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Abstract

We develop new tools for estimating the causal effects of treatments or
instruments that combine multiple sources of variation according to
a known formula. Examples include treatments capturing spillovers
in social and transportation networks, simulated instruments for pol-
icy eligibility, and shift-share instruments. We show how exogenous
shocks to some, but not all, determinants of such variables can be
leveraged while avoiding omitted variables bias. Our solution in-
volves specifying counterfactual shocks that may as well have been
realized and adjusting for a summary measure of non-randomness in
shock exposure: the average treatment (or instrument) across such
counterfactuals. We further show how to use shock counterfactuals
for valid finite-sample inference, and characterize the valid instru-
ments that are asymptotically efficient. We apply this framework
to address bias when estimating employment effects of market access
growth from Chinese high-speed rail construction, and to boost power
when estimating coverage effects of expanded Medicaid eligibility.
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1 Introduction

Many questions in economics involve the causal effects of treatments z` which are computed
from multiple sources of variation, according to a known formula. Consider four examples.
First, when estimating spillovers from a randomized intervention, a typical z` counts the
number of individual `’s neighbors who were selected for the intervention. This treatment
combines variation in who was selected and variation in who neighbors whom. Second, in
studies of transportation infrastructure effects, a common z` measures the growth of regional
market access: a treatment determined both by the location and timing of transportation
upgrades and by the spatial distribution of economic activity in a country. A third example
is linear shift-share variables, z` =

∑
nw`ngn, which may average a set of national industry

shocks gn with a set of local employment share weights w`n. Finally, a z` capturing indi-
vidual `’s eligibility for a public program, such as Medicaid, is jointly determined by the
eligibility policy in `’s state and her household’s demographics and income.1

This paper develops new tools for estimating the effects of such composite variables (or
using them as instruments for other treatments) when some, but not all, of their determi-
nants are generated by a true or natural experiment. In simpler settings with conventional
experimentation, where z` is itself as-good-as-randomly assigned across observations, causal
inference is possible without imposing potentially strong non-experimental restrictions on
the unobservable determinants of an outcome, such as a parallel trends assumption. But
it is not clear whether and how this useful property of randomization extends to settings
where z` is determined jointly by a set of as-good-as-random “shocks” as well as other pre-
determined variables governing `’s “exposure” to these shocks. For instance, how can the
estimation of market access effects leverage a natural experiment in the timing of different
transportation upgrades when the other determinants of market access are non-random?

We first show how omitted variable bias (OVB) may confound conventional regression
approaches with such z`. Bias arises from different observations receiving systematically
different values of z` because of their non-random exposure to exogenous shocks. For ex-
ample, even when transportation upgrades are randomly assigned to different places in the
country, regions that are more central in the economic geography are likely to be closer to
them and thus may see a larger growth in market access. Identification of market access
effects then fails without an additional parallel trends assumption: that these more exposed
regions do not differ in their relevant unobservables, such as changes in local productivity or
amenities. Intuitively, randomizing transportation upgrades does not randomize the market
access growth generated by them.

1Characteristic examples of these four settings include Miguel and Kremer (2004), Donaldson and Horn-
beck (2016), Autor et al. (2013), and Currie and Gruber (1996a), respectively. We discuss many more
examples below.
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We then propose a general solution to this OVB challenge, based on the specification
of counterfactual shocks that might as well have been realized. This approach views the
observed shocks as one realization of some data-generating process—what we call the shock
assignment process—which can be simulated to obtain counterfactuals. In a true exper-
iment, the shock assignment process is given by the randomization protocol. Otherwise,
in natural experiments, shock counterfactuals make explicit the experimental contrasts of
interest, for instance by specifying permutations of the shocks that were as likely to have
occurred.2 For example, if the timing of comparable transportation upgrades is considered
as-good-as-random, one might produce counterfactual upgrade maps by randomly exchang-
ing the upgrades which happened earlier and later. Policy discontinuities, as commonly
used in regression discontinuity designs, can similarly justify local permutations of shocks.

Valid shock counterfactuals can be used to avoid OVB with such z`, which we generically
refer to as instruments, by measuring and appropriately adjusting for a single confounder:
the expected instrument, µ`. To do so, a researcher draws counterfactual shocks from the
assignment process, recomputes the instrument, and repeats many times. Then, for each
observation `, the instrument is averaged across these draws to obtain µ`. Finally, µ`
is subtracted from z` to obtain the recentered instrument z̃` = z` − µ`. We show that
using z̃` instead of z` as an instrument removes the bias from non-random shock exposure.
Intuitively, observations only get high vs. low values of z̃` because of the realization of
observed vs. counterfactual shocks, which is assumed to be by chance. For example, when
µ` is constructed by permuting the timing of transportation upgrades, regressions that
instrument with z̃` compare regions which received higher vs. lower market access growth
because proximate lines were constructed early vs. late, and not because of the economic
geography. Another solution, which leverages the same experimental comparisons, is to
include µ` as a regression control while instrumenting by z`.3

In contrast, more familiar identification strategies—such as instrumenting directly by
the exogenous shocks or controlling flexibly for shock exposure—are not appropriate in most
settings we consider, where the shocks are assigned at a different “level” than observations
and shock exposure is a complex object. In the market access example, upgrade shocks
vary at the level of transportation lines, necessitating a mapping from them to regional ob-
servations via features of economic geography. This exposure cannot be non-parametrically
controlled for, as each region’s market access depends on the entire spatial distribution of
economic activity. Similarly, controlling for the shares of all industries would remove all

2In this sense, shock counterfactuals formalize a natural experiment—what DiNardo (2008) defines as a
“serendipitous randomized trial”—in terms of a particular randomization protocol. See Titiunik (2020) for
alternative definitions.

3Controlling for µ` can be thought to combine recentering z` and taking out some residual variation in
the outcome. Typically this makes controlling weakly more efficient in large samples, reflecting the precision
gains that usually arise from including controls that are orthogonal to the instrument.
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variation from a shift-share instrument. Expected instrument adjustment can be viewed as
a systematic and transparent way to purge OVB from any mapping, via the appropriate
function of exposure µ`, where conventional controls or fixed effects may fall short.

We next show how the specification of shock counterfactuals can also be used to over-
come fundamental challenges with statistical inference. Realizations of z` are inherently
dependent across observations because of their common exposure to the exogenous shocks.
Such “exposure clustering” complicates asymptotic approaches to inference, which tend to
rely on independence between most pairs of observations (for example, those from different
clusters or separated by a geographic or network distance above some threshold, as in Con-
ley (1999)). Our solution adapts principles of randomization inference (RI) via the specified
shock counterfactuals. RI-based confidence intervals are exact under constant treatment ef-
fects, without any restrictions on the unobservables, and are robust to weak instruments
(Imbens and Rosenbaum 2005). RI is particularly attractive for placebo and specification
tests, where a constant effect of zero is a natural null.

We complement our framework for identification and finite-sample inference with an
analysis of consistency and asymptotic efficiency. Recentered instruments yield consistent
estimates and RI tests, regardless of the correlation structure of the unobservables, so
long as the observed shocks induce sufficient cross-sectional variation in the instrument
and treatment. Our characterization of asymptotically efficient instrument constructions
extends the classical analysis of Chamberlain (1987). It involves finding the best predictor
of the endogenous variable from the shocks and exposure, recentering it, and then adjusting
for the structural residual’s heteroskedasticity and dependence on shock exposure. While
this instrument is typically infeasible, it can guide the construction of powerful and feasible
recentered instruments.4

We apply this framework in two settings. First, we show how instrument recentering
can help leverage variation in the timing of transportation upgrades and purge OVB when
estimating the employment effects of market access (MA) growth due to new Chinese high-
speed rail (Zheng and Kahn 2013; Lin 2017). Simple regressions of employment growth
on MA growth suggest a large and statistically significant effect, which is only partially
reduced by conventional geography-based controls. But this effect is eliminated when we
adjust for expected MA growth, measured by permuting constructed HSR lines with similar
ones that were planned but not built. The conventional estimates thus reflect the fact that
employment grew in regions which were more exposed to high-speed rail upgrades, whether
or not construction actually occurred. Importantly, our counterfactual shocks pass RI spec-

4Adão et al. (2020) also follow Chamberlain (1987) in characterizing efficient instruments in a setting
with interdependence (specifically, in a model of spatial linkages). Our general characterization differs from
theirs by allowing for a complex data dependence structure, induced by common shocks, as well as the
endogeneity of shock exposure.
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ification tests: recentering successfully eliminates the correlation between MA growth and
predetermined geographic controls. We discuss how recentering relates to a long litera-
ture estimating transportation upgrade effects (e.g. Baum-Snow (2007), Donaldson and
Hornbeck (2016), Donaldson (2018), Bartelme (2018), Ahlfeldt and Feddersen (2018), and
Tsivanidis (2019)), contrasting the well-known challenge of strategically chosen transporta-
tion upgrades (Redding and Turner 2015) with the less discussed problem that regional
exposure to exogenous upgrades may be unequal.

Second, we show how our framework helps improve the efficiency of Medicaid eligi-
bility effect estimates when leveraging plausibly exogenous state-level variation in recent
Affordable Care Act expansions (Frean et al. 2017; Leung and Mas 2018). A conventional
“simulated instrument” approach isolates such variation by averaging over differences in
individual exposure to policy shocks, such as family structure and income (e.g., Currie and
Gruber (1996a, 1996b), Cohodes et al. (2016), Cullen and Gruber (2000) and Gruber and
Saez (2002)). We show how incorporating non-random exposure variation, while appropri-
ately recentering the instrument to isolate the same policy variation, improves the first-stage
prediction of eligibility and yields 60–70% smaller standard errors.

We further discuss implications of our framework for other common z`: network spillover
treatments, linear and nonlinear shift-share variables, model-implied instruments, instru-
ments based on centralized school assignment mechanisms, “free-space” instruments for
access to mass media, and variables leveraging weather shocks.5 We provide a general
formalization of OVB from non-random exposure in each of these settings, and a gen-
eral solution, which have previously been given only in some special cases. For example,
Borusyak et al. (2020) show how simple controls can address OVB when linear shift-share
instruments combine exogenous industry shocks and non-random exposure shares. Relative
to their paper, our framework also applies to nonlinear shift-share instruments—a class of
more recent empirical strategies where the OVB problem is more challenging. Similarly,
in the network setting, Aronow (2012) notes that the random selection of treated units
does not imply the randomization of network proximity to them while Aronow and Samii
(2017) propose a reweighting solution for when both such shocks and the z` are discrete
(see also Gerber and Green (2012, p. 261)). Our general framework applies to a broader
class of network settings by imposing no restrictions on the support of z` and shocks, with
a convenient regression implementation.6

5Examples include Miguel and Kremer (2004), Acemoglu et al. (2015), Jaravel et al. (2018), and Carvalho
et al. (2020) for network spillovers; Boustan et al. (2013), Berman et al. (2015), and Chodorow-Reich
and Wieland (2020) for nonlinear shift-share variables; Adão et al. (2020) for model-implied instruments;
Abdulkadiroglu et al. (2017, 2019) for school assignment; Olken (2009) and Yanagizawa-Drott (2014) for
access to mass media; and Gomez et al. (2007) and Madestam et al. (2013) for weather shocks.

6Aronow et al. (2020) distinguish between methods to estimate spillover effects that allow all units to
interact while imposing parametric structure (e.g., Manski (2013)) and those with unrestricted interactions
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From an econometric perspective, the expected instrument can be seen as a general-
ization of the propensity score of Rosenbaum and Rubin (1983). Conventional propensity
scores are defined in settings with randomly sampled data and a conditionally exogenous
binary treatment. Earlier generalizations have considered binary instruments (e.g. Abadie
(2003)) and non-binary treatments (e.g. Hirano and Imbens (2004)). Our setting accommo-
dates these extensions but also allows for the kinds of interdependent data that naturally
arise when exogenous shocks jointly affect the treatment of many observations.7 Adjusting
for the non-random shock exposure, as captured by the expected instrument, is relevant in
such cases even when the shocks are unconditionally exogenous.8

Our use of randomization inference builds on a rich statistical literature dating back
to Fisher (1935) and reviewed in Lehmann and Romano (2006, Ch. 15). RI was orig-
inally proposed for randomized control trials but has also been deployed in a range of
non-experimental settings.9 We apply RI to a broad class of settings where random or
as-good-as-random shocks drive some but not all variation in a treatment or instrument,
allowing for complex interdependencies across observations.

Broadly, this paper contributes to a growing literature on causal inference that focuses
on the assignment process of observed exogenous shocks (e.g. Lee (2008), Athey and Im-
bens (2018), Shaikh and Toulis (2019), and De Chaisemartin and Behaghel (2018)). Our
approach can be understood as combining a statistical model of how such shocks are drawn
with an economic model of how the shocks affect an outcome (i.e. through some observed
treatment). This approach contrasts with identification strategies that impose a statis-
tical model for the residual determinants of the outcome, such as difference-in-difference
strategies (e.g. De Chaisemartin and D’haultfœuille (2020) and Athey et al. (2018)) or
fully-specified structural models. Unlike assumptions on the residuals, specifications of the
shock assignment process come at no cost with true experiments, may be derived from
institutional knowledge with natural experiments, and can be directly tested with any ob-
servational data.
among a small number of node pairs (e.g., Hudgens and Halloran (2008)). Like Aronow and Samii (2017),
we advance the former approach.

7While we focus on regression-based estimators, we show that shock counterfactuals can also be used for
inverse-probability weighting (as in Aronow and Samii (2017)) or in the two-step procedure of Hirano and
Imbens (2004) (see Doudchenko et al. (2020) for an application of this idea in bipartite network experiments).
Regression-based adjustment is more popular in applied research, avoids practical issues with propensity
scores close to zero or one, and is natural for structural outcome models with constant treatment effects.
With heterogeneous causal effects, recentered instrumental variable regressions identify a convex weighted
average under an appropriate monotonicity condition (see Appendix C.1).

8Simulation-based recentering is reminiscent of Ellison and Glaeser (1997)’s “dartboard approach” to
measuring spatial agglomeration. We correct biased estimates of causal effects, rather than descriptive
statistics.

9See, e.g., Rosenbaum (1984), Rosenbaum (2002), Bertrand et al. (2004), Imbens and Rosenbaum (2005),
Ho and Imai (2006), Abadie et al. (2010), Cattaneo et al. (2015), Dell and Olken (2018), Ganong and Jäger
(2018), Canay and Kamat (2018), and Shaikh and Toulis (2019).
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The remainder of this paper is organized as follows. The next section motivates our
analysis with a stylized example of the OVB and inference challenges in market access
regressions. Section 3 develops our general framework and results. Section 4 presents our
two applications and discusses other practical implications. Section 5 concludes.

2 A Motivating Experimental Example

We begin with an idealized example that illustrates the key insights of this paper: when
exogenous transportation shocks from a randomized control trial (RCT) are used to estimate
the local effects of market access growth. Market access (MA) is a statistic which captures
the average cost of transportation from a region ` to other regions of varying size (the exact
formula is unimportant at this point). We consider a linear structural equation relating its
growth, ∆ logMA`, to the growth of a regional outcome such as land value, ∆ log V`:

∆ log V` = β∆ logMA` + ε`. (1)

Here ε` captures unobserved shocks to local productivity and amenities occurring in region
` between two periods. This equation can be derived from standard models of economic
geography (e.g. Redding and Venables (2004)), in which β is a structural elasticity. Equa-
tion (1) can also be interpreted as a reduced-form causal model, in which β captures the
effect of interventions that affect MA but not the residuals. For these reasons equations like
(1), as first proposed by Donaldson and Hornbeck (2016), have become increasingly popular
in estimating the regional effects of transportation infrastructure upgrades (e.g. Bartelme
(2018) and Tsivanidis (2019)).

We imagine estimating β by leveraging experimental shocks to market access. Specif-
ically, we consider an RCT that changes transportation costs by randomly selecting for
construction a set of new roads that connect different regions. We assume that the other
determinants of MA are held fixed. New roads affect ∆ logMA` for all regions (typically
even those not directly connected by new roads) to different extents, according to the
known market access formula. While we are not aware of actual experimental studies of
MA, similar RCTs and natural experiments have been previously analyzed. For example,
Gonzalez-Navarro and Quintana-Domeque (2016) study an RCT that paved streets in ran-
dom neighborhoods across Mexico, while Volpe Martincus and Blyde (2013) exploit random
road disruptions in various parts of Chile due to an earthquake.

At first glance, it may seem that the experimental variation in ∆ logMA` is sufficient
to estimate β by a simple linear regression. Since the new roads are selected at random,
their construction is guaranteed to be exogenous: i.e., independent from all local produc-
tivity and amenity shocks in ε`. Exogenous transportation shocks are furthermore the only
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reason that ∆ logMA` is not identically zero across regions, since market size and other
determinants of transportation costs are held fixed in the RCT. When the linear model (1)
is correctly specified, this observed variation in ∆ logMA` fully captures the effects of the
transportation shocks on the outcome ∆ log V`.

The first key insight of this paper is that even in this idealized experimental example,
non-random exposure to exogenous transportation shocks can generate omitted variable
bias in regression estimates of β. Intuitively, randomizing transportation upgrades does not
randomize the MA growth generated by them. Even when new roads are placed randomly
in space, some regions will tend to see systematically higher MA growth because of their
position in the country’s economic geography. This tendency can bias regression estimates
of MA effects when unobserved productivity and amenity shocks differ systematically in
different areas—a scenario allowed by the economic theory underlying equation (1). For-
mally, ∆ logMA` and ε` need not be orthogonal, even though the transportation shocks
underlying ∆ logMA` are independent of ε`.

To see this OVB problem simply, consider a square island consisting of 64 equally-sized
regions ` with no initial connectivity, such that initial MA is identical for all regions. Sup-
pose new roads are constructed between regions completely at random: out of all potential
roads connecting adjacent regions, the RCT selects half for construction. One such draw
from this experiment is shown in Panel A of Figure 1, along with the resulting growth in
MA.10 Expectedly, regions that become connected by road tend to have higher ∆ logMA`.
However, the figure reveals another tendency: many of the regions with high MA growth are
in the center of the island. This concentration is not by chance. Panel B of Figure 1 shows
that the average growth of MA in each region, simulated across 1,000 counterfactual road
networks drawn randomly from the same assignment process (i.e. experimental protocol),
is also higher in the center of the map. We label this statistic µ`, and it can be thought
of as a region’s “expected” MA prior to the realization of exogenous shocks. The spatial
pattern of µ` indicates that more central regions are more exposed to the RCT: no matter
where random roads are built, central regions are more likely to be closer to them and thus
see a larger market access increase.

Systematic differences in shock exposure, as captured by µ`, can generate bias in or-
dinary least squares (OLS) estimates of β. The OLS estimates come from a comparison
of outcome growth between regions with high and low MA growth, which tend to be re-
gions with high and low µ`. Expected MA growth is predetermined with respect to the
experimental shocks but may nevertheless cross-sectionally correlate with the residual (i.e.,

10Market access in period t = 1, 2 is here given by MA`t =
∑

k
τ−θ`ktPk where τ`kt is a function of distance

and connectivity in period t and Pk denotes region k’s time-invariant market size (e.g., population). In this
simplified example Pk = 1 is constant across regions, θ = 1, and τ`kt = 20.1d`kt where d`kt is the distance by
road from ` to k in period t (or infinity if there is no path).
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Figure 1: Market Access Growth in the Motivating Example

A. Line Construction and Market Access Growth
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1.85
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2.41

B. Expected Market Access Growth C. Recentered Market Access Growth
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Notes: This figure illustrates the OVB problem and our recentering solution in the market
access example. Panel A shows a random draw of the railroad construction experiment,
with lines indicating connected regions and shading indicating corresponding market access
growth (computed as described in the text). Panel B shows average MA growth over 1,000
such random draws. The shading in Panel C indicates the recentered MA measure which
subtracts expected MA in Panel B from realized MA in Panel A, with the lines again
indicating realized line construction.

be endogenous), biasing the regression comparisons. In the simple example of Figure 1,
OVB arises when unobserved productivity and amenity shocks differ between the center
and periphery of the map. For example, if rising sea levels reduce amenity values near the
edges of the island then central regions will tend to see both higher MA growth and higher
residuals, biasing OLS estimates of β upward.

The second insight of this paper is that this identification challenge has an intuitive
but non-standard solution, based on the same knowledge of the shock assignment process
that generated Panel B of Figure 1. In this experimental setting, one can simulate MA
growth across counterfactual draws of the RCT to compute the expected MA growth µ` of
each region `. One can then construct a recentered measure, z̃` = ∆ logMA` − µ`, which
subtracts each region’s expected MA growth from its observed MA growth. This z̃` is a
component of MA growth that can be used as an instrument in equation (1).11 Intuitively,

11Standard models of economic geography used to derive the MA statistic imply a constant elasticity β.
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observations only get high vs. low values of z̃` because of the realization of observed vs.
counterfactual shocks, which is by chance. In the example of Figure 1, observed MA growth
is no longer concentrated in the center of the map after recentering by µ` (see Panel C). The
same as-good-as-random variation can be leveraged by controlling for µ` in OLS estimation.

Simulating the road experiment and computing µ` can be seen as a systematic way
to pick the appropriate function of geography that purges bias from non-random exposure.
This function is not captured by conventional regression controls except in very special cases,
such as in Figure 1 where µ` simply measures geographic centrality. In general, µ` depends
intricately on the country’s economic geography and the road assignment process; Appendix
Figures A1 and A2 illustrate the potentially complex nature of µ` by considering non-
uniform regional populations and road construction probabilities, respectively. Controlling
for geography perfectly in such settings is of course not possible, as this would remove all
variation in market access growth.

The third insight of this paper is that problems with statistical inference on β can also
be overcome by simulating counterfactual transportation upgrades. The recentered MA
instrument is inherently correlated across regions because of their common exposure to
the experimental shocks. Such spatial dependence may generate challenges for the conven-
tional Conley (1999) asymptotic approach to inference, which specifies a geographic distance
threshold after which observations of z̃`ε` are uncorrelated. For the asymptotic approxima-
tion to hold this threshold should be sufficiently small, which may be implausible with all
regions exposed to all potential roads.12 We show in the next section how classical methods
of randomization inference (RI) can be applied to address such “exposure clustering.”

In most settings, of course, transportation upgrades are not drawn randomly on a map
with a known assignment process. In the next section we discuss how shock assignment
processes may generally be specified, simulated, and validated in observational data where
the exogeneity of shocks is ex ante plausible. In Section 4.1 we apply this approach to a
specific MA setting and relate it to existing approaches to estimating transportation effects,
with or without exogenous upgrades.

3 Identification, Inference, and Asymptotic Efficiency

We now develop a general econometric framework for settings with non-random exposure to
exogenous shocks. We introduce the baseline setting, develop our approach to identification

In such cases it does not matter which component of variation is used to estimate β as long as there is no
OVB. We show below that the recentering strategy more generally identifies an intuitive convex average of
causal effects when they are thought to vary across regions.

12Random upgrades to long roads, for example, will tend to cause regions which are far apart in space to
“cluster” by their common MA growth. If the unobserved shocks in ε` also tend to propagate widely then
z̃`ε` will tend to be correlated across long distances, invalidating spatially clustered standard errors.
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based on counterfactual shocks, and discuss how such counterfactuals can be specified in
Sections 3.1–3.3. We then show how shock counterfactuals can be used for finite-sample
inference, characterize asymptotically most efficient recentered instruments, and summarize
several extensions in Sections 3.4–3.6.

3.1 Setting

We suppose an outcome y` and treatment x` are observed for units ` = 1, . . . , L. Of interest
is a causal effect or structural parameter β, relating treatment to outcomes by

y` = βx` + ε`, (2)

where ε` denotes an unobserved residual. Initially we assume y` and x` are scalar and de-
meaned, and that the outcome model is linear with constant effects. We discuss extensions
to heterogeneous causal effects, additional control variables, multiple treatments, and non-
linear models in Section 3.6. Although we use a single index for observations, we note our
framework accommodates repeated cross-sections and panel data where it is also relevant.

Importantly for the generality of our framework, we do not assume that the observations
of (y`, x`) are independently or identically distributed (iid) as when arising from random
sampling. This allows for complex dependencies across ` due to the common exposure to
observed and unobserved shocks. The lack of random sampling is also consistent with set-
tings where the L units represent a population—for example, all regions of a country—and
conventional asymptotic frameworks are inappropriate (Abadie et al. 2020).

We suppose that to estimate β a researcher has constructed an instrument z` which
incorporates variation from exogenous shocks, summarized by an N × 1 observed vector g.
However the instrument also incorporates additional predetermined variables which govern
a unit’s exposure to the shocks. Collecting these additional observables in the set w, we
write the instrument as

z` = f`(g;w), (3)

where {f` (·)}L`=1 is a set of known non-stochastic functions. In the previous motivating
example, g contained information on transportation network upgrades and w summarized
regional populations; the f` (·) functions combined g and w to form market access growth for
each region `. As another example, linear shift-share instruments set f`(g;w) =

∑N
n=1w`ngn

where the w`n are non-negative exposure share weights. We note that our framework allows
x` = z`, in which case β is the reduced-form causal effect of the instrument (as in the
motivating example).

Equation (3) is very general, nesting many applied examples (as we discuss in Section 4).
Any instrument that can be computed from a set of observed shocks g and other observed

10



variables w can be described in this way.13 Mapping the shocks into the instrument using
some transformation f` (·;w) is generally necessary, for example, when the shocks are defined
at a different “level” than the unit of observation (e.g. industry shocks and regional data)
or when shocks to one observation have spillover effects on others. In some cases, such as
the market access and linear shift-share examples, the instrument specification may follow
from a particular model for the treatment variable. For example, when x` = f̃` (g, w, u) for
a known f̃` (·) and some (possibly unobserved) endogenous shocks u, an instrument may be
specified as the treatment prediction that shuts down these shocks: f` (g, w) = f̃` (g, w, 0).
For now we take the choice of f` (·) as given, addressing the question of which instrument
constructions may be more desirable in Section 3.5.

Partitioning the determinants of z` into a set of shocks g and other variables w allows
us to formalize the notion that some but not all sources of variation in the instrument are
exogenous. In an RCT the exogeneity of shocks can naturally arise from the experimental
intervention. With observational data, a researcher may appeal to an experimental ideal
in which the shocks in g are as-good-as-randomly assigned given predetermined variables
in w, which are not exogenous. For example, in shift-share designs it may be plausible
that the industry-level shocks in g arise from a natural experiment but that local industrial
composition w is endogenous (Borusyak et al. 2020).

We formalize shock exogeneity by the conditional independence of g from the residual
vector ε = {ε`} L`=1, given the other sources of instrument variation:

Assumption 1. (Shock exogeneity): g ⊥⊥ ε | w

This notion of shock exogeneity combines two conceptually distinct conditions. First, it
imposes an exclusion restriction: that the realization of shocks only affects the outcome of
each unit via its treatment x` and not through ε`. This condition may be violated when
the structural equation (2) is misspecified; for example, when market access inadequately
captures the local economic effects of new transportation.14 Second, Assumption 1 requires
the as-good-as-random assignment of shocks with respect to the unobserved outcome de-
terminants ε. This condition is satisfied when the shocks are fully randomly assigned, as in
an RCT: i.e., g ⊥⊥ (ε, w). More generally, Assumption 1 allows w to contain variables that
govern the shock assignment process. We discuss how such conditioning is useful for specify-
ing shock counterfactuals in Section 3.3. The exclusion and as-good-as-random assignment
assumptions are isolated in Appendix C.1, via a general potential outcomes model.

13Note that equation (3) does not contain a residual: it formalizes an algorithm for computing an instru-
ment rather than characterizing an economic relationship.

14The shock exclusion restriction may follow from a particular economic model, as in Donaldson and
Hornbeck (2016), or be relaxed by including multiple treatments in x` (e.g. allowing for both direct and
spillover effects of the same shocks, as in Miguel and Kremer (2004)).
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We consider identification of β from an instrumental variable (IV) regression of y` on x`,
with z` as an instrument (with OLS obtained as a special case when x` = z`). Identification
follows when z` is relevant to the treatment and orthogonal to the structural residual. In
our non-iid setting, we formalize these conditions as E

[
1
L

∑
` z`x`

]
6= 0 and

E
[

1
L

∑
`

z`ε`

]
= E

[
1
L

∑
`

z`y`

]
− β · E

[
1
L

∑
`

z`x`

]
= 0, (4)

which together imply that β is uniquely recoverable from the observable moments E
[

1
L

∑
` z`y`

]
and E

[
1
L

∑
` z`x`

]
. Here it is worth highlighting that full-data instrument orthogonality (4)

combines two dimensions of variation: over the stochastic realizations of g, w, and ε, and
across the cross-section of observations ` = 1, . . . , L. In the iid case it reduces to the more
familiar condition E [z`ε`] = 0.

While our primary focus is on identification and finite-sample inference, some of our
results consider the asymptotic properties of the IV estimator:

β̂ =
1
L

∑
` z`y`

1
L

∑
` z`x`

, (5)

which is the solution to the sample analog of (4). We establish asymptotic properties by
considering a sequence of data-generating processes, indexed by L, for the complete data
(y, x, g, w). Consistency, for example, is defined as β̂ p−→ β as L → ∞, while asymptotic
efficiency considers large-L approximations to the variance of β̂. We emphasize that this
asymptotic sequence should be viewed as a way to approximate the finite-sample distribution
of the IV estimators, rather than as a description of the sampling process for the data.15

3.2 Identification and Instrument Recentering

Our first result formalizes the omitted variable bias problem: exogeneity of the shocks
underlying z` is not generally enough for identification of β, even when they are fully
randomly assigned. We then derive a simple but non-standard recentering of z` that purges
OVB in this setting. We conclude this subsection with results on recentered IV consistency.

Identification under Assumption 1 fails when predetermined exposure to the natural
experiment is endogenous. While this exposure variation is potentially high-dimensional,
our first result shows that OVB is governed by a particular one-dimensional confounder:
the expected instrument, µ`.

15This is similar to how Bekker (1994) studies IV regressions with many instruments. As he writes,
“the [asymptotic] sequence is designed to make the asymptotic distribution fit the finite sample distribution
better. It is completely irrelevant whether or not further sampling will lead to samples conforming to this
sequence” (p. 658).
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Lemma 1. Under Assumption 1,

E
[

1
L

∑
`

z`ε`

]
= E

[
1
L

∑
`

µ`ε`

]
, (6)

where µ` = E [f`(g;w) | w]. Thus β is not identified by the instrument z` when µ` is en-
dogenous, in the sense of E

[
1
L

∑
` µ`ε`

]
6= 0.

Proof. E
[

1
L

∑
` z`ε`

]
= E

[
1
L

∑
` E [f`(g;w)ε` | w]

]
= E

[
1
L

∑
` µ`E [ε` | w]

]
= E

[
1
L

∑
` µ`ε`

]
.

The first and third equality follow from the law of iterated expectations, while the second
equality follows by Assumption 1 and the definition of µ`.

The expected instrument is defined as the average value of z` across different realizations of
the shocks conditional on w. Lemma 1 shows that the exogeneity of shocks makes z` a valid
instrument if and only if this µ` is orthogonal to the residual ε`. Absent further assumptions,
adjustment for µ` is thus generally necessary to remove OVB. Note that adjustment is
generally necessary even if the shocks are unconditionally as-good-as-randomly assigned,
i.e. when g ⊥⊥ (ε, w) in Assumption 1.

When shock exposure is endogenous but Assumption 1 holds, Lemma 1 suggests a
simple but non-standard recentering of z` that identifies β. In fact, a weaker notion of
shock exogeneity suffices.

Assumption 2. (Weak shock exogeneity):
(i) E [ε` | g, w] = E [ε` | w] almost surely for each `.
(ii) E [ε`εm | g, w] = E [ε`εm | w] almost surely for each ` and m.

Such mean and covariance independence of the residuals from the shocks is implied by
Assumption 1 and will also be sufficient for some of our later asymptotic results. Here we
use the first condition to show that β is identified by a recentered instrument z̃`, given a
non-zero first-stage:

Proposition 1. Suppose Assumption 2(i) holds and let z̃` = z` − µ`. Then

E
[

1
L

∑
`

z̃`ε`

]
= 0, (7)

such that β is identified by the instrument z̃` provided E
[

1
L

∑
` z̃`x`

]
6= 0.

Proof. See Appendix B.1.

A recentered IV regression compares units with a higher-than-expected value of z`, because
of the realization of the shocks, to units affected less than expected. The validity of z̃` thus
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stems from the exogeneity of shocks (specifically, Assumption 2(i)), even though it continues
to vary cross-sectionally due to heterogeneous shock exposure. First-stage relevance holds
when the units with higher-than-expected values of z` have systematically different values
of the treatment x`.16

A closely related regression-based solution to OVB is also implied by Lemma 1: including
the expected instrument µ` as a control while using the original z` as an instrument. This re-
gression yields the reduced-form and first-stage moments E

[
1
L

∑
` z`y

⊥
`

]
and E

[
1
L

∑
` z`x

⊥
`

]
,

where v⊥` denotes the residuals from a cross-sectional projection of v` on µ`. Appendix B.1
shows that these moments also identify β under Assumption 2(i). This result clarifies the
role of conventional controls and fixed effects in purging OVB under our assumptions: shock
exogeneity is sufficient to identify β without recentering z` or restricting unobservables only
when the included controls absorb µ`.17

Given identification of β, one may be interested in consistency of the recentered IV
estimator which instruments x` with z̃`. Establishing consistency with our general asymp-
totic sequence is non-trivial, as we cannot rely on conventional sampling-based arguments
for iid data. Instead, Proposition S2 in Appendix C.2 shows how consistency is achieved
given an asymptotic first stage and weak mutual cross-sectional dependence of z̃`. In line
with our general approach, we make no restriction on the mutual dependence of residuals,
imposing only a weak regularity condition on ε`. The substantive assumption on z̃` requires
the recentered instrument construction to well-differentiate observations by their exposure
to the exogenous shocks, yielding a law of large numbers that brings β̂ close to β for large
L. Lower-level conditions sufficient for this assumption are also given in Appendix C.2.

3.3 Specifying Shock Counterfactuals

Our solution to the OVB challenge involves measuring the expected instrument, which
typically requires specifying counterfactual shocks that may well have occurred. Here we
formalize this specification of counterfactual shocks and discuss general ways in which it
may be accomplished. In Section 4 we discuss and illustrate specific approaches in the
context of various applied settings.

Formally, we denote the shock assignment process by the conditional distribution of
16Whenever the shocks induce some variation in treatment, there exist f` (·) constructions such that the

corresponding recentered instrument satisfies the relevance condition. Formally, when Var [E [x` | g, w] | w]
is not almost-surely zero at least for some `, the recentered instrument constructed as z̃` = E [x` | g, w] −
E [x` | w] is relevant.

17In panel data with z`t = f`t(gt, wt), for example, unit fixed effects generally purge OVB only when the
expected instrument is time-invariant, which generally requires the f`t(·) mapping, the value of wt, and the
distribution of gt to be time-invariant. While plausible in some applications, these conditions (in particular,
stationarity of the shock distribution) are quite restrictive. For instance, when roads tend to be built more
than destroyed expected market access will tend to grow over time.
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g | w, which we write as G (g | w). When G (·) is known, the expected instrument µ` =∫
f`(γ;w)dG(γ | w) can be computed and used to purge OVB. To emphasize such knowledge,

we state it as an assumption:

Assumption 3. (Known assignment process): G (g | w) is known in the support of w.

Specification of G(·) is most straightforward when the shocks are actually determined by
a known randomization protocol, as in an RCT. Literal randomization of g given w implies
both the exogeneity of shocks (i.e. Assumption 1, given shock exclusion) and Assumption
3. Policy discontinuities (as in regression discontinuity designs) also fit in this case, when
viewed as generating a local RCT around the cutoffs (Lee 2008; Cattaneo et al. 2015).18

When randomization of shocks occurs naturally, scientific or institutional knowledge
may yield G(·). For instance, when the locations of earthquake disruptions are viewed as
exogenous shocks (e.g. Volpe Martincus and Blyde (2013) and Carvalho et al. (2020)), the
probability distribution of counterfactual locations can be given by geological knowledge.
Similarly, appropriate historical weather data may serve as counterfactuals for observed
weather shocks (see Appendix D.8).

In observational data, specifying G(g | w) makes explicit the features of shocks which are
considered as-good-as-random (e.g. the placement vs. timing of transportation upgrades)
and the corresponding experimental contrasts. For instance, the researcher may be willing
to specify permutations of the g vector that were as likely to have occurred. To see how
this satisfies Assumption 3, suppose that all permutations of g are equally likely to arise, as
when the shocks gn are iid across n. In this case G(g | w) is known to be uniform when w
is augmented by the permutation class Π(g) = {π(g) | π (·) ∈ ΠN}, where ΠN denotes the
set of permutation operators π(·) on vectors of length N (e.g. Lehmann and Romano 2006,
p. 634). The marginal distribution of gn (conditionally on other components of w) then
need not be specified; the expected instrument is the average z` across all permutations of
shocks, which serve as counterfactuals:

µ` = 1
N !

∑
π(·)∈ΠN

f`(π(g);w). (8)

Such µ` are easy to compute (or approximate with a random set of permutations, when N
is large).19 This scenario highlights the potentially dual role of w: as a means of satisfying

18Assumption 3 requires specification of G(· | w) for all possible w. However, it is without loss to view w
as a fixed object (i.e. part of {f` (·)}L`=1), in which case this is not restrictive. We allow w to be stochastic
only for full generality and to make non-random exposure more explicit. With w viewed as stochastic, the
support condition of Assumption 3 is still not restrictive when g arise from an RCT or satisfy conditional
exchangeability, as discussed below.

19Approximating µ` is sufficient for identification because the recentered IV still identifies β in this case:
i.e. E

[
1
L

∑
`

(f`(g, w)− f`(π(g), w)) ε`
]

= 0 under Assumption 2(i), for any fixed or randomly drawn π (·).
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exogeneity (Assumption 1) and as a way to simplify the specification of shock counterfactuals
(Assumption 3).

Similar expected instrument calculations follow under weaker shock exchangeability con-
ditions. When the gn are iid within, but not across, a set of known clusters, Assumption
3 is satisfied when the class of within-cluster permutations is conditioned on and used to
draw counterfactuals. Other symmetries in the joint shock distribution can also be used to
construct valid counterfactuals, as we illustrate in a shift-share setting in Appendix D.4.

We emphasize that expected instrument adjustment generally requires some outside
knowledge of G (g | w), since µ` is typically not non-parametrically identified with non-iid
data.20 Nevertheless, as discussed below, our framework can apply with G (g | w) specified
up to a low-dimensional vector of unknown parameters—allowing, for example, parameter-
ized heteroskedasticity of otherwise exchangeable shocks. We further note that in observa-
tional data it is imperative to corroborate an ex ante argument for Assumptions 1 and 3 by
empirical tests. The next section shows that these assumptions yield testable implications
and a natural testing procedure. Finally, we note that even incorrect specification of the
shock assignment process may be useful as a robustness check: if Assumption 1 holds and
there is already no OVB because the included controls perfectly capture either the endoge-
nous features of exposure or the expected instrument, then controlling for any misspecified
expected instrument m`(w) cannot change the estimand.21

3.4 Randomization Inference and Testing

Specification of the shock assignment process can be used to construct valid statistical
tests and confidence intervals for β, following a long tradition of randomization inference
(Fisher 1935). Under constant effects the RI approach guarantees correct coverage in finite
samples, of both observations and shocks, even when the observations exhibit complex
dependencies.22 We focus on a particular type of RI tests which is tightly linked to the
recentered IV estimator and which is expected to have favorable large-sample power. We
then discuss how RI can be used to validate Assumptions 1 and 3, through exact falsification
and specification tests.

20This is in contrast to conventional propensity score calculations with iid data. To see the difference,
suppose z` = f(g, w`), where f(·) is common across ` and w` is observation-specific, low-dimensional, and
iid. Then there is no need to specify G (g | w) explicitly: µ` = µ̃ (w`) is a common function of w` which
can be flexibly estimated from observations of (z`, w`). This scenario, however, does not fit the majority of
interesting cases of our setup.

21Formally, suppose either E [ž` | w] = 0 or E [ε̌` | w] = 0 for each `, where v̌` denotes the cross-sectional
residualization of variable v` on some functions of w used as controls. Then E

[
1
L

∑
`
ž⊥` ε̌

⊥
`

]
= 0, where

here v⊥` denotes the residuals from a cross-sectional projection of v` on m`(w). See Appendix C.6 for our
framework extended to predetermined controls.

22Valid inference with heterogeneous effects and interdependent data is a difficult challenge, even in a
more standard asymptotic approach (Adão et al. 2019).
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In general, RI tests and confidence intervals for β are based on a scalar test statistic
T = T (g, y − bx, w), where b is a candidate parameter value. Under the null hypothesis
of β = b and Assumption 1, the distribution of T = T (g, ε, w) conditional on ε and w is
implied by the shock assignment process G(g | w). One may simulate this distribution,
by redrawing (e.g., permuting) the shocks in g and recomputing T . If the original value
of T is far in the tails of the simulated distribution, one has grounds to reject the null
that β = b. Appendix C.3 formalizes this logic and explains how inversion of such tests
yields confidence interval for β by collecting all b that are not rejected. These intervals have
correct size, both conditionally on (ε, w) and unconditionally. Valid RI confidence intervals
can be obtained for any test statistic, although the the choice of T generally affects the
power against alternative hypotheses.23

We address the practical issue of choosing a powerful randomization test statistic, and
draw a tight link between T and the recentered IV estimator β̂, by building on the theory of
Hodges and Lehmann (1963). Specifically, we consider a T (g, y − bx, w) which β̂ rationalizes
as being typical under the null, in the following sense:

Lemma 2. Let T = T (g, y − bx, w) and T ∗ = T (g∗, y − bx, w), where g∗ is distributed
according to G (· | w), independently of (g, x, y), conditionally of w. Define the Hodges-
Lehmann estimator as the b ∈ R that solve T = E [T ∗ | y, x, w]. Then the recentered IV esti-
mator is the Hodges-Lehmann estimator associated with T = 1

L

∑
` (f`(g, w)− µ`) (y` − bx`).

Proof. See Appendix B.2.

This result shows that the recentered IV estimator of β equates the sample covariance
between the recentered instrument z̃` and implied residual y` − bx` with the expectation
of its randomization distribution (specifically, zero), satisfying our definition of a Hodges-
Lehmann estimator.24 Notably, the same randomization tests, confidence intervals, and
Hodges-Lehmann estimators are obtained from the statistic based on the non-recentered
instrument, 1

L

∑
` f`(g, w) (y` − bx`).25 In this sense, the RI approach performs the recen-

tering needed for identification of β automatically.
Statistics chosen on the basis of Hodges-Lehmann estimators can inherit their power

properties. While we are not aware of existing general results, Proposition S2 in Appendix
C.2 shows that randomization tests of Lemma 2 are generally consistent, in the sense of

23There are no general results on the relative power of different RI statistics, But good power properties
have been established in some special contexts (Lehmann and Romano 2006, Section 15.2.2).

24This definition follows Rosenbaum (2002) and Imbens and Rosenbaum (2005). The original definition
in Hodges and Lehmann (1963) is the value of β that maximizes the p-value of the randomization test. For
two-sided confidence interval this means equating T to its median, rather than its mean.

25This follows because recentering shifts both T and T ∗ by the same value, 1
L

∑
`
µ` (y` − bx`), which does

not depend on g. Appendix B.2 further shows that the µ`-controlled IV estimator is the Hodges-Lehmann
estimator corresponding to the residualized covariance statistic 1

L

∑
`
z`
(
y⊥` − bx⊥`

)
.
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having power that asymptotically increases to one for any fixed alternative, under the
conditions which make the recentered IV estimator consistent. This asymptotic result
reinforces the tight connection between T and β̂.26 We note, however, that as in other
settings (e.g. Abadie et al. 2010; Mackinnon and Webb 2020) the finite-sample validity of
RI may be most useful when the conditions for consistency are not met, such as when there
are few shocks with concentrated exposure. We discuss an example of such a setting in
Appendix D.3 and illustrate good power of RI for shift-share instruments with few shocks
in Appendix D.4.

Randomization inference can also be used to perform falsification tests on our key As-
sumptions 1 and 3. Recentering implies a testable prediction that z̃` is orthogonal to any
variable r` satisfying g ⊥⊥ r | w, which holds for r = {r`}L`=1 that are either functions of
w or some other observables thought to be determined prior to (or independent of) the
shocks g. To test this restriction, one may check that the sample covariance 1

L

∑
` z̃`r` is

sufficiently close to zero by re-randomizing shocks and checking that T is not in the tails of
its conditional-on-(w, r) distribution. Multiple falsification tests, based on a vector of pre-
determined variables R`, can be combined by an appropriate RI procedure, e.g. by taking
T to be the sample sum of squared fitted values from regressing z̃` on R`.27

Falsification tests are useful in two ways. First, when r` is a lagged outcome or another
variable thought to proxy for ε`, they provide an RI implementation of conventional placebo
and covariate balance tests of Assumption 1. While the use of RI for inference on causal
effects may be complicated by treatment effect heterogeneity, the sharp hypothesis of zero
placebo effects is a natural null. Second, RI tests will generally have power to reject false
specifications of the shock assignment process, i.e. violations of Assumption 3, even when r`
does not proxy for ε`. For r` = 1, for example (which is trivially conditionally independent
of g), the test verifies that the sample mean of z` is typical for the realizations of the specified
assignment process. Setting r` = µ` instead checks that the recentered instrument is not
correlated with the expected instrument that it is supposed to remove.

3.5 Asymptotic Efficiency

While any instrument f` (g, w) can be made valid by appropriate recentering and used for
valid randomization inference, the choice of instrument construction from the set of possible
{f` (·)}L`=1 will generally matter for power. Proposition 2 in Appendix B.3 shows that the

26One might instead consider computing confidence intervals from the distribution of the recentered estima-
tor itself with re-randomized shocks g∗. This idea fails in IV since the re-randomized instrument f`(g∗, w)−µ`
has a true first-stage of zero. The distribution of reduced-form coefficients across re-randomized shocks is
also not useful, except for testing β = 0, as that distribution is centered around zero rather than β.

27Formally, this T = z̃′R (R′R)−1
R′z̃ can be seen as a quadratic form of the vector-valued statistic

1
L

∑
`
z̃`R`, weighted by (R′R)−1, where R is the matrix collecting R` and z̃ is the vector collecting z̃`.
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following instrument minimizes the asymptotic variance of recentered IV, under appropriate
regularity conditions:

z∗ = E
[
εε′ | w

]−1 (E [x | g, w]− E [x | w]) . (9)

This characterization extends the classic result of Chamberlain (1987) to our setting in
showing how exogenous shocks can be efficiently leveraged. Appendix C.4 further establishes
that this z∗ maximizes the local power of RI-based tests.

Constructing such optimal instruments may not be feasible in practice, and typically
requires an economic model for both the dependence of treatment on shocks and the endo-
geneity of exposure: E [x | g, w]] and E [εε′ | w], respectively. Our characterization neverthe-
less provides guidance for constructing recentered instruments, by showing what researchers
may strive for when choosing between alternative IV estimators.

To build intuition for the optimal instrument, we establish the following Lemma:

Lemma 3. Let z̃ = E [x | g, w]− E [x | w], ψ = E [ε | w], and Ω = Var [ε | w]. Then

z∗ = Ω−1 (z̃ − νρψ) , (10)

where ρψ = ψ′Ω−1z̃
ψ′Ω−1ψψ is the Ω−1-weighted projection of z̃ on ψ and ν = ψ′Ω−1ψ

1+ψ′Ω−1ψ .

Proof. See Appendix B.3.

Equation (10) permits an intuitive four-step description of the optimal instrument. First,
one takes the best predictor of treatment given by the shocks and predetermined variables,
E [x | g, w]. Second, one recenters this predictor by E [x | w] to remove the potential OVB
from non-random shock exposure, obtaining z̃. Third, one partially residualizes the recen-
tered instrument on the predictable component of the residual, ψ.28 Finally, one adjusts
for the residual variance Ω, as in generalized least squares. While steps 1 and 4 follow the
optimal instrument construction in Chamberlain (1987), steps 2 and 3 are new, stemming
from the potential endogeneity of w.

Predicting treatment from shocks and exposure (step 1) is trivial when x` is a function
of (g, w), since then E [x` | g, w] = x`. Otherwise, powerful z` may be given by an economic

28This residualization is partial (i.e. ν ∈ [0, 1)) for the same reason as why, in the conventional panel data
context, the random effects estimator demeans the data within each unit only partially (e.g. Wooldridge
2002, p. 286). As with unit-specific means in the panel setting, ψ` is orthogonal to z̃` in expectation and
so provides an additional moment for identifying β. We also note that if ψ is completely known, a more
efficient but less robust instrument than (9) is available, which replaces y with y − ψ and ε with ε − ψ
(without adjusting x) and uses the original z. Since E [ε− ψ | w] = 0, instrument recentering that isolates
variation in g but reduces power is unnecessary. However, this efficiency gain is obtained at the cost of losing
robustness to misspecification of the residual model.
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model for treatment.29 Specifically, when x` = f̃` (g, w, u) for a known f̃` (·) and a set of
unobserved shocks u, a reasonable stand-in for E [x` | g, w] may be obtained by f̃` (g, w, 0);
that is, a treatment prediction which shuts down the role of unobserved shocks. This
approach has been taken, for example, by Bartelme (2018) in the market access setting
(see also Berry et al. (1999) for the same idea in an entirely different context). Instrument
recentering is then generally necessary to isolate exogenous variation in shocks (step 2).

The third and fourth steps in Lemma 3 may be more difficult to implement as they
require models of unobservables rather than the observed treatment. Practically, Step 3
calls to control for predetermined variables which may be correlated with the residual, as
including these controls may approximate the projection of z̃ on ψ. By the logic of Propo-
sition 1 such controls are orthogonal to z̃ in expectation and will not weaken the first stage,
but their inclusion will generally improve efficiency by reducing residual variance. Step 4 is
a more standard correction for heteroskedasticity and mutual correlation of residuals. We
expect that performing the more feasible steps 1 and 2 alone will typically improve power,
although there is no guarantee (see Appendix A.3 for a counterexample discussed in the
context of the application in Section 4.2).

3.6 Extensions

Appendices C.1 and C.5–C.8 extend our basic identification and inference results in several
ways. Appendix C.1 first shows that in presence of treatment effect heterogeneity the
recentered IV estimator captures a convexly weighted average of causal effects under an
appropriate monotonicity condition, extending the classic result of Imbens and Angrist
(1994) to this general setting. For example, in reduced-form models of the form y` =
β`z` + ε` the heterogeneous effects β` are weighted by the conditional variance of z̃` |
w across counterfactual shocks. This appendix further shows how a particular rescaling
of the recentered instrument—with a factor given by the shock assignment process—can
identify local average treatment effects in the traditional setting of a binary treatment and
instrument, and how the approach of Hirano and Imbens (2004) can also be adapted.

Appendix C.5 shows how recentered IVs can be constructed, and RI applied, when the
shock assignment process is only partially specified. We allow for a vector of unknown
parameters of G(·) which may govern, for example, how shocks vary systematically with
observables. Appendix C.6 shows how predetermined observables can be included as re-
gression controls to reduce residual variation and potentially increase power. Appendix
C.7 discusses identification and inference with multiple treatments or instruments. Finally,
Appendix C.8 extends the framework to nonlinear outcome models.

29Obtaining E [x` | g, w] without a treatment model is challenging in our general non-iid setup, in contrast
to other settings where the first stage can be non-parametrically estimated (e.g. Newey (1990)).
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4 Practical Implications and Applications

We now present two empirical applications showing how our theoretic framework can be used
to avoid OVB and improve efficiency in practice. Specifically, we estimate the market access
effects of Chinese high-speed rail and the insurance coverage effects of Medicaid expansions.
In both applications we contrast recentered IV estimation with existing approaches. We
conclude this section by summarizing practical implications for other empirical settings.

4.1 Effects of Transportation Infrastructure

We first apply our framework to estimate the effect of market access growth on Chinese
regional employment growth over 2007–2016, leveraging the recent construction of high-
speed rail (HSR). We show how counterfactual HSR shocks can be specified, and how
correcting for expected market access growth can help purge OVB. We then discuss how
our approach to estimating transportation infrastructure effects relates to existing methods.

The recent construction of Chinese HSR has produced a network longer than in all
other countries combined (Lawrence et al. 2019). The network mostly consists of dedicated
passenger lines and has developed rapidly since 2007. Construction was started by the
Medium- and Long-Term Railway Plan in 2004; this plan was later expanded in 2008, as
part of the stimulus package during the financial crisis, and again in 2016. Construction ob-
jectives included freeing up capacity on the low-speed rail network and supporting economic
development by improving regional connectivity (Lawrence et al. 2019; Ma 2011). While
affordable fares make HSR popular for different purposes, business travel is an important
component of rail traffic, ranging between 28% and 62%, depending on the line (Ollivier
et al. 2014; Lawrence et al. 2019). The role of HSR may also extend beyond directly con-
nected regions, as passengers frequently transfer between HSR and traditional lines (and
between intersecting HSR lines). An early analysis by Zheng and Kahn (2013) finds positive
effects of HSR on housing prices, while Lin (2017) similarly finds positive effects on regional
employment.

We analyze HSR-induced market access effects for 340 sub-province-level administrative
divisions in mainland China. We follow Potlogea and Cheng (2017) in referring to these units
as prefectures: although most are officially called “prefecture-level cities,” they typically
include multiple urban areas. We measure market access in 2007 and 2016 by combining
data on the development of the HSR network and each prefecture’s location and population
(as measured in the 2000 census). A total of 83 HSR lines opened between these years,
with the first in 2008; a further 66 lines (which we refer to as “planned”) were completed
or under construction as of April 2019.30 We compute a simple market access measure in

30We define a line by a contiguous set of inter-prefecture HSR links that were proposed together and
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each prefecture ` and year t based on the formula in Zheng and Kahn (2013): MA`t =∑
k exp (−0.02τ`kt) ·Pk,2000. The summation is over all prefectures (including k = `), Pk,2000

denotes the predetermined population of prefecture k, and τ`kt denotes predicted travel
time between regions ` and k in year t (in minutes). Travel time predictions are based on
the operational speed of each HSR line as well as geographic distance, which proxies for
the travel time by car or a low-speed train. We relate MA growth, z` = logMA`,2016 −
logMA`,2007, to the corresponding growth in prefecture’s urban employment y` from the
Chinese City Statistical Yearbooks. This yields a set of 274 prefectures with non-missing
outcome data; see Appendix A.1 for details on the sample construction and market access
measure. Panel A of Figure 2 shows the Chinese HSR network as of the end of 2016, along
with the implied growth of market access relative to 2007.

Column 1 of Table 1, Panel A, reports the coefficient from a simple regression of em-
ployment growth on MA growth; Appendix Figure A3 visualizes this relationship.31 The
estimated elasticity of 0.23 is large. Given an average MA growth of 0.54 log points, it im-
plies a 12.4% employment growth attributable to the HSR for an average prefecture—almost
half of the 26.6% average employment growth over this period. The estimate is also highly
statistically significant using the spatially-clustered standard errors of Conley (1999), echo-
ing the findings of Lin (2017) (while not being directly comparable due to our use of later
years and a different specification).

Panel A of Figure 2, however, gives immediate reason for caution against interpreting
the OLS coefficient as causal. Prefectures with high MA growth, which serve as the effective
treatment group, tend to be clustered in the main economic areas in the southeast of the
country where HSR lines are concentrated. Areas near major cities, such as Shanghai and
Beijing, also tend to see high MA growth as they are connected by the HSR network. A
comparison between these prefectures and the economic periphery may be confounded by
the effects of unobserved policies, both contemporaneous and historical, that differentially
affected the economic center.

We quantify the systematic nature of spatial variation in MA growth in Column 1 of
Table 2, by regressing it on a prefecture’s distance to Beijing, its latitude, and its longitude.
These simple predictors capture over 80% of the variation in MA growth, as measured by
the regression’s R2. The high significance suggests an OVB concern: for causal interpreta-
tion of the Table 1 regression, one would need to assume that all unobserved determinants

opened simultaneously. One experimental HSR line between Qinhuangdao and Shenyang opened in 2003.
We include it in our market access measure but focus on the majority of HSR-induced changes in the network
over 2007–2016.

31This regression can be viewed as a reduced form of a hypothetical IV regression, in which the treatment
variable is a measure of market access that accounts for changing population. We focus on the reduced form
here because of data constraints: we observe annual population for all 340 prefectures only in the Census
year of 2000. We discuss the potential roles of controls below.
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Figure 2: Chinese High Speed Rail and Market Access Growth, 2007-2016

A. Completed Lines and Market Access Growth

B. All Completed and Planned Lines

Notes: Panel A shows the completed China high-speed rail network by the end of 2016,
with shading indicating MA growth relative to 2007. Panel B shows the network of all HSR
lines, including those planned but not yet completed as of 2016 (in red).
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Table 1: Employment Effects of Market Access: Unadjusted and Recentered Estimates

Unadjusted Recentered Controlled
OLS IV OLS
(1) (2) (3)

Panel A. No Controls
Market Access Growth 0.232 0.081 0.069

(0.075) (0.098) (0.094)
[-0.315, 0.328] [-0.209, 0.331]

Expected Market Access Growth 0.318
(0.095)

Panel B. With Geography Controls
Market Access Growth 0.132 0.055 0.045

(0.064) (0.089) (0.092)
[-0.144, 0.278] [-0.154, 0.281]

Expected Market Access Growth 0.213
(0.073)

Recentered No Yes Yes
Prefectures 274 274 274

Notes: This table reports coefficients from regressions of employment growth on MA growth
in Chinese prefectures from 2007–2016. MA growth is unadjusted in Column 1. In Column
2 this treatment is instrumented by MA growth recentered by permuting the opening status
of built and planned HSR lines with the same number of cross-prefecture links. Column
3 instead estimates an OLS regression with recentered MA growth as treatment and con-
trolling for expected MA growth given by the same HSR counterfactuals. The regressions
in Panel B control for distance to Beijing, latitude, and longitude. Standard errors which
allow for linearly decaying spatial correlation (up to a bandwidth of 500km) are reported
in parentheses. 95% RI confidence intervals based on the HSR counterfactuals are reported
in brackets.

of employment growth (such as local productivity shocks) are uncorrelated with such geo-
graphic features. While one could of course control for the specific geographic variables from
Table 2 (as we explore below), controlling perfectly for prefecture geography is impossible
without removing all variation in z`.

Our solution is to view certain features of the HSR network as realizations of a natural
experiment. By specifying a set of counterfactual HSR networks, which we corroborate
with appropriate falsification tests, we can compute the appropriate function of geography
µ` to remove the systematic variation in MA growth. The recentered regression leverages
contrasts between actual and counterfactual realizations of the HSR assignment process,
and not other cross-sectional variation.

Our specification of counterfactual upgrades exploits the heterogeneous timing of HSR
construction. Specifically we permute the 2016 completion status of the built and planned
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Table 2: Regressions of Market Access Growth on Measures of Economic Geography

Unadjusted Recentered

(1) (2) (3) (4)
Distance to Beijing −0.292 0.069 0.089

(0.063) (0.040) (0.045)
Latitude/100 −3.323 −0.325 −0.156

(0.648) (0.277) (0.320)
Longitude/100 1.329 0.473 0.425

(0.460) (0.239) (0.242)
Expected Market Access Growth 0.027 0.056

(0.056) (0.066)
Constant 0.536 0.014 0.014 0.014

(0.030) (0.018) (0.020) (0.018)
Joint RI p-value 0.489 0.807 0.536
R2 0.823 0.079 0.007 0.082
Prefectures 274 274 274 274

Notes: This table reports coefficients from regressing the unadjusted and recentered MA
growth of Chinese prefectures (2007–2016) on predetermined geographic controls. Recen-
tering is done by permuting the opening status of built and planned lines with the same
number of cross-prefecture links. All regressors are measured for the prefecture’s main city
and demeaned such that the constant in each regression captures the average outcome value.
Distance from Beijing is measured in 1,000km. Standard errors which allow for linearly de-
caying spatial correlation (up to a bandwidth of 500km) are reported in parentheses. Joint
RI p-values are based on the 999 HSR counterfactuals and the sum-of-square fitted values
statistic, as described in footnote 27.

lines, assuming that the timing of line completion is conditionally as-good-as-random. Panel
B of Figure 2 compares the built and planned lines which form our counterfactuals. Planned
lines tend to be concentrated in the same areas of China as built lines, reinforcing the
fact that (unlike in our motivating example in Section 2) construction is not uniformly
distributed in space. Although planned lines are of similar length, they tend to connect more
regions: the average number of cross-prefecture “links” is 3.31 and 2.45 for built and planned
lines, respectively, with a statistically significant difference (p = 0.029). To account for this
difference we construct counterfactual upgrades by permuting 2016 completion status only
among lines with the same number of links. This procedure generates counterfactual HSR
maps that are visually similar to the actual 2016 network (see Appendix Figure A4 for an
illustrative example) and which isolate more plausibly exogenous variation. For example
the main Beijing to Shanghai HSR line, which has the greatest number of links, is always
included in the counterfactuals.

Columns 2–4 of Table 2 validate this specification of the HSR assignment process by
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the test described in Section 3.4. Column 2 shows that recentering according to this spec-
ification (based on 999 counterfactual maps) successfully removes systematic geographic
variation in market access. Specifically, it regresses the resulting recentered MA growth
on a constant and the same controls as in Column 1 (distance to Beijing, latitude, and
longitude). The regression coefficients and R2 fall dramatically relative to Column 1, while
a permutation-based p-value for their joint significance (based on the regression’s sum-of-
squares, as suggested in footnote 27) is 0.49. Columns 3 and 4 further show that recentered
MA growth is uncorrelated with the expected instrument. These results are consistent
with correct specification of counterfactuals (i.e. we cannot reject Assumption 3), though
we note they do not provide direct support for the exogeneity of HSR construction to the
unobserved determinants of employment (Assumption 1).32

Figure 3 plots expected and recentered MA growth (µ` and z̃`) given by the permutations
of built and planned lines. The effect of recentering is apparent by contrasting the dark-
and light-shaded regions in Panel A of Figure 2 (indicating high and low MA growth) with
the solid and striped regions in Panel B of Figure 3 (indicating high and low recentered
MA growth). The recentered z̃` no longer places western prefectures in the effective control
group, as their MA growth is as low as expected, and therefore z̃` ≈ 0. Similarly, some
prefectures in the east (such as Tianjin) are no longer in the effective treatment group,
as they saw an expectedly large increase in MA. At the same time, recentering provides a
justification for retaining other regional contrasts. Hohhot, for example, expected higher
MA growth than Harbin due to the planned connection to Beijing. This line was still under
construction in 2016, however, resulting in lower MA growth in Hohhot than Harbin.

Column 2 of Table 1, Panel A, shows that instrumenting MA growth with its recen-
tered measure reduces the estimated employment elasticity substantially, from 0.23 to 0.08.
Controlling for expected MA growth yields a similar corrected estimate of 0.07 in Column
3. Neither of the two adjusted estimates is statistically distinguishable from zero according
to either Conley (1999) spatial-clustered standard errors or permutation-based inference
based on Lemma 2 (which yields a wider confidence interval in this setting). The difference
between the unadjusted and adjusted estimates is explained by the fact that employment
growth is strongly predicted by expected MA growth: in Column 3 we find a large coefficient
on µ`, of 0.32.33 This means employment grew faster in prefectures that were more highly

32While our specification tests pass for the 2007–2016 long difference, and are robust to using long dif-
ferences ending in 2014 or 2015, we have verified in unreported results that the same assignment process is
rejected in specifications which focus on earlier years of HSR development, when the network is much less
dense and it is more difficult find good experimental contrasts. Focusing on the long difference also alleviates
concerns of dynamic employment adjustments.

33Appendix Figure A5 visualizes these findings. We use recentered (rather than unadjusted) MA growth
as the treatment in Column 3 of Table 1. This does not change the estimate of β, but makes the coefficient
on the expected instrument more interpretable: the Column 1 estimate is then a weighted average of the
two Column 3 coefficients.

26



Figure 3: Expected and Recentered Market Access Growth from Chinese HSR

A. Expected Market Access Growth

B. Recentered Market Access Growth

Notes: Panel A shows the variation in expected 2007–16 MA growth across Chinese pre-
fectures, computed from 999 counterfactuals that permute the opening status of built and
planned lines with the same number of cross-prefecture links. Panel B plots the variation
in corresponding recentered MA growth: the difference between the MA growth shown in
Panel A of Figure 2 and expected MA growth. The HSR network as of 2016 is also shown
in this panel.
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exposed to new HSR construction, whether or not the nearby lines have been built yet.34

Panel B of Table 1 shows that the geographic controls from Table 2 do not isolate
the same variation as expected MA growth adjustment. Including these controls in the
unadjusted regression of Column 1 yields a smaller but still economically and statistically
significant estimate, of 0.13. In contrast, Columns 2 and 3 show that the finding of no
significant MA effect after adjusting for µ` is robust to including these conventional controls.
The µ` adjustment alone appears sufficient to remove the geographic dependence of MA,
as Table 2 also showed.

Additional robustness checks are given in Appendix Tables A1 and A2. First, we show
that the role of the expected instrument adjustment is virtually unchanged with two mod-
ifications to the market access regression often found in the literature. Specifically, we
use a leave-one-out MA measure (e.g. Donaldson and Hornbeck 2016) and drop influen-
tial prefectures, which we define as province capitals, from the sample (e.g. Chandra and
Thompson 2000). Second, we find similar results when replacing the MA treatment with a
simpler measure of prefecture’s connectivity to the HSR network (e.g. Faber 2014; Donald-
son 2018). Third, we explore sensitivity to adding province fixed effects, which here bring
the unadjusted coefficient on MA growth closer to zero while again confirming the robust-
ness of the adjusted estimates. Finally, we show that recentering eliminates the effects on
other measurements of employment growth, but not on rail passenger traffic (providing a
useful reality check).

While our primary interest is to illustrate the above methodology, we note that there
are several possible explanations for the substantive finding of a small employment effect
of MA after recentering. Unlike other networks used for trading goods, the Chinese HSR
network operates passenger trains. Its scope for directly affecting production is therefore
smaller, although it could still facilitate cross-regional business relationships. In addition,
the employment effects of growing market access could be positive for some regions but
negative for others, as easier commuting between regions relocates employers. We leave
analyses of such mechanisms and heterogeneity for future study.

In Appendix D.1 we discuss how the idea of recentering market access relates to the
literature estimating the effects of transportation infrastructure upgrades on regional and
bilateral outcomes, which remains challenging despite a long history in economics (Redding
and Turner 2015). We first contrast the well-known challenge of strategically chosen trans-
portation upgrades with the less discussed problem that regional exposure to exogenous

34Appendix Figure A6 shows that the µ`-adjusted estimates capture an average treatment effect corre-
sponding to a diverse and reasonably representative set of regions, alleviating concerns that the difference
relative to Column 1 of Table 1 may be compositional. Specifically, we plot the weights that the recentered
IV implicitly places on each prefecture in the sample if the effects β` are linearly heterogeneous (see Corollary
S1 in Appendix C.1).
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upgrades may be unequal. We then explain how common strategies to address the former
issue (e.g. by leveraging historical routes or inconsequential places) can be incorporated in
our framework, at least in principle. At the same time, we highlight that recentering may
still be needed to address the latter issue. We further discuss how some of the existing
approaches naturally yield specifications of counterfactual networks (e.g. the placebos in
Donaldson (2018) and Ahlfeldt and Feddersen (2018)) and summarize the conceptual and
practical advantages of our approach relative to employing more conventional controls. We
finally emphasize that even when a convincing specification of counterfactuals is challeng-
ing to obtain, any specification can yield a useful robustness check on these alternative
identification strategies (see footnote 21).

4.2 Effects of Policy Eligibility

We next show how our framework can be used to construct more efficient instruments when
estimating the effects of policy eligibility, relative to the commonly employed simulated
instrument approach of Currie and Gruber (1996a, 1996b). Validity of our instruments
relies on the same policy exogeneity assumptions, but power is increased by incorporating
predictive endogenous variation in policy exposure and applying appropriate recentering.
We first describe the general approach, drawing on the optimal IV results of Section 3.5.
We then illustrate the power gains in an application estimating the take-up and crowd-out
effects of Medicaid eligibility.

General Approach Suppose that β captures the causal effect of eligibility x` ∈ {0, 1} of
individual ` for a public program (such as Medicaid or unemployment insurance) on some
outcome y` (such as program takeup, health status, or educational attainment). Eligibility
is a function—possibly a complicated one—of regional (e.g. state-level) government policy
and individual characteristics such as income and family structure. We suppose the variation
in state policies can plausibly be viewed as exogenous, while the individual characteristics
are potentially correlated with the residual.

In such settings Currie and Gruber (1996a, 1996b; henceforth CG) propose the use of
simulated instruments to isolate the exogenous policy variation.35 The CG procedure mea-
sures the generosity of each state’s policy as the average eligibility of a simulated nationally
representative sample of individuals, if they were to reside in that state. We write this
generosity as h(gn), indexing states by n = 1, . . . , 50 and denoting policies by gn. Each
individual ` is then assigned the generosity of policy in their state of residence s` as the

35For example, Currie and Gruber (1996a) write that their aim is “to achieve identification using only
legislative variation in Medicaid policy” (p. 445). We interpret this as positing exogenous variation in
policies across states.
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instrument, zCG` = h(gs`). Since the CG instrument is a function of state policies only, it
is valid when these policies arise in a natural experiment (as formalized below).36

The Section 3 framework suggests a different and likely more powerful approach, which
leverages the same natural policy experiment. Indeed, eligibility can be written as x` =
f(gs` ; v`), where v` denotes the demographics relevant to the policies (which we assume
are observed by the econometrician and determined prior to the policies) and f(·) is a
known mapping. It can therefore be perfectly predicted from the policies g and observables
(s = {s`} and v = {v`}) and, once recentered, coincides with the inner term of the optimal
instrument in equation (9). To make recentering feasible, we formalize the natural experi-
ment by assuming exchangeability of the policies gn across states, conditional on (s, v) and
error terms ε. This implies both Assumption 1 and Assumption 3, as the distribution of gn
conditional on w = {s, v,Π(g)} is uniform across the 50 values of gn and therefore known.37

With this formalization, one can purge OVB from an OLS regression of y` on x` by
measuring each individual’s expected eligibility over the possible policy counterfactuals,
µ` = E [x` | w] = 1

50
∑
n f(gn; v`), and either instrumenting x` by z̃` = x`−µ` or controlling

for µ`. This procedure contrasts with the simulation in CG’s approach: rather than apply-
ing `’s state policy to random individuals in order to construct an instrument for x`, our
approach applies random state policies to individual ` in order to construct a control µ`.

The power gains with z̃` relative to zCG` arise from a better first-stage prediction of
x`. This can be understood by considering individuals who have the same eligibility under
every state’s policy, such that x` = µ`. The presence of such individuals weakens the CG
first stage, since their treatment status is unaffected by variation in zCG` . The recentered
IV estimator effectively removes these inframarginal individuals, for whom z̃` = 0.

In Appendix D.2 we extend these insights by showing how more efficient instruments
can be constructed when some individual determinants of eligibility are unobserved (as
in Cohodes et al. (2016)) or endogenously respond to the state policies (as in East and
Kuka (2015)). The results similarly apply in settings where only some policy variation is
exogenous, as our application next illustrates. We further discuss in Appendix D.2 the
advantages of our recentered IV relative to controlling for individual characteristics flexibly,
as is common in the related literature on the eligibility effects of unemployment insurance
(e.g., Cullen and Gruber 2000).

36It is straightforward to verify that under the assumptions of the natural experiment, the expected
instrument corresponding to zCG` is constant across individuals, and therefore there is no need to recenter.

37Like in Section 3.3, Π(g) denotes the permutation class of g. Other specifications of counterfactuals, such
as permutations within clusters, are similarly allowed. We illustrate such an approach in the application. We
also note that statistical inference in this setting is straightforward with both zCG` and z̃`: when eligibility
policies are iid across states, conventional state-clustered standard errors suffice.
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Application We illustrate our approach by estimating the insurance coverage effects of
a partial expansion of Medicaid eligibility in 2014. Medicaid is the largest U.S. health in-
surance program, covering around 29 million poor, non-disabled adults. One of the goals of
the 2009 Affordable Care Act (ACA) was to extend Medicaid eligibility to all U.S. citizens
and legal residents earning below 138% of the federal poverty line (FPL), replacing older
eligibility rules that were mostly stricter and varied widely across U.S. states. The con-
stitutionality of such an expansion was challenged (broadly along partisan lines), leading
to a 2012 Supreme Court decision that left expansion to the discretion of individual state
governors (NFIB v. Sebelius, 567 U.S. 519). In January 2014, when the ACA generally took
effect, the federal Medicaid expansion was implemented by only 19 among the 43 states that
had not expanded under the ACA or had a universal 138% FPL cutoff in prior years. The
divide was partially along the party line: a minority (8 out of 30) of states with Republi-
can governors but a majority (11 out of 13) of states with Democratic governors expanded
eligibility. We refer to the former 19 states as having expanded Medicaid under the ACA,
with the remaining 24 labeled as non-expansion states. Exact Medicaid eligibility criteria
continued to have some variation across states in 2014, with some expansion states raising
eligibility beyond the ACA’s 138% FPL threshold and some non-expansion states partially
raising eligibility though not fully to the ACA threshold.38

Applying our framework to this setting requires explicitly specifying counterfactual 2014
Medicaid expansions. Our baseline assumption is that a state’s decision to expand is ex-
changeable within the sets of Republican and Democratic-governed states, while allowing
states with different-party governors to have different propensities to expand. Thus, all
scenarios in which some 8 Republican and some 11 Democratic states expanded are viewed
as valid counterfactuals. This view of the 2014 expansions, as arising from a natural exper-
iment, conforms with some earlier analyses (e.g. Ghosh et al. (2019), Black et al. (2019)).39

We consider alternative assumptions on the expansion assignment process in robustness
checks below.

We apply the framework using data from the 2013 and 2014 American Community Sur-
veys on a representative 1% sample of non-disabled U.S. adults (ages 21-64) residing in the
43 states eligible for expansion in 2014. This repeated cross-section includes information

38We follow Frean et al. (2017) in using the Kaiser Family Foundation State Action
database to determine which states adopted Medicaid expansions in each year; see https:
//web.archive.org/web/20150110162937/https://www.kff.org/health-reform/state-indicator/
state-activity-around-expanding-medicaid-under-the-affordable-care-act/. States which ex-
panded coverage under the ACA or which had a universal 138% FPL cutoff prior to 2014 (and which
are excluded from our analysis) are California, Connecticut, Massachusetts, Minnesota, New Jersey,
Washington, and Vermont, plus the District of Columbia.

39Other analyses that do not reference natural experiments explicitly describe the expansions as “exoge-
nous” and leverage difference-in-differences specifications comparing the outcome trends of individuals in
expansion and non-expansion states before and after 2014 (e.g. Hu et al. (2018), Averett et al. (2019)).
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on insurance coverage (by Medicaid, ACA marketplaces, and employer-sponsored plans),
household income and other demographics determining Medicaid eligibility, such as employ-
ment status and family structure. We combine this main estimation sample with data from
2012 for falsification exercises; Appendix A.2 describes the sample construction in detail.

We estimate take-up and crowd-out effects from second-stage specifications of the form

y`t = βx`t + αs`t + τt + c′`tγ + ε`t, (11)

where ` indexes individuals and t indexes years (either 2013 or 2014). The outcome y`t is
an indicator for a particular type of health insurance coverage (e.g. Medicaid or private
insurance), and the treatment x`t is an indicator for Medicaid eligibility under the year-
t eligibility rules of `’s state of residence s`t. We include state and year fixed effects αs
and τt and time-varying controls c`t, discussed below. Recognizing that eligibility is likely
endogenous, we instrument it with two alternative IVs.

We construct the simulated eligibility instrument zCG`t consistently with our stance that
only a state’s decision to expand Medicaid in 2014 is exogenous (and not, for example, its
prior level of generosity). As a function of policy variation only, the CG instrument is in
this case equivalent (in the sense of producing the same estimates) to gs`t · 1 [t = 2014], the
simple interaction of residing in an expansion state (gs`t = 1, where s`t is individual `’s
state of residence) with the 2014 indicator. We nevertheless construct zCG`t by a simulation
that follows the original logic of Currie and Gruber (1996a); see Appendix A.2 for details.
We include in the control vector c`t an indicator for residing in a Republican-governed
state, interacted with year, to match our assumption of conditional exogeneity of expansion
decisions within each governor’s party.

The alternative recentered IV also leverages conditionally exogenous variation in state
Medicaid expansion decisions while further incorporating individual heterogeneity to better
predict Medicaid eligibility. We construct eligibility predictions z`t = f(gs`t ; v`t) by includ-
ing in v`t all individual demographics that affect eligibility (household income, parental and
employment status) as well as the precise eligibility rules of the individual’s state in 2013,
as they are also viewed as non-random. This construction allows for a perfect prediction
of z`t = x`t in 2013; in 2014 we predict eligibility from state expansion decisions and prior
eligibility policy (again see Appendix A.2 for details).

The expected instrument which corresponds to this z`t is obtained by permuting expan-
sion decisions within Republican- and Democratic-governed states. It defines a sample of
“non-exposed” individuals whose demographics and state of residence make them always
or never eligible for Medicaid in 2014 regardless of the expansion decision, and a set of
“exposed” individuals for whom the expansion shock is relevant. Per the discussion above,
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Table 3: Medicaid Eligibility Effects: First-Stage Estimates

(1) (2) (3)
Simulated IV 0.851 0.032

(0.113) (0.140)
[0.567,1.115] [-0.254,0.503]

Recentered IV 0.817 0.972
(0.171) (0.015)

[0.397,1.162] [0.941,1.014]
Partial R2 0.022 0.113 0.894
Exposed Sample N N Y
States 43 43 43
Individuals 2,397,313 2,397,313 421,042

Notes: This table reports coefficients from first-stage regressions of Medicaid eligibility on
the two instruments described in the text: a simulated eligibility instrument and a recentered
prediction of Medicaid eligibility. Columns 1 and 2 estimate regressions in the full sample
of individuals in 2013–14, while Column 3 restricts to the sample of individuals in both
years whose individual characteristics make them exposed to the partial ACA Medicaid
expansion in 2014. All regressions control for state and year fixed effects and an indicator
for Republican-governed states interacted with year. State-clustered standard errors are
reported in parentheses; 95% confidence intervals, obtained by a wild score bootstrap, are
reported in brackets. R2 statistics partial out the fixed effects and controls.

we drop non-exposed individuals from the 2014 sample and, in keeping with the difference-
in-difference structure, also drop individuals in 2013 whose individual characteristics would
make them non-exposed in 2014. The remaining variation in µ`t is absorbed by the year-
interacted state party indicator in c`t, making recentering unnecessary.

Table 3 shows that the recentered IV is much more predictive of actual Medicaid eligibil-
ity x`t than the simulated instrument. Column 1 regresses x`t on the simulated instrument
zCG`t , controlling for state and year fixed effects and the year-interacted state party control.
The partial R2 in this first-stage regression instrument is quite small, at 2.2 percent. Adding
the recentered IV in Column 2 increases the partial R2 dramatically, to 11.3 percent. More-
over, the coefficient on the simulated instrument falls from 0.85 to an insignificant 0.03.40 In
Column 3 we restrict estimation to the “exposed” sample of individuals whose demographics
and state of residence make them marginal for the potential expansion of Medicaid eligibil-
ity in 2014. Here we find that a one percentage point increase in the recentered IV predicts
a 0.97 percentage point increase in actual Medicaid eligibility. This first-stage coefficient

40We use state-clustered standard errors but, to address finite-sample concerns with a relatively small
number of state clusters, also report confidence intervals by a wild score bootstrap as suggested by Kline
and Santos (2012). This computationally efficient approach requires inverting bootstrapped test statistics,
which generally makes confidence intervals asymmetric around the IV point estimate.
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would equal one if changes in eligibility were only driven by state expansion decisions; the
fact that it is close to one reflects the relatively small role of other policy changes. We also
find a high partial R2 in this specification, of 89.4 percent, reflecting the fact that we have
removed individuals whose eligibility is unaffected by state expansion decisions.

Table 4 shows that estimates of Medicaid take-up and private insurance crowd-out effects
are correspondingly much more precise when obtained with the recentered IV. Associated
standard errors and confidence interval lengths fall by around 60-70 percent when we replace
zCG`t with z`t and restrict estimation to the exposed sample. In Columns 1 and 2 of Panel A
we obtain a recentered IV confidence interval of [0.05,0.09] for the take-up effect, relative to
a much wider simulated instrument confidence interval of [0.08,0.22]. For private insurance
crowd-out, the respective confidence intervals in Columns 3 and 4 are [-0.04,-0.01] and [-
0.10,0.01]. Thus we can only reject the null hypothesis of no crowd-out with 95% confidence
when using the recentered IV. These two columns include both the conventional crowd-out
margin of employer-sponsored insurance as well as the novel form of private marketplace
insurance introduced by the ACA. In Columns 5 and 6 we focus on crowd-out of employer-
sponsored plans. Neither the simulated nor recentered IV yields statistically significant
estimates at the 95% level, though the latter is again much more precise.

In economic terms, the recentered IV estimates in Panel A of Table 4 suggest a total
private insurance crowd-out rate of 30%, with a 7.2 percentage point increase in overall
coverage offset by a 2.3 percentage point decrease in private insurance coverage. This
overall effect is similar to the 42% crowd-out that Leung and Mas (2018) find in applying
a difference-in-differences specification to the 2014 Medicaid expansion. However, we find
no evidence for crowd-out from employer-sponsored insurance plans even with our more
powerful recentered IV. Instead, our estimates suggest the crowd-out arises entirely from
direct-purchase private insurance via new ACA marketplaces. This aligns with the finding
of Frean et al. (2017), who exploit multiple sources of ACA-induced policy variation in
a simulated instrument design (see also Kaestner et al. (2017) and Maclean and Saloner
(2019)), and contrasts with earlier settings (e.g. Cutler and Gruber 1996).41

Panel B of Table 4 shows that these substantive findings and power gains are not driven
by the relatively simple regression specification. Adding flexible controls for the individual
characteristics which drive exposure to different policies (deciles of household income, in-
teracted with indicators for parental and work status and year) in c`t leaves both the point
estimates and the difference between simulated IV and recentered IV standard errors and
confidence interval lengths unchanged.

We further analyze the robustness of this analysis in Appendix A.3. First, we validate
41See Guth et al. (2020) for a review of the literature on ACA expansion effects, which suggests that more

widespread eligibility increased access to and utilization of care, led to local economic gains, and improved
health outcomes.
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Table 4: Medicaid Eligibility Effects: Simulated and Recentered IV Estimates

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Simulated IV Recentered IV Simulated IV Recentered IV Simulated IV Recentered IV
(1) (2) (3) (4) (5) (6)

Panel A. Baseline Controls
Eligibility 0.132 0.072 −0.048 −0.023 0.009 −0.009

(0.028) (0.010) (0.023) (0.007) (0.014) (0.005)
[0.080,0.218] [0.051,0.094] [-0.109,0.010] [-0.039,-0.008] [-0.035,0.053] [-0.021,0.004]

Panel B. With Demographics × Post
Eligibility 0.135 0.073 −0.050 −0.024 0.003 −0.008

(0.029) (0.010) (0.022) (0.007) (0.013) (0.005)
[0.082,0.223] [0.051,0.096] [-0.114,-0.002] [-0.041,-0.008] [-0.038,0.036] [-0.020,0.005]

Exposed Sample N Y N Y N Y
States 43 43 43 43 43 43
Individuals 2,397,313 421,042 2,397,313 421,042 2,397,313 421,042

Notes: This table reports coefficients from IV regressions of different measures of health insurance coverage on Medicaid eligibility,
instrumented by one of the two IVs described in the text: a simulated eligibility instrument and a recentered prediction of Medicaid
eligibility. Columns 1, 3, and 5 estimate regressions in the full sample of individuals in 2013–2014, while Columns 2, 4, and 6
restrict to the sample of individuals whose individual characteristics make them exposed to the partial ACA Medicaid expansion
in 2014. All regressions control for state and year fixed effects and an indicator for Republican-governed states interacted with
year; the regressions in Panel B additionally control for deciles of household income, interacted with indicators for parental
and work status and year. Conventional state-clustered standard errors are reported in parentheses; 95% confidence intervals,
obtained by a wild score bootstrap, are reported in brackets.
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our assumption of expansion exogeneity with a placebo test that replaces 2014 outcomes
with a comparable cross-section from 2012. Although with the increased precision from the
recentered IV we are able to reject the null hypothesis of no pre-trends, Appendix Table A3
shows that the magnitude of the placebo coefficient is small (around 0.01–0.02) regardless
of the outcome and the instrument we use. Second, we relax the key exogeneity assumption
by allowing a state’s decision to expand to depend not only on the political party of their
governor, but also on the state’s median household income and previous rate of Medicaid
coverage. Appendix Table A4 shows that the estimated effects of eligibility remain very
similar across specifications. Third, we explore robustness to another implementation of
our approach: namely, using the recentered z`t as the instrument without restricting to the
exposed sample. Appendix Table A5 shows that this approach only yields power gains when
the additional demographic controls (those from Panel B of of Table 4) or an indicator for
being in the exposed sample interacted with year are included in c`t. We discuss the reason
for this in Appendix A.3 by relating it to our general efficiency theory of Section 3.5.

Finally, we confirm large and uniform power gains from using the recentered IV in a
Monte Carlo study based on our baseline estimates. In this controlled environment the
true causal effect and the shock assignment process are known, allowing us to verify that
recentered IV estimator is both close to unbiased and significantly more efficient than the
traditional simulated instrument approach. We find, for example, that the minimum de-
tectable effects of simulated IV (the smallest null hypotheses which are rejected by a 0.05-size
test with probability 0.8) are roughly three times larger than those of the recentered IV
(see Appendix Figures A7 and A8).

4.3 Other Settings

Our framework bears practical lessons for a range of other common z`: network spillover
treatments, linear and nonlinear shift-share instruments, model-implied instruments, instru-
ments from centralized school assignment mechanisms, “free-space” instruments for mass
media access, and weather instruments. Here we map these settings to the general frame-
work. In Appendices D.3–D.8 we detail how expected instrument recentering and RI can
be used to relax various assumptions often imposed with such z`.

In spillover regressions, the units ` represent nodes in a network (of people, firms, regions,
etc.) and g captures exogenous shocks assigned to the same or other nodes in an RCT
or a natural experiment. Spillover treatments can then count the number of `’s shocked
neighbors (perhaps with importance weights), check whether this number exceeds a certain
threshold, or measure the network distance to the nearest treated node (e.g. Miguel and
Kremer (2004), Jaravel et al. (2018), and Carvalho et al. (2020)). All such treatments are
co-determined by g and the network adjacency matrix w (often nonlinearly in g), and thus
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may require recentering to leverage the exogenous variation.42

Shift-share instruments (SSIVs), often constructed for regions `, combine lagged local
shares w` = {w`n}Nn=1 of, for instance, employment across a set of industries n = 1, . . . , N
with a set of national shocks g = {gn}Nn=1. In many applications the shocks are consid-
ered exogenous, perhaps conditionally on a vector of industry-level controls qn, while the
shares may be endogenous. Borusyak et al. (2020) show how for linear SSIVs, of the form
z` =

∑
nw`ngn, OVB from non-random exposure is removed by controlling for

∑
nw`nqn

provided E [gn | qn] is linear. In the language of the present paper, such controls absorb
the expected instrument. Relative to their paper, our framework nests nonlinear SSIVs
z` = f (g, w`)—a recent and growing class of instruments which has not previously been
formalized, and for which the OVB problem is more challenging.43 Examples of nonlinear
SSIVs include predicted local Gini indices based on national shocks to the income distribu-
tion (Boustan et al. 2013), predicted labor reallocation indices based on national industry
shocks (Chodorow-Reich and Wieland 2020), and “SSIV in logs” such as predicted firm-level
log-exports (Berman et al. 2015).

Adão et al. (2020) propose “model-implied optimal instruments” as a way to estimate pa-
rameters of general equilibrium models with spatial spillovers. They leverage the responses
of endogenous variables y` to a set of exogenous shifters gn in a log-linear approximation
around some initial equilibrium w. Since such responses are functions of the non-random
w (e.g. they depend on the initial local industry composition and migration shares), re-
centering is generally required to just leverage the exogenous variation in gn. Linearity of
the model in g makes recentering straightforward, even when the responses are nonlinear
in parameters. In Appendix D.5 we discuss how our efficiency result extends that of Adão
et al. (2020) to account for recentering and the non-iidness of data in spatial equilibrium.

When estimating the causal effects of enrollment in certain groups of schools (e.g.,
charter schools), researchers increasingly leverage partially randomized school assignment
mechanisms (Abdulkadiroglu et al. 2017; 2019). For example, they may instrument enroll-
ment with centralized assignment to a charter school, z` ∈ {0, 1}. This z` is a function of the
non-random inputs to the assignment mechanism captured by w (e.g. the submitted prefer-
ences and priorities of all students) and a set of exogenous inputs g, such as random numbers
used to break ties among students with equal priority. Abdulkadiroglu et al. (2017; 2019)
derive analytical propensity scores µ` for some deferred acceptance mechanisms, which are
valid in large samples, and discuss how in some cases re-randomizing the exogenous shocks

42In a related class of applications, the treatment of interest is node centrality, affected by the shocks g
that change network edges (e.g. Campante and Yanagizawa-Drott (2018)). The market access regressions
of Section 4.1 can also be understood this way.

43In Appendix D.4 we show that this problem can also be solved without fully specifying counterfactual
shocks by using a first-order approximation to z` (which is a linear SSIV), at a likely efficiency cost.
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can also be used in finite samples. Our framework nests the latter solution while not being
limited to binary z` or to specific assignment mechanisms.

The literature on the effects of access to mass media (e.g. to radio or television) points
out that the local quality of reception z` = f` (g, w) is co-determined by the location of
transmitters w and the country topography g (e.g. mountain ranges) that can inhibit
transmission (e.g. Olken 2009; Yanagizawa-Drott 2014). Viewing w as endogenous, some
papers control for the “free-space” measure of access that assumes away any transmission
barriers. While this control is similar in spirit to µ`, it is not identical: our framework
shows that controlling for the average quality of reception under realistic counterfactual
topographies may be more appropriate.

Our final example is when spatial variation in weather is used as an instrument, e.g.
with rainfall instrumenting for the election turnout (e.g. Gomez et al. 2007; Madestam
et al. 2013). Causal identification may be threatened by the fact that local weather z` is
co-determined by exogenous day-specific factors g and local climate w`, which may be corre-
lated with unobservables. Moreover, statistical inference is difficult because all determinants
of weather are heavily spatially correlated (Lind 2019). Recentering and permutation infer-
ence based on historic weather maps (e.g. from the same day of other years) may therefore
be attractive solutions, and some versions of it have been applied in the literature (see
Appendix D.8).

5 Conclusion

Many studies in economics construct treatments or instruments that combine multiple
sources of variation, according to a known formula. We develop a general econometric
framework for such settings when some, but not all, of such variation is exogenous. Except
in special cases, endogenous exposure to exogenous shocks generates bias in conventional re-
gression estimators, and the interdependencies inherent in such settings invalidate standard
modes of statistical inference. We show how these identification and inference problems can
be solved by specifying an assignment process for the exogenous shocks: namely, a set of
counterfactual shocks that might as well have been realized.

This general framework has concrete implications for a large number of settings. We
illustrate the usefulness of specifying counterfactuals for new railroad construction when
leveraging this variation to estimate market access effects. Estimates of the effects of high-
speed rail on local employment in China are reduced to a statistical zero when adjusting for a
region’s expected market access growth. We further show how our framework can be used to
construct instruments which may be a more powerful alternative to simulated eligibility IVs.
Estimates of Medicaid take-up and crowd-out effects are more than three times as precise
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when obtained by an instrument incorporating both as-good-as-random policy variation and
non-random individual exposure, without a need for stronger identification assumptions.
We discuss practical implications for other settings, including spillover regressions, linear
and nonlinear shift-share IV regressions, structural estimation with model-implied IVs, and
estimation of the effects of centralized school assignment, access to mass media, and weather.

The key challenge of applying our framework, absent true randomization, is in specifying
plausible shock counterfactuals. In the paper we illustrate how this can be accomplished in
a variety of settings by finding exchangeable features of the shocks. For example, permuting
the timing of railroad upgrades within observably similar groups may yield a plausible set
of counterfactuals for gauging the potential for OVB. We also show how such specifications
can be tested. We consider some partly-specified shock assignment processes in Appendix
C.5; future research may yield more flexible approaches.

In our view, specifying shock counterfactuals has inherent value in observational stud-
ies that claim to leverage a natural experiment, understood as a serendipitous randomized
trial (DiNardo 2008). A virtue of randomized trials is that valid causal inference can be
conducted without imposing non-experimental assumptions on the unobservables. In the
settings we consider, this property is only maintained when an expected instrument adjust-
ment is performed, which generally requires an explicit shock assignment process. Methods
that instead rely on properties of the unobservables, such as by a parallel trends assump-
tion, are instead referred to as quasi-experimental by DiNardo (2008).44 Generalizing our
framework to combine specifications of shock counterfactuals with plausible restrictions on
the residual appears a fruitful area for future work and may yield new “double-robust”
identification results, in a sense similar to that of Arkhangelsky and Imbens (2019).
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A Empirical Appendix

A.1 Data for Section 4.1

Our analysis of market access effects uses data on 340 prefectures of mainland China. This
excludes the islands of Hainan and Taiwan and the special administrative regions of Hong
Kong and Macau. At the same time this includes six sub-prefecture-level cities (e.g. Shihezi)
that do not belong to any prefecture. We use United Nations shapefiles to geocode each
prefecture by the location of its main city (or, in a few cases, by the prefecture centroid).45

We use a variety of sources to assemble a comprehensive database of the HSR network
in 2016 as well as the lines planned (and in many cases under construction) as of April 2019
but not opened yet by the end of 2016. Our starting points are Map 1.2 of Lawrence et
al. (2019), China Railway Yearbooks, and the replication files of Lin (2017). We cross-check
network links across these sources and use Internet resources such as Wikipedia and Baidu
Baike to confirm and fill in missing information. Our database includes various types of HSR
lines, including the National HSR Grid (4+4 and 8+8) and high-speed intercity railways.
However, we only consider newly built HSR lines, excluding traditional lines upgraded to
higher speeds. We do not put further restrictions on the class of trains (e.g. to G- and
D-classes only) or specify an explicit minimum speed. The operating speed therefore ranges
between 160 and 380kph, although the majority of lines are at 250kph. For each line we
collect the date of its official opening (if it has opened), the actual or planned operating
speed, and the list of prefecture stops. When different sections of the same line opened in
a staggered way, we classify each section as a separate line for the purposes of constructing
our 999 counterfactuals, following the definition of a line in footnote 30. We include only
one contiguous stop per prefecture and drop lines that do not cross prefecture borders.

To measure the 2007–2016 market access growth according to the formula given on p. 22,
we compute travel time between all pairs of cities k and ` as of the ends of those years for
both the actual and counterfactual networks. Travel time combines traditional modes of

45The shapefiles are obtained from https://data.humdata.org/dataset/province-and-prefecture-capitals-
of-china and https://data.humdata.org/dataset/china-administrative-boundaries, accessed on April 4, 2020.
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transportation (car or low-speed train) with HSR, where available. We allow for unlimited
changes between different HSR lines and between HSR and traditional modes without a
layover penalty, as HSR trains tend to operate frequently and traditional modes also involve
downtime. Following the existing literature, we proxy for travel time by traditional modes
by the straight-line distance, and specify the speed of 100 = 120/1.2kph, where 120kph
is their typical speed and the 1.2 adjustment for actual routes that are longer than a
straight line. For two prefectures connected by an HSR line, we compute the distance
along the line as the sum of straight-line distances between adjacent prefectures on the
line. We use the operating speed of each line divided by an adjustment factor of 1.3
to capture the fact that the average speed is lower than the nominal speed we record.
Computing market access further requires the population of each of the 340 prefectures
from the 2000 population Census, which we obtain from the CityPopulation.de website.46

For the robustness checks in Table A1, Panels A and D, we also compute the leave-one-out
measure of market access, MALOO`t =

∑
k 6=` exp (−0.02τ`kt) · Pk,2000, and define a simple

binary indicator that a prefecture has at least one HSR stop by the end of year t under the
actual or counterfactual network map.

We measure prefecture employment in the 2008–2017 China City Yearbooks.47 Each
yearbook covers the previous year (so our data cover 2007–2016). The yearbooks provide
most variables for two spatial definitions: the entire prefecture and the “urban district”
(Shixiaqu), which is the main urban area of the prefecture; we use the former in the main
analysis but also collect the latter for the robustness analysis. The employment variables we
describe below measure urban employment, but they are still measured both for the main
urban district as well as the for the entire prefecture which may include other urban areas.
The main data in the yearbooks are reported at the prefecture level but some urban district
variables are also provided for county-level cities—a finer administrative division. We use
county-level city data to complete some missing data in the prefecture-level variables where
possible; this however does not apply to our main variable as it is not for urban districts.

Total urban employment data come from two Yearbook chapters: “People’s Living
Conditions and Social Security” and “Population, Labor Force, and Land Resources.” The
economic difference between them is not entirely clear. We use the former one, labeled
“The Average Number of Staff and Workers”, as its whole-prefecture version has by far the
lowest number of strong year-to-year deviations which may indicate data quality issues. The
other variable, “Persons Employed in Various Units at Year End”, is used for robustness

46https://www.citypopulation.de/php/china-admin.php, accessed on November 20, 2018.
47Data for 2008-2015, excluding 2009 and 2011, are from http://oversea.cnki.net.proxy.uchicago.edu/kns55/default.aspx

(accessed on January 23, 2019 via a University of Chicago portal). Data from 2009, 2011, 2016, and
2017, are from http://tongji.oversea.cnki.net/chn/navi/HomePage.aspx?id=N2018050234&name=YZGCA
(accessed January 23, 2019). We checked that these sources agree in years where both are available.
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checks in Appendix Table A2, together with the urban district versions of both variables.
In that table we further use a measure of total rail ridership originating in the prefecture
that includes HSR, traditional intercity, and intracity lines. Since it is only available until
2014, for this analysis we use the 2007–2014 change in ridership (instead of 2007–2016).

We finally apply a data cleaning procedure to all outcome variables used in the analysis.
We first mark a prefecture-year observation as a one-off jump, and replace it with a missing
value, if (i) the variable changes by more than twice in either direction relative to the
previous non-missing value for the prefecture, (ii) it is followed by a change in the opposite
direction that is at least 75% as large (in terms of log-changes), and (iii) the previous value
has not been marked as a jump. We then mark an observation as a sustained change if
condition (i) is satisfied but (ii) is not. We view the outcome change between 2007 and
2016 as valid only if neither 2007 nor 2016 are marked as jumps and there are no sustained
changes in any year in between. For the main outcome variable this reduces the sample
from 282 to the final set of 274 prefectures, but for other outcomes the sample reduction is
more substantial.

A.2 Data for Section 4.2

Our application to simulated eligibility instruments uses a repeated cross-section of annual
data from the American Community Survey (ACS; Ruggles et al. 2020). Our baseline
estimation uses a representative 1% sample of individuals from 2013 and 2014 and we use
the analogous 1% sample from 2012 to explore pre-trends. We restrict the sample to non-
disabled adults (aged 21-64) residing in one of the 43 states eligible for Medicaid expansion
under the ACA. To define this sample of states we follow Frean et al. (2017) in excluding
“early expansion” states which had previously expanded Medicaid before 2013, as well as
Massachusetts and Vermont who had previously made all adults with household income less
than 138% FPL eligible. We also follow Frean et al. (2017) in designating 19 of these states
as having expanded under the ACA in 2014, with 24 not expanding.48

In each year, we classify an individual as insured under Medicaid when she is covered by
Medicaid or an equivalent government-assistance program, excluding Medicare and Veter-
ans’ Administration (VA) insurance. We classify an individual as having private insurance
when she is covered by a plan purchased through an employer or union or when she purchases
this private coverage directly. We further separate individuals covered employer-sponsored
insurance and having private insurance that they purchased directly.

48Frean et al. (2017) study coverage effects over 2014-2015, designating 24 states as having expanded during
this time, 21 states as having not expanded, and 6 states as expanding early. We use their classification
system as of 2014, when only 19 of their 24 states have expanded, and additionally exclude two states
(Massachusetts and Vermont) where the 2013 eligibility policy already made individuals with a household
income of less than 138% FPL eligible for Medicaid.
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Our simulated eligibility instrument is constructed by simulating the average Medicaid
eligibility of a representative 10% sample of our analysis data under different state policies.
Namely we use the representative sample to simulate two shares: that of individuals who
would be eligible had their state expanded eligibility in 2014 to everyone under 138% of
FPL, and that of individuals who would be eligible if their state kept 2013 policy intact.
We assign the former share (24.5%) to all individuals in 2014 residing in expansion states
and the latter share (11.6%) to individuals in 2014 residing in non-expansion states. For
individuals in 2013, where there is no as-good-as-random variation, we fix zCG` at 7.1%: the
national share of eligible individuals under 2013 policies.

Our recentered IV is constructed by predicting the actual Medicaid eligibility of each
individual. In 2013 we use actual 2013 eligibility policies, again following Frean et al. (2017).
In 2014 we predict eligibility by combining information on the 2013 policies and a state’s
decision to expand. An individual is eligible for Medicaid in 2014 if either she was eligible
under the 2013 policies of her state (whether or not the state expanded eligibility) or if her
household income is below 138% FPL and her state expanded eligibility under the ACA.
To compute the expected instrument we identify individuals who would have been eligible
in 2014 if their state expanded but not otherwise (the “Exposed Sample”). Outside of this
sample the expected instrument in 2014 is simply the individual’s actual 2014 eligibility,
while inside this sample the expected instrument is the fraction of states which expanded
conditional on the governor’s party. The 2013 expected eligibility IV is actual 2013 eligibil-
ity. Political party affiliation of state governors is determined as of December 2013,49 and
in all regressions we control for an indicator for state party affiliation (interacted with year
indicators). In robustness checks we control for other time-interacted state characteristics:
a state’s 2012 median income or share insured under Medicaid (both from the ACS).

A.3 Robustness Checks for Section 4.2

This appendix describes additional analyses of recentered IV power gains in the simulated
eligibility instrument application.

Pre-Trend Tests First, we estimate pre-trends corresponding to in each of the outcomes
and specifications of Table 4 by exchanging the cross-section of individuals in 2014 with
an equivalent cross-section in 2012. We continue to construct the endogenous variable and
instrument as an individual’s Medicaid eligibility in 2013 and 2014 for comparability, and
also keep all controls unchanged.

Appendix Table A3 shows that we obtain relatively small pre-trend estimates across all
specifications, with similar coefficients obtained by conventional simulated IV (odd columns)

49https://en.wikipedia.org/w/index.php?title=List_of_United_States_governors&oldid=587575534
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and recentered IV (even columns). The same efficiency gains we document in Table 4 are
found here, with significantly smaller 95% confidence intervals for the recentered IV (again
obtained by a wild score bootstrap) which exclude zero for the take-up and crowd-out
outcomes. We find no significant pre-trends in the employer-sponsored insurance outcome
in Columns 5 and 6.

Alternative Assignment Processes Second, we explore the robustness of our estimates
to alternative assumptions on the shock assignment process. Specifically we allow a state’s
decision to expand Medicaid coverage to depend not only on the party of its governor (as
in our baseline specification) but additionally on the state’s 2012 median income and 2012
level of Medicaid coverage. We accomplish this by including a quadratic in these three state
characteristics (including their interaction), interacted with year indicators, in the control
vector c`t. This allows the expected instrument to depend flexibly on these characteristics in
the exposed sample. Appendix Table A4 shows that we obtain virtually identical estimates,
standard errors, and 95% confidence intervals.

Alternative IV Implementations Third, we apply alternative IV estimators implied
by our framework. Recall that in the even-numbered columns of Table 4 we restrict the
sample to individuals whose individual characteristics make them exposed to the expansion
natural experiment in 2014. A different approach is to recenter the IV z`t by (or control for)
the expected instrument µ`t, while keeping the full sample of individuals. Appendix Table
A5 reports estimates from this approach for the three outcomes of interest. Panel B, which
includes demographic controls, again finds much narrower confidence intervals relative to
the simulated eligibility instrument. However, excluding these controls in Panel A yields an
intriguing pattern: confidence intervals for the recentered IV are much wider than those of
the simulated instrument.

In this section we explain how a combination of two factors generates the discrepancy
between panels A and B of Appendix Table A5. First, the regression residuals are strongly
correlated with the indicator for an individual being exposed to the expansion experiment,
which is not controlled for in this regression. Second, exogenous shocks are assigned at the
level of states, which include both exposed and non-exposed individuals. This discussion
reveals why the problem does not arise when focusing on the non-exposed sample or when
appropriate controls are included. We further relate this problem to Step 3 of the optimal
instrument construction in Section 3.5.

For clarity of the theoretical discussion, we simplify the setup. First, we suppose that a
single 2014 cross-section is available and state fixed effects are not included; we correspond-
ingly drop the t subscript throughout. Second, we assume states only change eligibility as
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prescribed by their expansion decision, i.e. x`t = z`t. Finally, we assume that state decisions
to expand are independent with a known propensity E [gn | w] (e.g., as a function of the
state governor’s party). Thus, the recentered expansion indicator g̃n = gn − E [gn | w] can
be computed without permutations.50

Under these additional assumptions, using the recentered CG instrument is equivalent
to using the recentered expansion indicator: z̃CG` = g̃s`t . The recentered IV only differs by
setting z̃CG`t to zero for the non-exposed sample: z̃` = z` − E [z` | w] = f`g̃s` , where f` is an
indicator for individual ` being in the exposed group. With x` = z`, the first stage can be
written x` = µ` + f`g̃s` , where the expected instrument µ` equals 0 for individuals who are
not eligible regardless of gs` , 1 for those always eligible, and E [gs` | w] otherwise.

We now consider the variances of the two estimators, approximated as in the proof of
Proposition 2: Var

[
1
L

∑
` z̃

CG
` ε⊥`

]
/E
[

1
L

∑
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CG
` x⊥`

]2
and Var
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L
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`
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[
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⊥
`

]2
,

respectively, where ⊥ denotes the in-sample projection residual on the control variables
(including a constant). We focus our attention on the numerators of these expressions
because the first-stage covariances in the denominator are asymptotically equivalent (and
equal in finite samples without controls).51 For simplicity of exposition we also consider an
individual’s state of residence s` as fixed. Letting Ln =

∑
` 1 [s` = n] denotes the (fixed)

number of individuals in each state n, it can then be shown that
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] , (12)

where eSEIV,n = 1
Ln

∑
` : s`=n ε

⊥
` f` is the sum of residuals of exposed individuals in state n

(normalized by Ln), while eCG,n =
∑
` : s`=n ε

⊥
` averages over all observations in the state.52

Equation (12) shows that the recentered IV delivers power gains relative to the simulated
instrument approach whenever the normalized sum of residuals is closer to zero for a typical
state, in the mean-squared sense, when restricting to exposed individuals. The restricted
sum has fewer summands, working in favor of the recentered IV. If the expansion shocks
were assigned at the individual level, without state clustering, this would guarantee that

50Formally, we assume that w does not include Π(g). Under this assumption, g̃n is independent across
states conditionally on w, simplifying the analysis.

51Namely, since f` is binary, E
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. With conventional controls this equality holds asymptoti-

cally, since the difference between x` and x⊥` is uncorrelated with z̃`.
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the recentered IV is more efficient (since eSEIV,n = eCG,n = ε⊥` in that case).
However, this simplified example shows that the recentered IV is likely to deliver a

power loss when the shocks gn are clustered and ε⊥` is strongly correlated with the indicator
of exposed sample f` (i.e., exposed individuals have systematically different residuals, and
f` is not controlled for). To see this simply, suppose E

[
ε⊥` | f` = 1, w

]
= α 6= 0 for all `.

In this scenario eSEIV,n is not mean-zero, even on average across states, which potentially
yields a high mean-squared residual:

E [eSEIV,n] = E [E [eSEIV,n | w]] = E

 1
Ln

∑
` : s`=n

E
[
ε⊥` f` | w

]
= E

 1
Ln

∑
` : s`=n

E
[
ε⊥` | f` = 1, w

]
f`

 = α · E
[∑

`: s`=n f`

Ln

]
6= 0. (13)

The simulated instrument, which does not condition on f` = 1, does not suffer from this
problem since ε⊥` is mean-zero in the sample. Another interpretation of this problem is that
in this case the sums of residuals over the exposed and non-exposed individuals of a given
state will tend to have opposite signs, increasing efficiency of the Currie-Gruber instrument
that uses both subsamples.

The predictions of this discussion are borne out in the data. In Panel C of Table
A5 we verify that the confidence interval of recentered IV become dramatically narrowed
with a single control of f` (interacted with the 2014 dummy appropriately for difference-in-
differences).53 Moreover, demographic controls in Panel B of Table A5 capture most of the
variation in f`, delivering similar results. Our recentered IV specifications in the main text,
by restricting the sample to the exposed individuals, effectively control for state dummies
interacted with f` and achieve the best efficiency properties.

We note that here controlling for the exposed sample indicator is closely related to our
third step in constructing the optimal recentered IV, discussed in Section 3.5: this control
plays the role of the predetermined predictors of the residual, ψ. Our application therefore
highlights that in general there is no guarantee of an efficiency gain from improving the first
stage with a recentered IV (i.e., performing Steps 1 and 2) if Steps 3 and 4 are not feasible.

Monte Carlo Simulation Finally, we verify large and pervasive power gains from using
the recentered IV in a Monte Carlo study, in which the true causal effect and the shock
assignment process are known. We draw 999 counterfactual state expansion decisions by
choosing random sets of 8 Republican- and 11 Democratic-controlled states as expansion
states and use these shocks to compute counterfactual instruments z̃CG`t and z̃`t. We do not

53The efficiency of the IV that controls for µ`t is lower because this control is not interacted with f`.
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specify a model of the first stage (i.e., which exact policies states would have implemented
if they randomly changed their decision to adopt the ACA Medicaid expansion), instead
imagining that states either expand to 138% FPL or keep their 2013 policy. We therefore
use x̃`t = z̃`t as the endogenous variable. Finally, for the Medicaid take-up and ESI crowd-
out outcomes we take the second-stage residuals ε∗`t from Columns 2 and 6 of Table 4, panel
A. These outcomes are unrelated to the endogenous variable by design, corresponding to
the true causal effect of zero for all individuals, while keeping the correlation structure from
the actual data. With these generated data, we re-estimate equation (11) with the fixed
effects and controls as in our baseline implementation in Panel A of Table 4. By design,
both sets of estimates should be centered at the true effects of zero, while we expect the
recentered IV procedure to systematically reject a larger set of alternative hypotheses.

Figure A7 first shows the simulated distribution of simulated and recentered IV estimates
from this exercise. Both estimators are approximately unbiased, with both distributions in
both panels centered around the true effects of zero. However, consistent with the dramati-
cally shorter confidence intervals in Table 4, the distribution of recentered IV coefficients is
dramatically tighter around this mean. The estimate standard deviation falls from 0.014 to
0.006 as we move from the simulated IV to recentered IV in Panel A, with a larger decline
from 0.020 to 0.007 in Panel B. With minimal bias, these correspond to simulated root
mean-squared error reductions of 58.5% and 66.5% with the recentered IV, respectively.

Figure A8 shows that these reductions in estimator variance translate to increased re-
jection rates of false null hypotheses for both outcomes, while also suggesting the wild
bootstrap 95% confidence intervals in Table 4 have approximately correct size. Away from
the true null hypothesis of zero the recentered IV power curve is much more steeply sloping,
with uniformly higher rejection rates. With the Medicaid take-up outcome, for example,
the recentered IV is found to reject coefficients outside the range of [−0.018, 0.017] with
probability of at least 0.8, while the simulated IV only has such high power outside a nearly
three times as long range, of [−0.042, 0.056]. For the ESI crowd-out outcome this contrast
in minimum detectable effects is even starker, at [−0.022, 0.018] for the recentered IV versus
[−0.073, 0.051] for the simulated IV.
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B Proposition Proofs

B.1 Proof of Proposition 1

For the recentered IV regression,

E
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The first and third equalities follow from the law of iterated expectations. The second
equality follows from Assumption 2(i), and the final equality follows from the fact that
E [z̃` | w] = 0.

The alternative approach that regression-adjusts by µ` while using the unadjusted z` as
an instrument identifies β when
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by the Frisch-Waugh-Lovell theorem. Here E
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where Pµ denotes the sample projection matrix for µ` and a constant (which is fixed con-
ditional on w). Following the same steps as before, we thus have
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showing that the alternative µ`-controlled regression also identifies β.

53



B.2 Proof of Lemma 2

The Hodges-Lehmann estimator of interest solves:
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since g∗ ∼ G (· | w) | (y, x, w). This linear equation has a unique solution:
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which coincides with the recentered IV estimator.
For the statistic that uses the µ`-residualized outcome and treatment we similarly have
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The resulting estimator
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equals the recentered IV esti-
mator with the instrument z` and controlling for µ`, as in the Appendix B.1 proof.

B.3 Proof of Asymptotic Efficiency and Lemma 3

Here we formalize the efficiency result discussed in Section 3.5 and then prove it together
with Lemma 3.

Asymptotic Efficiency. We first define some useful asymptotic concepts. For a non-
random sequence rL → ∞, we say that an estimator β̃ converges to β at rate rL when
rL
(
β̃ − β

)
converges to a non-degenerate distribution with zero mean and variance V > 0

as L → ∞. We refer to V as the asymptotic variance of β̃, and say that the convergence
rate r∗L is faster than rL when limL→∞

rL
r∗L

= 0.54 We consider IV estimators of the form
β̃ = 1

L z̃
′y/ 1

L z̃
′x where z̃ = f (g, w) for an L×1 vector of functions f such that E [z̃ | w] = 0;

the last condition requires that z̃ is a recentered instrument. We say that β̃ is “regular” if
54In general, the asymptotic variance concept is useful when the limiting distribution of β̃ is normal.

However, it can be considered more broadly; in particular, a researcher with a quadratic loss function will
generally value reductions in V outside the normal case. We therefore do not restrict the shape of the
asymptotic distribution until this is required in Proposition S4.
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(i) it converges to β at some rate rL, (ii) it has an asymptotic first stage, i.e. 1
L z̃
′x

p→M for
someM 6= 0, and (iii) the sequences of 1

L z̃
′x and

(
rL

1
L z̃
′ε
)2

are uniformly integrable. These
definitions yield the following result, which characterizes the efficient instrument under weak
conditions.55 In Appendix C.4 we establish further conditions under which z̃∗ maximizes
the asymptotic power of our preferred RI test by minimizing the asymptotic variance of the
associated IV estimator.

Proposition 2. Suppose Assumption 2 holds and E [εε′ | w] is almost-surely invertible.
Consider the recentered z∗ defined by equation (9). Then if the associated estimator β∗ =
1
Lz
∗′y/ 1

Lz
∗′x is regular, it has the smallest asymptotic variance of all regular recentered IV

estimators β̃: there is no β̃ that converges at a rate faster than that of β∗, and any β̃

converging at the same rate has an asymptotic variance at least as large as that of β∗.

Proof. Consider some recentered IV z̃ associated with a regular estimator β̃ that converges
at rate r̃L to an asymptotic distribution D̃ with variance Ṽ . Uniform integrability of 1

L z̃
′x

implies that E
[

1
L z̃
′x
]
→M . Then, by the continuous mapping theorem,

r̃L

1
L z̃
′ε

E
[

1
L z̃
′x
] = r̃L

(
β̃ − β

)
·

1
L z̃
′x

M
· M

E
[

1
L z̃
′x
] ⇒ D̃, (21)

as rL
(
β̃ − β

)
⇒ D̃,

1
L
z̃′x

M

p→ 1, and M
E[ 1
L
z̃′x] → 1. Furthermore, by the uniform integrability

of
(
rL

1
L z̃
′ε
)2
,

Var

r̃L 1
L z̃
′ε

E
[

1
L z̃
′x
]
 = r̃2

L

Var
[

1
L z̃
′ε
]

E
[

1
L z̃
′x
]2 → Ṽ . (22)

The same argument applies to β∗:

Var

r∗L 1
Lz
∗′ε

E
[

1
Lz
∗′x
]
 = r∗L

2
Var

[
1
Lz
∗′ε
]

E
[

1
Lz
∗′x
]2 → V ∗, (23)

where r∗L and V ∗ denote its convergence rate and asymptotic variance, respectively. Com-
bining the two statements yields

r̃2
L/Ṽ

r∗L
2/V ∗

·
Var

[
1
L z̃
′ε
]
/E
[

1
L z̃
′x
]2

Var
[

1
Lz
∗′ε
]
/E
[

1
Lz
∗′x
]2 → 1. (24)

55If E [εε′ | w] were not invertible the unobservables would be unusually dependent, in that there would
exist a function c(w) satisfying c(w)′ε = 0 and revealing β almost-surely provided c(w)′x 6= 0.
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We prove below that
Var

[
1
L z̃
′ε
]

E
[

1
L z̃
′x
]2 ≥ Var

[
1
Lz
∗′ε
]

E
[

1
Lz
∗′x
]2 . (25)

whenever the denominators on both sides are not equal to zero (which holds for large enough
L, since both z̃ and z∗ have asymptotic first-stages). This concludes the proof, since (24)
and (25) jointly imply that

lim sup
L→∞

r̃2
L/Ṽ

r∗L
2/V ∗

≤ 1. (26)

This, in turn, implies that limL→∞
r̃L
r∗L
6=∞ and, if r̃L = r∗L, then Ṽ ≥ V ∗.

To establish (25), note that by the law of iterated expectations and Assumption 2,

E
[
z̃′εε′z∗

]
= E

[
E
[
z̃′εε′z∗ | g, w

]]
= E

[
z̃′ (E [x | g, w]− E [x | w])

]
= E

[
z̃′E [x | g, w]

]
= E

[
z̃′x
]
,

where the third line uses the fact that E [z̃′E [x | w]] = E [E [z̃′ | w]E [x | w]] = 0 since
E [z̃′ | w] = 0, and the fourth line follows because z̃ is non-stochastic given g and w. For
z̃ = z∗, this shows that

Var
[
(z∗)′ ε

]
E
[
(z∗)′ x

]2 = Var
[
(z∗)′ ε

]−1
= E

[
(z∗)′ x

]−1

= E
[
(E [x | g, w]− E [x | w])′ E

[
εε′ | g, w

]−1 (E [x | g, w]− E [x | w])
]−1

.

(27)

It also shows that with

U = z̃′ε

E [z̃′x] −
(z∗)′ ε.

E
[
(z∗)′ x

] (28)

we have

Var [z̃′ε]
E [z̃′x]2

−
Var

[
(z∗)′ ε

]
E
[
(z∗)′ x

]2 = Var [z̃′ε]
E [z̃′x]2

− 2 E [z̃′εε′z∗]
E [z̃′x]E

[
(z∗)′ x

] +
Var

[
(z∗)′ ε

]
E
[
(z∗)′ x

]2
= E

[
U2
]
≥ 0,

implying equation (25).
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Proof of Lemma 3 By the law of total variance, E [εε′ | w] = Ω+ψψ′. Since E [εε′ | w] is
almost-surely invertible, Ω is also invertible since ψψ′ has a rank of one (assuming L > 1).
By the Sherman-Morrison formula in linear algebra,

(
Ω + ψψ′

)−1 = Ω−1 − Ω−1ψ
ψ′Ω−1

1 + ψ′Ω−1ψ
. (29)

Thus, as claimed,

z∗ =
(
Ω + ψψ′

)−1
z̃ = Ω−1

(
z̃ − ψ′Ω−1z̃

1 + ψ′Ω−1ψ
ψ

)
= Ω−1 (z̃ − ρνψ) .
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Appendix Figures and Tables
Figure A1: Market Access Growth with Unequal Population

A. Line Construction B. Expected C. Recentered
and MA Growth MA Growth MA Growth
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Notes: This figure parallels Figure 1, except with the population of four highlighted regions ten times larger than of all others.

Figure A2: Market Access Growth with Non-Uniform Line Density

A. Line Construction and B. Expected C. Recentered
MA Growth MA Growth MA Growth
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Notes: This figure parallels Figure 1, except assuming that pairs of adjacent regions in the northern half of the island are connected
with probability 2/3, and others are connected with probability 1/3.
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Figure A3: Employment Growth and Market Access Growth

Regression slope: 0.232 (0.075)
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Notes: This figure shows a binned scatterplot of employment growth against MA growth
across 274 prefectures in China in 2007–16. Fifty bins of approximately equal size are
shown. The regression line of best fit is also indicated, along with the coefficient and
spatial-clustered standard error.

Figure A4: Simulated HSR Lines and Market Access Growth

Notes: This figure shows an example map of simulated Chinese HSR lines and market access
growth over 2007–2016, obtained by permuting the opening status of built and planned lines
with the same number of cross-prefecture links as described in Section 4.1.
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Figure A5: Employment Growth and Expected/Recentered Market Access Growth

A. Expected Market Access Growth

Regression slope: 0.320 (0.096)
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B. Recentered Market Access Growth

Regression slope: 0.085 (0.107)
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Notes: This figure shows binned scatterplots of employment growth against the expected
and recentered MA growth across 274 prefectures in China in 2007–16. Expected and
recentered MA are constructed by permuting the opening status of built and planned lines
with the same number of cross-prefecture links. Fifty bins of approximately equal size are
shown. Regression lines of best fit are indicated along with coefficients and spatial-clustered
standard errors.
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Figure A6: Recentered Market Access Growth Regression Weights

Notes: This figure shows the implied weights the recentered market access growth IV regres-
sion (of employment growth on observed market access growth) puts on different Chinese
prefectures. Weights are given by the conditional variance of z̃` | w (see Corollary S1 in
Appendix C.1), computed by permuting the opening status of built and planned lines with
the same number of cross-prefecture links as described in Section 4.1. The weights are
normalized to average to one in the sample. Prefectures in gray are missing employment
growth data.

61



Figure A7: Medicaid Eligibility Effects: Simulated Distributions of Simulated and
Recentered IV Estimators

A. Has Medicaid
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Notes: This figure plots the simulated distributions of IV coefficients from regressions of
different measures of health insurance coverage on Medicaid eligibility, instrumented by
one of two IVs described in the text: a simulated eligibility instrument and a recentered
prediction of Medicaid eligibility. See Appendix A.3 for a description of the data-generating
process and instruments. The true effect of zero in both panels is indicated by the dashed
vertical line.
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Figure A8: Medicaid Eligibility Effects: Simulated Size and Power of Simulated and
Recentered IVs
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B. Has Employer-Sponsored Insurance
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Notes: This figure plots the simulated rejection rates of IV procedures regressing different
measures of health insurance coverage on Medicaid eligibility, instrumented by one of two
IVs described in the text: a simulated eligibility instrument and a recentered prediction
of Medicare eligibility. See Appendix A.3 for a description of the data-generating process
and instruments. Rejection rates are for nominal 5%-level tests of each coefficient based on
wild score bootstraps, clustered by state. The true effect of zero in both panels is indicated
by the dashed vertical line. The nominal 5% level of the tests is indicated by the dashed
horizontal lines.
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Table A1: Effects of Market Access: Alternative Specifications

Unadjusted OLS Recentered IV Controlled OLS
(1) (2) (3)

Panel A. Using Leave-One-Out Market Access (N=274)
Market Access Growth 0.229 0.081 0.070

(0.078) (0.104) (0.103)
[-0.360, 0.357] [-0.124,216]

Expected Market Access Growth 0.207
(0.118)

Panel B. Dropping Province Capitals (N=247)
Market Access Growth 0.215 0.068 0.060

(0.078) (0.104) (0.099)
[-0.303, 0.321] [-0.202, 0.320]

Expected Market Access Growth 0.303
(0.097)

Panel C. Using HSR Connectivity (N=274)
Connectivity Growth 0.155 0.051 0.049

(0.049) (0.057) (0.056)
[-0.037, 0.149] [-0.041, 0.145]

Expected Connectivity Growth 0.257
(0.071)

Panel D. Adding Province Fixed Effects (N=268)
Market Access Growth 0.108 0.099 0.097

(0.046) (0.070) (0.079)
[-0.014, 0.268] [-0.018, 0.270]

Expected Market Access Growth 0.121
(0.071)

Recentered No Yes Yes

Notes: This table reports coefficients from alternative specifications of the regressions in Table 1. Panel A
uses leave-one-out MA growth as an instrument for full-sample MA growth (see Appendix A.1 for variable
definitions). In Column 1 this instrument is unadjusted; in Column 2 it is recentered by permuting the
opening status of built and planned lines with the same number of cross-prefecture links. Column 3 instead
controls for expected leave-one-out MA growth (given by the same HSR counterfactuals) while instrument-
ing with unadjusted leave-one-out MA growth. Panels B and D use the OLS and IV specifications from
Table 1, Panel A, but either dropping province capitals or including province fixed effects. In Panel D we
drop singleton provinces (including province-level cities such as Beijing and Tianjin). Panel C replaces MA
growth with the 2007–2016 change in the indicator for whether a prefecture is connected by high-speed
rail (in the endogenous variable, instrument, and the Column 3 control). Standard errors which allow for
linearly decaying spatial correlation (up to a bandwidth of 500km) are reported in parentheses. 95% RI
confidence intervals based on the HSR counterfactuals are reported in brackets, and the sample size N is
reported next to the panel titles.
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Table A2: Effects of Market Access on Additional Outcomes

Unadjusted OLS Recentered IV Controlled OLS
(1) (2) (3)

Panel A. Average Number of Employed Staff and Workers, Urban District (N=262)
Market Access Growth 0.179 0.039 0.021

(0.080) (0.113) (0.113)
[-0.380, 0.272] [-0.292, 0.273]

Expected Market Access Growth 0.268
(0.097)

Panel B. Persons Employed in Various Units at Year End, Whole City (N=267)
Market Access Growth 0.198 0.098 0.090

(0.096) (0.103) (0.105)
[-0.334, 0.391] [-0.238, 0.386]

Expected Market Access Growth 0.255
(0.122)

Panel C. Persons Employed in Various Units at Year End, Urban District (N=263)
Market Access Growth 0.169 0.030 0.014

(0.084) (0.110) (0.108)
[-0.412, 0.286] [-0.332, 0.290]

Expected Market Access Growth 0.256
(0.107)

Panel D. Railway Passenger Traffic, Whole City (N=191)
Market Access Growth 0.366 0.282 0.270

(0.104) (0.171) (0.185)
[-0.207, 0.771] [-0.157, 0.773]

Expected Market Access Growth 0.421
(0.139)

Recentered No Yes Yes

Notes: This table reports coefficients from regressing different measures of employment growth and rail rid-
ership on MA growth in Chinese prefectures. Panels A, B, and C use employment growth from 2007–2016,
while Panel D uses rail ridership growth from 2007–2014 (see Appendix A.1 for variable definitions). The
specifications parallel those of Table 1. Standard errors which allow for linearly decaying spatial correlation
(up to a bandwidth of 500km) are reported in parentheses. 95% confidence intervals based on the same
HSR assignment process are reported in brackets, and the sample size N is reported next to the panel
titles.
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Table A3: Medicaid Eligibility Pre-Trends, Simulated and Recentered IV Estimates

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Simulated IV Recentered IV Simulated IV Recentered IV Simulated IV Recentered IV
(1) (2) (3) (4) (5) (6)

Panel A. Baseline Controls
Eligibility −0.022 −0.020 0.015 0.011 0.011 0.007

(0.009) (0.004) (0.017) (0.004) (0.017) (0.005)
[-0.042,0.009] [-0.028,-0.008] [-0.021,0.071] [0.003,0.020] [-0.026,0.059] [-0.005,0.020]

Panel B. With Demographics × Post
Eligibility −0.023 −0.020 0.019 0.014 0.016 0.011

(0.010) (0.004) (0.014) (0.004) (0.016) (0.005)
[-0.040,0.012] [-0.027,-0.009] [-0.022,0.056] [0.005,0.022] [-0.029,0.049] [-0.002,0.022]

Exposed Sample N Y N Y N Y
States 43 43 43 43 43 43
Individuals 2,400,142 425,112 2,400,142 425,112 2,400,142 425,112

Notes: This table reports coefficients from IV regressions of different measures of health insurance coverage in 2012–13 on 2014
Medicaid eligibility, instrumented by one of the two IVs described in the text: a simulated eligibility instrument and a recentered
prediction of Medicaid eligibility. Columns 1, 3, and 5 estimate regressions in the full sample of individuals in 2012 or 2013, while
Columns 2, 4, and 6 restrict to the sample of individuals whose individual characteristics make them exposed to the partial ACA
Medicaid expansion in 2014. All regressions control for state and year fixed effects and an indicator for Republican-governed states
interacted with year; the regressions in Panel B additionally control for deciles of household income, interacted with indicators
for parental and work status and year. Conventional state-clustered standard errors are reported in parentheses; 95% confidence
intervals, obtained by a wild score bootstrap, are reported in brackets.
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Table A4: Recentered IV Estimates of Medicaid Eligibility Effects,
Alternative Assignment Processes

Has Medicaid Has Private
Insurance

Has Employer-
Sponsored
Insurance

(1) (2) (3)
Panel A. Expansion Based on State Governor’s Party and Median Income
Eligibility 0.077 −0.018 −0.005

(0.011) (0.008) (0.006)
[0.053,0.092] [-0.042,0.002] [-0.019,0.011]

Panel B. Based on Governor’s Party, Income, and Baseline Medicaid Coverage
Eligibility 0.076 −0.023 −0.009

(0.011) (0.007) (0.005)
[0.054,0.102] [-0.040,-0.008] [-0.020,0.003]

Exposed Sample Y Y Y
States 43 43 43
Individuals 421,042 421,042 421,042

Notes: This table reports coefficients from IV regressions of different measures of health
insurance coverage on Medicaid eligibility, instrumented by a recentered prediction of Med-
icaid eligibility. Estimation is restricted to the sample of individuals whose individual
characteristics make them exposed to the partial ACA Medicaid expansion in 2014. All re-
gressions control for state and year fixed effects, an indicator for Republican-governed states
interacted with year, and 2012 state median income interacted with year; the regressions in
Panel B additionally control for 2012 state Medicaid coverage rates interacted with year.
Conventional state-clustered standard errors are reported in parentheses; 95% confidence
intervals, obtained by a wild score bootstrap, are reported in brackets.
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Table A5: Recentered IV Estimates of Medicaid Eligibility Effects, Including Non-Exposed Individuals

Has Medicaid Has Private Insurance Has Employer-Sponsored
Insurance

Recentered Controlled Recentered Controlled Recentered Controlled
(1) (2) (3) (4) (5) (6)

Panel A. Baseline Controls
Eligibility 0.032 0.071 0.193 0.098 0.208 0.110

(0.085) (0.044) (0.290) (0.168) (0.301) (0.173)
[-0.441,0.148] [-0.088,0.140] [-0.223,1.805] [-0.170,0.675] [-0.205,2.023] [-0.174,0.745]

Panel B. With Demographics × Post
Eligibility 0.116 0.114 −0.029 −0.029 −0.018 −0.018

(0.012) (0.012) (0.013) (0.013) (0.012) (0.014)
[0.092,0.151] [0.082,0.147] [-0.051,0.002] [-0.053,0.012] [-0.040,0.013] [-0.041,0.022]

Panel C. With Exposed Sample Indicator × Post
Eligibility 0.094 0.093 −0.012 −0.011 −0.005 −0.004

(0.011) (0.023) (0.015) (0.043) (0.017) (0.045)
[0.065,0.119] [0.002,0.129] [-0.037,0.034] [-0.070,0.167] [-0.034,0.048] [-0.070,0.189]

Exposed Sample N N N N N N
States 43 43 43 43 43 43
Individuals 2,397,313 2,397,313 2,397,313 2,397,313 2,397,313 2,397,313

Notes: This table reports coefficients from IV regressions of different measures of health insurance coverage on Medicaid eligibility,
instrumented by different predictions of Medicaid eligibility. Regressions are estimated in the full sample of individuals in 2013–14.
Columns 1, 3, and 5 use a recentered instrument while Columns 2, 4, and 6 do not recenter but control for expected Medicaid
eligibility. All regressions control for state and year fixed effects and an indicator for Republican-governed states interacted with
year. The regressions in Panel B additionally control for deciles of household income, interacted with indicators for parental and
work status and year. The regressions in Panel C instead add controls for an individual having characteristics that make them
exposed to the partial ACA Medicaid expansion in 2014. Conventional state-clustered standard errors are reported in parentheses;
95% confidence intervals, obtained by a wild score bootstrap, are reported in brackets.
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C Supplementary Theory

C.1 Potential Outcomes and Heterogeneous Treatment Effects

This appendix recasts our key assumptions in a general potential outcomes framework and
extends classic results on IV identification in the presence of heterogeneous treatment effects
(e.g., Imbens and Angrist 1994) to our setting. We first derive an appropriate “first-stage
monotonicity” condition under which recentered IV regressions estimate a convex average
of heterogeneous effects. We then show how more conventional weighted averages can be
obtained in our framework.

We define potential treatments and outcomes given the instrument components g and
w as x` = x` (g, w, u) and y` = y` (g, w, e, u), where u and e capture sources of unobserved
first- and second-stage heterogeneity. We do not require that the functions x` (·) and y` (·)
are known. An instructive example is given by a reduced-form model with linear treatment
effect heterogeneity: i.e. x` = z` and y` = β`x` + ε` where u = 0 and e collects the (β`, ε`).

We first use this general model to formalize exclusion and shock exogeneity restrictions:

Assumption S1. (Exclusion): y` (g, w, e, u) = y` (x` (g, w, u) , w, e) almost-surely.

Assumption S2. (Independence): g ⊥⊥ e | w.
The exclusion restriction requires shocks to only affect the outcome through their rela-

tionship with the treatment. Under this condition, the independence assumption requires
that shock assignment is conditionally as-good-as-random; this condition is equivalent to
assuming g ⊥⊥ y` (γ,w, e) jointly across ` and γ. We do not assume g ⊥⊥ u | w, allowing the
first-stage relationship to be non-causal as discussed more below.

We characterize the recentered IV estimand in terms of the general marginal effects as
β` (x,w, e) = ∂

∂xy` (x,w, e). For notational simplicity we assumed that x` is continuous and
that y`(x,w, e) is differentiable in x, though below and in Appendix E.1 we show that it is
straightforward to allow for discrete treatments. We also assume bounded support of x` to
avoid integrability issues, but the result can be generalized to unbounded supports under
appropriate regularity conditions. We then have the following result:

Proposition S1. Suppose Assumptions 1 and S1 hold, Pr(x` ≥ x | z` = z, e, w) is weakly
increasing in z for each x almost-surely over (e, w), and the support of x` is bounded by
some

[
χ, χ̄

]
. Then recentered IV identifies is

E
[

1
L

∑
`(z` − µ`)y`

]
E
[

1
L

∑
`(z` − µ`)x`

] = E
[

1
L

∑
`

∫ χ̄

χ
β`(χ,w, e)ω`(χ,w, e)dχ

]
, (S1)
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where ω`(χ,w, e) are convex weights (i.e., ω`(χ,w, e) ≥ 0 almost-surely and E
[

1
L

∑
`

∫ χ̄
χ ω`(χ,w, e)dχ

]
=

1) that are proportional to the conditional-on-(w, e) covariance of z` and 1[x` ≥ χ].

Proof. See Appendix E.1.

Proposition S1 imposes a first-stage monotonicity condition: that x` is stochastically
increasing in z` conditional on e and w. This condition is substantially more general than
conventional ones (e.g., Angrist et al. 2000). Conventional monotonicity specifies a causal
and monotone relationship between the treatment and the instrument: i.e., x` = x`(z`, η)
with z ⊥⊥ η and ∂

∂zx`(z, η) ≥ 0 almost-surely. This is sufficient for our stochastic mono-
tonicity (with η included in the list of unobservables e, which is without loss of generality).
However, our condition also applies to settings where the shocks g affect many observa-
tions of z` and x` jointly and differentially, such that a causal first stage does not exist.
For example, in the linear shift share case of z` =

∑
nw`ngn, we may suppose that the

shares underlying z` are partially misspecified, such that x` =
∑
n π`ngn+η` for unobserved

(π, η) ⊥⊥g | w (but exclusion still holds). Proposition S1 shows that the recentered IV re-
gression remains causal in this case provided x` is stochastically increasing in z` conditional
on e and w. This holds, for example, when the w`n and π`n are almost-surely non-negative
and the gn are mutually independent; Proposition S1 can thus be seen to generalize a
monotonicity condition for shift-share IV established by Borusyak et al. (2020).

To gain intuition for the weights in Proposition S1, we consider two special cases. First,
we consider the reduced-form model with linear treatment effect heterogeneity:

Corollary S1. Suppose x` = z`, y` = β`x` + ε`, and Assumptions 1 and S1 hold with e
collecting the (β`, ε`). Then the estimand of the recentered regression is

E
[

1
L

∑
`(z` − µ`)y`

]
E
[

1
L

∑
`(z` − µ`)z`

] =
E
[

1
L

∑
` β`σ

2
`

]
E
[

1
L

∑
` σ

2
`

] , (S2)

where σ2
` = Var [z̃` | w].

Proof. See Appendix E.1.

This result shows that the recentered IV identifies a variance-weighted average of treat-
ment effects. We compute these weights for the empirical application in Section 4.1.

Second, we consider the IV model with a binary treatment and instrument. Here y` =
y`(0)(1−x`)+y`(1)x` with the potential outcomes y`(0) and y`(1) defining the heterogeneous
treatment effects as β` = y`(1) − y`(0). We further adopt a causal first stage relationship,
writing x` = x`(0)(1 − z`) + x`(1)z`. A version of Proposition S1 adapted to this setting
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shows how the recentered IV estimand differs from the average treatment effect (ATE), in
the x` = z` case, or the local average treatment effect (LATE):

Corollary S2. Suppose Assumptions S1 and 1 holds, that x` and z` are binary, and that
x`(1) ≥ x`(0) almost surely. Then the estimand of the recentered IV is.

E
[

1
L

∑
`(z` − µ`)y`

]
E
[

1
L

∑
`(z` − µ`)x`

] = E

 1
L

∑
`

E [β` | x`(1) > x`(0), w]

 p`σ
2
`

E
[

1
L

∑
` p`σ

2
`

]
 , (S3)

where p` = Pr(x`(1) > x`(0) | w) and σ2
` = Var [z̃` | w].

Proof. See Appendix E.1.

This result shows that in this case the recentered IV identifies a weighted average of
conditional treatment effects for “compliers” (defined by x`(1) > x`(0)), with weights again
given by the conditional variance of the instrument.

It is immediate from both corollaries that a more conventional causal estimand, such
as the ATE or LATE in the second case, is obtained by rescaling the instrument by σ2

` :
i.e. instrumenting by (z` − µ`)/σ2

` . This approach requires σ2
` > 0 almost surely, which

with binary instruments can be understood as an overlap condition–that Pr(z` = 1 | w) ∈
(0, 1).56 Rescaling is typically no more difficult than recentering, since σ2

` is also given by
the shock assignment process (i.e., Assumption 3). It may, however, significantly increase
the variance of the estimator.

In the case of reduced-form studies with continuous x` = z` and arbitrary heterogeneity
of treatment effects, one can further adopt the two-step procedure of Hirano and Imbens
(2004) to identify the general dose-response function ρ(ζ) = 1

L

∑
` E [y` (ζ, w, e)]. Identifi-

cation can be established under Assumptions 1 and S1 as ρ(ζ) = 1
L

∑
` E [β`(ζ, r`(ζ;w))]

where β`(ζ, r) = E [y` (ζ, w, e) | r`(ζ;w) = r] for the generalized propensity score r`(·;w),
defined as the conditional density of z` given w. This density is also given by the shock
assignment process (i.e., Assumption 3). However, applying this identification argument
can be challenging, as it requires estimating a series of conditional expectations β`(z, r)
across potentially non-iid ` = 1, . . . , L. This also requires an overlap condition (that z` is
non-degenerate given w) and as with simpler propensity-score-based methods the variance
of such estimators may be high relative to a simpler recentered regression approach.

We finally note that IV inference may be challenging when treatment effects vary. For
testing the so-called “sharp null” of β`(x,w, e) = 0, almost surely, the randomization-based

56Note that in the conventional reduced-form treatment effects setting, where x` = z`, the recentered and
reweighted instrument coincides with a conventional inverse-propensity score weight (Horvitz and Thompson
(1952); Hirano et al. (2003)): z`−µ`

σ2
z,`

= x`−Pr(x`=1|w)
Pr(x`=1|w)(1−Pr(x`=1|w)) , since here µ` = Pr(x` = 1 | w) has the

interpretation of a treatment propensity score (Rosenbaum and Rubin (1983)).
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tests in Section 3.4 still apply but may reject under the “weak null” of no average effect (i.e.
that the estimand in Proposition S1 is zero). Inverting RI tests to form confidence intervals
for β is also no longer sensible with heterogeneous effects. This issue is not specific to RI, as
asymptotic inference may also be challenging in this case. For example in the linear shift-
share setting, Adão et al. (2019) derive conservative asymptotic variance estimators only
for a reduced-form estimator, under strong conditions. Aronow and Samii (2017) similarly
construct conservative asymptotic variance estimators in the network interference setting.
We view generalizing these approaches as a potentially fruitful area for future research.

C.2 Consistency of Recentered IVs

This appendix establishes conditions under which the recentered IV estimator and associ-
ated RI tests are consistent. We give a high-level condition regarding the cross-sectional
variation in the instrument conditional on w, then provide lower-level sufficient conditions,
and finally consider the case when w includes the permutation class of shocks Π(g).

We study consistency of a recentered IV estimator,

β̃ = β +
1
L

∑
` z̃`ε`

1
L

∑
` z̃`x`

, (S4)

by considering a sequence of data-generating processes implicitly indexed by L. As usual,
β̃

p−→ β as L→∞ provided 1
L

∑
` z̃`ε` and 1

L

∑
` z̃`x` weakly converge to zero and a non-zero

constant, respectively. We focus here on the former exclusion restriction, maintaining a
general condition of instrument relevance:

Assumption S3. (Relevance): 1
L

∑
` z̃`x`

p−→M 6= 0.

In practice, the relevance of a given recentered instrument may be tested by extending the
RI procedures in the previous section. That is, to test that z` has no first-stage effect on
x` (for any `) one may leverage knowledge of the shock assignment process to construct
randomization-based rejection regions for statistics involving z` and x`.

The potentially complex correlation structure across observations of z̃`ε` precludes
the use of traditional weak laws of large numbers or standard extensions to show that
1
L

∑
` z̃`ε`

p−→ 0. To restrict those correlations, assumptions can be imposed on either the
z̃`, the ε`, or both. In the recentered IV approach, which draws on substantial knowledge
of the shock process (e.g. Assumption 3), it is natural to make further assumptions on the
observed z̃`. In doing so, we impose only a weak regularity condition on the unobserved ε`:

Assumption S4. (Regularity): E
[
ε2
` | w

]
≤ B for finite B.

We start by establishing recentered IV consistency under a high-level condition that
limits mutual dependence of z̃`; we then establish lower-level sufficient conditions that
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are easier to verify in specific designs. The high-level condition intuitively states that
observations are well-differentiated, in terms of their exposure to the shocks g through the
recentered instrument:

Assumption S5. (Weak IV dependence): E
[

1
L2
∑
`,m |Cov [z̃`, z̃m | w]|

]
→ 0.

Given this assumption, we may show the consistency of both the recentered IV estimator
and its associated RI test:

Proposition S2.
(i) Suppose Assumptions 2, 3, and S3-S5 hold. Then β̃ p−→ β.
(ii) Suppose Assumptions 1, 3, and S3-S5 hold with E

[
x2
` | w

]
and E [x`ε` | w] uniformly

bounded. Then the randomization test of Proposition S3 with T = 1
L

∑
` f` (g, w) (y` − bx`)

is consistent, i.e. for any b 6= β we have Pr
(
T 6∈

[
Tα/2, T1−α/2

])
→ 1.

Proof. See Appendix E.2.

The key condition of weak IV dependence states that the average absolute value of mutual
covariances of the recentered instrument z̃` converges to zero as L grows. Typically, this
would require the number of shocks N to grow with L, so that only a small fraction of
observation pairs are most exposed to the same shocks in g. When this condition holds,
Proposition S2 shows that β̃ is consistent even when unobserved shocks affect observations
jointly (through ε`), in an unspecified manner.57 Proposition S2 applies to recentered IV;
Appendix C.6 extends it to µ`-controlled regressions (see Proposition S6(v)).

Our two sufficient conditions for Assumption S5 are non-nested:

Lemma S1.
(i) Suppose Cov [z̃`, z̃m | w] ≥ 0 almost-surely for all (`,m) and Assumption 1 holds. Then
Assumption S5 holds if Var

[
1
L

∑
` z̃`
]
→ 0. Moreover, if f`(g;w) is weakly monotone in g for

all ` and components of g are jointly independent conditionally on w, then Cov [z̃`, z̃m | w] ≥
0 almost-surely.
(ii) Suppose G` ⊆ {1, . . . , N} is such that f` (·;w) does not depend on gn for any n 6∈ G`
almost-surely. Then Assumption S5 holds if 1

L2
∑
`,m 1 [G` ∩Gm 6= ∅]→ 0, the components

of g are jointly independent conditionally on w, and E
[
z̃2
` | w

]
is uniformly bounded.

Proof. See Appendix E.2.
57We note that the recentering of z` is key for this result: the non-recentered IV estimator may not

converge to β even when z` is valid in the sense of E
[

1
L

∑
`
z`ε`
]

= 0. For instance, suppose observations
with systematically high z` (i.e., high µ`) are similarly exposed to an unobserved aggregate shock in ε`: the
variance in 1

L

∑
`
z`ε` due to this shock may not vanish, even in large samples when Assumption S5 holds.

This problem does not arise for recentered IV which does not systematically vary across observations. See
Lee and Ogburn (2019) for a related discussion.
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The first condition applies to the setting when all shocks affect all observations in the
same direction, but to different extents. This holds, for example, for shift-share instruments
with non-negative exposure weights. More generally nonlinear f`(·) may also be monotone
in the shock vector; for example each transportation infrastructure upgrade may weakly
improve market access everywhere. In these cases, the recentered IV estimator is consistent
when the first-stage covariance converges to a non-zero constant M and the average instru-
ment 1

L

∑
` z̃` converges to its expectation of zero in the l2 norm. For linear shift-share IV

this extra condition requires the number of shocks to grow with L with the average exposure
to each individual shock becoming vanishingly small, as in Borusyak et al. (2020) and Adão
et al. (2019). The assumption of independent shocks can be weakened, for instance to allow
for shocks that are independent across many clusters. The second condition in Lemma S1
follows Aronow and Samii (2017) in assuming that for most pairs of observations the two
instruments z̃` and z̃m rely on non-overlapping sets of shocks g. This would be the case, for
example, when each observation receives its own random shock, and f`(·) only depends on
`’s shock and those of its neighbors up to a fixed network distance.

We note that Assumption S5 and Lemma S1 may be difficult to apply when w includes
a permutation class Π(g), as in our market access application. Even if the shocks are
iid conditionally on other components of w, they can be dependent conditionally on Π(g)
(negatively correlated, in the scalar gn case). An extension of Proposition S2 that applies
in this case is available on request.

C.3 Randomization Inference

We begin the discussion of RI by considering a test of some null hypothesis β = b. With
b = 0, for example, we test that outcomes y` are unaffected by treatment x`. We consider
a scalar test statistic T = T (g, y − bx, w), where y and x are L × 1 vectors collecting the
outcome and treatment observations. When b = β, T = T (g, ε, w), and under Assumption
1 the distribution of this T conditional on ε and w is given by the shock assignment process
G(g | w). We may simulate this distribution under Assumption 3, by redrawing (e.g.,
permuting) the shocks in g and recomputing T (sometimes this distribution can be known
analytically). If the original value of T is far in the tails of the simulated distribution, we
then have grounds to reject the null that β = b.

Formally, we have the following result on hypothesis testing:

Proposition S3. Suppose Assumptions 1 and 3 hold, let α ∈ (0, 1), and for some b ∈ R
and scalar-valued T (·) let T = T (g, y − bx, w) and T ∗ = T (g∗, y − bx, w), where g∗ is
distributed according to G(· | w), independently of (g, x, y) conditionally on w. Under the

S6



null of β = b,

Pr
(
T ∈

[
Tα/2, T1−α/2

])
≥ 1− α, (S5)

where the acceptance region is constructed for a given b as

Tα/2 = max
{
t ∈ R : Pr(T ∗ < t | y, x, w) ≤ α

2

}
(S6)

T1−α/2 = min
{
t ∈ R : Pr(T ∗ > t | y, x, w) ≤ α

2

}
. (S7)

Equation (S5) further holds with equality when T ∗ | (y, x, w) is continuously distributed
under the null.

Proof. See Appendix E.3.

This result shows that when shocks are as-good-as-randomly assigned, a test of β = b

which rejects when T 6∈
[
Tα/2, T1−α/2

]
has size of exactly α in finite samples provided the test

statistic is conditionally continuously distributed under the null. When this distribution
is not continuous, the test is still guaranteed to be conservative with a rejection rate of
no greater than α.58 The lower- and upper-bounds of the test region, Tα/2 and T1−α/2,
are given by the shock assignment process (Assumption 3) and represent the lower- and
upper α

2 th percentile tails of the known conditional distribution of T ∗. With exchangeable
shocks, for example, Tα/2 and T1−α/2 are given by the tails of the permutation distribution of
T (g∗, y − bx, w) where g∗ = π(g) for random permutations π(·) ∈ Π, holding (y, x, w) fixed.
These tails can be computed from all permutations or from a random sample (Lehmann
and Romano 2006, p. 636).59 We note that while the previous intuition for such a testing
procedure conditioned on ε and w, Proposition S3 establishes correct unconditional coverage
of the test. This follows by the law of iterated expectations: the unconditional coverage
Pr
(
T ∈

[
Tα/2, T1−α/2

])
is the expectation, across realizations of ε and w, of the controlled

conditional coverage Pr
(
T ∈

[
Tα/2, T1−α/2

]
| ε, w

)
.60

58T | w will be discretely distributed when g | w is discrete, such as when the support of g | w represents
some set of permutations of g. It is straightforward to show that in such cases one can construct a test of
exact size by introducing randomness in T (·); see, e.g., Lehmann (1986, p. 233).

59When a random sample of permutations is used, the realized g (i.e. identity permutation) should be
added to this sample. The test then remains exact, or slightly conservative because of discreteness (Lehmann
and Romano 2006, p. 636; Hemerik and Goeman 2018). In contrast to identification (see footnote 19)
randomness of the chosen permutations is important here: non-random permutation sets do not generally
guarantee valid inference (e.g. Southworth et al. 2009).

60It is instructive to highlight how exactly the knowledge of the shock assignment process matters in
Proposition S3. Suppose that g is incorrectly assumed to be exchangeable, i.e. a uniform distribution is
imposed over the N ! elements of g’s permutation class. By construction, the test is guaranteed to reject the
true β in some set of at most α ·N ! permutations regardless of the true assignment process. However, unless
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It follows from Proposition S3 that one can construct confidence intervals for β with
correct coverage in finite samples under Assumptions 1 and 3. Formally, we have the
following result:

Corollary S3. Suppose Assumptions 1 and 3 hold and let CI denote the set of b ∈ R that
are not rejected by the test in Proposition S3. Then Pr (β ∈ CI) ≥ 1 − α, with equality if
T ∗ | (y, x, w) is continuously distributed under the null.

Proof. Follows from Proposition S3 by the standard logic of test inversion.

In some settings, the confidence interval (or confidence set) CI obtained from inverting
randomization tests may be infinite on one or both sides or empty, with the last possibility
providing evidence against correct specification (Imbens and Rosenbaum 2005).

C.4 RI Efficiency

This appendix establishes conditions under which the optimal recentered instrument z̃∗

maximizes the asymptotic power of our preferred RI test by minimizing the asymptotic
variance of the associated IV estimator. Consider the class of regular recentered IV esti-
mators β̃ = 1

L z̃
′y/ 1

L z̃
′x, for z̃ = f (g) satisfying E [z̃] = 0 (suppressing dependence on w

throughout), that converges at rate rL and has asymptotic first-stage M and asymptotic
variance V . The asymptotic variance of 1

L z̃
′ε is thus Ṽ = M2V . Consider the following:

Assumption S6. Let T (g∗, ε) = rL
1
Lf (g∗)′ ε. For g∗1 and g∗2 distributed according to G (·),

with g∗1, g∗2, and ε mutually independent, (T (g∗1, ε) , T (g∗2, ε))
d→
(√

Ṽ Z1,
√
Ṽ Z2

)
, where Z1

and Z2 are independent standard normal variables.

This assumption requires that T = rL
1
L z̃
′ε is (i) asymptotically normal and (ii) asymp-

totically independent of T (g∗, ε) when g and g∗ are independent. The latter part rules out
cases where mutual correlation in the residuals is so strong that the randomization distri-
bution of T depends on a particular realization of ε. From these conditions we have the
following proposition:

Proposition S4. Suppose the assumptions of Proposition 2 hold, along with Assumption
S6. Fix α ∈ (0, 1) and δ 6= 0. Then the limiting power of an RI test of size α based on
T (g, y − bLx) = rL

1
Lf (g∗)′ (y−bLx), against a sequence of local alternatives bL = β−δ/rL,

is a decreasing function of only the recentered IV estimator’s asymptotic variance, V .

Proof. See Appendix E.4.
the true conditional distribution of g is uniform, the probability of the realized shocks g being in the true
rejection set need not be α, leading to size distortions.
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C.5 Assignment Processes with Unknown Parameters

This appendix considers the case where the shock assignment process is known up to a finite-
dimensional vector of parameters θ. For example, instead of assuming that each railroad line
in a transportation plan has an equal chance of being opened by a given date, a researcher
may model the probability of line completion as a logistic function of the line length with
an unknown coefficient θ. Similarly, instead of assuming that some industry shocks (e.g.,
to productivity) are fully exchangeable one may allow for parameterized heteroskedasticity:
larger industries, for example, may have less dispersed shocks than small industries. We
propose a plug-in estimator for the structural parameter β in which θ is estimated and used
for recentering. We then adapt the Berger and Boos (1994) approach to inference with
nuisance parameters to build conservative finite-sample confidence intervals.

We consider extensions of Assumption 3 where the distribution of g | w is given by by
a known function G (g;w, θ) of unknown θ. For example, one may assume conditionally
independent binary shocks gn with Pr (gn = 1 | w, θ) = Λ (r′nθ) for a K× 1 vector of shock-
level observables rn (including a constant) included in w, where Λ (·) = exp(·)

1+exp(·) is the logistic
function. In this class of models, θ can be estimated from (g, w) by maximum likelihood
(MLE), which is consistent under standard conditions, although other estimators may also
be available. Given an estimate θ̂ a recentered IV instrument ẑ` = z` − µ`

(
θ̂, w

)
can be

measured, for µ` (θ0, w) = Eθ0 [z` | w] ≡
∫
f`(g, w)dG(g;w, θ0). We establish the conditions

for large-sample consistency for this plug-in estimator for β below.
Valid, but likely quite conservative confidence intervals for β in such cases can be ob-

tained by a simple extension of the previous randomization inference procedure. Given a
value of θ, the randomization test for β = b of Proposition S3 applies. Thus using the
maximum p-value of this test across all possible values of θ yields a conservative test for β
(with a corresponding confidence interval).61 However, these confidence intervals are likely
to be quite wide: even if the observed g is very informative about the precise value of θ,
this test still searches through values very far from θ̂.

We propose an alternative two-step approach following Berger and Boos (1994) that
is likely to be much less conservative but still valid (see Ding et al. (2016) for another
application of this idea to RI). In the first step, a confidence interval CIθ for θ with coverage
1 − γ is constructed for some γ ∈ (0, α); Berger and Boos (1994) recommend γ = 0.001.
Such tests are easy to build since the distribution of g is fully specified given θ; thus an exact
RI-based confidence interval for θ can be constructed from any statistic S = S(g;w, θ0) by
rerandomizing g according to G(·;w, θ0). As usual, the choice of S determines the power of
the test and the length of the confidence interval. We propose a statistic that corresponds

61An equivalent view on this procedure is to test joint hypotheses β = b and θ = θ0 using the test of
Proposition S3 and then project the resulting confidence interval on the space of β.
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to the score test, S = ∂
∂θ logG(g;w, θ0), since the Hodges-Lehmann estimator induced by it

is the MLE.62 For vector-valued θ, S can be converted to a scalar Lagrange Multiplier (LM)
statistic S′Eθ0 [SS′ | w]−1 S; a value θ0 is rejected if the LM statistic is in the right tail of its
distribution. In the second step, the maximum p-value of the Proposition S3 test is taken
across θ0 ∈ CIθ only—a much smaller set in large samples than the entire parameter set
used in the more conservative procedure. The p-value of the Berger and Boos (1994) test
is the obtained maximum plus γ. A value of β is therefore rejected at significance level α if
it is rejected under all θ0 ∈ CIθ with significance α− γ.

The following proposition establishes the conditions for the plug-in estimator consistency
and derives an exact confidence interval for θ using the Berger and Boos (1994) approach.

Proposition S5.
(i) Suppose Assumptions 1 holds, θ̂ is consistent for θ, and µ` (θ0, w) is almost-surely differ-
entiable with respect to θ0 in a convex parameter space Θ and with a bounded gradient ∂µ`

∂θ .
Then when Assumptions S3-S5 hold at the true value of θ, and the sequences 1

L

∑
` |x`| and

1
L

∑
` |ε`| are bounded in probability, the plug-in recentered IV estimator with instrument ẑ`

is consistent.
(ii) Suppose Assumption 1 holds. Let pβ(β; θ0) be the p-value of the randomization test of
Proposition S3 for a given value of θ and let CIθ denote a confidence interval for θ such that
Pr (θ ∈ CIθ) ≥ 1− γ for γ < α. Construct CIβ = {b ∈ R : maxθ0∈CIθ pβ (β, θ0) + γ > α}.
Then CIβ is conservative for β, i.e. Pr (β ∈ CIβ) ≥ 1− α.

Proof. See Appendix E.5 for part (i). Part (ii) follows from Berger and Boos (1994).

Five remarks are due. First, while the Berger and Boos (1994) test is conservative in
finite samples only when CIθ is, using an asymptotic confidence interval for θ will generally
yield an asymptotically conservative interval for β. This simplifies computation: construct-
ing the conventional Wald confidence interval for the MLE estimator of θ is much easier
than inverting the score-based randomization test. Second, in some cases even simpler RI
confidence intervals for β which plug in the estimate of θ̂ as if it was known are asymptot-
ically correct (Shaikh and Toulis 2019), although general conditions for this are unknown.
Third, as discussed in Berger and Boos (1994), in some cases the nuisance parameter θ
can be eliminated by using sufficient statistics which also yields a simpler exact confidence
interval. In the above binary shocks example, if rn captures a saturated set of dummy
variables then elements of g are exchangeable within the clusters corresponding to them
and it is not necessary to know or estimate θ. 63 Fourth, for a consistent θ̂, including

62This follows because ∂
∂θ

logG(g;w, θ̂MLE) = 0 = Eθ
[
∂
∂θ

logG (g∗;w, θ)
]
for the MLE estimator θ̂MLE

and g∗ randomly drawn from G.
63Rosenbaum (1984) shows how this idea can be extended in the logit model with arbitrary discrete
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µ`
(
θ̂, w

)
as a linear control (with an additional coefficient in front of it) may produce a

consistent estimator of β, as long as the slope of the auxiliary regression of z` on µ`
(
θ̂, w

)
converges. This is because Cov [z`, µ` (θ, w)] = Var [µ` (θ, w)] by definition of µ` (θ, w), such
that the slope coefficient will converge to one and the regression will asymptotically use the
recentered z̃` as an instrument (by the Frisch-Waugh-Lovell theorem).64

Finally, a closely related way to incorporate θ is by assuming that some one-to-one
transformation of shocks g̃ = h (g;w, θ) has a known nuisance parameter-free distribution
conditionally on w (with w that may itself depend on θ, such as when it includes permutation
classes of g̃). An intuitive case is when g̃n = (gn− ρn(θ, w))/σn(θ, w) is exchangeable, after
recentering and rescaling shocks according to a parametric model; here the conditional
distribution of g̃ over its permutation class is uniform. Again, RI yields exact permutation-
based confidence intervals for θ as well as corresponding Hodges-Lehmann estimators θ̂, and
the Berger and Boos (1994) approach yields a conservative confidence interval for β. We
discuss the choice of powerful randomization statistics next.

Suppose first that g̃n = gn − ρn (θ, w) is exchangeable across n. Here the expression for
the mean ρn (θ, w) does not include an unknown constant because a constant is redundant:
g̃n is exchangeable if and only if g̃n − ζ is exchangeable for constant ζ. To estimate θ, one
may consider the nonlinear least squares estimator of θ from a model gn = ζ+ρn (θ, w)+un,
which is consistent as N grows under standard assumptions given conditionally mutually
independent un. It is then straightforward to verify that this is the Hodges-Lehmann
estimator corresponding to the RI statistic Tθ = 1

N

∑
n g̃n

∂ρn
∂θ . Therefore, one may use this

statistic to construct an exact confidence interval for θ. In the second step, the expected
instrument given θ is constructed by the following simulation: g̃n are randomly permuted
to get g̃∗n and g∗n = ρn (θ, w) + g̃∗n is then used in constructing z∗` = f`

(
(g∗n)Nn=1 , w

)
.

The second case is heteroskedasticity, and for simplicity we assume that shocks are
known to have a constant mean. One may therefore be willing to assume that g̃n =
gn/σn (θ, w) is exchangeable; in this case a multiplicative constant is redundant in the
formulation of the shock conditional variance, ζσ2

n(θ, w). As usual, a variety of RI statistics
can be used, and one reasonable choice is Tθ = 1

N

∑
n g̃

2
nσ

2
n
∂σ2
n

∂θ as it induces the Hodges-
Lehmann estimator that corresponds to the moment of nonlinear least squares estimation
for the model g2

n = ζ2σ2
n (θ, w) + un.65 With an estimate of θ, recentering is performed by

permuting g̃∗n and simulating gn = g̃∗nσn
(
θ̂, w

)
, and the Berger and Boos (1994) confidence

observables rn. He exploits the property of logit that, regardless of θ, G (g | w) is the same for any binary
vector g that yields the same vector

∑
n
gnrn.

64At the same time, including µ` (θ, w) as a nonlinear control and jointly estimating (β, θ) will not generally
work because there is no appropriate Frisch-Waugh-Lovell theorem for nonlinear IV.

65To be precise, the Hodges-Lehmann estimator solves
∑

n

(
g2
n − ζ2σ2

n

)
∂σ2

n
∂θ

= 0 for ζ2 = 1
N

∑
n
g2
n/σ

2
n.

This estimator is consistent for θ when un are conditionally mutually independent and under standard
regularity conditions.
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interval for β is obtained similarly.

C.6 Efficiency Controls

This appendix considers the case where a researcher wishes to include an R × 1 vector of
predetermined controls a` (which includes a constant) that absorb some of residual variation
in y` to increase the efficiency of estimating β. Here we show, following Rosenbaum (2002),
that our recentered IV estimation and RI results generalize directly to this case. This
section also justifies the approach proposed in Section 3.2 of controlling for µ` instead of
recentering the instrument by it. We abstract away from the assignment process parameters
θ for clarity but those can be straightforwardly incorporated.

The following result extends Propositions 1, S3, 2, and S2(i):

Proposition S6. Suppose g ⊥⊥ (a, ε) | w where a collects the a` = (a`1, . . . , a`r). Let
v⊥` denote the sample projection of a variable v` on a`: i.e., v⊥` = v` − α̂′va` for α̂v =(

1
L

∑
` a`a

′
`

)− 1
L

∑
` a`v` and (·)− denoting a generalized inverse of a matrix. Then:

(i) β is identified by E
[

1
L

∑
` z̃`y

⊥
`

]
/E
[

1
L

∑
` z̃`x

⊥
`

]
, assuming E

[
1
L

∑
` z̃`x

⊥
`

]
6= 0;

(ii) The randomization test based on the statistic T = 1
L

∑
` z`

(
y⊥` − bx⊥`

)
is valid;

(iii) The Hodges-Lehmann estimator induced by this RI statistic is the recentered IV esti-
mator of y` on x` instrumented by z̃` and with the a` controls, β̃⊥ = 1

L

∑
` z̃`y

⊥
` /

1
L

∑
` z̃`x

⊥
` ;

(iv) Recentering the instrument does not affect the estimator when µ` is included in a`.
(v) β̃⊥

p→ β if Assumptions 3 and S3–S5 hold, E
[
a2
`r | w

]
≤ Ba almost surely for all ` and

r = 1, . . . , R, 1
L

∑
` a`a

′
` is almost surely invertible (such that α̂v is unique), α̂x = Op(1),

and α̂ε = Op(1).

Proof: See Appendix E.6.

The independence condition of the proposition is automatically satisfied when a is non-
random conditionally on w. The first two results of the proposition exploit the fact that ε⊥

is constructed from ε and a, both conditionally independent of g. The third result directly
follows Rosenbaum’s (2002) result on covariate adjustment in randomization inference. It
is a consequence of the Frisch-Waugh-Lovell theorem: an IV estimator with controls can be
represented as the bivariate IV estimator for y` and x` residualized on the controls but with
the original instrument z̃`. The fourth result restates the fact that recentering by µ` is not
necessary when y` and x` have been residualized on it. The final result provides regularity
conditions for estimator consistency.
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C.7 Multiple Treatments and Instruments

This appendix considers the case when the outcome equation includes several endogenous
variables. For example, in network spillover regressions of Section D.3 the researcher may
specify both a direct effect of the shock to the unit and the spillover effect from other units.
We show that the main results of the paper apply in that case: instrument recentering
restores instrument validity, and randomization inference yields a joint confidence interval
for the coefficient vector. We then discuss several special cases where separate confidence
intervals may be obtained for individual coefficients, more efficiently than by projecting the
joint interval. Notably, one set of shocks arising from the natural experiment is generally
sufficient to identify multiple causal effects, as long as endogenous variables differ in their
exposure to the same shocks. Finally, we discuss how most of the results in our framework
generalize to the overidentified case, with multiple instruments.

Consider a just-identified IV estimator of a constant-effect regression

y` = β′x` + ε`, (S8)

where x` = (x1`, . . . , xM`)′ is an M × 1 vector of endogenous variables (“treatments”)
instrumented by a vector of instruments z` = (z1`, . . . , zM`)′ for zm` = fm`(g, w), m =
1, . . . ,M . A constant term and other “efficiency” controls are allowed as in Appendix C.6,
and are assumed to have been partialled out. For each m we define the expected instrument
µm` = E [zm` | w] and the recentered instrument z̃m` = zm` − µm` collected into vectors µ`
and z̃`, respectively.66

Lemma 1 and Proposition 1 extend trivially to this setup, establishing identification
of β provided the first-stage matrix E

[
1
L

∑
` z̃`x

′
`

]
is of full rank. Interestingly, only one

set of exogenous shocks g is generally sufficient to satisfy the rank condition and identify
multiple coefficients when different treatments have different exposure to the same shocks.
For example, when z1` = g` is the random treatment status of network node `, z2` is the
average treatment of `’s neighbors, and a reduced-form regression is considered (x` = z`),
z̃1` and z̃2` have independent variation identifying both effects.

Now consider randomization inference. As before, the distribution of any scalar or
vector-valued statistic T (g, y − xb, w), where x = (x1, . . . ,xL)′, is known conditional on w
and ε under the null of β = b, which can be used to construct valid tests and confidence
intervals for β as in Proposition S3. The only complication here is that the natural choice
of test statistic that extends Proposition 2, T = 1

L

∑
` z̃
′
`(y` − b

′x`), is vector-valued and
66Unlike the single endogenous variable case, constant effects are important for identification here. For

instance, in the reduced-form model of y` = β1`g` + β2`w`g` + ε` with arbitrarily heterogeneous effects β1`,
the parameter β2 is not identified as it is impossible to isolate the effect of w`g` from the effect of g` that
varies in a way correlated with w`.
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requires to pick a rejection region in RM . A natural approach is to map T into the scalar
LM statistic TLM = TV (b)−1T , where V (b) is the randomization variance matrix of T that
imposes the null β = b. That is, V is computed by re-randomizing g according to G(g | w)
while holding ε` = y` − b′x` fixed. The null β = b is then rejected when TLM exceeds its
1− α randomization quantile, which is equivalent to T being outside a particular ellipsoid
in RM centered at zero. This test follows the Hodges-Lehmann approach: the RI p-value is
maximized at the recentered IV estimator at which T = 0 and thus TLM = 0.67 The exact
joint confidence interval for β is constructed by inverting this test, as usual.

One problem with applying classical randomization inference in this extension is that
it yields joint confidence intervals for the multiple coefficients in β, rather than separate
confidence intervals for each βm. This is because only sharp nulls of β = b can be tested, and
not partial nulls of βm = bm. One may of course take a projection of the joint confidence
interval on each component: i.e. reject βm = bm when it is rejected for all values of b−m.
However, the implied intervals for individual coefficients can be very conservative or even
infinite. The problem is particularly important when M > 2 and thus the joint interval
cannot be easily visualized. We therefore describe several approaches how more powerful
confidence intervals for individual coefficients can be constructed in special cases. For
notational simplicity, we suppose M = 2 and that we are interested in inference on β1.

A first approach to marginal confidence interval construction applies when one of the
endogenous variables can be isolated by an appropriate randomization test. For a simple
example, suppose an interacted outcome equation is specified, with x2i = x1iri for some
some predetermined variable ri satisfying Pr (ri = 0) > 0 (e.g. a dummy variable). In the
subsample with ri = 0 the second term vanishes, and a confidence interval for β1 is obtained
by standard RI. Following Aronow (2012), one can also consider a more elaborate situation
in which the reduced-form spillover effect β1 of some exogenous shock is of interest. Here
x1` may be, for instance, the average treatment of `’s neighbors on a network g, but a
direct effect β2 of `’s own randomly assigned shock, x2` = g`, is also allowed for. Then the
following procedure can be used: fix some subset of units L̄ ⊂ {1, . . . , L} and condition the
distribution of g on the observed shocks to the units in L̄, ḡ = (g`)`∈L̄. Then y` − β1x1`

is independent of g conditionally on ḡ because the direct effects are the same across these
realizations of g. Yet, there is conditional variation in x1` arising from shocks to other units
` 6∈ L̄ which allows for identification of β1 and randomization tests on this coefficient.

Second, if a confidence interval for one coefficient is obtained (e.g. in one of the situations
discussed above), the approach of Berger and Boos (1994) and Ding et al. (2016) can be used
to get conservative marginal confidence intervals for the remaining coefficient. Specifically,

67One may notice that for M = 1 this test slightly differs from the one in Section 3.4 as it is based on T 2

rather than T . The two tests coincide when the randomization distribution of T is symmetric around its
mean of zero.
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let CI2 be an exact interval for β2 with coverage 1− γ for some γ ∈ (0, α), e.g. γ = 0.001.
Then β1 = b1 is rejected if β = (b1, b2) is rejected by the RI-based LM test for every b2 ∈ CI2

at significance level α − γ. In other words, the p-value of the test for β1 is the maximum
p-value of the joint test across b2 ∈ CI2, plus γ. When γ → 0, CI2 becomes uninformative,
and this procedure converges to the projection of the joint confidence interval. However, for
a given γ CI2 may be narrow in large samples, and taking the maximum across b2 ∈ CI2

rather than the entire real line may result in a much more powerful test for β1.
We also conjecture that the following asymptotic approach may apply in many ap-

plications, though we leave a formal analysis of this approach to future research. One
may expect under certain regularity conditions that some central limit theorem applies to

1√
L

∑
` z̃`

(
y` − β′x`

)
, such that it converges to a jointly normal distribution. Moreover, un-

der some conditions, this unconditional distribution may be well approximated by the ran-
domization distribution across g only (see Lehmann (1986), Theorem 15.2.3). Furthermore,
estimating this distribution at a consistent estimate β̂ instead of β may be asymptotically
innocuous (see Shaikh and Toulis (2019)). In such cases, β̂ is asymptotically normal and
an asymptotically valid confidence interval for each coefficient separately can easily be ob-
tained by delta method, using the randomization variance matrix of 1√

L

∑
` z̃`

(
y` − β̂

′
x`
)

as an estimate of the asymptotic variance of 1√
L

∑
` z̃`ε`.

We finally note that while this discussion has focused on the just-identified case, some
aspects easily generalize to the case where M instruments are used for J < M endogenous
treatments (including where J = 1). The identification results (Lemma 1 and Proposition
1) for the recentered IV and RI-based LM tests extend to that case without modification.
One difference is in the Hodges-Lehmann estimator corresponding to this LM test, i.e. the
value of b which minimizes TV (b)−1T . While in the just-identified case this is the recentered
IV estimator, with overidentification it is more similar to a continuously updating general
method of moments estimator, since the variance matrix is also a function of b.

C.8 Nonlinear Outcome Models

This appendix considers settings where the parameter of interest is specified in terms of
a nonlinear model, y` = m`(x;β) + ε`,where {m`(·)}L`=1 is a set of known functions and
x includes an unrestricted set of observables. We show that our results on identification,
inference, and asymptotic efficiency generalize naturally to this setup.

For ease of exposition we assume the parameter β is one-dimensional, as in the main text;
extensions to the multidimensional case are given by integrating the insights in Appendix
C.7. We continue to assume an instrument of z` = f`(g;w). IV identification of β typically
requires instrument recentering, as in the linear case. When Assumption 2(i) holds, it is
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immediate that

E
[

1
L

∑
`

z̃` (y` −m`(x;β))
]

= 0, (S9)

and identification follows when β uniquely solves this moment condition. In particular, local
identification (uniqueness in a neighborhood of β) follows when E

[
1
L

∑
` z̃`

∂
∂βm`(x;β)

]
is

non-zero. As in Lemma 1, identification fails absent instrument recentering, unless the
expected instrument µ` = E [f`(g;w) | w] is orthogonal to the structural residual ε` in the
sense of E

[
1
L

∑
` µ`ε`

]
= 0.

Valid finite-sample inference on β is similarly obtained as in the linear case. The test
statistic which induces as a Hodges-Lehmann estimator the solution to the sample analog
of (S9) is

T = 1
L

∑
`

(f`(g, w)− µ`) (y` −m`(x; b)) , (S10)

which can be used to form randomization tests and confidence intervals from specified
counterfactual shocks.

Derivation of the efficient instrument also follows similarly. As in Proposition 2, we con-
sider the class of recentered instruments yielding IV estimators that converge at some rate.
Given analogous regularity conditions, it is straightforward to verify that the asymptotically
variance-minimizing instrument in this class is

z∗ = E
[
εε′ | w

]−1
(
E
[
∂

∂β
m(x;β) | g, w

]
− E

[
∂

∂β
m(x;β) | w

])
, (S11)

where we write m(x; b) as the collection of m`(x; b). This nests equation (9) in the linear
case, where ∂

∂βm(x;β) = x. Outside of this case, the optimal instrument generally depends
on β. A two-step optimal instrument could then be obtained by applying a first-step
estimate of β to this formula, given its consistency and additional regularity conditions.

We next show that under additional conditions the variance-minimizing instrument z∗

also maximizes the local power of the associated RI test. The theoretical argument closely
follows Lehmann and Romano (2006, Section 5.2.2), except without assuming that the dis-
tribution of shocks is the permutation distribution or that the data are iid. The proposition
requires asymptotic normality of the estimator, for which we do not have low-level conditions
because of the generality of our framework but which should hold in typical applications.
For simplicity we here treat w as non-stochastic, but the argument generalizes since the
characterization of efficient recentered IV in Proposition 2 applies conditionally on w.
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D Further Practical Implications

Here we discuss the practical implications of our Section 3 framework for several applied
literatures, relating our approach to identification and inference to the previously employed
strategies. Specifically, Appendices D.1 and D.2 consider estimating the effects of trans-
portation upgrades and policy eligibility, extending the discussions of Sections 4.1 and
4.2, respectively. The following subsections elaborate on the summaries in Section 3.6
on network spillover effects (Appendix D.3), linear and nonlinear shift-share instruments
(Appendix D.4), instruments implied by spatial equilibrium models (Appendix D.5), instru-
ments derived from partial randomness in centralized assignment mechanisms (Appendix
D.6), “free-space” instruments for mass media access (Appendix D.7), and weather-based
instruments (Appendix D.8).

D.1 Effects of Transportation Upgrades

Our theoretical results provide a new general approach for estimating the effects of trans-
portation infrastructure upgrades. Traditionally, these studies specified as treatment an
indicator that region ` is connected to the network (e.g. Chandra and Thompson 2000;
Michaels 2008) or a measure of local connection intensity (e.g. Baum-Snow 2007; Duranton
and Turner 2012). Modern approaches often use more elaborate model-based market access
measures (Donaldson and Hornbeck 2016), in recognition of the fact that infrastructure up-
grades can impact regions not directly connected to the network. While many analyses of
transportation shocks study local outcomes of individual regions, some estimate the effects
on bilateral outcomes, such as trade or migration between pairs of regions or firms (Allen
et al. 2019; Volpe Martincus and Blyde 2013).

Our framework formalizes three distinct challenges with identifying such effects. The
first is strategic placement of infrastructure upgrades in anticipation of regional productivity
or amenity growth, a concern that is well-recognized in the literature (Redding and Turner
2015). When viewing upgrades as our shocks g, strategic placement can be formalized by
a dependence of g on ε which violates shock exogeneity (i.e. Assumption 1). The trans-
portation effects literature has devised several remedies to this challenge, in particular by
excluding major cities or other regions which directly affect the placement of infrastructure
(the “inconsequential place approach”) or by using planned or historical routes to instru-
ment for the constructed railways. Our framework can accommodate these solutions by
either limiting attention to inconsequential places (which changes the sample, and therefore
ε) or by viewing planned or historical routes as the exogenous shocks (which changes g).68

68Other weakened versions of Assumption 1 are possible too, e.g. that ε` is conditionally independent
of gn for all potential lines n that do not cross region `; the market access instrument should then be
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When no assumption of upgrade exogeneity seems ex ante plausible, one can study
market access effects by leveraging the exogeneity of its other determinants. For example,
Bartelme (2018) estimates market access effects by leveraging exogenous shifters to market
size and not transportation upgrades. Our framework also applies to this strategy, with
market size shifters collected in g. It is generally difficult to obtain causal estimates without
any exogeneity assumption placed on any shock to market access. We therefore suppose
that Assumption 1 holds for some g and ε, with the other determinants of market access
collected in w. For concreteness we suppose g captures some features of transportation
upgrades, as the alternative assumption of Bartelme (2018) is less standard.

A second challenge that is less discussed in the transportation upgrade literature is
that a cross-sectional correlation between regional connectivity and unobservables is likely
to arise from their common dependence on regional geography. Even when upgrades are
exogenous in the sense of Assumption 1, they are unlikely to be uniformly assigned across
regions. For example, if upgrades are concentrated in more economically developed areas
(as in our HSR application above), which differ in their unobservables, OVB may arise.
Formally, E [ε` | w] and expected network connectivity may covary across regions `.

A further third challenge arises with measures like market access, which respond to non-
local upgrade shocks and are defined by a non-linear formula. As discussed in Section 2, this
can lead to complex variation in expected market access growth even when exogenous up-
grades are uniformly distributed in space. This challenge highlights a novel tradeoff between
traditional connectivity regressions and the modern approach of Donaldson and Hornbeck
(2016): although market access regressions may better capture the non-local effects of trans-
portation upgrades (and, as such, satisfy the exclusion restriction in Assumption 1), they
may also lead to more intricate OVB challenges.

These two new challenges are not specific to connectivity and market access regressions.
For example Allen et al. (2019) study how migration between locations in the U.S. and
Mexico depends on a measure of difficulty of traveling between them, as affected by the
wall constructed in some parts of the border between the two countries. Even when new
wall placement is not strategic, it is unlikely to be uniformly distributed along a border (the
second challenge). The effects of wall upgrades are furthermore non-local, complicating
OVB (the third challenge). One may expect, for instance, that wall-induced changes in
travel difficulty are correlated with the distance between locations (and thus potentially
with the error term): regardless of which sections of the wall are built, places far away from
the border will be affected less. This is because, when traveling between them, it is easier
to substitute away from newly blocked routes.

constructed excluding those lines (Lin 2017). We also note that these approaches may not suffice to remove
all statistical dependence between g and ε, for instance if productivity growth is correlated between major
and “inconsequential” regions and historical routes affect current productivity in unobserved ways.
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Both of the new challenges raised by our framework are solved by specifying and sim-
ulating counterfactual transportation network upgrades, which can be achieved in several
ways. A first approach, which we illustrated above, is to use predetermined upgrade plans
and appeal to the randomness of which subset of the plan materializes as of some date.
This approach contrasts with the typical use of upgrade plans in the literature, as instru-
ments themselves (Redding and Turner 2015), which can relax Assumption 1 but does not
help with specifying shock counterfactuals.69 Our strategy for specifying counterfactuals
is instead similar to the use of accepted and rejected plans for new plant construction in
Greenstone et al. (2010), but in the transportation setting. Donaldson (2018) and Berger
and Enflo (2017) take a step in this direction, using planned but unbuilt railroads in a
placebo exercise, as does Lin (2017) by exploiting engineering problems that slowed down
construction of certain lines in a robustness check.

A second approach to specifying counterfactuals is to model upgrades in terms of their
engineering, economic or political requirements and find alternative upgrades that satisfy
these criteria. One of the placebo analyses by Ahlfeldt and Feddersen (2018) follows this
logic: they note that the new railway line connected two major cities in Germany at distance
around 160km and had three intermediate stops. They then construct 1,000 random placebo
lines that satisfy the same description. One could also obtain engineering estimates of viable
alternative routes for lines connecting major cities, augmenting the inconsequential places
approach with valid counterfactuals.70

A third approach leverages known discontinuities in the policies determining network
links, as in a simpler regression discontinuity analysis. Campante and Yanagizawa-Drott
(2018), for example, note that cities just under 6,000 miles apart are distinctly more likely
to have direct air links, relative to cities just above that threshold. A local randomization
view of such discontinuities (e.g., Cattaneo et al. (2015)) might motivate counterfactual
networks that perturb links around the threshold.

Finally, the assignment process for the shocks may sometimes be given by external
(e.g. institutional or scientific) knowledge. For example, Volpe Martincus and Blyde (2013)
leverage an earthquake that blocked a large number of roads in Chile to estimate the effect
of infrastructure downgrades on trade patterns. Geological knowledge could be used in this
case to specify the disruption locations of counterfactual earthquakes and construct the

69Historical routes can be used in place of the plan if the researcher is willing to assume that some of them
decayed for random reasons while others continued to be in use. This again contrasts with the typical use
of historical routes (e.g. Duranton et al. (2013)). We note that if historical routes or plans are instead used
to satisfy Assumption 1 then counterfactual routes and plans need to be simulated to apply our approach.

70These approaches can be viewed as special cases of specifying a stochastic network formation model and
simulating it to construct counterfactuals. Other models of network formation (e.g., Chandrasekhar and
Jackson 2014; Acemoglu and Azar 2020) could similarly be used to study causal effects of network centrality
in appropriate economic contexts (see footnote 72). This would seem a novel use of such models.
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expected instrument.
Without specifying counterfactuals (or even assuming upgrade exogeneity) one may re-

move some sources of OVB by including control variables, such as province fixed effects,
geographic coordinates, and pre-period characteristics of the local economy. The unobserv-
ables ε` which are not captured by those controls should then be assumed orthogonal to
the treatment variable. The case for such orthogonality can, however, be challenging to
make for market access (or similar treatments) constructed from many sources of variation.
It may be untenable to assume that all of the treatment determinants are orthogonal to
the remaining variation in ε`, while the weaker assumption that such orthogonality holds
despite the endogeneity of some determinants of treatment appears hard to justify a priori.

Relative to a conventional controlling approach, our framework for estimating trans-
portation upgrade effects offers two important advantages. First, by clarifying an experi-
mental ideal it makes the argument for market access exogeneity explicit and transparent
and allows for a substantive debate on whether the institutional features of the setting
make such argument ex ante plausible. Second, it yields additional tests: while pre-trend
and balance tests are useful with any identification approach, our framework offers new
specification tests (as illustrated in the HSR setting above), with a new mode of inference.
Our approach also yields new robustness checks for a conventional controlling strategy.
As footnote 21 explains, if market access effects are identified without recentering because
the included controls perfectly capture either the expected instrument or the endogenous
features of shock exposure, then the estimates should be robust to further controlling for
expected market access growth constructed with some reasonable counterfactuals.

D.2 Effects of Policy Eligibility

We next discuss extensions to our baseline approach to policy eligibility instruments, pre-
sented in Section 4.2. We further discuss advantages of our recentered IV relative to a
controlling strategy used in the literature to estimate effects of unemployment insurance.

We first note that the recentered IV approach may generate power gains over con-
ventional simulated instruments when not all determinants of eligibility are observed and
included in v`. Cohodes et al. (2016), for example, use a simulated instrument to study
the long-term effects of Medicaid eligibility on children without observing a key eligibility
determinant (parental income). Their instrument assigns to each individual ` the aver-
age eligibility of a nationally representative sample of individuals with the same observed
demographics (age, race, and birth year), if they were subject to the policy in `’s state
of residence (see Currie and Gruber (2001) for a similar approach). This instrument is a
function of the state policy and observed demographics only and overlooks useful variation
in the state of residence which is likely correlated with the error term but predictive of un-
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observed parental income. Our IV framework therefore suggests one might use the average
eligibility of individuals with similar demographics who are residing in the same state as
the instrument, while adjusting for its average value over permutations of state policies.

This approach is also useful when all eligibility determinants are observed, but a re-
searcher does not wish to include them in v`. This would be the case when, for example,
parental income responds endogenously to the state policy, violating Assumption 1. Indeed,
Currie and Gruber (1996) discuss this as one of the motivations for their original simulated
instrument construction. In such cases predictors of such determinants that cannot respond
to the natural experiment, such as parental income from before a state policy change, may
be instead used to boost asymptotic power. East and Kuka (2015) use a similar approach
to augment simulated instrument construction in evaluating the effects of unemployment
insurance eligibility.

Our framework also yields insights to an alternative approach in the related literature on
the eligibility effects of unemployment insurance (e.g., Cullen and Gruber 2000; East and
Kuka 2015). This approach regresses outcomes on true or predicted eligibility while flexibly
controlling for individual characteristics v`. When policies are exchangeable across states,
this approach is also justified within the Section 3 framework since the expected instrument
is a function of v`. Flexible controls for individual characteristics have an additional benefit
of potentially predicting variation in the error term, thus improving asymptotic efficiency.
However, this approach is vulnerable to a curse of dimensionality; indeed, Gruber (2003)
finds this strategy difficult to implement for Medicaid, where individual characteristics can
have complex nonlinear effects on eligibility. Our approach reveals the single expected
instrument control needed for valid causal inference under the same exogeneity assumption.

D.3 Network Spillovers

This appendix discusses the implications of our framework for identification and inference
in spillover regressions. In such settings the units ` represent nodes in a network (of people,
firms, regions, etc.), and g captures shocks that are as-good-as-randomly assigned to them.71

The target parameter β denotes the causal effect of a node-specific treatment x` which
captures the spillovers from g at node `. For example, one may be interested in the effects
of an inventor’s death on the future productivity of her co-inventors (Jaravel et al. 2018),
having a direct supplier or supplier’s supplier hit by a natural disaster on a firm’s growth
(Carvalho et al. 2020), or having more “dewormed” students at neighboring schools on

71It is unimportant that the shocks are assigned to and the outcomes are observed for all nodes. Our
framework applies directly when, for instance, the shocks and the observations correspond to non-overlapping
subsets of nodes (e.g. Doudchenko et al. (2020)).
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a student’s test scores (Miguel and Kremer 2004).72 In bringing our framework to such
settings we maintain the assumption that the spillover treatment has been well-specified, in
that it captures all relevant channels by which the shocks affect a given node.73 Spillover
regressions are typically reduced-form, such that x` is a function of the predetermined
network structure in w and the shocks g and z` = x`, but we also allow for IV regressions
where treatment is affected by both g and other shocks.

Such spillover regressions may suffer from OVB when different nodes face systematically
different exposure to the exogenous shocks because of their network position. This exposure,
summarized by the expected instrument, depends on how the shocks are assigned and how
z` is constructed (e.g., whether it is nonlinear in the shocks). We first illustrate how these
factors determine whether the OVB can arise and whether it can be solved by conventional
regression controls.

For concreteness we center this discussion of OVB around a stylized version of Miguel and
Kremer (2004, henceforth MK), where z` = x` counts the number of dewormed students at
schools within a fixed radius from student `’s school (excluding itself) and y` is some health
outcome. The deworming shocks are generated by an RCT which as-good-as-randomly
selected half of all schools for deworming. Thus z` can be written as a linear function of
which students are experimentally dewormed (collected in a binary vector g) with coefficients
determined by the pre-existing network of students and schools (summarized in w). To
simplify the discussion we abstract from other features of the actual MK setting, including
the fact that they estimate direct effects of deworming together with the spillover effect; our
framework is extended to such specifications with multiple treatments in Appendix C.7.

The OVB issue is easy to see in this setting: students who live in denser areas will
have systematically more dewormed neighbors, and dense areas may also have different
unobserved determinants of health. MK address this threat by controlling for the total
number of eligible students in neighboring schools, n`. This is indeed what our approach
recommends, provided all students have an equal chance of being dewormed (a probability
we denote by q). The expected number of dewormed neighbors µ` = E [z` | w] = qn` is then
proportional to n`, so including this control purges OVB.74

We now consider four deviations from the benchmark setup, in which conventional
regression controls are no longer sufficient to span the expected spillover treatment and

72One can also consider settings in which x` measures node `’s network centrality itself, after a shock to
the network links. The market access measure we discuss in Sections 2 and 4.1 can be viewed as an example,
capturing a region’s centrality in a transportation network.

73This exclusion restriction may follow from a particular model for peer effects, as in Manski (1993) and
Manski (2013), or a general equilibrium gravity model in the market access case. See Angrist (2014) for a
discussion of potential biases from misspecifying social interaction models in simpler settings.

74The n` control would not be necessary if spillovers were instead specified as driven by the fraction of
dewormed neighbors. Under simple randomization all students would then have the same expected spillover
treatment, µ` = q.
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purge OVB. First, there may be a more complex shock assignment process. For example,
stratified random assignment which makes deworming more likely for some students or
schools (depending on, for example, student gender or school size) would make µ` no longer
proportional to n`.

Second, spillover effects may involve network weights. Suppose MK had instead specified
the spillover treatment as z` =

∑
n∈N` w`ngn, where N` is the set of `’s neighbors and w`n

measures the strength of the spillover from neighbor n’s deworming status gn, for instance
determined by how frequently ` and n interact.75 Then even in simple experimental designs,
the expected instrument equals µ` =

∑
n∈N` w`n which need not be collinear with n`: a

person who interacts with neighbors more will tend to be more affected by the deworming
experiment even conditionally on the number of neighbors. An example of this issue can
be found in Acemoglu et al. (2015) where ` and n are municipalities in Colombia and w`n
are inverse distance weights; here µ` reflects the geographic centrality of the region.

Third, spillover treatments may be nonlinear in the network shocks. If, for example, MK
had studied the effects of having at least one treated neighbor, the appropriate µ` control
would have been the student-specific probability of this event. Under simple randomization
of deworming, this µ` is a nonlinear function of n` and OVB may be purged by flexibly
controlling for n`. However this is no longer the case with school-level randomization or
more complex experimental protocols.

Finally, spillovers may arise from shocks across the entire network, and not just from
immediate neighbors. Suppose MK had instead studied the effect of deworming spillovers
given by the geographic distance from the nearest dewormed school (which may be large for
some schools). This non-local specification of network spillovers makes µ` inherently more
complex: while in expectation the distance is smaller in dense areas, there is no simple
measure that fully captures the expected distance to the nearest dewormed school. This
example is inspired by Carvalho et al. (2020) who study the effects of network distance
between firm ` and the nearest firm located in the geographic area of a natural disaster
(specifically, the 2011 Tōhoku earthquake) in the firm-to-firm supplier network.76

In RCT settings like MK’s the more intricate OVB challenges raised in each of these
scenarios are easily solved. A researcher can simply compute the expected spillover treat-
ment by redrawing shocks according to the randomization protocol, and appropriate adjust

75One can view such z` as a special case of a shift-share instrument further discussed in Section D.4 below.
The benchmark MK case is obtained with w`n ≡ 1 [n ∈ N`].

76Among firms with a given number of direct suppliers (a covariate Carvalho et al. (2020) control for),
the probability of having at least one supplier’s supplier in the randomly assigned earthquake zone (i.e. at
distance of two) still depends on how connected its suppliers are. Nonlinearity of the network distance as a
function of shocks makes this probability also depend on the correlation structure of the shocks. Consider a
firm for which the set of second-degree suppliers is not very large but is geographically dispersed. This firm
is much more likely to be affected by a shock hitting random geographic areas (like an earthquake) than a
shock hitting firms regardless of their geography.
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for it. With natural experiments like that of Carvalho et al. (2020) institutional or scientific
knowledge can help specify counterfactual shocks, for instance by drawing on appropri-
ate geological models of earthquake probabilities across regions. With observational data
counterfactual shocks can be specified by the partial exchangeability of shocks, perhaps
conditional on node-level observables. The approach of Jaravel et al. (2018), for exam-
ple, in which deceased and non-deceased co-inventors are matched based on age and other
characteristics, can be viewed as leveraging such an exchangeability assumption.

Besides providing a solution to the OVB problem, our framework helps address well-
known challenges of inference in network regressions. A conventional approach in the litera-
ture is to assume that z`ε` is uncorrelated beyond a small geographical or network distance
(Conley (1999); see Acemoglu et al. (2015) for a network example). This may work well
when z` captures local spillovers. However, when both observed and unobserved shocks
propagate further through the network conventional standard errors may be distorted. As
usual, randomization inference is valid regardless of the correlation structure of unobserved
shocks, relying only on the correlation structure of the recentered instrument that is implied
by knowledge of the shock assignment process.

An even more challenging problem that is solved by RI is when few shocks are observed
in the data, such as the single earthquake in Carvalho et al. (2020). A small number of
shocks makes the asymptotic approach inapplicable: even absent spillovers, it is generally
impossible to consistently estimate the effect of earthquakes if only one region is treated.
The lack of consistency, however, does not preclude informative inference provided shock
counterfactuals are specified. For example, if the true effect is zero, it is unlikely that
unobserved shocks hit exactly the same region where the earthquake randomly happened.
RI-based confidence intervals capture this idea formally.

D.4 Linear and Nonlinear Shift-Share Instruments

We next consider instruments of the form z` = f (g, w`), where w` is a vector capturing
the exposure of observation ` to the set of shocks g (usually of the same dimensionality
N). Conventional shift-share instrument variables (SSIVs) set f (·) to take an exposure-
weighted average of the shocks: typically a regional instrument z` is constructed from a set
of industry shocks gn as z` =

∑
nw`ngn, where w`n measures the industry’s share (of, say,

employment) in the region (e.g., Bartik (1991) and Autor et al. (2013)). These instruments
are often employed when the treatment variable can similarly be represented as a share-
weighted average x` =

∑
nw`nx̃`n, where component x̃`n = gn + u`n includes a potentially

endogenous u`n. More recently, the SSIV approach has inspired a number of nonlinear
instrument constructions for treatments that combine exogenous shocks with local shares
in more complex ways (e.g. Boustan et al. 2013; Berman et al. 2015; Chodorow-Reich and
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Wieland 2020).
We first connect the Section 3 framework to the earlier work of Borusyak et al. (2020)

in showing that simple regression controls are typically enough to purge OVB when using
linear shift-share instruments, without specifying counterfactual shocks. We then present
two sets of novel insights. First, we formalize the class of nonlinear SSIVs and propose
an approach to identification with them. Explicit specification of counterfactual shocks
is typically necessary for nonlinear SSIVs to be valid, but linear approximations to such
instruments may obviate this need at an efficiency cost. Second, asymptotic inference is
generally challenging in the nonlinear SSIV setting but valid randomization inference based
on shock counterfactuals is straightforward. Moreover, we find in Monte Carlo simulations
that in the linear SSIV case RI may serve as a useful complement to the existing asymptotic
approach of Adão et al. (2019). Throughout this analysis we follow Borusyak et al. (2020)
in assuming the shocks gn are as-good-as-randomly assigned while the exposure shares w`n
may be endogenous (for example, if unobserved industry shocks affect regions via the same
shares).77

OVB with Linear SSIVs Borusyak et al. (2020) establish the validity of linear SSIVs
under the assumption of quasi-random shock assignment, formalized as equal conditional
expectations of gn across n, and that the exposure shares sum to one across n for each
observation. When the second assumption fails (what they label the “incomplete shares
case”), they show how OVB is purged by controlling for the sum of shares. They further
show how simple quasi-random shock assignment may be relaxed to allow the conditional
expectation of gn to depend on shock-level observables, by controlling for share-weighted
averages of these potential confounders.

In our general framework, these insights can be seen to follow from the linearity of the
expected shift-share instrument, since

µ` = E [z` | w] =
∑
n

w`nE [gn | w] (S12)

is an exposure-weighted average of the expected shocks E [gn | w]. When the expected shock
is constant (E [gn | w] = α for some α) and the exposure shares sum to one (

∑
nw`n = 1

for all `) the expected instrument is also constant (µ` = α) and no correction to the linear
SSIV is needed to avoid OVB. In the incomplete shares case where W` =

∑
nw`n varies,

it is enough to linearly control for W` since µ` = αW`. Under the weaker assumption of
77Our framework also nests the alternative linear SSIV framework of Goldsmith-Pinkham et al. (2020) in

which the shares are exogenous but shocks need not be. With shocks considered non-stochastic and with iid
data, as in Goldsmith-Pinkham et al. (2020), OVB does not arise as all observations are similarly exposed
to the exogenous shares.
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conditional random shock assignment, i.e. E [gn | w] = q′nα for some vector of observables
qn, it is furthermore enough to control for the share-weighted sums of confounders, Q` =∑
n s`nqn, as they absorb µ` = Q′`α. The Section 3 framework also implies an alternative

solution to this general case: instead of controlling for Q` one can recenter the shocks by
their conditional expectation. This is because the recentered instrument is also a linear
SSIV:

z̃` = z` − µ` =
∑
n

w`ng̃n, (S13)

where g̃n = gn − E [gn | w]. SSIV approaches which first residualize shocks on observables
(e.g., Greenstone et al. (2020)) may be interpreted as following this recentering logic.

It is worth highlighting that the linearity of SSIV relaxes Assumption 3: the conditional
expectation E [gn | w] is the only moment of the shock assignment process that needs to be
specified. Unmodeled higher moments, such as shock heteroskedasticity and clustering, do
not pose problems for instrument recentering or controlling, as they might in the general
case of nonlinear instrument constructions.

Nonlinear SSIVs The SSIV logic has recently been extended to cases where the treat-
ment variable can be represented as a nonlinear function of some predetermined exposure
shares w` and potentially endogenous “shifts,” i.e. x` = f (x̃`, w`) for x̃` = (x̃`n)Nn=1.
Chodorow-Reich and Wieland (2020), for example, study the effects of a regional labor re-
allocation index x` measuring the dispersion of local industry growth rates x̃`n with initial
industry employment shares w`n as weights. If the researcher observes an exogenous shifter
gn for x̃`n, that is not observation-specific (i.e., measured nationally or in other countries),
an intuitive instrument can be constructed as z` = f (g, w`), predicting x` via exogenous
shocks and predetermined exposure. We believe this general formulation of such nonlinear
SSIVs is novel, while nesting several applied examples, including the predicted change in a
regional Gini coefficient in Boustan et al. (2013), the predicted share of migrants in Basso
and Peri (2015), and the predicted foreign demand instrument of Berman et al. (2015).

Nonlinearity of f (·) generically leads to a challenging OVB problem. Even with fully
exchangeable shocks and “complete shares,” where linear SSIV is valid without correction,
the expected instrument µ` is a complex function of w`. Moreover, unlike in the linear
case, second and higher moments of the shock assignment process may be relevant to the
expected instrument and must generally be specified for the appropriate recentering. Shock
heteroskedasticity and clustering, in particular, are potential problems for nonlinear SSIV.

Our framework yields two solutions for OVB with nonlinear SSIVs, which give a likely
tradeoff between efficiency and robustness. A researcher may recenter a nonlinear z` given
a specification of shock counterfactuals. Alternatively, she may take a first-order approxi-

S26



mation of z` around some fixed vector of shocks g0 (e.g., g0 = 0) to obtain a linear SSIV
of ž` = w̌′`g, for w̌` = ∂f

∂g

(
g0, w`

)
. As before, the linear instrument is valid when the shocks

have a common mean and
∑
n w̌`n is controlled for (or, more generally, when the means

of shocks depend linearly on some qn and
∑
n w̌
′
`nqn is controlled for). As an approxima-

tion to z` the linear SSIV is likely to predict x` less well and thus be less efficient. On
the other hand, its validity depends on correct specification of fewer moments of the shock
assignment process making it more robust. Such linear approximations have indeed moti-
vated SSIV instruments in the context of some economic models (e.g., Kovak (2013), Adão
et al. (2019), and Adão et al. (2020)) but the same logic applies generally, e.g. to predicted
labor reallocation indices and Gini coefficients.

To make concrete the potential for OVB with nonlinear SSIVs, and our two solutions,
we take a stylized example of a popular instrument which could be called a “SSIV in logs”
(e.g., Berman et al. 2015; Berthou et al. 2019; Costa et al. 2019). Suppose x` = log X`1

X`0

denotes the growth rate of some regional variable which can be represented as a sum of
industry components, X`t =

∑
n X̃`nt. For example, X`t may denote the total demand for

a regional output that aggregates demand across industries n. Then x` can be rewritten
as a nonlinear function of initial shares w`n = X̃`n0

X`0
and regional growth rates x̃`n = X̃`n1

X̃`n0
,

as x` = log
∑
nw`nx̃`n. Suppose that a researcher suspects endogeneity in regional growth

rates but observes an industry characteristic Gnt with plausibly exogenous growth rates
gn = Gn1

Gn0
that predict the x̃`n. This motivates a nonlinear SSIV:

z` = log
∑
n

w`ngn. (S14)

Although exogeneity of gn makes
∑
nw`ngn a valid instrument (after controlling for∑

nw`n), the log transformation in equation (S14) generally introduces OVB. This is because
the log function is concave, so the expected instrument µ` = E [z` | w] is systematically
higher for regions where

∑
nw`ngn has a lower variance. In particular, regions with more

diversified economies (i.e., with w`n more dispersed across n) will tend to have systematically
higher z`, while they may also have systematically different unobservables. For example,
diversification may make the local economy more resilient to unobserved shocks, which
would generate an upward bias in an IV estimator which takes some measure of regional
economic growth as an outcome.78

Both of our solutions to OVB are quite intuitive for SSIVs in logs. One could recenter
78There is a further problem with the use of (S14) in practice. In panel specifications with unit and period

fixed effects the instrument is commonly specified as z`t = log
∑

n
w`nGnt (e.g., Berman et al. 2015). In

first differences this corresponds to ∆z` = log
∑

n
w̃`ngn where shares are reweighted, w̃`n = w`nGn0∑

n′ w`n′Gn′0
.

These shares do not align with the economic intuition behind the instrument construction and are likely to
lead to a weaker first-stage. The correct construction is z`t = log

∑
n
w`n

Gnt
Gn0

.
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equation (S14) by the appropriate measure of diversification µ`, which generally requires
specifying and simulating counterfactual shocks. Alternatively one may take a log-linear
approximation around gn = 1, which here yields an intuitive linear SSIV: ž` =

∑
nw`n log gn.

Removing OVB from this instrument requires only specifying (and appropriately controlling
for) the expected log gn.79

Inference and Monte Carlo Simulations We finally discuss how our framework brings
new tools to SSIV inference. We are not aware of any general asymptotic theory for the
nonlinear case (unless restrictive independence assumptions are placed on the residuals),
making RI an attractive approach to inference. For the linear case we argue that RI may
serve as a useful complement to the asymptotic theory of Adão et al. (2019).80

The choice between RI and asymptotic approaches involves tradeoffs. An advantage of
RI is its validity even with relatively few or concentrated shocks, when the asymptotics ap-
proximation may not be accurate. At the same time, RI requires specification of the shock
assignment process, rather than its first moment only, and thus assumptions of homoskedas-
ticity (or a known parametric form of heteroskedasticity, as in Appendix C.5), distribution
symmetry, or similar conditions which are not required for asymptotic exposure-robust in-
ference. On other dimensions the two approaches are hard to compare in general: they both
require constant treatment effects (and their sensitivity to treatment effect heterogeneity is
not known), and their power may differ.81

We therefore examine the power and robustness properties of RI in a Monte Carlo
simulation. Our simulation is based on the influential SSIV study by Autor et al. (2013),
who estimate the effects of import competition with China on U.S. local labor markets.
The simulation process follows Borusyak et al. (2020) in redrawing import competition
shocks according to a wild bootstrap (to preserve shock heteroskedasticity), holding fixed
the exposure shares and estimated structural residuals (see the data description at the end
of this subsection for details). We consider two asymptotic approaches to SSIV inference:

79More robust linear SSIVs may more generally be obtained by taking the nonlinear transformation before
averaging. Derenoncourt (2019), for example, addresses a skewed distribution of shocks by taking the sample
percentiles of a shift-share instrument, yielding a nonlinear SSIV. Taking instead an exposure-weighted
average of shock percentiles yields a linear SSIV that is valid without recentering, provided these percentiles
are as-good-as-randomly assigned and the weights sum to one.

80Adão et al. (2019) consider an asymptotic sequence with many uncorrelated (or weakly correlated)
shocks and sufficiently dispersed exposure. Linearity of the instrument is indispensable for their results.
This is clear from the equivalence result in Borusyak et al. (2020), which shows that the Adão et al. (2019)
standard errors can be obtained from conventional calculations after transforming the data to the level of
shocks. For nonlinear SSIV no such equivalence generally exists, making it difficult to draw on conventional
asymptotic theory.

81Adão et al. (2019) show that when treatment effects vary their standard errors are asymptotically
conservative, but this result only applies to reduced-form SSIV regressions under certain conditions on the
exposure shares. We know of no such guarantees in the IV case.
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the conventional “exposure-robust” standard errors of Adão et al. (2019) (obtained via
the equivalent shock-level regression in Borusyak et al. (2020)) and a version designed for
better finite-sample coverage by imposing the null hypothesis. We contrast these approaches
with an RI procedure based on randomly flipping the signs of the simulated shocks, which
leverages a known symmetry of the shock distribution shape.

Panel A of Figure S1 presents a simulated power curve for the main Autor et al. (2013)
data-generating process with 794 industry-by-period shocks (for 397 manufacturing SIC4
industries in two periods). We plot simulated rejection rates for each of the three modes
of inference across both a true causal effect of β = 0 and a range of alternative hypotheses
(normalized such that the SSIV estimate in the data has β = 1). Consistent with Borusyak
et al. (2020) we find that conventional exposure-robust standard errors yield a mild over-
rejection of the nominal 5% level test (see their Table C6, rows (b)), while the other two
procedures exhibit no significant size distortions. Despite correct coverage, power of the
null-imposed asymptotic inference procedure is low, failing to reject arbitrarily large values
of β (i.e. yielding infinite 95% confidence intervals) over 20% of the time. In contrast the
RI procedure has power similar to that of conventional exposure-robust asymptotics, if a
bit smaller.

In Panel B of Figure S1 we consider a modified data-generating process with fewer
shocks by aggregating manufacturing industries to their SIC2 groups (yielding 20 shocks
in each period), again following Borusyak et al. (2020). The size of all three methods is
similar to that in Panel A, with the overrejection of conventional exposure-robust standard
errors increasing slightly. Here the power of RI is asymmetric: similar to that of conven-
tional exposure-robust inference for negative values of β0, but weaker for positive values.
Still, it is again uniformly much stronger than that of the null-imposed procedure which
(approximately) shares the RI property of correct size.

Finally, Panels C and D of Figure S1 explore robustness of the three methods to treat-
ment effect heterogeneity, either across the two periods (Panel C) or nine geographic regions
(Census divisions, Panel D), with the original 794 shocks. The data-generating process here
is based on the heterogeneous effects estimated in the Autor et al. (2013) data and demeaned
in such a way that sets the median SSIV estimate to zero to make coverage well-defined
(see the data description below for details). Although there is no theoretical guarantee for
either RI nor the asymptotic approximations in this case, the results are surprisingly similar
to those in Panel A: RI coverage is correct and its power is close to that of exposure-robust
inference, while substantially exceeding that of the null-imposed version.

Data for the Monte Carlo Simulation Our simulations above are based on a data-
generating process that Borusyak et al. (2020) develop for the setting of Autor et al. (2013).
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Figure S1: Simulated Size and Power of Alternative Shift-Share IV Inference Procedures
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Notes: This figure plots simulated power curves for different shift-share IV inference proce-
dures. The baseline data-generating process in Panel A comes from Autor et al. (2013), as
described in Appendix D.4. In Panel B we reduce the number of industry shocks in each
period from 397 to 20. In Panels C and D we specify a data-generating process with het-
erogeneous effects by period or Census division. Exposure-robust tests are obtained from
the equivalent shock-level regressions of Borusyak et al. (2020). Hollow circles indicate the
power at β = ±∞, approximated by β = ±1, 000.
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The baseline process, used in Panel A of Figure S1, is calibrated to the IV estimates in
Column 3 of Table 4 in Borusyak et al. (2020) with a second and first stage of

y`t = βx`t + γ′r`t + ε`t, (S15)

x`t = πz`t + ρ′r`t + u`t. (S16)

The outcome y`t corresponds to the change in manufacturing employment as a fraction
of the working-age population in U.S. commuting zone ` in decade t (either 1990-2000 or
2000-2007), the treatment x`t is a measure of regional import competition with China, and
the shift-share instrument z`t =

∑
n s`ntgnt is constructed by combining the industry-level

growth of China imports in eight developed economies gnt with lagged regional employment
weights of different industries s`nt. The vector r`t includes the sum of lagged employment
shares, interacted with period indicators, and other pre-treatment controls as described in
Borusyak et al. (2020). The sum-of-share controls linearly span the expected instrument
when the industry shocks have a common mean in each period, and without loss we demean
gnt by period. There are a total of 1,444 observations (722 commuting zones in two periods)
and estimation is weighted by the start-of-period population of the commuting zone.

Each draw of the baseline simulation generates 1,444 new observations of (y`t, x`t, z`t)
by holding fixed the employment shares, pre-treatment controls, and estimated coefficients
and residuals of equations (S15) and (S16) but redrawing the industry shocks gnt. We
generate new shocks from a wild bootstrap of g∗nt = gntν

∗
nt by multiplying the original year-

demeaned shocks by a standard normal ν∗nt. This process preserves the heteroskedasticity of
the shocks, and corresponds to the process in row (b) of Table C6 in Borusyak et al. (2020).

In Panel B of Figure S1 we modify the baseline process to reduce the number of shocks
in each period, from N = 397 manufacturing SIC industries to 20 two-digit industries. This
modification corresponds to the process in row (g) of Table C6 in Borusyak et al. (2020).
We aggregate imports from China to the U.S. and either developed economies as well as
the number of U.S. workers by manufacturing industry to construct the new gnt, z`t, and
x`t, as described in Appendix A.10 of Borusyak et al. (2020), holding fixed other variables.
We then redraw shocks again by a wild bootstrap,

In Panels C and D of Figure S1 we modify the baseline process to add treatment effect
heterogeneity, by period and Census division. We use the original number of shocks but
instead estimate versions of equations (S15) and (S16) which interact both x`t and z`t with
period or division fixed effects. In Panel C the estimated second-stage effects are -0.491 for
the 1990s and -0.225 for the 2000s, replicating Table C3 of Borusyak et al. (2020). In Panel
D the estimated effects vary between -0.609 for the East North Central Census division and
-0.135 for the West North Central division. We then generate data as before, with a wild
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bootstrap for shocks.
In each panel we simulate power curves for three inference procedures: the “exposure-

robust” asymptotic approach of Adão et al. (2019), this approach with the null hypothesis
imposed, and randomization inference. We implement the two asymptotic tests by the
equivalent industry-level regressions described in Borusyak et al. (2020). RI is based on
the test statistic

∑
`t z`t(y⊥`t − bx⊥`t) which residualizes on the control vector and leverages

the known symmetry of g∗nt around zero to specify counterfactual shocks as ǧnt = g∗ntξnt

where ξnt equals 1 or −1 with equal probability. We normalize the true value of β to zero
in each simulation of Panels A and B; for Panels C and D we normalize the heterogeneous
true effects by subtracting a constant in such a way that the median of the second-stage
coefficients across simulations is zero.

D.5 Model-Implied Instruments

Adão et al. (2020) develop a spatial general equilibrium model and propose a novel way to
identify its parameters. They assume that a researcher observes shifters g to some model’s
primitives, such as trade costs. They then propose log-linearizing the model around the
initial equilibrium to derive an estimating equation for the changes in some regional outcome
y`, of

y` =
∑
n

m`n (w, β) gn + ε`, (S17)

where m`n (w, β) represents the general-equilibrium elasticity of y` with respect to gn as a
function of predetermined equilibrium variables in w, and ε` captures unobserved shocks.
Adão et al. (2020) treat w as non-stochastic and impose exogeneity of the observed shifters
by assuming82

E [ε | g] = 0. (S18)

They then directly apply the classic efficiency result of Chamberlain (1987) to derive an
optimal “model-implied” generalized method of moments estimator of β.

Our framework clarifies and permits a relaxation of an assumption that predetermined
equilibrium is exogenous, which Adão et al. (2020) implicitly make in this setting. The
identification assumption (S18) is stronger than it might appear because the predetermined
equilibrium variables in w are implicitly conditioned on, and therefore treated as exogenous.
To see this assumption clearly, note that (S18) implies E [ε`] = 0 by the law of iterated expec-
tations. While innocuous under iid-sampling, this condition is strong in the interdependent
economy, as it requires the unobserved shocks to be on average the same for each region `,

82More precisely, they use the property of their model that gn enter (S17) via particular shift-share averages
η = {η`}L`=1, and assume E [ε | η] = 0. This detail does not affect our discussion of this setting.
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regardless of the local characteristics in w like industry composition or migration shares.83

Our framework allows for a weaker assumption of E [ε | g] = E [ε] (Assumption 2(i)) without
restricting E [ε`] = 0, and therefore allows the predetermined equilibrium to be endogenous;
identification then follows from appropriate recentering. Since the treatment in (S17) is
linear in shocks, recentering simply requires recentering gn by their conditional expectation
(as in Section D.4; see also Appendix C.8 for a discussion of how the Section 3 framework
is extended to nonlinear equations). Our generalization of Chamberlain (1987) (similarly
extended in Appendix C.8) further shows how optimal recentered instruments can be con-
structed in this setting to allow for both endogeneity of the predetermined equilibrium as
well as potential non-iidness of the unobserved error ε`. As always, randomization inference
can be used to account for unspecified error dependence.

D.6 Centralized School Assignment Instruments

Our approach also applies to settings in which instruments arise from centralized assignment
mechanisms, such as those used to allocate public school seats to students. Abdulkadiroglu
et al. (2017) first show how centralized school assignments can be used as valid instru-
ments when generated by mechanisms satisfying the “equal treatment of equals” property,
in which students with the same school preferences and administrative priorities face the
same assignment propensity. They use market design theory to derive large-sample ap-
proximations to this assignment risk in deferred acceptance mechanisms and further show
how such assignment propensity scores can be simulated by redrawing the randomized lot-
tery numbers which break ties between students with the same preferences and priorities.
Abdulkadiroglu et al. (2019) extend this framework to deferred acceptance mechanisms
with discontinuities in assignment rules (e.g. over scores from a school entrance exam) by
showing how large-sample assignment risk can again be computed.

Our framework nests this setting by writing indicators for assignment of student ` to
a given school (or any other function of centralized assignments) as z` = f`(g;w), where
(g;w) partitions the inputs of a given assignment mechanism. The shock vector g might for
example contain the set of tie-breaking lottery numbers in a stochastic deferred acceptance
mechanism, with w containing the set of students’ rankings over schools and administrative
school priorities. The discontinuities in Abdulkadiroglu et al. (2019) may be accommodated
by a local randomization approach. Our expected instrument µ` would then coincide with
the assignment propensity scores defined in this literature.

Our analysis offers two new insights to this setting. First, expected assignments may
be generated by simulating any mechanism with a random or locally random component

83This point is more clearly seen in our framework, which views w as potentially stochastic and writes
(S18) as E [ε | g, w] = 0, which in turn implies E [ε | w] = 0.
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g, whether or not it satisfies equal treatment of equals or has the deferred acceptance
structure. Examples include top trading cycle mechanisms with single or multiple tie-
breakers or mechanisms that incorporate affirmative action constraints (e.g. Angrist et
al. 2019). The validity of assignment instruments that recenter by or control for these
expected instruments arises simply from the exogenous variation in g. Second, valid finite-
sample tests and confidence intervals can also be obtained by simulating the mechanism.
This RI approach accounts for the inherent dependencies of school offers across students. It
remains valid when potential outcomes are not independent, as when applicants with similar
school preferences and priorities are similar in other unobserved ways, or are affected by
common unobserved shocks.

D.7 Mass Media Access Instruments

Our approach further applies to a literature estimating the effects of access to mass me-
dia. For example, Olken (2009) studies the effects of television and radio access on social
capital in Indonesia, while Yanagizawa-Drott (2014) estimates the impact of radio-based
propaganda on violence in the 1994 Rwandan Genocide (see also Enikolopov et al. (2011),
Della Vigna et al. (2014), and Wang (2020)). Papers in this literature recognize that local
media access is a treatment that combines variation in the location of television or radio
transmitters and in local topographic features (such as mountain ranges) that can inhibit
transmission. Viewing the latter, but not the former, variation as plausibly exogenous,
Olken (2009) controls for a measure of “free-space signal strength” that ignores local to-
pography, while Yanagizawa-Drott (2014) controls for a quadratic in the distance to radio
transmitters (noting that the power density of radio signals decreases in squared distance).
In our framework, where media access can be written f`(g;w) with g denoting topographical
features and w denoting transmitter location, the free-space signal strength control can be
written f`(0;w) and may be absorbed by the Yanagizawa-Drott (2014) controls.

Our approach to isolating exogenous topographical features would be to instead control
for µ` = E [f`(g;w) | w], for some (perhaps uniform) permutation of such features across
the map. This µ` will generally differ from both control strategies in the literature and may
better remove transmitter location-driven variation. For instance, imagine that in free space
signal quality decays by distance-squared, but in a hilly terrain the decay is faster. Since the
counterfactuals underlying µ` involve other hilly terrains, our control will automatically rely
on the appropriate distance elasticity, when the free-space controls would not.84 Naturally,
the superiority of the µ` control relies on the similarity between the actual and proposed

84To illustrate this point a bit more poetically, Yanagizawa-Drott (2014) motivates this identification
strategy by pointing out that Rwanda is called “The Land of the Thousand Hills.” Our approach suggests
that media access in The Land of Zero Hills (the free-space measure) may not capture the relevant geographic
confounders as well as the average media access in the Lands of the Thousand Random Hills would.

S34



counterfactual hills—an assumption that we formalize by viewing them as equally likely,
and that gives empirical content to viewing geographic features as exogenous.

D.8 Weather Instruments

Finally, our approach applies to empirical designs leveraging spatial variation in weather,
such as rainfall on the days of elections and other political events. It is standard in this
literature to measure “normal weather” in each location as the average of historical data
and then subtract it from the actual weather (e.g. Gomez et al. 2007) or control for it
(e.g. Madestam et al. 2013). These two approaches to the OVB problem directly parallel
our general solutions, given an assumption of stationary weather. Our framework implies
that this assumption is not important for identification: any meteorological model that
yields a weather distribution for the event days could similarly be used for recentering.
Further, randomization inference is natural in this setup. While Lind (2019) has shown
that conventional modes of inference have severely distorted coverage because of the spatial
correlation in both weather and residuals, Cooperman (2017) has addressed this problem
by permutation tests based on historical weather maps. Applying similar permutations to
obtain confidence intervals for the actual estimates would be in line with our general RI
framework.

E Supplementary Proofs

E.1 Proof of Proposition S1 and Corollaries

Proposition S1 We write y` = y`(χ,w, e)+
∫ x`
χ β`(χ,w, e)dχ. Note that E

[
z̃`y`(χ,w, e)

]
=

E
[
E
[
z̃`y`(χ,w, e) | w, e

]]
= 0 by the law of iterated expectations and Assumption 1. Thus,

E [z̃`y`] = E
[
z̃`

∫ x`

χ
β`(χ,w, e)dχ

]

= E
[
E
[∫ x`

χ
β`(χ,w, e)z̃`dχ | e, w

]]

= E
[
E
[∫ χ̄

χ
β`(χ,w, e)z̃`1 [x` ≥ χ] dχ | e, w

]]

= E
[∫ χ̄

χ
β` (χ,w, e)φ`(χ,w, e)dχ

]
(S19)
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where, since E [z̃` | e, w] = 0 by Assumption 1,

φ`(χ,w, e) = E [z̃`1 [x` ≥ χ] | e, w]

= Cov [z̃`,1 [x` ≥ χ] | e, w] . (S20)

By similar steps we can write E [z̃`x`] = E
[∫ χ̄
χ φ`(χ,w, e)dχ

]
. Note that

φ`(χ,w, e) = Cov [z̃`, P r (x` ≥ χ | z`, e, w) | e, w] , (S21)

again by the law of iterated expectations. Thus when Pr (x` ≥ χ | z` = z, e, w) is weakly
increasing in z for each χ almost-surely, φ`(χ,w, e) ≥ 0 almost-surely and

E
[

1
L

∑
` z̃`y`

]
E
[

1
L

∑
` z̃`x`

] = E
[

1
L

∑
`

∫ ∞
−∞

β` (χ,w, e)ω`(χ,w, e)dχ
]
, (S22)

where

ω`(χ,w, e) = φ`(χ,w, e)
E
[

1
L

∑
`

∫∞
−∞ φ`(χ,w, e)dχ

] ≥ a.s. (S23)

gives a weighting scheme with E
[

1
L

∑
`

∫∞
−∞ ω`(χ,w, e)dχ

]
= 1.

Corollary S1 In the reduced-form linear heterogeneity case, where β` = β` (w, e), the
proof of Proposition S1 simplifies considerably:

E [z̃`y`] = E [z̃` (β`z` + ε`)]

= E [E [z̃` (β`z` + ε`) | e, w]]

= E [β`Var [z̃` | w]]

by the law of iterated expectations and using Assumption 1. Similarly, E [z̃`z`] = E [Var [z̃`]],
yielding the desired result.85

85The same result can be obtained by directly applying Proposition S1 and verifying that∫ χ̄
χ
φ`(χ,w, e)dχ = Var [z̃` | w] in this case.
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Corollary S2 Here

y` = y`(0) + β`x`

= y`(0) + β`x`(0) + β` (x`(1)− x`(0)) z`
= y`(0) + β`x`(0) + β` (x`(1)− x`(0)) (z̃` + µ`) (S24)

and

E [z̃` (y`(0) + β`x`(0) + β` (x`(1)− x`(0))µ`)]

= E [E [z̃` (y`(0) + β`x`(0) + β` (x`(1)− x`(0))µ`) | w]] = 0, (S25)

by the law of iterated expectations and Assumption 1. Thus,

E [z̃`y`] = E
[
β` (x`(1)− x`(0)) z̃2

`

]
= E

[
E
[
β` (x`(1)− x`(0)) z̃2

` | w
]]

= E
[
E [β` (x`(1)− x`(0)) | w]E

[
z̃2
` | w

]]
= E

[
E [β` | x`(1) > x`(0), w] p`σ2

`

]
(S26)

where the second equality again uses the law of expectations, the third equality follows by
Assumption 1, and the fourth equality follows by definition of σ2

` and when p` is almost-
surely non-negative. Similar steps show that E [z̃`x`] = E

[
p`σ

2
`

]
, so

E
[

1
L

∑
`(z` − µ`)y`

]
E
[

1
L

∑
`(z` − µ`)x`

] = E
[

1
L

∑
`

E [β` | x`(1) > x`(0), w] ω̃`

]
(S27)

where

ω̃` = p`σ
2
`

1
L

∑
` E
[
p`σ

2
`

] . (S28)

E.2 Proof of Proposition S2

Proof of β̂ consistency. We have

β̃ − β =
1
L

∑
` z̃`ε`

1
L

∑
` z̃`x`

=
1
L

∑
` z̃`ε`
M

(1 + op(1)) (S29)
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since 1
L

∑
` z̃`x`

p−→ M . Here E
[

1
L

∑
` z̃`ε`

]
= 0; moreover by conditional independence of g

and the Cauchy-Schwartz inequality

Var
[

1
L

∑
`

z̃`ε`

]
= E

( 1
L

∑
`

z̃`ε`

)2
 = 1

L2

∑
`,m

E [z̃`z̃mε`εm]

= 1
L2

∑
`,m

E [E [z̃`z̃m | w]E [ε`εm | w]]

≤ 1
L2

∑
`,m

E
[
|E [z̃`z̃m | w]|

√
E
[
ε2
` | w

]
E [ε2

m | w]
]

≤ BE

 1
L2

∑
`,m

|Cov [z̃`, z̃m | w]|

→ 0 (S30)

Thus 1
L

∑
` z̃`ε`

p−→ 0, and β̃ p−→ β.

Proof of RI test consistency. Assumption 1 is stronger than the shock exogeneity
assumptions of part (i), hence 1

L

∑
` z̃`ε`

p→ 0. Note that

T = 1
L

∑
`

z̃`(y` − bx`) = 1
L

∑
`

z̃`ε` + (β − b) 1
L

∑
`

z̃`x`

p→ (β − b)M 6= 0. (S31)

For the test to be consistent it is then enough that 1
L

∑
` z̃
∗
` (y`−bx`)

p→ 0 for z̃∗` = f` (g∗, w)−
µ`. For any b,

E
[

1
L

∑
`

z̃∗` (y` − bx`)
]

= E
[

1
L

∑
`

E [z̃∗` (y` − bx`) | w]
]

= E
[

1
L

∑
`

E [z̃∗` | w]E [y` − bx` | w`]
]

= 0 (S32)
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by the definition of z̃∗` and the law of iterated expectations. Furthermore,

Var
[

1
L

∑
`

z̃∗` (y` − bx`)
]

= E

( 1
L

∑
`

z̃∗` (y` − bx`)
)2


= 1
L2

∑
`,m

E [E [z̃∗` z̃∗m | w]E [(y` − bx`) (ym − bxm) | w]]

≤ 1
L2

∑
`,m

E
[
|E [z̃∗` z̃∗m | w]|

√
E
[
(y` − bx`)2 | w

]
E
[
(ym − bxm)2 | w

]]

≤ C(b)E

 1
L2

∑
`,m

|Cov [z̃`, z̃m | w]|

→ 0, (S33)

where C(b) is such that E
[
(y` − bx`) 2 | w

]
≤ C(b) uniformly across w and `, and the last

line follows because the distributions of z∗ and z are the same conditionally on w. The C(b)
bound can be constructed using the bounds for E [x`ε` | w] and E

[
x2
` | w

]
from

E
[
(y` − bx`)2 | w

]
= E

[
ε2
` + 2 (β − b)x`ε` + (β − b)2 x2

` | w
]

≤ B + 2 |β − b| · |E [x`ε` | w]|+ (β − b)2 E
[
x2
` | w

]
. (S34)

Proof of Lemma S1(i). For the first statement of the lemma, we have

1
L2

∑
`,m

E

 1
L2

∑
`,m

|Cov [z̃`, z̃m | w]|

 =
∑
`,m

E

 1
L2

∑
`,m

Cov [z̃`, z̃m | w]


= E

[
Var

[
1
L

∑
`

z̃` | w
]]

= Var
[

1
L

∑
`

z̃`

]
→ 0, (S35)

where the first line uses Cov [z̃`, z̃m | w] ≥ 0 a.s., the second line rearranges the terms, and
the third line follows by the law of total variance because E

[
1
L

∑
` z̃` | w

]
= 0.

For the second statement, we first establish two general lemmas.

Lemma S1. If h : RN → R is monotone and random variables g1, . . . , gN are independent,
then for any k ∈ {1, . . . , N − 1} the conditional expectation E [h (g1, . . . , gN | g1, . . . gk)] is
monotone.

Proof: Denote the cumulative distribution function of gn by Gn(·) and consider the
N × 1 vector g′ = (g′1, . . . , g′k, gk+1, . . . , gN ), with g′n ≥ gn for n ≤ k. Then
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h (g′) ≥ h (g) by monotonicity. Therefore,

E
[
h
(
g′ | g1, . . . gk

)]
=
∫
· · ·
∫
h
(
g′
)
dGk+1(gk+1) . . . dGN (gN )

≥
∫
· · ·
∫
h (g) dGk+1(gk+1) . . . dGN (gN )

= E [h(g | g1, . . . gk)] , (S36)

as required.

Lemma S2. For any monotone h1, h2 : RN → R, Cov [h1 (g) , h2 (g)] ≥ 0 for g = (g1, . . . , gn)
with independent components.

Proof: For N = 1 this is well known. For N > 1 we prove that by induction. Suppose
it is true for N − 1. Then by the law of total covariance

Cov [h1 (g) , h2 (g)] = E [Cov [h1(g), h2(g) | g1]]+Cov [E [h1(g) | g1] ,E [h2(g) | g1]] .
(S37)

The first term is the expectation of a covariance between two monotone functions
of N −1 variables, where monotonicity follows by Lemma S1. The second term,
again by Lemma S1, is a covariance of two monotone functions of random scalars.
Thus both of the terms are non-negative.

Applying Lemma S2 to z̃` = f` (g, w)−µ` (w) and z̃m = fm (g, w)−µm (w) and conditioning
on w everywhere, we obtain the second result of Lemma S1(i).

Proof of Lemma S1(ii). Suppose E
[
z̃2
` | w

]
≤ BZ a.s. for all `. For ` and m such that

1 [G` ∩Gm = ∅], z̃` ⊥⊥ z̃m | w because f` and fm are functions of two non-overlapping sub-
vectors of g, the components of which are conditionally independent. Thus Cov [z̃`, z̃m | w] =
0 a.s. for such (`,m) pairs. We therefore obtain

1
L2

∑
`,m

E

 1
L2

∑
`,m

|Cov [z̃`, z̃m | w]|

 = 1
L2

∑
`,m

1 [G` ∩Gm 6= ∅]E

∑
`,m

|Cov [z̃`, z̃m | w]|


≤ 1
L2

∑
`,m

1 [G` ∩Gm 6= ∅]E
[√

Var [z̃` | w] Var [z̃m | w]
]

≤ BZ ·
1
L2

∑
`,m

1 [G` ∩Gm 6= ∅]→ 0. (S38)
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E.3 Proof of Proposition S3

Suppose the null β = b holds. The acceptance region R =
[
Tα/2, T1−α/2

]
is non-stochastic

conditionally on (ε, w). Thus

Pr (T ∗ ∈ R | ε, w) = Pr (T ∗ ∈ R | y, x, w) ≥ 1− α (S39)

by construction, with equality if T ∗ | (ε, w) is continuous.
By Assumption 1, the distribution g | (ε, w) is the same as g | w, which in turn is the

same as the distribution of g∗ | (ε, w) as g∗ ⊥⊥ ε | w. Therefore, conditionally on (ε, w), T
and T ∗ have the same distribution, yielding

Pr (T ∈ R | ε, w) = Pr (T ∗ ∈ R | ε, w) ≥ 1− α. (S40)

E.4 Proof of Proposition S4

Let R̂ (t, e) =
∫

1 [T (γ, e) ≤ t] dG (γ) denote the re-randomization distribution of the nor-
malized RI test statistic. We first prove that when testing the correct null, i.e. for e = ε, this
cdf converges in probability to Φ

(
t/
√
Ṽ
)
for each t, where Φ (·) is the cdf of the standard

normal distribution. By Assumption S6 and the Law of Iterated Expectations

E
[
R̂ (t, ε)

]
= Pr (T (g∗, ε) ≤ t)→ Φ

(
t/
√
Ṽ
)
. (S41)

Similarly,

E
[
R̂ (t, ε)2

]
= E

[∫ ∫
1 [T (γ1, ε) ≤ t] 1 [T (γ2, ε) ≤ t] dG (γ1) dG (γ2)

]
= Pr (T (g∗1, ε) ≤ t, T (g∗2, ε) ≤ t)

→ Φ2
(
t/
√
Ṽ
)
, (S42)

where the last line again uses Assumption S6. Thus Var
[
R̂ (t, ε)

]
= E

[
R̂2 (t, ε)

]
−E

[
R̂ (t, ε)

]2
→

0, showing that R̂ (t, ε) p→ Φ
(
t/
√
Ṽ
)
.

Since the normal distribution is continuous, convergence of the re-randomization cdf
implies convergence in probability of the RI critical values Tα/2 and T1−α/2 by Lemma
11.2.1(ii) of Lehmann and Romano (2006): Tα/2

p−→
√
Ṽ Φ−1(α/2) and T1−α/2

p→
√
Ṽ Φ−1(1−

α/2) where Φ−1(·) denotes the standard normal quantile function.
Now consider the RI procedure for testing the local alternative bL. The randomization
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test is based on the statistic

T (g∗, y − bLx) = rL
1
L
f (g∗)′ (ε+ x · δ/rL)

= rLT (g∗, ε) + δ
1
L
f (g∗)′ x. (S43)

While the first term converges to a distribution as before, the second term converges to zero
in probability under the assumptions of Proposition S2(ii) (see equation (S33)). Thus, by
contiguity, the RI critical values are asymptotically the same and converge in probability
to
√
Ṽ Φ−1(α/2) and

√
Ṽ Φ−1(1− α/2). In contrast, the asymptotic distribution of the test

statistic is shifted by δM :

T (g, y − bLx) = rL
1
L
z′ (ε+ x · δ/rL)

= rLT (g, ε) + δ
1
L
f (g)′ x

d→ N
(
δM,

√
Ṽ
)
. (S44)

Therefore, with Z denote a standard normal variable, the limiting power of the RI test
equals

Pr
(
δM +

√
Ṽ · Z <

√
Ṽ Φ−1(α/2)

)
+ Pr

(
δM +

√
Ṽ · Z >

√
Ṽ Φ−1(1− α/2)

)
= Pr

(
Z < Φ−1(α/2)− δM/

√
Ṽ
)

+ Pr
(
−Z < δM/

√
Ṽ − Φ−1(1− α/2)

)
= Φ

(
Φ−1(α/2)− δ/

√
V
)

+ Φ
(
Φ−1(α/2) + δ/

√
V
)
, (S45)

by symmetry of Φ(·). Differentiating (S45) by V yields

− 1
2V
−3/2 · δ

[
Φ′
(
Φ−1(α/2) + δ/

√
V
)
− Φ′

(
Φ−1(α/2)− δ/

√
V
)]
. (S46)

It is clear that this derivative is negative, since the standard normal density Φ′(·) is an
even function that increases towards zero, and Φ−1(α/2) + δ/

√
V is closer to zero than

Φ−1(α/2)− δ/
√
V if and only if δ > 0, since Φ−1(α/2) < 0. This concludes the proof.

E.5 Proof of Proposition S5

By the mean value theorem, µ`
(
θ̂, w

)
− µ` (θ, w) = ∂µ`

∂θ (θ∗, w)′
(
θ̂ − θ

)
for some θ∗ ∈ Θ

and with ∂µ`
∂θ component-wise bounded by a scalar Bµ. Thus, for any variable v` satisfying
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1
L

∑
` |v`| = Op(1),∣∣∣∣∣ 1L∑

`

v`
(
µ`
(
θ̂, w

)
− µ` (θ, w)

)∣∣∣∣∣ ≤ 1
L

∑
`

∣∣∣v` (µ` (θ̂, w)− µ` (θ, w)
)∣∣∣

= 1
L

∑
`

∣∣∣∣v`∂µ`∂θ
(θ∗, w)′

(
θ̂ − θ

)∣∣∣∣
≤
(

1
L

∑
`

|v`|
)
Bµ
∥∥∥θ̂ − θ∥∥∥

1
p−→ 0. (S47)

Therefore, with ẑ` = z` − µ`
(
θ̂, w

)
,

1
L

∑
`

ẑ`x` = 1
L

∑
`

z̃`x` −
1
L

∑
`

x`
(
µ`
(
θ̂, w

)
− µ` (θ, w)

)
p−→M 6= 0 (S48)

and
1
L

∑
`

ẑ`ε` = 1
L

∑
`

z̃`ε` −
1
L

∑
`

ε`
(
µ`
(
θ̂, w

)
− µ` (θ, w)

)
p−→ 0, (S49)

where the first line uses Assumption S3 and stochastic boundedness of 1
L

∑
` |x`|, and the

second line follows from Proposition S2 and stochastic boundedness of 1
L

∑
` |ε`|. To-

gether equations (S48) and (S49) show consistency of the plug-in recentered estimator∑
` ẑ`y`/

∑
` ẑ`x`.

E.6 Proof of Proposition S6

For part (i) observe that g ⊥⊥ ε⊥ | w because g ⊥⊥ (a, ε) | w. Therefore, E
[

1
L

∑
` z̃`ε

⊥
`

]
= 0 by

the law of iterated expectations, yielding identification. (A proof under a weaker exogeneity
assumption E [ε` | g, a, w] = E [ε` | a,w] can be constructed along the lines of Proposition
1, see equation (16)). Part (ii) follows because under the null the distribution of g | ε⊥, w
is the same as g | w, by independence established in part (i). Part (iii) is analogous to the
proof of Proposition 2 for the µ`-controlled regression (Appendix B.2). Part (iv) follows
from the fact that for any variable v`, 1

L

∑
` z`v

⊥
` = 1

L

∑
` z̃`v

⊥
` because 1

L

∑
` µ`v

⊥
` = 0 by

the properties of projection. Finally, for part (v) we write β̃⊥ − β = 1
L

∑
` ε
⊥
` z̃`/

1
L

∑
` x
⊥
` z̃`.

We first show that the numerator converges to zero in probability. We have:

1
L

∑
`

ε⊥` z̃` = 1
L

∑
`

ε`z̃` − α̂′ε

(
1
L

∑
`

a`z̃`

)
. (S50)

By Proposition S2(i), 1
L

∑
` ε`z̃` = op(1). Moreover, using E

[
a2
`r | w

]
≤ Ba, g ⊥⊥ a | w, and

Assumption S5 and applying the proof of Proposition S2(i) with a`r in place of ε` yields
1
L

∑
` a`rz̃` = op(1) for each r = 1, . . . , R. Since α̂ε = Op(1), we have 1

L

∑
` ε
⊥
` z̃` = op(1).
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A similar argument implies that the first stage of β̃⊥ converges to M 6= 0:

1
L

∑
`

x⊥` z̃` = 1
L

∑
`

x`z̃` − α̂′x

(
1
L

∑
`

a`z̃`

)
, (S51)

where 1
L

∑
` x`z̃` = M + op(1) by Assumption S3 and α̂x = Op(1). Therefore, β̃⊥

p→ β.
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