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Motivation
Many economic questions involve the causal effects of treatments xi that
are computed from multiple sources of variation by a known formula

How can we credibly estimate the effects of such xi when some, but
not all, of its determinants are as-good-as-randomly assigned?

1. Spatial/network/GE spillover treatments: e.g. the number of neighbors
selected for a randomized intervention:

Who got selected for the intervention & who neighbors whom

2. Regional growth of market access from transportation upgrades:
Location + timing of upgrades & location and size of markets

3. An individual’s eligibility for a public program, e.g. Medicaid:
State-level policy & individual income and demographics

Goal: to avoid non-experimental assumptions (e.g. parallel trends)
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This Paper: Contributions

1 Non-random exposure to as-good-as-random shocks generates
systematic variation in xi , which can lead to omitted variable bias

Randomizing roads 6⇒ randomizing market access growth from them

2 Systematic variation in xi can be removed via novel “recentering”
Specify many counterfactual sets of shocks
Compute µi = the average xi across counterfactuals, by simulation
— the key confounder
Recenter xi by µi (i.e. instrument xi with xi −µi ) or control for µi

Alternative solutions are often infeasible/inefficient (e.g. directly
instrumenting with shocks or controlling for all features of exposure)

3 Same counterfactuals also yield inference tools and specification tests
Via randomization inference
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Outline

1 Motivating examples:
Market access effects
Effects of program eligibility

2 General framework

3 Practical relevance in applications:
Estimate employment effects of China high-speed rail construction
while addressing OVB from non-random HSR exposure
Efficiently estimate Medicaid eligibility effects from state-level shocks
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Motivating Example 1: Market Access Effects via RCT

Theory suggests transportation upgrades affect local outcomes (e.g. land
value) of regions i by increasing their market access (MA):

∆logVi = β ∆logMAi + εi , (1)
where MAit = ∑

j
τ(gt , loci , locj)

−1popj , (2)

for road network gt in periods t = 1,2, region locations locj
(co-determining travel cost τ), and regional population popj

Imagine an experiment that randomly connects adjacent regions by road

MA only grows because of the random transportation shocks

So can we view variation in MA growth as random and just run OLS?

Randomizing roads 6⇒ randomizing MA due to them!
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Illustration: Market Access on a Square Island

Start from no roads, assume equal population everywhere

0.00
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Illustration: Market Access on a Square Island

Randomly connect adjacent regions by road

and compute MA growth

0.00
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Illustration: Market Access on a Square Island

Randomly connect adjacent regions by road and compute MA growth

0.83
1.58
1.85
2.14
2.41
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Randomly connect adjacent regions by road and compute MA growth

0.91
1.56
2.05
2.28
2.59
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Illustration: Market Access on a Square Island

Randomly connect adjacent regions by road and compute MA growth

1.04
1.82
2.12
2.31
2.50
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Expected Market Access Growth µi

Some regions get systematically more MA

1.39
1.47
1.75
1.86
1.92
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Illustration: High-Speed Rail in China

149 lines were built or planned (as of April 2019)
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Illustration: High-Speed Rail in China

The 83 lines actually built by 2016. Suppose timing is random
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Illustration: High-Speed Rail in China

A counterfactual draw of 83 lines by 2016
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Illustration: High-Speed Rail in China

Expected MA growth, µi
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OVB and Recentering Solution

Systematic variation in MA growth can generate OVB

E.g. land values fall in the periphery because of rising sea levels
More vs less developed Chinese regions may be on different trends

Systematic variation can be removed via “recentering”:
Recentered
MA growth =

Realized
MA growth −

Expected
MA growth

Compares MA from actual and counterfactual shocks
By construction, is uncorrelated with any geography-based trends in ε

Thus, recentered MA is a valid instrument for realized MA growth!
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Avoiding Bias from Non-Random Exposure: An Algorithm

1 Measure MA from realized (exogenous) transportation shocks and
preexisting geography

2 Consider many counterfactual sets of transportation shocks
Requires to formalize the natural experiment: what’s random?
E.g. random timing or placement of lines

3 Recompute MA growth every time and take the average: expected
MA growth, µi

4 Recenter realized MA growth by µi or add it as a control

5 Consider using counterfactual shocks for randomization inference
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Motivating Example 2: Effects of Program Eligibility
The effects of individual’s eligilibity xi to a public program (e.g. Medicaid):

yi = βxi + εi

where xi is determined by i ’s state policy g statei and demographics

Suppose state policies g are as-good-as-random
Yet, pre-determined demographics are endogeous ⇒ OLS is biased

Standard “simulated instruments” solution (Currie and Gruber (1996)):
use state-level variation only (a measure of policy generosity) as IV for xi

Our approach:
Formalize the policy experiment as “all permutations of g across
states are equally likely”
Compute µi = the share of states in which i would be eligible
Leverage all variation in xi but recenter by µi (or control for µi)
Yields efficiency gain by better first-stage prediction, e.g. by removing
i who are always or never eligible and not useful for analysis
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General Setting & Language

We have a model of yi = βxi + εi for a fixed population i = 1 . . .N

In the paper: extensions to heterogeneous effects, other controls,
multiple treatments, nonlinear outcome models, panel data...

We have a candidate instrument zi = fi (g ,w), where g is a vector of
shocks; w measures predetermined “exposure”; fi (·) are known mappings

Applies to any zi which can be constructed from observed data
Nests reduced-form regressions: xi = zi

Allows g = (g1, . . . ,gK ) to vary at a different level than i

Assumptions:
1 Shocks are exogenous: g ⊥⊥ ε | w
2 Conditional distribution G(g | w) is known (e.g. uniform across

permutations of g)
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Results
Expected instrument, µi = E [fi (g ,w) | w ], is the sole confounder
generating OVB:

E

[
1
L ∑

i
ziεi

]
= E

[
1
L ∑

i
µiεi

]
6= 0, in general

The recentered instrument z̃i = zi −µi is a valid instrument for xi :

E

[
1
L ∑

i
z̃iεi

]
= 0

Regressions which control for µi also identify β (implicit recentering)
Consistency: follows when z̃i is weakly mutually dependent across i
Robustness to heterogeneous treatment effects: z̃i identifies a
convex avg. of βi under appropriate first-stage monotonicity
Randomization inference provides exact confidence intervals for β

(under constant effects) and falsification tests
We characterize the asy. efficient recentered IV among all fi (·)
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App. 1: Market Access from Chinese High-Speed Rail

We first show how instrument recentering can address OVB when
estimating the effects of market access growth

Setting: Chinese HSR; 83 lines built 2008–2016, 66 yet unbuilt

Market access: MAit = ∑k exp(−0.02τikt)pk,2000, where τikt is
HSR-affected travel time between prefecture capitals (Zheng and
Kahn, 2013) and pi ,2000 is prefecture i ’s population in 2000

Relate to employment growth in 274 prefectures, 2007-2016
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Conventional OLS regressions suggest a large MA effect

Regression slope: 0.232 (0.075)
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But high vs low MA growth is not the most convincing
contrast!
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Built and Planned HSR Lines

We assume random timing of built & planned lines with the same
# of links ⇒ reshuffle them accordingly e.g.
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Expected Market Access Growth (2007–2016), µi
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Recentered Market Access Growth (2007–2016), z̃i

Specification tests pass Balance Regressions
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Recentered MA doesn’t predict employment growth!

Regression slope: 0.085 (0.107)
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Adjusted Estimates of Market Access Effects

Regressions of log employment growth on log market access growth in 2007–2016.
Spatial-clustered standard errors in parentheses; permutation-based 95% CI in brackets

Robustness LATE Weights
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App. 2: Efficient Estimation of Medicaid Eligibility Effects

Setting: U.S. Medicaid, partially expanded in 2014 under the ACA

19 of 43 states with low Medicaid coverage expanded to 138% FPL

View expansion decisions as random across states with same-party
governors, but not household demographics or pre-2014 policy

Outcomes: Medicaid takeup and private insurance crowdout

Compare two estimators valid under the same assumptions:
Simulated IV: uses state-level variation only; here, simply an
expansion dummy

Our recentered IV: predict eligibility from expansion decisions &
non-random demographics, and recenter

Recentered IV has better first-stage prediction ⇒ ≈ 3 times smaller
standard errors
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Estimates with Simulated vs. Recentered IV

1% ACS sample of non-disabled adults in 2013–14, diff-in-diff IV regressions using one
of the two instruments. Baseline controls include state and year fixed effects and an
indicator for Republican governor interacted with year. State-clustered standard errors in
parentheses; Wild score bootstrap 95% CI in brackets First stage Pre-trends Power curve
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Other Settings where Recentering Is Relevant

Network spillovers (e.g. Miguel-Kremer 2004, Carvalho et al. 2020)

Linear shift-share IV (e.g. Autor et al. 2013, Borusyak et al. 2021)

Nonlinear shift-share IV (e.g. Boustan et al. 2013, Berman et al.
2015, Chodorow-Reich and Wieland 2020, Derenoncourt 2021)

IV based on centralized school assignment mechanisms
(e.g. Abdulkadiroğlu et al. 2017, 2019, Angrist et al. 2020)

Model-implied optimal IV (Adão-Arkolakis-Esposito 2021)

Weather instruments (e.g. Gomez et al. 2007, Madestam et al. 2013)

“Free space” instruments for media access (e.g. Olken 2009,
Yanagizawa-Drott 2014)
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Summary

We develop a general framework for treatments and instruments computed
from multiple sources of variation, only some of which are random

Formalize the expected instrument as the relevant confounder

Show that recentering by it purges OVB

Feasible as long as researchers formalize natural experiments via
counterfactual shocks

This framework empirically relevant:

A simple recentering based on the timing of Chinese HSR
construction largely “kills” OLS estimates of market access effects

A more powerful recentered prediction of Medicaid eligibility from
state-level shocks yields ≈ 3 times smaller standard errors

Practical implications for many other common research designs
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Thank You!



Appendix



Simulated HSR Map and Market Access Growth

Back



Market Access Balance Regressions

Regressions of unadjusted and recentered market access growth on geographic features.
Spatial-clustered standard errors in parentheses.

Back



Market Access Robustness Checks Back

Regressions of log employment growth on log market access growth in 2007–2016.
Spatial-clustered standard errors in parentheses; permutation-based 95% CI in brackets



What LATE Does the Recentered IV Estimate?

Back



Simulated and Recentered IV: First Stage

Regressions of Medicaid eligibility on the two instruments, state and year fixed effects,
and an indicator for Republican governor interacted with year. State-clustered standard

errors in parentheses; Wild score bootstrap 95% CI in brackets Back



Medicaid Eligibility Pre-Trends

IV regressions using one of the two instruments. Baseline controls include state and year
fixed effects and an indicator for Republican governor interacted with year.

State-clustered standard errors in parentheses; Wild score bootstrap 95% CI in brackets
Back



Simulated and Recentered IV Power Curves

Monte Carlo simulation based on recentered IV estimates. Simulated rejection rates are
from nominal 5% tests, using the wild score bootstrap Back
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