Dissecting Mechanisms of Financial Crises: Intermediation and Sentiment

Arvind Krishnamurthy¹ Wenhao Li²

¹Stanford Graduate School of Business and NBER

²USC Marshall Business School

July 16, 2021

NBER Summer Institute 2021

The Financial (Banking) Crisis Cycle: Mean Path

Figure: Mean paths of credit spread, bank credit, and GDP of 41 financial crises, 1870-2014.

Notes: Units for spread path are 0.5 means spreads are 0.5σ s above average for a given country. Units for credit path are that 5 indicates that credit/GDP is 5% above the trend for a given country. Units for GDP path are that -8 means that GDP is 8% below trend for a given country. **Source**: Krishnamurthy and Muir (2020); Banking Crises dated by Jorda, Schularick, and Taylor (2011).

Cross-section Crisis Cycle Facts: Severity

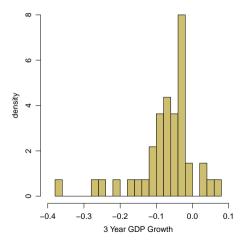


Figure: 3-Year GDP Growth after a Crisis

Conditional on a crisis, we observe:

- Left-skewed GDP growth

Cross-section Crisis Cycle Facts: Predictability and Risk Premium

Predicting crises:

Prob(*Crisis*_{*i*,*t*}|*Credit*_{*i*,*t*-1}, *CreditSpread*_{*i*,*t*-1})

Higher credit growth predicts more crises (Schularick and Taylor 2012) and equity crashes (Baron and Xiong 2017)

- Higher credit growth predicts lower expected excess bond/equity returns (Greenwood and Hanson 2013; Baron and Xiong 2017)
- Lower credit spread before crises (Krishnamurthy and Muir 2020)

Mechanisms?

- 1. Financial intermediation
 - Losses reduce equity capital and cause disintermedation
 - Credit contraction ... amplification mechanism
- 2. Beliefs/Sentiment
 - Good news \Rightarrow more optimistic \Rightarrow growth of credit and decline in credit spread.
 - Bad news \Rightarrow sharp revision of beliefs \Rightarrow transition to crisis.
 - Bayesian updating, similar to Moreira and Savov (2017)

or Diagnostic updating, as in Bordalo, Gennaioli, Shleifer (2018)

* Literature: Maxted (2020) combines financial intermediation and diagnostic updating on mean growth in TFP

Model

Model Evaluation

Leaning Against the Wind: Bayesian vs Diagnostic

Contribution

Agents and Preferences

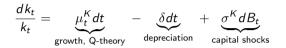
> Two agents: bankers and households, optimizing expected log utility.

$$\max \ {\mathcal E}^{belief} [\int_0^\infty e^{-
ho t} {
m log}(c_t) dt]$$

- Bankers raise only demandable debt and inside equity (banker wealth).
- Production is through 'A-K" technology. Bank productivity \overline{A} > household productivity \underline{A} .
- Kiyotaki and Moore (1997), Brunnermeier and Sannikov (2014)

Shocks

Capital accumulation process:



where dB_t is a Brownian motion representing "real" shocks.

- ▶ Illiquidity (purely financial) shock dN_t with hidden intensity $\tilde{\lambda}_t$.
 - Exogenous shock makes all debtors demand their funds back, and triggers sale of capital
 - **Capital liquidation: illiquidity discount** α^0 and endogenous capital price decline.
 - High leverage + illiquidity shock may lead to a banking crisis:

Prob of crisis \propto Leverage $imes ilde{\lambda}_t$

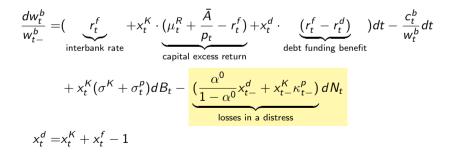
 Beliefs over second moment (prob of dN_t) in our model; in Maxted (2020) beliefs are over the first moment (drift of dB_t)

Banker's Optimization Problem

Due to log-utility, the equivalent banker optimization problem is

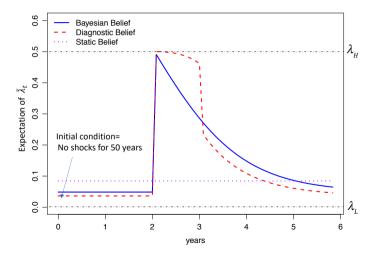
$$\max_{c_t^b, x_t^b, x_t^f} \left\{ \log(c_t^b) + \frac{1}{\rho} \left(E_t^{belief} \left[\frac{dw_t^b}{w_t^b} \right] / dt - \frac{1}{2} \left(\frac{dw_t^b}{w_t^b} \right)^2 / dt \right) \right\}$$

s.t.

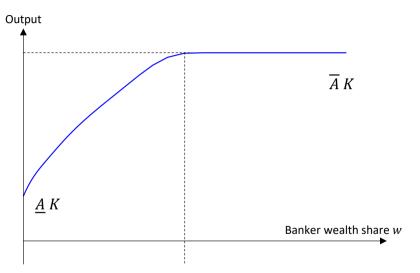


Beliefs

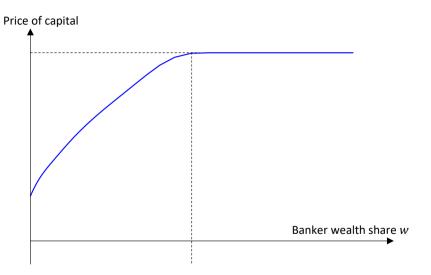
▶ Hidden intensity $\tilde{\lambda}_t \in \{\lambda_H, \lambda_L = 0\}$ is a continuous-time Markov process with switching rate $\lambda_{H \to L}$ and $\lambda_{L \to H}$. Expected intensity is $E_t^{belief}[\tilde{\lambda}_t]$.



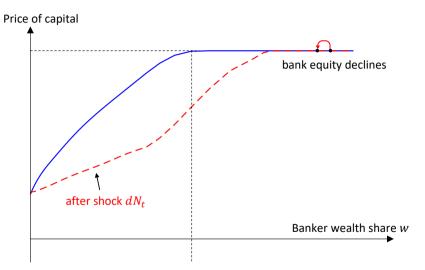
Financial Amplification Mechanism (Output)



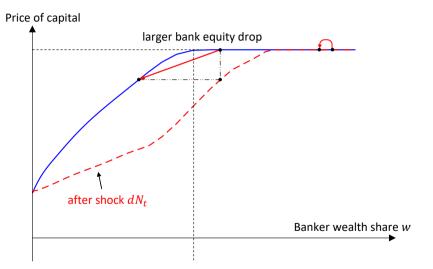
Financial Amplification Mechanism (Asset Price)



Financial Amplification Mechanism (With Illiquidity Shock)



Financial Amplification Mechanism (Conditional Response)



State Variables and Endogenous Outcomes

- State variables:
 - *w_t*: banker wealth share
 - ▶ λ_t (Bayesian) or λ_t^{θ} (Diagnostic): expected intensity of illiquidity shock
 - ▶ *K*_t: scale of the economy (this state variable can be "eliminated")
- Endogenous outcomes:
 - Output: "AK" technology
 - Value of capital = $p(w_t, \lambda_t)$
 - Bank credit: amount of capital held by the banks.
 - Credit spread: defaultable bond yield safe bond yield.
 - **Crisis:** a period when bank credit/GDP is below 4% quantile. Not the same as dN_t !

Prob of crisis \propto Leverage $imes ilde{\lambda}_t$

Model Calibration Strategy

▶ We evaluate three versions of the model.

- Static belief model: no belief variation.
- Rational model: Bayesian belief.
- Diagnostic model: diagnostic belief.

▶ We separately solve parameters for each model to match the same targets.

- Targets: average output declines in a crisis, frequency of liquidity shocks ···
- Cross-section results are not targeted and used as evaluations.

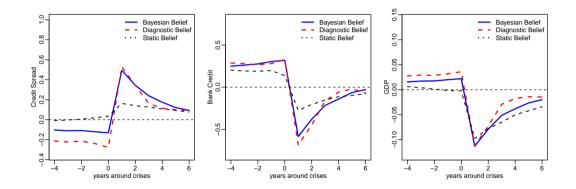
Model

Model Evaluation

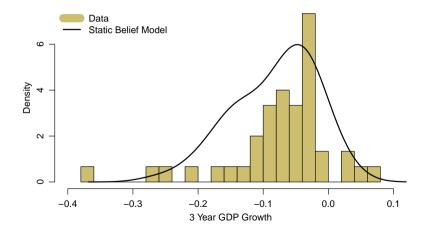
Leaning Against the Wind: Bayesian vs Diagnostic

Contribution

Mean paths



Criss-section: Left-Skewed Distribution of 3-Year Post-Crisis GDP Growth $\surd \checkmark \checkmark$



Severity of Crises, Bank Credit, and Credit Spread $\checkmark \checkmark \checkmark$

Intermediation mechanism is enough.

	Dependent variable: GDP Growth from t to $t + 3$							
	Static Belief		Bayesian		Diagnostic		Data	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Δ credit spread _t *crisis _t	-6.19		-4.07		-3.88		-7.46 (0.16)	
$\left(\frac{\text{bank credit}}{\text{GDP}}\right)_t * \text{crisis}_t$		-1.40		-2.61		-3.48		- 0.95 (0.30)
Observations							641	641

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma change in spreads, and bank credit/GDP.

Severity of Crises, Bank Credit, and Credit Spread $\checkmark \checkmark \checkmark$

Intermediation mechanism is enough.

	Dependent variable: GDP Growth from t to $t + 3$							
	Static Belief		Bayesian		Diagnostic		Data	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Δ credit spread _t *crisis _t	-6.19		-4.07		-3.94		- 7.46 (0.16)	
$\left(\frac{\text{bank credit}}{\text{GDP}}\right)_t * \text{crisis}_t$		-1.40		-2.61		-3.72		—0.95 (0.30)
Observations							641	641

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma change in spreads, and bank credit/GDP.

Bank Credit and Risk Premium $\sqrt{\sqrt{\sqrt{2}}}$

Matched well across models. Reason: all driven by credit supply variations.

		Dependent variable: Excess return $_{t+1}$				
	Static Belief	Bayesian	Diagnostic	Data		
$\left(\frac{\text{bank credit}}{\text{GDP}}\right)_t$	-0.02	-0.01	-0.01	- 0.02 (0.01)		
Observations				867		

Note: Model excess return is defined as the return to capital minus the risk-free rate. Data excess return is from Online Appendix Table 3 of Baron and Xiong (2017). To ensure comparability, the model return to capital has been normalized to equal the standard deviation of returns reported by Baron and Xiong (2017).

Pre-Crisis Low Credit Spread $X \checkmark \checkmark$

- ▶ Krishnamurthy and Muir (2020): credit spread is unusually low in the pre-crisis period
- Static belief model fails to match pre-crisis spreads. Sign is wrong!

	De			
	Static Belief	Bayesian	Diagnostic	Data
	(1)	(2)	(3)	(4)
pre-crisis indicator	0.22	-0.14	-0.29	— 0.34 (0.15)
Observations				634

Note: regression is: $s_t = \alpha + \beta \cdot 1\{t \text{ is within 5-year window before a crisis}\} + controls.$ For both model and data, controls include an indicator of within 5 years after the last crisis. Data regression has more controls such as country fixed effect.

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

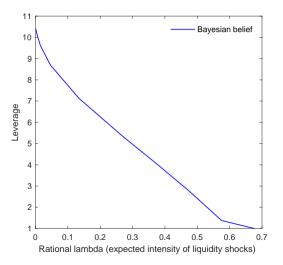
- one state variable w
 - * crises more likely
 - $\Leftrightarrow \mathsf{ low bank equity } w$
 - $\Leftrightarrow \ \text{higher bank leverage and fragility}$
 - \Leftrightarrow higher risk premium

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
 - \Leftrightarrow low bank equity w
 - $\Leftrightarrow \text{ higher bank leverage and fragility}$
 - ⇔ higher risk premium

Why the Bayesian model works?



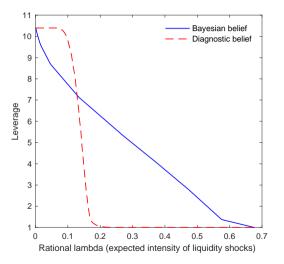
Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
 - \Leftrightarrow low bank equity w
 - $\Leftrightarrow \text{ higher bank leverage and fragility}$
 - ⇔ higher risk premium

Why the Bayesian model works?

Key: slope of the risk taking – belief relationship.



Predicting crises using high leverage

Prob of crisis \propto Leverage $imes ilde{\lambda}_t$

Predicting crisis is a race between two effects: As $\tilde{\lambda}_t$ falls:

- ln both Bayesian and Diagnostic belief models, leverage is inversely related to $\tilde{\lambda}$.
- Slope is higher in diagnostic model...
- But the effects play out qualitatively similarly

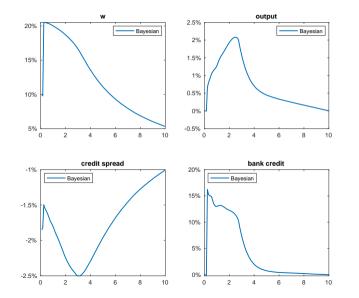
Model

Model Evaluation

Leaning Against the Wind: Bayesian vs Diagnostic

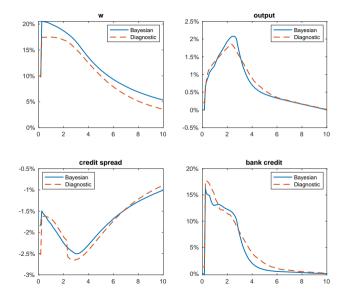
Contribution

Average Impact of a 10% Recapitalization Policy



- Policy: recapitalization to "lean against the wind"
- Initial state: boom (high lev,low spread)
- Simulation: dN_t = 1 after the policy, but dN_t = 0 otherwise. dB_t randomly generated.
- Impact = log(with policy) log(without policy).

Average Impact of a 10% Recapitalization Policy



- Impact is similar.
- Initial state solved via observables – the same credit spread and bank leverage.
- Both models are calibrated to the same moment targets.

Model

Model Evaluation

Leaning Against the Wind: Bayesian vs Diagnostic

Contribution

Contribution 1: Quantitative modeling of crises

- Non-linear macro-finance models: Mendoza (2010), He-Krishnamurthy (2013), Brunnermeier-Sannikov (2014), Gertler-Kiyotaki-Prestipino (2019)
- Empirical crisis literature: Bordo et. al. (2002), Reinhart-Rogoff (2009), Jorda, Schularick, Taylor (2011), Schularick-Taylor (2012), Baron-Xiong (2017), Baron-Verner-Xiong (2021), Krishnamurthy-Muir (2020)
- Literature bridging the models and the empirical patterns: He-Krishnamurthy (2019), Gertler-Kiyotaki-Prestipino (2019), Maxted (2020) match 2008 crisis

This paper: Nonlinear macro-finance model confronts facts from empirical crisis literature

- Financial intermediation + time-varying beliefs (Bayesian/Diagnostic) matches all crises cycle facts
- In Maxted (2020) high TFP growth pre-crisis (agents over-extrapolate), but that seems at odds with data. In our model, its quiet before the storm.

Contribution 2: Beliefs

Belief variation is key, Diagnostic vs. Bayesian less so

- Models of opacity can drive sudden shifts in beliefs (Gorton-Ordonez, 2013; Dang, Gorton, Holmstrom, 2020)
- Or, models of extrapolative expectations (Bordalo, Gennaioli, Shleifer, 2020)

"lcing" vs "cake"

- "lcing": Negative expected returns in extreme credit growth episodes in Baron and Xiong (2017). Biased Survey expectations from Bordalo, et. al.
- ...but there are also the securitization/opacity/debt observations of Gorton, et. al.
- "Cake": All of the other crisis cycle facts