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INTRODUCTION
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Observations from the 21st Century

• Many developed economies have, and are expected to con-

tinue to have, large public debts.

– Japan, US, UK ...

• These countries also have, and are expected to continue to

have, large primary deficits.

• Real interest rates have been, and are expected to continue

to be, well below economic growth rates.
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Public Debt Bubble?

• This evidence suggests that:

– Public debt > present value of future primary surpluses

(negative infinity).

• People expect governments to raise revenue to repay debt

through new debt issue, not through taxation.

• That is, there may be a (rational) public debt bubble (Brun-

nermeier, et al. (2020)) that could open a role for welfare-

improving changes in government policy (Blanchard (2019)).
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Bubbles as Curiosa?

• Despite the data, most academic (and non-academic) anal-

yses focus on the non-bubble case.

• One key reason: public debt bubbles lie outside the domain

of widely used/taught modern macro models.

• Well-known: public debt bubbles can exist in two-period-

lived overlapping generations models (Samuelson (1958), Di-

amond (1965)).

– But these aren’t widely used in modern (“serious”?) macro.

• Public debt bubbles cannot exist in much more widely used

immortal representative agent models. 5



This Paper: Setup

• I take a standard class of modern macro models (Aiyagari-

Bewley-Huggett or ABH) and perturb it slightly.

• In the models, agents can trade (elastically supplied) one-

period public debt with fixed real return r < g = 0.

• Government uses a fraction α of the revenue from bond sales

(net of interest payments) for a uniform lump-sum transfer.
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This Paper: Findings

• The deficit (in any period) is an increasing function of r and

grows without bound as α nears 1.

• The long-run public debt grows without bound as r grows to

zero.

• Long-run expected utility from private and public consump-

tion are both strictly increasing in r.
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Punchlines

• Public debt bubbles - as we seem to see in the data - aren’t

exotic oddities from the point of view of modern macro.

• Rather: (Arbitrarily) large public debt bubbles are consistent

with (arbitrarily) small perturbations of heterogeneous agent

macro models.

• In these perturbed models: bubbles, no matter their size, are

always too small.
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What is the “Perturbed” ABH Model?

• Take any ABH model with idiosyncratic Markov endowment
shocks.

• Add a new “urgent-to-consume” state in which agents have
linear utility.

– probability of transition to new state is p.

– marginal utility in new state is ν/p

• Focus on p near zero (“small” perturbation)

– Usual LLN argument: When p is close to zero, few tran-
sitions take place in the data.

– But agents still demand public debt as a form of precau-
tionary saving against (severe) downside risk. 9



Related Literature

• Large literature on rational bubbles in macro (Martin and

Ventura (2018)).

• Recent related papers:

– Reis (2020) - policy implications of r < g < MPK.

– Aguiar, Amador, and Arellano (2021) - constructing Pareto

improvements in ABH models when r is low.

– Brumm, et al. (2021) - example models showing that

r < g doesn’t mean that more debt is better.
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PERTURBED ABH MODELS
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Stochastics

• Unit measure of households.

• Household states evolve according to identical stochastically

independent Markov chains.

• The Markov chain has state space {1,2, .., J} and aperiodic

and irreducible transition matrix Γ̂.

• Its unique stationary density is µ̂.

13



Preferences and Endowments

• A household in state i has endowment yi of nondurable/nonstorable

consumption.

• A household in state i has momentary utility function ui,

which satisfies u′i,−u
′′
i > 0 and Inada conditions.

• All households have common discount factor β ∈ (0,1).
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Adding a Low Probability State

• Add a state 0, in which households have endowment y0 and

momentary utility function:

νc/p, ν > 0 and 0 < p < 1.

• The (J + 1)× (J + 1) transition matrix is Γ(p), where:

Γi0(p) = p,1 ≤ i ≤ J
Γij(p) = (1− p)Γ̂ij,1 ≤ i, j ≤ J
Γ0j(p) = (1− ρ)µ̂j,1 ≤ j ≤ J
Γ00(p) = ρ

• The stationary density is:

µ0(p) =
p

1 + p− ρ
;µi(p) = (1− µ0(p))µ̂i,1 ≤ i ≤ j
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Low p

• I focus on what happens when p is near zero.

• The various probabilities are arbitrarily close to the original

model.

• BUT: marginal utility of consumption in state 0 is close to

infinity.

• State 0 thus represents a low-probability (and rarely observed)

state with a high urgency to consume.
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Bubble Condition

• In what follows, I assume that (ex-ante state 0 marginal

utility) ν is sufficiently high that:

u′j(yj) < βν/(1− β).

• There is an open interval of such ν.

• This bubble condition ensures that households demand a

positive amount of bonds in all non-zero states ... even when

their real return is negative.
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SOLUTION TO THE INDIVIDUAL PROBLEM
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Bond Sales/Purchases

• In each date, the government sells one-period bonds.

• The bonds pay off 1 unit of consumption and have a constant

price q > 1 that is chosen by the government.

• Households each begin life with B̄1 ≥ 0 units of bonds (that

mature in period 1).

• The government makes a positive transfer τt to all households

in each period t.

• Households cannot short sell bonds (relaxed in paper).
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Low p and q

• The constant bond price q > 1 implies that the real interest

rate is negative (less than the growth rate).

• Recall: p is probability of transiting to auxiliary state 0.

• I restrict (p, q) to be in the interval Λ = (0, p̄)× (1, q̄) where:

u′j(yj) <
βν

q̄ − β(1− p̄)
, j = 1, ..., J

0 < p̄ < ρ (persistence of state 0).

• The existence of (p̄, q̄) is implied by the earlier bubble condi-

tion imposed on the marginal utility parameter ν.
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A Simple Solution

• Suppose (p, q) is in Λ and define:

c∗i (p, q) = u′−1
i (

βν

q − β(1− p)
), i = 1, .., J

• Then, in history (s1, ..., st), where st > 0, it is optimal for

households to choose:

ct(s
t) = c∗st(p, q), st > 0

qbt+1(st) = (yst + τt − c∗st(p, q)) + bt(s
t).

• If st = 0, then:

ct(s
t) = bt(s

t) + yst + τt

bt+1(st) = 0
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Why?

• In state j, j = 1, .., J, households are marginally indifferent
between buying more or less bonds

qu′j(c
∗
j(p, q))− β

J∑
i=1

Γjiu
′
i(c
∗
i (p, q))− βp(ν/p)

= q
βν

q − β(1− p)
− β(1− p)

βν

q − β(1− p)
− βν = 0.

• In state 0, households are borrowing-constrained b/c:

qν/p− β(1− ρ)
βν

q − β(1− p)
− βρν/p

is strictly increasing in q and is zero when q = β.

• Transversality condition is satisfied, because households hit
short-sales constraint infinitely often along almost every sam-
ple path. 22



An Interpretation

• At each date, households in state j > 0 give a gift to the
government:

(yj + τt − c∗j(p, q))

• Their bondholdings are then the cumulation of past gifts,
discounted at (1/q) < 1.

• When a household enters date 0, it immediately cashes in its
gift account (because of its urgent need for consumption).

• It begins rebuilding the “gift account” after it re-enters a
non-zero state.

• The per-capita “gift account” represents per capita public
debt. 23



AGGREGATES
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Definitions

• Let B̄t(p, q, α) represent per-capita holdings of public debt in

period t.

• Here, α represents the transfer from the government, as it

sets:

τt(p, q, α) = α(qB̄t+1(p, q, α)− B̄t(p, q, α)),0 ≤ α < 1

• The government uses the remaining revenue for government

purchases.
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Public Debt Formula: Building Blocks

• Suppose (p, q) is in Λ.

• Assume households’ initial states are distributed according to

stationary density µ(p).

• Let:

∆∗j(p, q) = yj − u′−1
j (

βν

q − β(1− p)
)

be the household’s “gift” to the government in state j (net

of the returned/reinvested transfer).
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Public Debt Evolution Over Time

• Then, when p is near zero, the public debt at the end of

period t is :

B̄t+1(p, q, α) ≈
(
∑J
i=1 µ̂i∆

∗
i (0, q))

(1− α)

(1− 1/qt)

q − 1
+ B̄1/q

t

• Recall: µ̂ is the stationary density in the economy WITHOUT

the auxiliary state.
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Why q? Why α?

• The q part of the formula is simply geometric discounting at

work.

• The α part of the formula captures the households (in states

j > 0) re-investing their transfers.
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Main Results 1: Properties of Public Debt

• Given t, B̄t(p, q, α) is an increasing function of (1/q, α).

• When p is near zero, period t debt is unbounded as a function

of transfers (α):

limα→1limp→0B̄t(p, q, α) =∞.

• When p is near zero, long-run debt is unbounded as a function

of q:

limq→1limt→∞limp→0B̄t(p, q, α) =∞.
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Primary Deficits

• The primary deficit is endogenously determined as:

Dt(p, q, α) = qB̄t+1(p, q, α)− B̄t(p, q, α)

(that is, the amount borrowed beyond what’s used to pay

interest + principal).

• For p near zero, the primary deficit is well-approximated by:

Dt(p, q, α) ≈
(
∑J
i=1 µ̂i∆

∗
i (0, q))

(1− α)
.
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Main Results 2: Properties of Deficits

• When p is low:

• The primary deficit is strictly decreasing (but bounded) as a

function of q.

• The primary deficit is, at any date, increasing in α and is

unbounded as a function of α:

limα→1limp→0Dt(p, q, α) =∞.
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Welfare

• I calculate ex-ante expected utility from private consumption

in each period t as a function Wt(p, q, α).

– all agents begin life with same bondholdings.

– agents begin life behind “veil of ignorance” in terms of

the draw of their initial state from µ(p).

• As before, I focus on the case in which p is near zero.

• But - unlike before - the zero state matters in welfare cal-

culations, because ex-ante marginal utility remains at ν even

when p is near zero.
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Main Results 3: Welfare

• Define W0
t (q, α) = limp→0Wt(p, q, α).

• For any (q, t), W0
t is strictly increasing in α.

• For any α, and for t sufficiently large (in particular, larger

than (2−β)
(1−β)), then W0

t is strictly decreasing in q.
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What About Government Purchases?

• When p is near zero, then government purchases are approx-

imately:

Gt(p, q, α) = (1− α)Dt(p, q, α) =
J∑
i=1

µ̂i∆
∗
i (0, q).

• Government purchases are independent of α when p is near

zero.

• Note that limp→0Gt(p, q, α) is strictly decreasing in q.
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CONCLUSIONS AND EXTENSIONS
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Bubbles as Products of Standard Models

• I consider small (in a probabilistic sense) perturbations of a

class of standard ABH models.

• In these slightly perturbed models, public debt bubbles (r <

g = 0) emerge as equilibria.

• In these equilibria:

– Government policy choices can give rise to arbitrarily

large debt and deficit levels.

– long-run welfare is strictly increasing in debt levels.
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Extensions: Private Credit

• In this presentation, I’ve not allowed households to borrow.

• But, in the paper, I show that the above results generalize to

the case in which agents have a fixed but positive borrowing

limit.

• One caveat: with borrowing, the long-run welfare results ap-

ply only when q is sufficiently near 1.
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Extensions: Capital

• In the paper, I add capital (as in Aiyagari (1994)). I abstract

from redistribution (set α = 0).

• I focus on steady-states, in which capital is constant over

time.

• When p is near zero, lower values of q (higher r) induce steady

states with:

– lower capital

– higher output and public consumption

– lower private consumption AND higher expected utility

from private consumption. 38



Extensions: Strictly Concave Utility in State Zero

• In the paper, I provide a numerical example in which utility is

log in state zero (but there is still a large MU shock in that

state).

• For q = 1.02, long-run debt/GDP ratio is (approximately)

2.65 when p is about 0.025 (and ρ is near zero).

• Lesson: Very large debt bubbles (by historical stan-

dards) can be sustainable as equilibria even without linear

utility.
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