄ of saturated covariates so that a stronger version of independence assumption

holds.

ASSUMPTION 8 (Conditional Independence). Conditional on X̄, D is independent of

(Y (1),Y (0),S(1),S(0)).

The full vector X is

X = (X̄ , X̃),

where X̄ is stratification covariate vector and X̃ includes all other baseline covariates.

Let A be an event and ξ be a random variable. For a given event A, its probability
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conditional on being on always-taker is

Pr11(A) = Pr(A|S(1) = S(0) = 1). (B.37)

For a random variable ξ , its expectation conditional on being an always-taker is

E11[ξ ] = E[ξ |S(1) = S(0) = 1]. (B.38)

Suppose Xhurt = /0. The lower and upper truncation sets are

TL(W ) : =
{
{Y ≥ Q(p0(X),X)}∩D = 1

}
, (B.39)

TU(W ) : =
{
{Y ≤ Q(1− p0(X),X)}∩D = 1

}
. (B.40)

In what follows, I present the argument for the lower truncation set TL(W ), a symmetric

argument holds for TU(W ). For a given event A, its probability conditional on not being

trimmed is

PrTL(A) = Pr(A|S = 1,W 6∈ TL(W )). (B.41)

For a random variable ξ , its expectation conditional on not being trimmed is

ETL(A) = E(A|S = 1,W 6∈ TL(W )). (B.42)

For a covariate value x, the density of X conditional on being an always-taker is

f11(x) = f (x|S(1) = S(0) = 1).
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Likewise, the density of X conditional on not being trimmed is

fTL(x) = f (x|S = 1,W 6∈ TL(W )).

The target parameter β1 is the coefficient on D in the infeasible regression (8.5). The

proposed bound β L
1 is the coefficient on D in the feasible trimmedregressions

Y = β
L
0 +Dβ

L
1 + X̄ ′β L

2 +U, S = 1,W 6∈ TL(W ), (B.43)

and βU
1 is defined similarly, where TL(W ) is replaced by TU(W ). An orthogonal moment

equation for β L
1 is

gL
1(W,ξ0) = (µ−1

10 )wTL(X̄)(β
help
L (X)s(0,X)+αL(W ;ξ0)), (B.44)

where β
help
L (x) is defined in (B.7), αL(W ;ξ ) is defined in (B.21), and µ10 is as in (B.11).

Lemma B.10 (Intent-to-Treat Theorem, Angrist and Pischke (2009)). Under Assump-

tion 8, the regression coefficient β1 can be represented as

β1 = E11w11(X̄)

(
E11[Y |D = 1, X̄ ]−E11[Y |D = 0, X̄ ]

)
, (B.45)

where the weighting function is

w11(X̄) =
Pr11(D = 1|X̄)Pr11(D = 0|X̄)

E11[Pr11(D = 1|X̄)Pr11(D = 0|X̄)]
.

Likewise, β L
1 can be represented as (B.45), where Pr11 is replaced by PrTL .

Lemma B.11 (Equal covariate distributions under Pr11 and PrTL). Under Assumptions

2 and 8, the conditional density f11(x) coincides with fTL(x) almost surely in X:

f11(x) = fTL(x), x ∈ X.
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Lemma B.12 (Equal propensity scores under Pr11 and PrTL). Under Assumptions 2 and

8, the conditional propensity score Pr11(D = 1|X = x) coincides with PrTL(D = 1|X = x)

almost surely in X:

Pr11(D = 1|X = x) =i Pr(D = 1|X) =ii Pr(D = 1|X̄) =iii PrTL(D = 1|X = x). (B.46)

Proposition B.13 (Sharp Bounds on Intent-to-Treat effect: Identification). Let β L
1 and

βU
1 be as defined in equation (B.43), and β1 be as defined in equation (8.5). Under

Assumptions 2 and 8, β L
1 and βU

1 are sharp bounds on β1:

β
L
1 ≤ β1 ≤ β

U
1 . (B.47)

Lemma B.14 (Sharp Bounds on Intent-to-Treat effect: Estimation and Inference). Sup-

pose Assumptions 2 and 8 hold with Xhurt = /0. Suppose the first-stage parameter ξ0

is estimated by logistic/quantile squares series, and under-smoothing conditions hold.

Then, the empirical analog of (B.43) based on the estimated ξ̂ is asymptotically equiva-

lent to sample average. In addition, if Assumptions 4 and 7 hold, the plug-in cross-fitting

orthogonal estimator of β 1
L based on equation (B.44) is asymptotically linear:

1√
N

N

∑
i=1

gL
1(Wi, ξ̂ ) =

1√
N

N

∑
i=1

gL
1(Wi,ξ0)+oP(1). (B.48)

B.6 Supplementary Statements for Section 6.3

In this section, I define the sharp bounds on the Local Average Treatment Effect param-

eter, defined in equation (8.6). Let Z = 1 be a binary instrument, such as the treatment

offer, and let D = 1 be an indicator for treatment receipt. Let S(d,z) = 1 be a dummy

for being selected into the sample when the instrument is z and the treatment is equal to

d, and let Y (d,z) be a potential outcome. The observed data (Zi,Di,Xi,Si,SiYi)
N
i=1 con-

sist of the instrument, treatment, a baseline covariate vector Xi, the selection outcome
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Si = ∑d∈{1,0}∑z∈{1,0} 1{Zi=z}1{Di=d}Si(d,z) and the observed outcomes for the selected

subjects, Si ·Yi = Si · (∑d∈{1,0}∑z∈{1,0} 1{Zi=z}1{Di=d}Yi(d,z)).

ASSUMPTION 9 (Assumptions for LATE). The following statements hold.

(1) The vector D(1),D(0),{(Y (d,z),S(d,z))}d∈{0,1},z∈{0,1} is independent of Z condi-

tional on a subset of stratification covariates X̄ .

(2) Exclusion for outcome. For each d ∈ {1,0}, the outcome Y (d,0) = Y (d,1) = Y (d)

almost surely.

(3) Monotonicity of treatment w.r.t instrument. The instrument affects treatment in the

same direction: D(1)≥ D(0) almost surely.

(4) First Stage. Pr(D(1)> D(0)|X̄ = x̄)> 0 almost surely in X̄ .

(5) Exclusion for selection. For each z ∈ {1,0}, the outcome S(0,z) = S(1,z) = S(z)

almost surely.

(6) Independence of selection and treatment. Treatment potential outcomes {D(1),D(0)}

are independent of selection potential outcomes {S(1),S(0)} conditional on X.

For the sake of exposition, suppose Xhurt = /0. Let Q(u,x,d) be the conditional u-

quantile of Y in the {S = 1,D = d,Z = 1} group:

Q(u,x,d) : Pr(Y ≤ Q(u,x,d)|S = 1,D = d,Z = 1,X = x) = u.

The lower truncation set is

ΛL(W ) =

{
∪d∈{1,0} {Y ≥ Q(p0(X),X ,d)∩D = d∩Z = 1}

}
. (B.49)

The upper truncation set is

ΛU(W ) =

{
∪d∈{1,0} {Y ≤ Q(1− p0(X),X ,d)∩D = d∩Z = 1}

}
. (B.50)
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For an event A, the probability of A conditional on not being trimmed is

PrΛL(A) = Pr(A|S = 1,W 6∈ ΛL(W )).

For a random variable ξ , the expectation of ξ conditional on not being trimmed is

EΛL [ξ ] = E[ξ |S = 1,W 6∈ ΛL(W )].

The target parameter π1 is the 2SLS coefficient on D in the infeasible regression (8.6)-

(6.7). The proposed bound π1
L is the 2SLS coefficient on D in the feasible trimmed

regression

Y = π
L
0 +Dπ

L
1 + X̄ ′πL

2 + ε, S = 1,W 6∈ ΛL(W ), (B.51)

where the first-stage equation is

D = δ
L
0 +Zδ

L
1 + X̄ ′δ L

2 +ξ , S = 1,W 6∈ ΛL(W ). (B.52)

Lemma B.15 (LATE Theorem, Angrist and Imbens (1995)). Let π11 follow the defini-

tion in (8.6). If Assumption 9 (1)–(4) holds, π1 can be represented as

π11 = E11ω11(X̄)E11[Y (1)−Y (0)|D(1)> D(0), X̄ ]

= E11ω11(X̄)
E11[Y |Z = 1, X̄ ]−E11[Y |Z = 0, X̄ ]

E11[D = 1|Z = 1, X̄ ]−E11[D = 1|Z = 0, X̄ ]
, (B.53)

where the weighting function ω11(X̄) takes the form

ω11(X̄) =
V11(E11[D = 1|X̄ ,Z]|X̄)

E11[V11(E11[D = 1|X̄ ,Z]|X̄)]
.

Likewise, π1
L can be represented as (B.53), where Pr11 is replaced by PrΛL .
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Lemma B.16 (Equal covariate distributions under Pr11 and PrΛL). Under Assumptions

2 and 9, the conditional densities are equal

f11(x) = fΛL(x), for any x ∈ X.

Furthermore, the integrated covariate densities are equal to each other,

∫
x̃∈X̃

f11(x̄, x̃)dx̃ =
∫

x̃∈X̃
fΛL(x̄, x̃)dx̃, for any x̄.

Lemma B.17 (Equal treatment distributions under Pr11 and PrΛL). Under Assumptions

2, 8 and 9 hold, the following equality holds:

Pr11(D = 1|Z = z,X) = Pr(D = 1|Z = z,X) = PrΛL(D = 1|Z = z,X), z ∈ {1,0}.

(B.54)

Proposition B.18 (Sharp Bounds on LATE: Identification). Let πL
1 and πU

1 be as de-

fined in equation (B.51)-(B.52), and β1 be as defined in equation (8.6)-(6.7). Under

Assumptions 2 and 9, πL
1 and πU

1 are sharp bounds on π1:

π
L
1 ≤ π1 ≤ π

U
1 . (B.55)

Appendix C: Proofs for Sections 4-6

Notation. I use the following standard notation. Let Sd−1 = {q ∈ Rd,‖q‖ = 1} be

the d-dimensional unit sphere. I use standard notation for numeric and stochastic dom-

inance. For two numeric sequences {an,n ≥ 1} and {bn,n ≥ 1}, let an . bn stand for

an = O(bn). For two sequences of random variables {an,n ≥ 1} and {bn,n ≥ 1}, let

an .P bn stand for an = OP(bn). Let a∧ b = min{a,b} and a∨ b = max{a,b}. For

a random variable ξ , (ξ )0 := ξ −E[ξ ]. Let `∞(Sd−1) be the space of almost surely
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bounded functions defined on the unit sphere Sd−1. Define an LP,c norm of a vector-

valued random variable W as: ‖W‖LP,c :=
(∫

w∈W ‖W‖c)1/c. Let W be the support of the

data vector W of the distribution PW . Let (Wi)
N
i=1 be an i.i.d sample from the distribution

PW .

I use the standard notation for vector and matrix norms. For a vector v ∈ Rd , denote

the `2 norm of a as ‖v‖2 :=
√

∑
d
j=1 v2

j . Denote the `1 norm of v as ‖v‖1 := ∑
d
j=1 |v j|, the

`∞ norm of v as ‖v‖∞ := max1≤ j≤d |v j|, and `0 norm of v as ‖v‖0 := ∑
d
j=1 1{v j 6=0}. For

a matrix M, denote its operator norm by ‖M‖2 = supα∈Sd−1 ‖Mα‖. Denote the sample

average of a function f (·) as EN [ f (Wi)] :=
1
N

∑
N
i=1 f (Wi) and the centered, root-N scaled

sample average as GN [ f (Wi)] :=
1√
N

∑
N
i=1[ f (Wi)−

∫
f (w)dP(w)].

Fix a partition k in a set of partitions [K] = {1,2, . . . ,K}. Define the sample average

of a function f (·) within this partition as:

En,k[ f ] =
1
n ∑

i∈Jk

f (xi) (C.1)

and the scaled normalized sample average as:

Gn,k[ f ] =
√

n
n ∑

i∈Jk

[ f (xi)−
∫

f (w)dP(w)].

For each partition index k ∈ [K] define an event En,k := {ξ̂k ∈ Ξn} as the nuisance esti-

mate ξ̂k belonging to the nuisance realization set GN . Define

EN = ∩K
k=1En,k (C.2)

as the intersection of such events.

Proof of Lemma B.1. Proof of Lemma B.1(a) is shown in Steps 1-3. Proof of Lemma

B.1(b) is shown in Steps 4-6.

Step 1. According to Lee (2009) (Proposition 3 in the working paper version Lee
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(2005)), (B.6)-(B.7) are valid sharp bounds on E[Y (1)−Y (0)|S(1) = S(0) = 1,X = x]

for x ∈ Xhelp. Likewise, (B.8)-(B.9) are valid sharp bounds on E[Y (1)−Y (0)|S(1) =

S(0) = 1,X = x] for x ∈ Xhurt.

Step 2. For x ∈ X∗, Bayes rule implies that

f?(x|S(1) = S(0) = 1) =
Pr(S(1) = S(0) = 1|X = x) f (x)

Pr(S(1) = S(0) = 1|X?)
? ∈ {help,hurt}.

By Assumption 2,

Pr(S(1) = S(0) = 1|X = x) = Pr(S(0) = 1|X = x) = s(0,x) for any x ∈ Xhelp,

Pr(S(1) = S(0) = 1|X = x) = Pr(S(1) = 1|X = x) = s(1,x) for any x ∈ Xhurt.

Therefore, the sharp bounds defined as

∫
x∈Xhelp

β̄
help
? (x) fhelp(x|S(1) = S(0))dx ·Prob(X ∈ Xhelp)

+
∫

x∈Xhurt

β̄
hurt
? (x) fhurt(x|S(1) = S(0))dx ·Prob(X ∈ Xhurt), ? ∈ {L,U}

coincide with the bounds in (B.12).

Step 3. Validity of moment equations. For X ∈ Xhelp,

s(0,X)E[Y |D = 1,S = 1,X ,Y ≥ Q(1− p0(X),X)]]

=i s(0,X)E[
Y ·1{Y≥Q(1−p0(X),X)}

p0(X)
|D = 1,S = 1,X ]

= s(0,X)E
[

D ·S ·
Y 1{Y≥Q(1−p0(X),X)}
p0(X)s(1,X)µ1(X)

|X
]

=ii E
[

D
µ1(X)

·S ·Y ·1{Y≥Q(1−p0(X),X)}|X
]

where i follows from Pr(Y ≥ Q(1− p0(X),X)|D = 1,S = 1,X) = p0(X) and ii follows
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from p0(X) = s(0,X)/s(1,X). Likewise,

s(0,X)E[Y |S = 1,D = 0,X ] = E[
1−D
µ0(X)

S ·Y |X ], and

E[1X∈Xhelps(0,X)β̄
help
U (X)] = E[1X∈XhelpmU(W,ξ0)].

By a similar argument,

E[1X∈Xhurts(1,X)β̄ hurt
U (X)] = E[1X∈XhurtmU(W,ξ0)].

Step 4. Proof of Lemma B.1(b). First, suppose there are no covariates (i.e., X =

/0) and Assumption 1 holds with p0 < 1. It suffices to show that, for each value of

β ∈ [βL,βU ], there exists a distribution of the always-takers’ outcome Y (1), so that

E[Y (1)−Y (0)|S(1) = S(0) = 1] = β . Let λ ∈ [0,1] be a positive number. Consider the

following distribution function Fλ (t), t ∈ (−∞,∞):

Fλ (t) =


0, t ≤ Q1((1−λ )(1− p0)),

p−1
0
∫ t

Q1((1−λ )(1−p0)
f1(y)dy, Q1((1−λ )(1− p0))≤ t ≤ Q1(λ p0 +(1−λ ))

1, t ≥ Q1(λ p0 +(1−λ )),

where Q1(u) is the u-outcome quantile of Y in S = 1,D = 1 group. When λ = 0,

F0(t) corresponds to the upper tail of the distribution f1(y), and EF0 [Y (1)]−E[Y (0)] =

βU . When λ = 1, F1(t) corresponds to the lower tail of the distribution f1(y), and

EF1 [Y (1)]−E[Y (0)] = βL. Observe that

F1(t) = p0Fλ (t)+(1− p0)Gλ (t), (C.3)

where Gλ (t) is a valid c.d.f.. Therefore, F1(t) can be represented as a mixture of valid

two c.d.f.s, with mixing probabilities p0 and 1− p0. Therefore, Fλ (t) is a valid plausible
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c.d.f for the always-takers.

Step 5. In this step, I show that

βλ = EFλ
[Y (1)]−E[Y (0)] : λ ∈ [0,1]→ [βL,βU ]

is a non-increasing and continuous function of λ . By construction, Fλ ′(t) first-order

stochastically dominates Fλ (t) for λ ′ < λ , which implies the first statement. Second, let

C be an upper bound supt∈R |t · f1(t)|. By assumption of the Lemma, C is finite. Thus,

two real numbers λ ′ and λ mean value theorem implies:

|βλ −βλ | ≤ p−1
0 C|Q1(λ p0 +(1−λ ))−Q1(λ

′p0 +(1−λ
′))|

+ p−1
0 C|−Q1((1−λ )(1− p0))+Q((1−λ

′)(1− p0))|

≤ p−1
0 C| sup

u∈U
Q′1(u)||λ −λ

′|,

where Q′1(u) = f−1
1 (Q(u)) is the conditional quantile’s derivative, which exists and is

bounded by assumption of the Lemma. Therefore, βλ is a continuous and monotone

function on [0,1]→ [βL,βU ]. Therefore, each point β ∈ [βL,βU ] corresponds to some

λ ∈ [0,1]. Therefore, Lemma (b) follows.

Step 6. Suppose Assumption 2 holds instead of Assumption 1. By the argument

above, [β L
help(x),β

U
help(x)] is a sharp identified set for E[Y (1)−Y (0)|S(1) = S(0) =

1,X = x], x∈Xhelp. Because the density fhelp(x|S(1)= S(0)= 1)= (µ
help
10 )−1s(0,x) f (x)

is an identified function, Lemma B.1(b) under Assumption 2 holds. Furthermore, Lemma

B.1(c) holds.

Proof of Theorem 1. According to Proposition B.2, the sets Xhelp and Xhurt are consis-

tently estimated. Therefore, in the proof below, I condition on the event p̂(Xi) < 1⇔

Xi ∈ Xhelp for any Xi, i = {1,2, . . . ,N}, which occurs w.p. approaching 1. Theorem 1

is a special case of Theorem B.7 with Sd−1 = {−1,1}. Here I verify that Assumption
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7 for Sd−1 = {−1,1}. In one-dimensional case, Q(1,u,x) reduces to Q(u,x). Further-

more, the quantile of −Y , denoted by Q(−1,u,x), reduces to −Q(1−u,x). Assumption

7(1)-(2) holds by Assumption 5(1)-(2).

Proof of Theorem B.3. Step 1. The probability of non-coverage is bounded as

PrP([β
A
L ,β

A
U ] 6∈ CR)≤ PrP(pL(β

A
L )< α/2)+PrP(pU(β

A
U )< α/2)≤ 1−2α−2(δ + γ),

where the last inequality holds by Lemma 3.1 in Chernozhukov et al. (2017). Therefore,

CR is a valid confidence region for the identified set [β A
L ,β

A
U ].

Step 2. By the proof of Theorem 3.2 in Chernozhukov et al. (2017),

{β ∈ R : pU(β )> α/2}= {β ∈ R : Med[Ω̂−1/2
A,UU(β − β̂

A
U )−Φ

−1(1−α/2)|Data)]< 0].

(C.4)

Since the R.H.S. of (C.4) is a monotone increasing function of β , it suffices to show that

Med[Ω̂−1/2
A,UU(U− β̂

A
U )−Φ

−1(1−α/2)|Data)]≥ 0. (C.5)

By definition of U ,

E[1[U− β̂
A
U − Ω̂

1/2
A,UU Φ

−1(1−α/2)≥ 0]|Data]≥ 1/2. (C.6)

By step 2 of the proof of Theorem 3.2 in Chernozhukov et al. (2017), (C.6) implies

(C.5).

Step 3. By definition of Lee bounds, β0 ∈ [β A
L ,β

A
U ] for any A. Therefore, (B.31)

implies (B.32).

Proof of Proposition B.4. Step 1. I invoke Lemma B.1 with data Wq = (D,X ,S,S ·Yq),

where S = 1{S=1} and Yq = q′Y . Let β0 be the true parameter and B′ be its true sharp
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identified set for β0. By Lemma B.1 , (B.33) is a sharp upper bound on q′β0. Therefore,

(B.34) implies that

σ(q) = sup
b∈B′

q′b. (C.7)

Step 2. To show that σ(q) defined in (B.33) is a support function of some com-

pact and convex set, I need to show that σ(q) is (1) convex, (2) positive homogenous of

degree one and (3) lower-semicontinuous function of q. By Theorem 13.2 from Rock-

afellar (1997), the properties (1)-(3) imply that B is a convex and compact set and σ(q)

is its support function. Therefore, B in (B.34) coincides with the true sharp identified

set for β0.

Verification of (1). Lemma B.1 proves that σ(λq1 + (1− λ )q2) is a sharp upper

bound on (λq1 +(1−λ )q2)
′β0. Furthermore, by Lemma B.1,

q′1β0 ≤ σ(q1) and q′2β0 ≤ σ(q2).

Therefore, (λq1 + (1− λ )q2)
′β0 ≤ λσ(q1) + (1− λ )σ(q2). By sharpness, σ(λq1 +

(1−λ )q2) is the smallest bound on (λq1 +(1−λ )q2)
′β0. Therefore,

σ(λq1 +(1−λ )q2)≤ λq1 +(1−λ )q2,

which implies that σ(q) is a convex function of q.

Verification of (2). Let λ > 0. Observe that the event {λYq ≤ Q(λq, p0(X),X)}

holds if and only if {Yq ≤ Q(q, p0(X),X)}. Since Yq = q′Y is a linear function of q,

σ(q) defined in (B.33) is positive homogenous of degree 1.

Verification of (3). Consider a sequence of vectors qk→ q,k→∞. Suppose σ(qk)≤

C. Then, q′kβ0 ≤ σ(qk) ≤ C, which implies that q′β0 ≤ C must hold. Therefore, C is

a non-sharp bound on q′β0. By sharpness, σ(q) is the smallest bound on q′β0, which

implies σ(q) ≤C. By Theorem 13.2 in Rockafellar (1997), σ(q) is a support function
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of a convex, compact set B defined by a list of linear inequalities (C.7).

Proof of Proposition B.5. The moment equation (B.18) is a sum of the original mo-

ment equation (B.16) and three bias correction terms, for s(0,x), s(1,x), and Q(u,x),

which is an orthogonal moment by Newey (1994). The bias corrections for s(0,x),

s(1,x) and µ1(x) follow from Proposition 4 in Newey (1994). The bias correction

for Q(u,x) follows from Proposition 6 in Ichimura and Newey (2015). According to

Newey (1994), a bias correction term for a vector-valued nuisance parameter ξ0(x) =

{s(0,x),s(1,x),Q(u,x),µ1(x)} is the sum of individual bias correction terms.

ASSUMPTION 10 (Quality of the First-Stage Estimation). There exists a sequence

{ΞN ,N≥ 1} of subsets of Ξ (i.e, ΞN ⊆Ξ) such that the following conditions hold. (1) The

true value ξ0 belongs to ΞN for all N ≥ 1. There exists a sequence of numbers φN = o(1)

such that the first-stage estimator ξ̂ (q) of ξ (q) belongs to ΞN with probability at least

1−φN . There exist sequences rN ,r′N ,δN : r′N log1/2(1/r′N) = o(1), rN = o(N−1/2), and

δN = o(N−1/2) such that the following bounds hold

sup
r∈[0,1)

sup
q∈Sd−1

(∂ 2
r Eg(W,q,r(ξ (q)−ξ0(q))+ξ0(q)))≤ rN .

(2) The following conditions hold for the function class

Fξ = {g(W,q,ξ (q)),q ∈ Sd−1} (C.8)

There exists a measurable envelope function Fξ = Fξ (W ) that almost surely bounds all

elements in the class supq∈Sd−1 |g(W,q,ξ (q))| ≤ Fξ (W ) a.s.. There exists c > 2 such

that ‖Fξ‖LP,c :=
(∫

w∈W(Fξ (w))c)1/c
< ∞. There exist constants a,v that do not depend
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on N such that the uniform covering entropy of the function class Fξ is bounded

logsup
Q

N(ε‖Fξ‖Q,2,Fξ ,‖ · ‖Q,2)≤ v log(a/ε), for all 0 < ε ≤ 1. (C.9)

Lemma C.1 (Verification of Assumption 10 (1)). Under Assumptions 3, 4 and 7, the

orthogonal moment equation (B.18) obeys Assumption 10(1).

Proof of Lemma C.1. Step 1 . Consider the case when Xhurt = /0 and the case of lower

bound. Define the following quantities:

Λ1(W,ξ0) : =
D

µ1(X)
·S ·Y 1{Y≤Q(p0(X),X)}−

1−D
µ0(X)

·S ·Y,

Λ2(W,ξ0) : = Q(p0(X),X)

(
(1−D) ·S

µ0(X)
− s(0,X)

)
Λ3(W,ξ0) : =−Q(p0(X),X)p0(X)

(
D ·S

µ1(X)
− s(1,X)

)
Λ4(W,ξ0) : =−Q(p0(X),X)s(1,X)

(
D ·S ·1{Y≤Q(p0(X),X)}

s(1,X)µ1(X)
− p0(X)

)

and observe that gL(W,ξ0) = (µ
help
10 )−1(∑4

k=1 Λk(W,ξ0)−
1−D
µ0(X)

·S ·Y ).

Step 2 . Let ξ0 =:= {s0(0,x),s0(1,x),Q0(u,x)} be the true value of the nuisance

parameter and ξ := {s(0,x),s(1,x),Q(u,x)} be a candidate value in the neighborhood

of ξ0. Let ∂αE[g(W,ξ )|X = x],∂βE[g(W,ξ )|X = x],∂γE[g(W,ξ )|X = x] denote the par-

tial derivatives of E[g(W,ξ )|X = x] w.r.t the output of the functions s(0,x),s(1,x) and

Q(u,x), respectively. Let ξr := r(ξ −ξ0)+ξ0.

Step 3 . By construction of an orthogonal moment gL(W,ξ ), ∂tE[Λ1(W,ξ )|X =

x], t ∈ {α,β ,γ} coincides with the multipliers in bias correction terms:

∂αE[Λ1(W,ξ0)|X = x] = Q0(p0(x),x)

∂βE[Λ1(W,ξ0)|X = x] = Q0(p0(x),x)p0(x)

∂γE[Λ1(W,ξ0)|X = x] = Q0(p0(x),x)s0(1,x) f (Q(p(x),x)|x).
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Furthermore, the first partial derivatives of Q(p(x),x) w.r.t. α,β ,γ take the form

∂αQ(p(x),x) = f−1(Q(p0(x),x)|x)s−1(1,x)

∂β Q(p(x),x) = f−1(Q(p0(x),x)|x)s−2(1,x)s(0,x)

∂γQ(p(x),x) = 1.

and the second partial derivatives of Q(p(x),x) w.r.t. α,β ,γ take the form

∂
2
ααQ(p(x),x) =− f−2(Q(p0(x),x)|x) f ′(Q(p0(x),x)|x)s−2(1,x)

∂
2
ββ

Q(p(x),x) =− f−2(Q(p0(x),x)|x) f ′(Q(p0(x),x)|x)s−4(1,x)s2(0,x)

+2 f−1(Q(p0(x),x)|x)s−3(1,x)s(0,x)

∂
2
αβ

Q(p(x),x) =− f−1(Q(p0(x),x)|x)s−2(1,x)

∂
2
βα

Q(p(x),x) =−s−2(1,x) f−1(Q(p0(x),x)|x)− f−2(Q(p0(x),x)|x)s−2(1,x)s(0,x)

∂
2
γαQ(p(x),x) = f−2(Q(p0(x),x)|x)s−1(1,x) f ′(Q(p0(x),x)|x)

∂
2
γβ

Q(p(x),x) = f−2(Q(p0(x),x)|x)s−2(1,x) f ′(Q(p0(x),x)|x)s(0,x)

∂
2
αγQ(p(x),x) = ∂

2
βγ

Q(p(x),x) = ∂
2
γγQ(p(x),x) = 0.

By Assumptions 3 and 7(1), all functions of x above are bounded a.s. in X . For k = 2,

Λ2(W,ξ ) is a product of Q(p(x),x) and a linear function of s(0,x) at X = x. For k = 3,

Λ3(W,ξ ) is a product of Q(p(x),x), p(x), and a linear function of s(1,x) at X = x.

Therefore,

sup
t1,t2∈{α,β ,γ}

sup
x∈X
|∂ 2

t1t2E[Λk(W,ξ )|X = x]≤, k ∈ {1,2,3}. is bounded a.s.

Step 4 . Let ρ0(x) := Q(p0(x),x) and ρ(x) be some function in the neighborhood

of ρ0(x). Denote ρr(x) := r(ρ(x)−ρ0(x))+ρ0(x) Consider the following function

λ (r,x) := E[1{Y≤r(ρ(X)−ρ0(X))+ρ0(X)}−1{Y≤ρ0(X)}|X = x] = F(ρr(x)|x)−F(ρ0(x)|x).
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Therefore, the first derivative λ ′(r)= f (ρr(x)|x)(r(x)−r0(x)) and λ ′′(r,x)= f ′(ρr(x)|x)(r(x)−

r0(x))2. By Assumption 7, f ′(ρr(x)|x) is bounded a.s. in X .

Step 5 . Conclusion. By Steps 1-4 and Assumptions 4 and 7,

sup
r∈[0,1)

|∂ 2
rrE[g(W,r(ξ −ξ0)+ξ0)]|. sup

t1,t2∈{α,β ,γ}
sup
x∈X
|∂ 2

t1t2E[g(W,ξ )|X = x](q2
N +qNsN + s2

N) = o(N−1/2).

Finally, the functions Λk(W,ξ0) are smooth, infinitely differentiable functions of the

output of µ1(x) and µ0(x) on some open set in (0,1) that contains the support of µ1(X)

and µ0(X).

Denote the conditional c.d.f as

F(q, t|x) := Pr(q′Y ≤ t|S = 1,D = 1,X = x).

and the conditional density as f (q, t|x) = ∂tF(q, t|x). The argument is given under as-

sumption Xhurt = /0.

Lemma C.2 (Verification of Assumption 10(2)). (1) Suppose Y ∈Rd is a random vector

with a.s. bounded coordinates. (2) There exists an integrable function m(x), so that

sup
t∈Rd
|F(q1, t|x)−F(q2, t|x)| ≤ m(x)‖q1−q2‖

and infq∈Sd−1 inft∈R | f (q, t|x)| ≥ C > 0. Then, Assumption 10(2) holds.

Proof of Lemma C.2. Step 1. The function class M is P-Donsker:

M := {X → Q(q, p(X),X), q ∈ Sd−1}

Since Y ∈ Rd is a.s. bounded random vector with ‖Y‖ ≤ C, one can take C to be the
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envelope. Invoking the identity

F(q1,Q(q1, p0(x))|x)−F(q2,Q(q1, p0(x))|x)

+F(q2,Q(q1, p0(x))|x)−F(q2,Q(q2, p0(x))|x) = p0(x)− p0(x) = 0,

and the mean value theorem for t1 = Q(q1, p0(x) and t2 = Q(q2, p0(x):

F(q2, t1|x)−F(q2, t2|x) = f (q2, t̃|x)(t1− t2)

observe that

|Q(q1, p0(x),x)−Q(q2, p0(x),x)| ≤ sup
t∈R
|F(q1, t|x)−F(q2, t|x)|sup

t∈R
f−1(q2, t|x)

≤C−1m(x)‖q1−q2‖ (C.10)

By Example 19.7 from van der Vaart (1998), the covering numbers of the function class

M obey

N[](ε‖m‖P,r,M,Lr(P)).
(

2
ε

)d

, every 0 < ε < 2.

Finally, since Y ∈ Rd is an a.s. bounded vector, each element of the class M is bounded

by ‖Y‖ ≤C a.s. , and C can be taken as the envelope of M. Therefore, M is P-Donsker

and obeys (C.9) with v = d and a = 2.

Step 2. By Step 1, the function class H′ =

{
W → q′Y −Q(q, p0(X),X), q ∈

Sd−1
}

is the sum of 2 VC classes. Therefore, by Andrews (1994), H′ is a VC class

itself. Therefore, the class of indicators

H :=
{

W → 1{q′Y−Q(q,p0(X),X)≤0}, q ∈ Sd−1
}
.
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is also a VC class with a constant envelope, and, therefore, P-Donsker.

Step 3 . The function class

H1 =

{
W →

D ·S ·1{q′Y≤Q(q,p0(X),X))}
µ1(X)

}

is obtained by multiplying each element of H by an a.s. bounded random variable

D ·S/µ1(X). The function class

H2 =

{
W → Q(q, p(X),X)

(
(1−D)

µ0(X)
− s(0,X

)}

is obtained from M by multiplying each element of M by an a.s. bounded random

variable
(
(1−D)

µ0(X)
− s(0,X

)
. The same argument applies to the function class

H3 =

{
W → Q(q, p(X),X)p0(X)

(
D

µ1(X)
− s(1,X)

)}
.

The function class

H4 =

{
W → Q(q, p(X),X)s(1,X)

(
D ·S1{q′Y≤Q(q,p0(X),X))}

µ1(X)s(1,X)
− p0(X)

)}

is obtained as a product of function classes M and H, multiplied by a random variable

s(1,X). Finally, the function class Fξ in (C.8) is obtained by adding the elements of

Hk, k = 1,2,3,4. Since entropies obey the rules of addition and multiplication by a

random variable (Andrews (1994)), the argument follows.

Proof of Lemma B.6. Let En,k[·] and EN be as defined in (C.1) and (C.2). Steps 1 and 2

establish the statement of the theorem under Assumption 10. Steps 3 and 4 verify the

statements (1) and (2) of Assumption 10, respectively. Step 5 concludes.
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√
n|En,k[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))]| ≤

√
n|E
[
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

]
|

+ |Gn,k[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))]|

=: |i(q)|+ |ii(q)|.

Step 1. Introduce the function

λ (r) := E[g(Wi,q,r(ξ̂ (q)−ξ0(q))+ξ0(q))|EN ∪ (Wi){i∈Jc
k}]−E[g(Wi,q,ξ0(q))].

By Taylor’s expansion,

λ (r) = λ (0)+λ
′(0)+λ

′′(r̃)/2, for some r̃ ∈ (0,1).

By construction, λ (0) = 0. Because g(w,q,ξ (q)) is an orthogonal moment function,

λ ′(0) = 0. By Assumption 10(1),

|λ ′′(r̃)| ≤ sup
r∈(0,1)

|λ ′′(r)| ≤ rN .

Therefore, |i(q)| converges to zero conditionally on data (Wi){i∈Jc
k} and the event EN :

|i(q)| := sup
q∈Sd−1

√
n|E[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))|EN ∪ (Wi){i∈Jc

k}]|

≤ sup
q∈Sd−1

sup
ξ∈Ξn

√
n|E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))|EN ∪ (Wi){i∈Jc

k}]|

≤ sup
q∈Sd−1

sup
ξ∈Ξn

√
n|E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))]

≤i √nrn = o(1).

By Lemma 6.1 of Chernozhukov et al. (2018), the term i(q) = O(rn) = o(1) uncondi-

tionally.
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Step 2. To bound the second quantity, consider the function class

F
ξ̂ ξ0

= {g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q)), q ∈ Sd−1}.

for some fixed ξ̂ . By definition of the class,

E sup
q∈Sd−1

|ii(q)| := E sup
f∈F
|Gn,k[ f ]|.

We apply Lemma 6.2 of Chernozhukov et al. (2018) conditionally on data (Wi){i∈Jc
k}

and the event EN so that ξ̂ (q) = ξ̂k can be treated as a fixed member of Ξn. The function

class F
ξ̂ ξ0

is obtained as the difference of two function classes: F
ξ̂ ξ0

:= F
ξ̂
−Fξ0

, each

of which has an integrable envelope and bounded logarithm of covering numbers. In

particular, one can choose an integrable envelope as F
ξ̂ ξ0

:= F
ξ̂
+Fξ0

and bound the

covering numbers as:

logsup
Q

N(ε‖F
ξ̂ ξ0
‖Q,2,F

ξ̂ ξ0
,‖ · ‖)≤ logsup

Q
N(ε‖F

ξ̂
‖Q,2,F

ξ̂
,‖ · ‖)+ logsup

Q
N(ε‖Fξ0

‖Q,2,Fξ0
,‖ · ‖)

≤ 2v log(a/ε), for all 0 < ε ≤ 1.

Finally, we can choose the speed of shrinkage (r′n)
2 such that

sup
q∈Sd−1

sup
ξ∈Ξn

(
E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))]2

)1/2 ≤ r′n,

the application of Lemma 6.2 of Chernozhukov et al. (2018) gives with M :=maxi∈Ic
k

F
ξ̂ ξ0

(Wi)

sup
q∈Sd−1

|ii(q)| ≤ sup
q∈Sd−1

|Gn,k[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))]|

≤
√

v(r′n)2 log(a‖F
ξ̂ ξ0
‖P,2/r′n)+ v‖M‖P,c′/

√
n log(a‖F

ξ̂ ξ0
‖P,2/r′n)

.P r′n log1/2(1/r′n)+n−1/2+1/c′ log1/2(1/r′n)
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where a constant ‖M‖P,c′ ≤ n1/c′‖F‖P,c′ for the constant c′ ≥ 2.

Step 3. Lemma C.1 verifies Assumption 10(1).

Step 4. Lemma C.2 verifies Assumption 10(2).

Step 5. Asymptotic Normality. In Lemma C.2, we have shown that the function class

Fξ0
= {g(W,q,ξ (q)), q ∈ Sd−1} is P-Donsker. By Theorem 19.14 from van der Vaart

(1998), the asymptotic representation follows from the Skorohod-Dudley-Whichura rep-

resentation, assuming the space L∞(Sd−1) is rich enough to support this representation.

Proof of Theorem B.7. The proof of Theorem B.7 follows from Lemma B.6 and the

proof of Theorem 2 in Chandrasekhar et al. (2012).

Lemma C.3. Let Assumption 10 hold. Then

√
NEN

(
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

)
ei = oP(1).

Proof. Step 1. Decompose the sample average into the sample averages within each

partition:

EN
(
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

)
ei =

1
K

K

∑
k=1

En,k
(
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

)
ei.

Since the number of partitions K is finite, it suffices to show that the bound holds on

every partition:

En,k
(
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

)
ei = oP(1).

Let EN := ∩K
k=1{ξ̂Ic

k
∈ Ξn}. By Assumption 10 Pr(EN)≥ 1−KφN = 1−o(1). The anal-

ysis below is conditionally on EN for some fixed element ξ̂k ∈ Ξn. Since the probability
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of EN approaches one, the statements continue to hold unconditionally, which follows

from the Lemma 6.1 of Chernozhukov et al. (2018).

Step 2. Consider the function class Fe
ξ ξ0

:= {(g(Wi,q,ξ (q))−g(Wi,q,ξ0(q)))ei, q∈

Sd−1}. The function class is obtained by the multiplication of a random element of class

Fξ ξ0
by an integrable random variable ei. Therefore, Fe

ξ ξ0
is also P-Donsker and has

bounded uniform covering entropy. The expectation of the random element of the class

Fe
ξ ξ0

is bounded as:

√
n sup

q∈Sd−1
|E[g(Wi,q, ξ̂ (q))−g(Wi,q,ξ (q))ei|EN ]|. sup

ξ∈Ξn

E[g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))]

.
√

nµn = o(1).

The variance of each element of the class Fe
ξ ξ0

is bounded as:

sup
q∈Sd−1

sup
ξ∈Ξn

E((g(Wi,q,ξ (q))−g(Wi,q,ξ0(q)))0ei)
2 = sup

q∈Sd−1
sup

ξ∈Ξn

E
(
(g(Wi,q,ξ (q))−g(Wi,q,ξ0(q)))0)2Ee2

i

≤ 2 sup
q∈Sd−1

sup
ξ∈Ξn

E((g(Wi,q,ξ (q))−g(Wi,q,ξ0(q))))2

. r′′n ,

where the bound follows from the conditional independence of ei from Wi, Ee2
i = 2 for

ei ∼ Exp(1), and Assumption 10.

Proof of Lemma B.8. The difference between the bootstrap and the true support function

as follows:

√
N(σ̃(q,B)−σ(q,B)) =

1√
N

N

∑
i=1

ei
(
g(Wi,q, ξ̂ (q))−g(Wi,q,ξ0(q))

)
︸ ︷︷ ︸

Kξ ξ0
(q)

+
1√
N

N

∑
i=1

ei(g(Wi,q,ξ0(q))−σ0(q))
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By Lemma C.3 supq∈Sd−1 |Kξ ξ0
| = oP(1). The remainder of the Theorem B.9 follows

from Steps 2 and 3 of the Proof of Theorem 3 Chandrasekhar et al. (2012).

Proof of Theorem B.9. The proof of Theorem B.9 follows from Lemma B.8 and the

proof of Theorem 4 in Chandrasekhar et al. (2012).

C.1 Proofs for Sections 6.3

I present the argument for the lower truncated measure fTL defined in equation (B.39);

a similar argument applies for fTU . I will make use of the following statements. By

definition of TL(W ),

Pr(S = 1 and W 6∈ TL(W )|X) = Pr(S = 1 and W 6∈ TL(W )|X ,D = 1)µ1(X)

+Pr(S = 1|X ,D = 0)µ0(X)

= p0(X)s(1,X)µ1(X)+ s(0,X)µ0(X) = s(0,X). (C.11)

For any event D = 1, Bayes rule and (C.11) imply

Pr(D = 1|S = 1 and W 6∈ TL(W ),X) =
p0(X)s(1,X)

s(0,X)
Pr(D = 1|X) = Pr(D = 1|X)

(C.12)

Proof of Lemma B.11. Invoking Bayes rule, (C.11), and Assumption 8 gives

fTL(x) = E−1[s(0,X)]s(0,x) f (x) = f11(x).

Proof of Lemma B.12. By Assumption 1, D is independent of S(1) and S(0) given X̄ ,

which implies i. Invoking (C.12) gives iii. By Assumption 8, Pr(D = 1|X) is a function

97



of X̄ , and ii holds. Therefore, the numerators of functions w11(X̄) and wTL(X̄) are equal

to each other. By Lemma B.11, the denominators of functions w11(X̄) and wTL(X̄) are

equal to each other.

Proof of Proposition B.13. Step 1. By Lemma B.1 (c), the functions βL(X) and βU(X)

are sharp bounds on E[Y (1)−Y (0)|S(1) = S(0) = 1,X ]:

βL(X) = ETL [Y |D = 1,X ]−ETL [Y |D = 0,X ]≤ E11[Y (1)−Y (0)|X ]

≤ ETU [Y |D = 1,X ]−ETU [Y |D = 0,X ] = βU(X),

where βL(X) is defined in (B.7) and βU(X) is defined in (B.6). By the Law of Iterated

Expectations (LIE),

E11[βL(X)|X̄ ]≤ E11[Y (1)−Y (0)|X̄ ]≤ E11[βU(X)|X̄ ].

Step 2. Let w11(X̄) and wT∗(X̄) be the weighting functions defined in Lemma B.12.

The following statements hold:

β
1
L =i ETLwTL(X̄)

(
ETL

[
ETL [Y |D = 1,X ]−ETL [Y |D = 0,X ]

]∣∣∣∣X̄)
=ii ETLwTL(X̄)ETL [βL(X)|X̄ ]

=iii E11wTL(X̄)E11[βL(X)|X̄ ]

≤iv E11w11(X̄)E11[Y (1)−Y (0)|X̄ ]

≤v E11w11(X̄)E11[βU(X)|X̄ ]

=vi ETU wTU (X̄)ETU [βU(X)|X̄ ]

=vii ETU wTU (X̄)

(
ETU [Y |D = 1, X̄ ]−ETU [Y |D = 0, X̄ ]

)
=viii

β
1
U ,
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where i and viii follow from Lemma B.10, ii and vii follow from (B.7) and (B.6), iii and

vi follow from Lemmas B.11 and B.12, and iv and v come from Step 1.

Proof of Lemma B.14. Step 1. Validity of (B.44). Observe that

E[gL
1(W,ξ0)] =

i (µ−1
10 )E[[wTL(X̄)βL(X)s(0,X)]+0

=ii ETL [wTL(X̄)βL(X)]

=iii
β

L
1 ,

where i follows from αL(W ;ξ0) being the sum of three functions that are mean zero

conditional on X , ii follows from Lemma B.11, and iii follows from Lemma B.10.

Step 2. Orthogonality of (B.44). Observe that (µ−1
10 )αL(W ;ξ ) is the bias correction

term for (µ−1
10 )βL(X)s(0,X), the original (non-orthogonal) component of (B.18). There-

fore, the bias correction term for (µ−1
10 )wTL(X̄)βL(X)s(0,X) is equal to (µ−1

10 )wTL(X̄)αL(W ;ξ )

(Newey (1994)).

Step 3. Asymptotic linearity of (B.44). From the proof of Lemmas C.1 and C.2,

the moment equation (B.18) obeys Assumption 10. The weighting function wTL(X̄) is

bounded a.s.. Therefore, (B.44) obeys Assumption 10 and equation (B.48) holds.

Step 4. From the proof of Lemmas C.1 and C.2, the moment equation (B.18) obeys

Assumption 10. As shown in Newey (1994) and Chernozhukov et al. (2016), the series

estimators have the low-bias property that implies the last statement of the Lemma.

Proof of Lemma B.16. Step 1. In the proof of Lemma B.16, I showed that

f11(x) = (E[s(0,X)])−1s(0,x) f (x).
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Step 2. Observe that

Pr(S = 1 and W 6∈ ΛL(W )|X)

= Pr(S = 1 and W 6∈ ΛL(W )|X ,Z = 1)µ1(X)+Pr(S = 1|X ,Z = 0)µ0(X)

= Pr(S = 1 and W 6∈ ΛL(W )|X ,Z = 1,D = 1)Pr(D = 1|Z = 1,X)µ1(X)

+Pr(S = 1 and W 6∈ ΛL(W )|X ,Z = 1,D = 0)Pr(D = 0|Z = 1,X)µ1(X)

+Pr(S = 1|X ,Z = 0)µ0(X)

= p0(X)s(1,X)(Pr(D = 1|Z = 1,X)+Pr(D = 0|Z = 1,X))µ1(X)+ s(0,X)µ0(X)

= s(0,X) (C.13)

Invoking Bayes rule gives fΛL(x) = E−1[s(0,X)]s(0,x) f (x) = f11(x).

Proof of Lemma B.17. Step 1. The following equality holds:

Pr(S(1) = S(0) = 1|D = 1,Z = z,X) = Pr(S(1) = S(0) = 1|D(z) = 1,Z = 1,X)

=i Pr(S(1) = S(0) = 1|D(z),X)

=ii Pr(S(1) = S(0) = 1|X),

where i holds by Assumption 8 and ii holds by Assumption 9(6) . Likewise, Pr(S(1) =

S(0) = 1|D = 1,Z = z,X) = Pr(S(1) = S(0) = 1|X). Bayes rule implies

Pr11(D = 1|Z = z,X) =
Pr(S(1) = S(0) = 1|D = 1,Z = z,X)Pr(D = 1|Z = z,X)

Pr(S(1) = S(0) = 1|Z = z,X)
= Pr(D = 1|Z = z,X),

which establishes a. b follows from Assumption 8.
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Step 2. When Z = 0, observations are not truncated. Therefore,

Pr(S = 1,W 6∈ TL(W )|D = d,Z = 0,X)

=i Pr(S = 1|D = d,Z = 0,X) =ii Pr(S = 1|Z = 0,X)

=iii Pr(S(0) = 1|Z = 0,X) = s(0,X),

where i follows from the definition of ΛL(W ) in (B.49), ii follows from Assumption 9

(5), and iii follows from Assumption 9 (1).

Step 3. When Z = 1, observations are truncated at equal proportions in D= 1,Z = 1

and D = 0,Z = 1 groups. Therefore,

Pr(S = 1,W 6∈ ΛL(W )|D = d,Z = 1,X)

= Pr(W 6∈ ΛL(W )|D = d,Z = 1,S = 1,X)Pr(S = 1|D = d,Z = 1,X)

= p0(X)s(1,X) = s(0,X), d ∈ {1,0}.

Thus Pr(W 6∈ ΛL(W )|D = d,Z = z,X) = Pr(W 6∈ ΛL(W )|X) does not depend on either

d or z. Bayes rule implies

PrΛL(D = 1|Z = z,X) =
Pr(W 6∈ ΛL(W )|D = 1,Z = z,X)Pr(D = 1|Z = z,X)

Pr(W 6∈ ΛL(W )|Z = z,X)

= Pr(D = 1|Z = z,X).

Step 4. Steps 1, 2, and 3 imply that

V11(E11[D = 1|X̄ ,Z]|X̄) = E11[D = 1|X̄ ,Z = 1] ·E11[D = 1|X̄ ,Z = 0]

= Pr[D = 1|X̄ ,Z = 1] ·Pr[D = 1|X̄ ,Z = 0]

= PrΛL [D = 1|X̄ ,Z = 1] ·PrΛL [D = 1|X̄ ,Z = 0]

=VΛL(EΛL [D = 1|X̄ ,Z]|X̄).
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Therefore, the numerators of ωΛL(X̄) and ω11(X̄) are equal to each other. By Lemma

B.16, their denominators are also equal to each other.

Proof of Proposition B.18. Step 1. By Lemma B.1(c),

βL(X) = EΛL [Y |Z = 1,X ]−EΛL [Y |Z = 0,X ]≤ E11[(D(1)−D(0)) · (Y (1)−Y (0))|X ]

≤ EΛU [Y |Z = 1,X ]−EΛU [Y |Z = 0,X ] = βU(X).

Furthermore, [βL(X),βU(X)] is a sharp identified set for E[Y (1)−Y (0)|X ]. Step 2.

Conclusion.

π
1
L =i EΛLωΛL(X̄)EΛL

[
EΛL [Y |Z = 1,X ]−EΛL [Y |Z = 0,X ]

EΛL [D = 1|Z = 1,X ]−EΛL [D = 1|Z = 0,X ]

∣∣∣∣X̄]
=ii EΛLωΛL(X̄)EΛL

[
βL(X)

EΛL [D = 1|Z = 1,X ]−EΛL [D = 1|Z = 0,X ]

∣∣∣∣X̄]
=iii E11ω11(X̄)E11

[
βL(X)

E11[D = 1|Z = 1,X ]−E11[D = 1|Z = 0,X ]

∣∣∣∣X̄]
≤iv E11w11(X̄)E11

[
Y (1)−Y (0)

∣∣∣∣D(1)> D(0), X̄
]

≤v E11w11(X̄)E11

[
βU(X)

EΛU [D = 1|Z = 1,X ]−EΛU [D = 1|Z = 0,X ]

∣∣∣∣X̄]
=vi EΛU ωΛU (X̄)

[
EΛU [Y |Z = 1,X ]−EΛU [Y |Z = 0,X ]

EΛU [D = 1|Z = 1,X ]−EΛU [D = 1|Z = 0,X ]

∣∣∣∣X̄]=vii
π

1
U ,

where i and vii follow from Lemma B.15, ii and vi follow from Lemmas B.1(c) and B.11

, iii follows from Lemma B.17, and iv follows by Step 1.

Appendix D: Additional Simulations

Definition of the parameters. Consider the parameters in equations (7.1)-(7.2). The

parameters α and σ̃ are multiplied by 3.5 and 0.1, respectively, so that the artificial

102



Table D.1: Finite sample performance of oracle, basic and better Lee bounds

Panel A: Lower Bound

Bias St. Dev. Coverage Rate

N Oracle Basic Better Oracle Basic Better Oracle Basic Better

9,000 0.00 -0.03 -0.01 0.01 0.01 0.01 0.95 0.26 0.90
10,000 0.00 -0.03 -0.01 0.01 0.01 0.01 0.95 0.25 0.90
15,000 0.00 -0.02 -0.01 0.00 0.01 0.01 0.95 0.23 0.90

Panel B: Upper Bound

9,000 -0.00 0.03 0.00 0.01 0.01 0.01 0.95 0.28 0.95
10,000 -0.00 0.03 0.00 0.01 0.01 0.01 0.95 0.29 0.95
15,000 -0.00 0.02 0.00 0.00 0.01 0.01 0.94 0.28 0.95

Notes. Results are based on 10,000 simulation runs. In Panel A, the true parameter value is
−0.014 for the basic method, and −0.011 for all other methods. In Panel B, the true parameter
value is 0.035 for the basic method, and 0.018 for all other methods. Bias is the difference
between the true parameter and the estimate, averaged across simulation runs. St. Dev. is the
standard deviation of the estimate. Coverage Rate is the fraction of times a two-sided symmetric
CI with critical values cα/2 and c1−α/2 covers the true parameter, where α = 0.95. N is the
sample size in each simulation run. Oracle, basic, naive and better estimated bounds cover zero
in 100% of the cases.

wage’s interquantile range matches its week 90 counterpart. Second, (γ)1—the first

coefficient of γ—is multiplied by 0.1 to make the classification problem into Xhelp and

Xhurt sufficiently difficult, as it could be in the real JobCorps example with 5,177 covari-

ates. Finally, α is multiplied by 3, to make the artificial employment rate match its week

90 counterpart. The true basic identified set is the weighted average of basic Lee bounds

(2.3) and (2.4), defined separately for Xhelp and Xhurt. The true sharp identified set is

the output of Algorithm 1, where the direction of the treatment effect on employment

is positive if the treatment-control difference in employment rates exceeds zero and is

negative otherwise.

The basic method. The basic method is defined as the weighted average of basic Lee

bounds, estimated on Xhelp and Xhurt separately. The trimming threshold is estimated as

described in equation (F.1) based on all covariates.
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The better method: orthogonal approach. In Section 7 of the main text, the better

method is the sample average of the orthogonal moment equations (B.18). The first-

stage parameters are estimated as described in Section F.1. For the employment equa-

tion, covariates are selected by post-lasso-logistic of Belloni et al. (2016). For the wage

equation, covariates are selected by post-lasso of Belloni et al. (2017).

The better method: agnostic approach. In this section, I consider an alternative

version of the better method based on agnostic approach. To construct the bounds, I

randomly split the sample into the auxiliary part with N/100 observations and the main

part with 99/100N observations. On the auxiliary part, I select three covariates. The

first covariate is the one with the largest absolute value of the coefficient in the wage

equation estimated by linear lasso of Belloni et al. (2017). The next two covariates are

the top 2 covariates according to the importance measure of the random forest ranger

R command in the employment equation. For each covariate, its importance shows the

reduction in variance explained by random forest if is a given covariate is excluded.

Thus, the target bounds are the sharp bounds conditional on three covariates.

Appendix E: Additional details for Section 3

C.2 JobCorps empirical application.

Data description. In this section, I describe baseline covariates for the JobCorps em-

pirical application. The data is taken from Schochet et al. (2008), who provides covariate

descriptions in Appendix L. All covariates describe experiences before random assign-

ment (RA). Most of the covariates represent answers to multiple choice questions; for

these covariates I list the question and the list of possible answers. An answer is high-

lighted in boldface if is selected by post-lasso-logistic of Belloni et al. (2016) for one

of employment equation specifications, described below. Table E.1 lists the covariates
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selected by Lee (2009). A full list of numeric covariates, not provided here, includes

p = 5,177 numeric covariates.

Covariates selected by Lee (2009). Lee (2009) selected 28 baseline covariates to es-

timate parametric specification of the sample selection model. They are given in Table

E.1.

Table E.1: Baseline covariates selected by Lee (2009).

Name Description

FEMALE female
AGE age

BLACK, HISP, OTHERRAC race categories
MARRIED, TOGETHER, SEPARATED family status categories

HASCHILD has child
NCHILD number of children

EVARRST ever arrested
HGC highest grade completed

HGC_MOTH, HGC_FATH mother’s and father’s HGC
HH_INC1−HH_INC5 five household income groups with cutoffs 3,000,6,000,9,000,18,000

PERS_INC1−PERS_INC4 four personal income groups with cutoffs 3,000,6,000,9,000
WKEARNR weekly earnings at most recent job
HRSWK_JR ususal weekly work hours at most recent job
MOSINJOB the number of months employed in past year
CURRJOB employed at the moment of interview
EARN_YR total yearly earnings
YR_WORK any work in the year before RA

Reasons for joining JobCorps (R_X). Applicants were asked a question “How impor-

tant was reason X on the scale from 1 (very important) to 3 (not important), or 4 (N/A),

for joining JobCorps?”. Each reason X was asked about in an independent question.

Table E.2: Reasons for joining JobCorps

Name description Name description

R_HOME getting away from home R_COMM getting away from community
R_GETGED getting a GED R_CRGOAL desire to achieve a career goal
R_TRAIN getting job training R_NOWORK not being able to find work

For example, a covariate R_HOME1 is a binary indicator for the reason R_HOME

being ranked as a very important reason for joining JobCorps.

Sources of advice about the decision to enroll in JobCorps (IMP_X). Applicants were
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asked a question “How important was advice of X on the scale from 1 (important) to 0

(not important) ?”. Each source of advice was asked about in an independent question.

Table E.3: Sources of advice about the decision to enroll in JobCorps.

Name description Name description

IMP_PAR parent or legal guardian IMP_FRD friend
IMP_TCH teacher IMP_CW case worker
IMP_PRO probation officer IMP_CHL church leader

Main types of worry about joining JobCorps (TYPEWORR). Applicants were asked

to select one main type of worry about joining JobCorps.

Table E.4: Types of worry about joining JobCorps

# description # description

1 not knowing anybody or not fitting in 2 violence / safety
3 homesickness 4 not knowing what it will be like
5 dealing with other people 6 living arrangements
7 strict rules and highly regimented life 8 racism
9 not doing well in classes 10 none

Drug use summary (DRUG_SUMP). Applicants were asked to select one of 5 possi-

ble answers best describing their drug use in the past year before RA.

Table E.5: Summary of drug use in the year before RA

# description # description

1 did not use drugs 2 marijuana / hashish only
3 drugs other than marijuana / hashish 4 both marijuana and other drugs

Frequency of marijuana use (FRQ_POT) . Applicants were asked to select one of 5

possible answers best describing their marijuana / hashish use in the past year before

RA.
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Table E.6: Frequency of marijuana/hashish use in the year before RA

# description # description

1 daily 2 a few times each week
3 a few times each month 4 less often
5 missing 6 N/A

Applicant’s welfare receipt history. Applicants were asked whether they ever re-

ceived food stamps (GOTFS), AFDC benefits (GOTAFDC) or other welfare (GOTOTHW)

in the year prior to RA. In case of receipt, they asked about the duration of receipt

in months (MOS_ANYW,MOS_AFDC). For example, GOTAFDC=1 and MOS_AFDC=8

describes an applicant who received AFDC benefits during 8 months before RA.

Household welfare receipt history (WELF_KID). Applicants were asked about family

welfare receipt history during childhood.

Table E.7: Family was on welfare when growing up

# description # description

1 never 2 occasionally
3 half of the time 4 most or all time

Health status (HEALTH). Applicants were asked to rate their health at the moment

of RA

Table E.8: Health status at RA

# description # description

1 excellent 2 good
3 fair 4 poor
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Table E.9: Figure 2 details: monotonicity test results

Weeks Cell with the largest t-statistic Average Test Statistic

(1) (2) (3)

Weeks 60 – 89 MOS_AFDC=8 or

PERS_INC=3 and EARN_YR ∈ [720,3315]

2.390

Weeks 90 – 116 R_HOME=1 and MARRCAT11=1 2.536

Weeks 117 – 152 R_COMM=1 and IMP_PRO=1 and FRQ_POT=3 or

DRG_SUMP=2 and TYPEWORR=5 and IMP_PRO=1

2.690

Weeks 153 – 186 IMP_PRO=1 and MARRCAT11 or

REASED_R4 = 1 and R_COMM=1 and DRG_SUMP=2

3.303

Weeks 187 – 208 same as weeks 90–116 2.221

Notes. This table shows the results for the monotonicity test in Figure 2. The test is conducted separately for each week using a week-
specific test statistic and p-value. For each test, I partition N = 9,145 subjects into J = 2 cells C1,C2. Column (2) describes the cell
with the largest t-statistic whose value is compared to the critical value. Column (3) shows the average test-statistic across time period in
Column (1). The test statistic is T = max j∈{1,2} µ̂ j/σ̂ j, where µ̂ j and σ̂ j are sample average and standard deviation of random variable
ξ j := E[(2D− 1) · S|X ∈ C j], weighted by design weights DSGN_WGT. The critical value cα is the self-normalized critical value of
Chernozhukov et al. (2019). For α = 0.05, cα = 1.960. For α = 0.01, cα = 2.577. Covariates are defined in Section C.2.
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Arrest experience. CPAROLE21=1 is a binary indicator for being on probation or

parole at the moment or RA. In addition, arrested applicants were asked about the time

past since most recent arrest MARRCAT.

Table E.10: Number of months since most recent arrest

# description # description

1 less than 12 2 12 to 24
3 24 or more 4 N/A

Appendix F: Empirical applications: additional details

F.1 General Description of better Lee bounds

In this section, I describe how to compute the first stage estimates for better Lee bounds,

which applies to all three applications under consideration. All subjects are partitioned

into the sets X̂help = {X : p̂(X) < 1} (JobCorps helps employment) and X̂hurt = {X :

p̂(X) > 1} (JobCorps hurts employment) by plugging covariate vector X into either lo-

gistic or post-lasso-logistic estimate of trimming threshold p0(x) = s(0,x)/s(1,x) defined

as

ŝ(0,x) = Λ(x′α̂), ŝ(1,x) = Λ(x′(α̂ + γ̂)), p̂(x) = ŝ(0,x)/ŝ(1,x) (F.1)

where Λ(t) = exp(t)/(1+exp(t)) is the logistic function, α̂ is the baseline coefficient and

γ̂ is the interaction coefficient. Treatment variable D is always included into the final

logistic regression regardless of being selected by post-lasso-logistic.

For a continuous outcome, the quantile estimate Q̂(p̂(x),x) is evaluated in four steps:

1. The parameter δ0(u) from equation (B.25) is estimated by quantile regression de-

fined in equation (B.26) with Z(x) = x and u ∈ {0.01,0.02, . . . ,0.99}. Likewise,
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an analog of δ0(u) is estimated by quantile regression defined in equation for

S = 1,D = 0 group.

2. For each covariate value x and quantile level u ∈ {0.01,0.02, . . . ,0.99}, Q̂(u,x) :=

x′δ̂ (u) is evaluated.

3. For each covariate value x, the vector (Q̂(u,x))0.99
u=0.01 is sorted. Furthermore, Q̂(u,x)

is capped at the minimal and maximal outcome values.

4. For each covariate value x, the trimming threshold p̂(x) = round(p̂(x),2) is rounded

to 2 decimal places. Q̂(p̂(x),x) is evaluated.

For a binary outcome (e.g., a binary outcome in Finkelstein et al. (2012), the condi-

tional probability of zero outcome in the treated group

φ0(x) := Pr(Y = 1|X = x) := Λ(x′δ ) (F.2)

is estimated by logistic regression. An outcome is trimmed if a coin with head probabil-

ity (1− p̂(x))/φ̂(x) turns out head.

F.2 Details of Figure 4.

Observe that the support function of a circle centered at β0 with radius R takes the

form σ(q) = q′β0 +R. Given an estimate of the support function σ̂(q) evaluated at q ∈

{q1, . . . ,qJ}, the best circle approximation for an identified set is defined as the circle

with radius (β̃ , R̃) chosen as the minimizers of the Ordinary Least Squares problem:

(β̃ , R̃) = argmin
R,β

1
J

2J

∑
j=1

(σ̂(q j)−q′jβ −R)2. (F.3)
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F.3 Lee (2009) empirical details

Table F.11: First-Stage Estimates, Table 3, Columns (3) and (7).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control Treated

(1) (2) (3) (4) (5)

1 (Intercept) -0.518 0.154 2.305 2.561
2 BLACK and R_GETGED=1 -0.200
3 R_COMM=1 and R_GETGED=1 -0.224
4 MOS_ANYW and R_GETGED=1 -0.022
5 HGC : EVWORK 0.044
6 HGC : HRWAGER 0.001
7 HGC : MOSINJOB 0.004
8 HRWAGER : MOSINJOB 0.006
9 EARN_YR 0.000
10 R_HOME = 1 -0.260
11 PAY_RENT = 1 0.054 0.033
12 HRWAGER 0.017 -0.021
13 WKEARNR 0 0.001
14 FEMALE -0.139 -0.036
15 PERS_INC1 0.011 -0.12
16 HH_INC5 0.073 0.133

Notes. Table shows the first-stage logistic and quantile regression estimates that produce bounds
in Columns (3) and (7) of Table 3 . Column (2): baseline coefficient α of equation (F.1). Column
(3): interaction coefficient γ of equation (F.1). Column (4): δ (u) of equation (B.26) on wage
90 u = 0.95-quantile in the control group (sample size = 1, 660). Column (5): δ (u) of equation
(B.26) on wage 90 u = 0.97-quantile in the treated group (sample size = 2, 564). Covariates are
defined in Section C.2. Computations use design weights.
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Table F.12: First-Stage Estimates, Table 3, Columns (1)-(2).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control (S = 1,D = 0) Treated (S = 1,D = 1)

(1) (2) (3) (4) (5)

1 (Intercept) -1.047 0.553 2.669 2.197
2 AGE 0.038 -0.037 -0.003 0.014
3 BLACK -0.203 -0.109 -0.135 -0.176
4 CURRJOB 0.201 -0.044 0.036 0.085
5 EARN_YR 0.000 0.000 0.000 0.000
6 EVARRST -0.123 0.147 -0.024 0.024
7 FEMALE -0.23 -0.058 -0.113 -0.126
8 HASCHLD 0.425 -0.177 -0.012 0.103
9 HGC 0.036 0.026 -0.011 -0.011
10 HGC_FATH 0.013 -0.001 0.003 0.004
11 HGC_MOTH -0.004 0.008 0.003 0.000
12 HH_INC2 0.148 -0.186 -0.032 -0.026
13 HH_INC3 0.142 -0.035 -0.013 -0.01
14 HH_INC4 0.373 -0.23 0.007 0.061
15 HH_INC5 0.276 0.036 0.077 0.151
16 HISP -0.155 0.004 0.095 0.029
17 HRSWK_JR -0.006 0.003 0.000 -0.003
18 MARRIED 0.339 -0.253 -0.034 -0.021
19 MOSINJOB 0.039 0.007 -0.006 0.000
20 NCHLD -0.324 0.137 0.067 0.023
21 OTHERRAC -0.191 -0.284 0.121 0.054
22 PERS_INC2 0.182 0.007 0.172 -0.059
23 PERS_INC3 0.200 -0.024 0.185 0.044
24 PERS_INC4 0.031 0.419 0.222 -0.14
25 SEPARATED -0.149 -0.165 -0.084 -0.105
26 TOGETHER -0.199 0.339 -0.026 0.014
27 WKEARNR 0.001 -0.001 0.001 0.001
28 YR_WORK 0.260 0.147 -0.070 -0.042

Notes. Table shows the first-stage logistic and quantile regression estimates that produce bounds
in Columns (1)-(2) of Table 3 . Column (2): baseline coefficient α in equation (F.1). Column
(3):interaction coefficient γ in equation (F.1). Column (4): δ (u) from equation (B.26) on wage
90 u = 0.95-quantile in the control group (sample size = 1, 660). Column (5): δ (u) of equation
(B.26) on wage 90 u = 0.97-quantile in the treated group (sample size = 2, 564). Covariates are
defined in Section C.2. Computations use design weights.
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Table F.13: First-Stage Estimates, Table 3, Column (4).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control Treated

(1) (2) (3) (4) (5)

1 (Intercept) -0.68 0.38 2.21 0.14
2 EARN_YR 0.00 -0.00 0.00 0.00
3 EVWORK -0.40 -0.08 -0.02 -0.01
4 FEMALE -0.22 -0.06 -0.13 0.01
5 HGC 0.07 -0.02 0.01 -0.00
6 HH_INC5 0.14 0.16 0.04 0.09
7 HRWAGER 0.16 -0.00 0.00 -0.01
8 MOSINJOB 0.04 0.02 0.00 -0.00
9 MOS_ANYW -0.02 0.00 0.00 -0.00

10 PAY_RENT1 -0.09 0.13 0.06 0.04
11 PERS_INC1 -0.09 -0.02 -0.01 -0.10
12 RACE_ETH2 -0.15 -0.04 -0.15 0.05
13 R_COMM1 -0.11 -0.05 0.02 -0.07
14 R_GETGED1 -0.27 -0.01 -0.05 0.04
15 R_HOME1 -0.21 -0.06 -0.04 0.04
16 WKEARNR -0.00 0.00 0.00 0.00
17 R_GETGED1:RACE_ETH2 -0.021
18 HGC:EVWORK 0.081
19 R_COMM1:R_GETGED1 -0.054
20 R_GETGED1:MOS_ANYW 0.004
21 HRWAGER:HGC -0.014
22 HGC:MOSINJOB 0.000
23 HRWAGER:MOSINJOB 0.003

Notes. Table shows the first-stage logistic and quantile regression estimates that produce bounds
in Column (4) of Table 3. Column (2): baseline coefficient α of equation (F.1). Column (3):
interaction coefficient γ of equation (F.1). Column (4): δ (u) of equation (B.26) on wage 90
u = 0.95-quantile in the control group (sample size = 1, 660). Column (5): δ (u) of equation
(B.26) on wage 90 u = 0.97-quantile in the treated group (sample size = 2, 564). Covariates are
defined in Section C.2. Computations use design weights.
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Table F.14: First-Stage Estimates, Table 3, Column (5).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control Treated

(1) (2) (3) (4) (5)

1 (Intercept) -1.31 0.46 2.14 0.17
2 AGE 0.06 -0.02 0.01 -0.01
3 BLACK -0.22 -0.02 -0.17 0.03
4 EARN_CMP 0.00 0.00 0.01 -0.00
5 EARN_YR 0.00 -0.00 -0.00 0.00
6 FEMALE -0.14 -0.01 -0.11 0.00
7 HGC_FATH 0.02 -0.00 0.00 0.00
8 HRWAGER 0.06 -0.01 0.00 -0.00
9 MONINED 0.00 0.00 -0.01 0.00

10 MOSINJOB 0.06 0.02 0.01 -0.01
11 MOS_ANYW -0.02 0.00 -0.00 0.00
12 PERS_INC1 -0.13 -0.05 -0.00 -0.07
13 WKEARNR -0.00 0.00 0.00 0.00

Notes. Table shows the first-stage logistic and quantile regression estimates that produce bounds
in Column (5) of Table 3. Column (2): baseline coefficient α of equation (F.1). Column (3):
interaction coefficient γ of equation (F.1). Column (4): δ (u) of equation (B.26) on wage 90
u = 0.95-quantile in the control group (sample size = 1, 660). Column (5): δ (u) of equation
(B.26) on wage 90 u = 0.97-quantile in the treated group (sample size = 2, 564). Covariates are
defined in Section C.2. Computations use design weights.

F.4 Angrist et al. (2002) empirical details

Table F.15: Baseline covariates in Angrist et al. (2002)

Name Description Name Description

AGE2 pupil’s age SEX_NAME gender by first name
MOM_AGE mother’s age DAD_AGE father’s age
MOS_SCH mother’s HGC DAD_SCH father’s HGC

MOM_AGE_IS_NA missing mom age DAD_AGE_IS_NA missing dad age
MOS_SCH_IS_NA missing mom HGC DAD_SCH_IS_NA missing dad HGC

DAREA4−7,11,15−19 zip codes STRATA1−4

Notes. For each of the four parental characteristics, missing values are replaced by zero and
an additional indicator variable for having a (non)-missing record is generated. Imputation by
median rather than zero leads to quantitatively similar results. Out of 19 zip codes, 9 zip codes
that are not perfectly multi-collinear are selected. HGC stands for highest grade completed.
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Table F.16: First-Stage Estimates, Table 4, Column (6).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Math Reading Writing

(1) (2) (3) (4) (5) (6)
1 (Intercept) -2.041 0.442 4.884 3.123 4.651
2 STRATA2 0.669
3 MOM_AGE_IS_NA -3.992 1.35 0.165 -0.528
4 MOM_AGE -0.005
5 AGE2:DAD_AGE_IS_NA -0.012
6 MOM_SCH:DAREA11 0.072
7 MOM_AGE:DAREA17 0.036
8 MOM_AGE:DAREA19 0.016
9 DAREA11:DAD_AGE 0.013

10 AGE2 -0.27 -0.141 -0.199
11 DAD_SCH 0.034 0.018 0.017
12 DAREA6 -1.354 -0.14 -0.228
13 MOM_SCH -0.032 0.013 -0.065
14 DAREA4 0.135 -0.635 -0.962
15 MOM_SCH_IS_NA -1.239 -0.612 -1.873
16 DAD_AGE 0.012 -0.001 -0.003
17 DAREA15 -2.073 -1.381 -1.07

Notes. Table shows the first-stage logistic and quantile regression estimates that produce better
Lee bounds in Table 4 (Column (6)). Column (2): estimate of baseline coefficient α of equa-
tion (F.1). Column (3): estimate of interaction coefficient γ of equation (F.1). Column (4)-(6):
covariate effect δ (u) of equation (B.26) on wage 90 u = 0.95-quantile in the treated group for
Math, Reading, and Writing.

Data description. The data set for analysis is obtained by merging the baseline dataset

aerdat4.sas7bdat with the test score data set tab5v1.sas7bdat N = 271 on the ID and

filtering in cases from Bogota 1995 applicant cohort that have non-missing pupil’s age

and gender records. The final data set has N = 3,610 cases. Since baseline covariates

were collected three years after randomization, I focus only on the covariates whose

values are pre-determined at the moment of randomization and are deemed considered

exogenous by Angrist et al. (2002). Voucher is randomly assigned w.p. 0.588 that does

not depend on covariates (i.e., Assumption 1(1) holds). Table 2 in Angrist et al. (2002)

examines that voucher is indeed balanced across baseline characteristics.
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Figure F.6: Graphical representation of covariate selection for Table 4, Column (6).

Test Attendance S = 1

ReadingMath Writing

DAD_SCH
MOM_SCH

DAREA4

DAD_SCH,AGE2
DAREA6

DAD_SCH, MOM_SCH
DAREA15, DAD_AGE

MOM_AGE_IS_NA,AGE2

MOM_AGE, MOM_AGE_IS_NA,STRATA2, AGE2:DAD_AGE_IS_NA, MOM_SCH:DAREA11
DAREA17,19:MOM_AGE, DAREA11:DAD_AGE

Notes. Test participation equation. The covariates for test participation are selected by post-
lasso-logistic of Belloni et al. (2016) by regressing S = 1 (test attendance) on voucher receipt
D, interacted with p = 900 covariates, obtained by interacting all 25 baseline covariates with
62 pairwise interactions of continuous covariates with default choice of penalty λ/N = 0.038.
The selected interactions are decomposed into raw covariates to form pairwise interactions with
25 baseline covariates. Then, test participation equation is estimated by post-lasso-logistic of
Belloni et al. (2016) with default choice of λ/N = 0.018. The selected covariates are listed in
the top rectangle. Test score equation. For each subject, the covariates for test scores are selected
by post-lasso of Belloni et al. (2017) by regressing Y (test score) on the baseline covaraites in
the treated and the control group separately. The resulting set of covariates is the union of all
covariates, across 3 subjects and 2 possibilities for treated and control groups.
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F.5 Finkelstein et al. (2012) empirical details

Data source. The data set is the output of OHIE_QJE_Replication_Code/SubPrograms/

prepare_data.do file, one of the subprograms of OHIE replication package of Finkel-

stein et al. (2012). It contains N = 58,405 observations, survey wave, household size

fixed effects, and their interactions, and 48 optional baseline covariates, summarized in

Table F.17.

Agnostic approach: composition of Xhelp and Xhurt. To estimate the composition of

Xhelp and Xhurt, I invoke post-lasso-logistic of Belloni et al. (2016) with X being equal to

64 baseline covariates and the penalty λ being equal to recommended choice of penalty,

on the full sample N = 58,405. For each of 15 outcomes in reported in Tables 5, 6, A.8,

A.9, the trimming threshold exceeds 1 for at least 99.43% of subjects. For that reason,

Xhelp is taken to be /0 for each outcome under consideration.

Covariate selection for Tables 5 and A.8: Agnostic approach. The main sample

M consists of 46,000 randomly selected households, and the auxiliary sample A is its

complement. On the auxiliary sample A, my selection equation is (3.3), where D = 1 is a

binary indicator for winning Medicaid lottery, X = 1,152 pairwise covariate interactions,

and S = 1 is a binary indicator for a non-missing response about receiving any prescrip-

tion drugs. (Table A.8, Row 1, rx_any_12m). Invoking logistic lasso of Belloni et al.

(2016) with λ = 100 to estimate (3.3), I select 46 pairwise interactions and break them

down to 21 raw covariates. They are listed in Table F.18, Column (1).

Covariate selection for Tables 6 and A.9. 9 selected covariates are: female_list,

english_list, zip_msa, snap_ever_prenotify_07, tanf_ever_prenotify_07,snap_tot_

prenotify_07, tanf_tot_prenotify_07, num_visit_pre_cens_ed, num_out_pre_cens_

ed.
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First-Stage Estimates: Selection Equation. Selection equation is

S = 1{X ′α+D·Z′γ+U>0}, (F.4)

where Z = 1 is a binary indicator of treatment offer (i.e., “treatment”), X is a vector of

covariates, selected on auxiliary sample, and S = 1 is a binary indicator for non-missing

response. Therefore,

ŝ(0,x) := Λ(x′α̂), ŝ(1,x) := Λ(x′(α̂ + γ̂)).

First-Stage Estimates: Outcome Equation for ITT. Outcome equation is

Y = 1{X ′κ+ξ>0}, S = 1,Z = 0, (F.5)

where Y = 1 is a binary indicator for negative (“No”) answer in Table 5, Row 1. The

estimate of φ0(x) in equation (F.2) is π̂(x) := Λ(x′δ̂ ). To construct a trimmed data set

for ITT, a zero outcome in the control group is trimmed if a coin with success prob.

(1− p̂(x))/φ̂(x) turns out success. For numerical stability, φ̂(x) := max(φ̂(x),0.05).

First-Stage Estimates for Binary Outcomes: Outcome Equation for LATE. Out-

come equation is

Y = 1{X ′δ+D·X ′ρ+ξ>0}, S = 1,Z = 0, (F.6)

where D= 1 is a binary indicator of having Medicaid insurance (i.e, “insurance”). There-

fore, π̂(0,x) := Λ(x′δ̂ ) and π̂(1,x) := Λ(x′δ̂ + x′ρ̂). To construct a trimmed data set for

LATE, a zero outcome in the control uninsured group is trimmed if a coin with suc-

cess prob. (1− p̂(x))/φ̂(0,x) turns out success. Likewise, a zero outcome in the control

insured group is trimmed if a coin with success prob. (1− p̂(x))/φ̂(1,x) turns out success.
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Table F.17: Baseline covariates in Oregon Health Insurance Experiment.

Name Description

female_list female
english_list requested English materials

zip_msa zip code is in MSA

visit_pre_ed ED visit
hosp_pre_ed ED visit resulting in hospital admission
out_pre_ed oupatient ED visit
on_pre_ed ED visit on week-day
off_pre_ed week-end or nighttime ED visit

edcnnp_pre_ed emergent, non-preventable ED visit
edcnpa_pre_ed emergent, preventable ED visit
unclas_pre_ed unclassified ED visit
epct_pre_ed primary care treatable ED visit
ne_pre_ed non-emergent ED visit

acsc_pre_ed ambulatory case sensitive ED visit
chron_pre_ed ED visit for chronic condition

inj_pre_ed ED visit for injury, pre-randomization
skin_pre_ed ED visit for skin condition
abdo_pre_ed abdominal pain visit
back_pre_ed ED visit for back pain

back_ed back pain ED visit
heart_pre_ed chest pain ED visit

depres_pre_ed mood disorders ED visit
psysub_pre_ed psych conditions/substance abuse ED visit
hiun_pre_ed high uninsured volume hospital ED visit
loun_pre_ed low uninsured volume hospital ED visit

charg_tot_pre_ed total charges
ed_charg_tot_pre_ed ED total charges

snap_ever_prenotify_07 ever on SNAP
tanf_ever_prenotify_07 ever on TANF
snap_tot_prenotify_07 total household benefits from SNAP
tanf_tot_prenotify_07 total household benefits from TANF

ddd_numhh_li_j household size fixed effect for j = 1,2,3
ddddraw_sur_k survey wave fixed effect for k = 1,2, . . . ,7

ddddraXnum_k_j interaction of survey wave and household size

Notes. All ED and state program variables summarize events occurring between January, 1,
2007 and lottery notification date. Each health-related ED visit variable is represented by two
measures: extensive margin (any_X) and total count (num_X). Covariates ddd_X represent fixed
effects for household size and survey waves.
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Table F.18: First-Stage Estimates, Table 5, Columns (3) and (6).

ITT LATE

α γ κ δ ρ

(Intercept) -0.55 0.14 0.08 0.07
any_acsc_pre_ed -0.10 -0.19 0.09 -1.96
any_back_pre_ed 0.13 0.62 0.33 1.25

any_depres_pre_ed 0.02 -0.11 0.15 -1.59
any_head_pre_ed -0.04 0.39 0.02 1.70
any_hiun_pre_ed -0.23 0.28 0.26 0.34
any_hosp_pre_ed 0.09 0.29 0.22 0.38
any_on_pre_ed -0.07 -0.16 -0.11 -0.61

charg_tot_pre_ed 0.00 0.00 0.00 -0.00
english_list 0.23 -0.44 -0.43 -0.20
female_list 0.33 -0.07 -0.02 -0.46

num_epct_pre_ed -0.02 0.18 0.21 -0.13
num_ne_pre_ed -0.04 -0.03 0.13 -0.54

num_on_pre_cens_ed 0.04 0.11 0.21 -0.05
num_out_pre_cens_ed 0.11 0.19 0.27 -0.27
num_skin_pre_cens_ed -0.01 0.16 0.13 0.79
num_visit_pre_cens_ed -0.17 -0.23 -0.44 0.63
snap_ever_prenotify07 -0.04 0.53 0.47 0.43

snap_tot_hh_prenotify07 -0.00 -0.00 0.00 -0.00
tanf_ever_prenotify07 -0.53 -0.95 -1.33 0.83

tanf_tot_hh_prenotify07 -0.00 0.00 0.00 -0.00
zip_msa -0.11 -0.20 -0.15 -0.32

ddddraXnum _2_2 -0.335 -0.009 0.000
ddddraXnum_2_3 0.458 0.147 0.175 -0.694
ddddraXnum_3_2 0.083 0.100 0.065 0.000
ddddraXnum_3_3 0.752 0.274
ddddraXnum_4_2 -0.079 -0.112 -0.009 -0.185 0.606
ddddraXnum_5_2 -0.041 -0.249 -0.271 0.154
ddddraXnum_6_2 -0.057 -0.225 -0.250 0.129
ddddraXnum_7_2 0.162 -0.237 0.553 0.000

ddddraw_sur_2 0.015 0.010 -0.087 -0.104 0.126
ddddraw_sur_3 -0.128 0.133 -0.073 -0.103 0.205
ddddraw_sur_4 -0.040 0.056 0.003 0.024 -0.094
ddddraw_sur_5 -0.053 0.002 0.089 0.093 0.078
ddddraw_sur_6 -0.110 0.047 0.068 0.052 0.213
ddddraw_sur_7 -0.053 0.002 -0.029 -0.021 -0.025
dddnumhh_li_2 0.147 -0.027 -0.105 -0.070 -0.223
dddnumhh_li_3 -1.066 0.649 -11.630 -11.667 0.000

N 53, 646 8, 383 8, 383 8, 383 8, 383

Notes. Table shows the first-stage estimates for the estimated effect of Medicaid exposure (Col-
umn (3)) and insurance (Column (6)) in Table 5, Row 1. Column (2) : baseline coefficient α in
equation (F.4). Column (3) : interaction coefficient γ of equation (F.4). Column (4): baseline co-
efficient κ in equation (F.5) in S = 1,D = 0 group (sample size = 8, 383) to estimate ITT bounds.
Columns (5)-(6): baseline coefficient δ and interaction coefficient ρ in (F.6) in S = 1,Z = 0
group (sample size = 8, 383) to estimate LATE bounds. Computations use survey weights.

120


