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Abstract

We compare two established jury selection procedures meant to safeguard against the
inclusion of biased jurors that are also perceived as causing minorities to be under-
represented in juries. The Strike and Replace procedure presents potential jurors one-
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the parties exercise vetoes. In equilibrium, Struck more effectively excludes extreme
jurors than Strike and Replace but leads to a worse representation of minorities. Sim-
ulations suggest that the advantage of Struck in terms of excluding extremes is sizable
in a wide range of cases. In contrast, Strike and Replace only provides a significantly
better representation of minorities if the minority and majority are heavily polarized.
When parameters are estimated to match the parties’ selection of jurors by race with
jury-selection data from Mississippi in trials against black defendants, the procedures’
outcomes are substantially different, and the size of the trade-off between objectives
can be quantitatively evaluated.

JEL Classification: K40, K14, J14, J16
Keywords: Jury selection, Peremptory challenge, Minority representation, Gender rep-

resentation

∗Moro: Vanderbilt University, andrea@andreamoro.net. Van Der Linden: Emory University
martin.van.der.linden@emory.edu

1



1 Introduction

In the U.S. legal system, it is customary to let the parties involved in a jury trial dismiss

some of the potential jurors without justification. These dismissals, known as peremp-

tory challenges, are meant to enable “each side to exclude those jurors it believes will be

most partial toward the other side” thereby “eliminat[ing] extremes of partiality on both

sides”.1 In the last decades, however, peremptory challenges have often been criticized

mainly because they are perceived as causing some groups — in particular minorities — to

be under-represented in juries.2

The procedure used to let the parties exercise their challenges varies greatly across

jurisdictions and is sometimes left to the discretion of the judge.3 Two classes of procedures

are most frequently used in the U.S. In Struck procedures (henceforth: STR), the parties

can observe and extensively question all the jurors who could potentially serve on their

trial before exercising their challenges (this questioning process is known as voir dire). In

contrast, in Strike and Replace procedures (henceforth: S&R), smaller groups of jurors are

sequentially presented to the parties. The parties observe and question the group they are

presented with (sometimes a single juror) but must exercise their challenges on that group

without knowing the identity of the next potential jurors.

The goal of this paper is to shed light on a debate that emerged in the legal doctrine

over the relative effectiveness of STR and S&R at satisfying the two objectives of excluding

extreme jurors and ensuring adequate group representation. Bermant and Shapard (1981,

pp. 93-94), for example, argues that, by avoiding uncertainty, STR “always gives advocates

more information on which to base their challenges, and, therefore, [...] is always to be

preferred”. Bermant further notes that “a primary purpose of peremptory challenges is to

eliminate extremes of partiality on both sides” and that “the superiority of the struck jury

method in accomplishing this purpose is manifest.”

1Holland v. Illinois, 493 U.S. 474, 484 (1990).
2For examples of this line of argument against peremptory challenges, see Sacks (1989), Broderick (1992),

Hochman (1993), Marder (1994), and Smith (2014). Despite these attacks, the U.S. has so far resisted aban-
doning peremptory challenges altogether (unlike other countries, like the U.K., where they were abolished
in 1988). Peremptory challenges remain pervasive in all U.S. jurisdictions and have been affirmed by the
U.S. Supreme Court as “one of the most important rights secured to the accused” (Swain v. Alabama 380
U.S. 202 (1965), see LaFave et al., 2009).

3For example, in criminal cases in Illinois, “[State Supreme Court] Rule 434(a) expressly grants a trial
court the discretion to alter the traditional procedure for impaneling juries so long as the parties have
adequate notice of the system to be used and the method does not unduly restrict the use of peremptory
challenges” (People v. McCormick, 328 Ill.App.3d 378, 766 N.E.2d 671, (2d Dist., 2002)).
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Others have argued that, by revealing the identity of all potential jurors before challenges

are exercised, STR facilitates the exclusion of some groups from juries. Although in Batson

v. Kentucky and J. E. B. v. Alabama the Supreme Court found it unconstitutional to

challenge potential jurors based on their race or gender,4 proving that a challenge is based

on race or gender is often difficult and the Supreme Court’s mandate is notoriously hard

to implement.5 Interestingly, in response, judges themselves have turned to the design of

the challenge procedure and the use of S&R as an instrument to foster adequate group

representation. In a memorandum on judges’ practices regarding jury selection, Shapard

and Johnson (1994) for example report about judges believing that by “prevent[ing] counsel

from knowing who might replace a challenged juror” S&R procedures “make it more difficult

to pursue a strategy prohibited by Batson”.

To inform this debate, we extend in Section 2 the model of jury selection proposed in

Brams and Davis (1978) by allowing potential jurors to belong to two different groups. In

the model, each potential juror is characterized by a probability to vote in favor of the

defendant’s conviction. This probability is drawn from a distribution that depends on the

juror’s group-membership. The group distributions are common knowledge but the parties

to the trial, a plaintiff and a defendant, only observe their realization for a particular juror

upon questioning that juror.

A jury must be formed to decide the outcome of the trial and the parties can influence its

composition by challenging (i.e., vetoing) a certain number of potential jurors. Challenges

are exercised according to S&R or STR procedures which, as explained above, differ mainly

in the timing of jurors’ questioning (and, as a consequence, in the parties’ ability to observe

the conviction probability of potential jurors).

We ask how these two procedures perform in achieving the objectives of excluding ex-

treme jurors and ensuring adequate group representation. In Section 3, we provide some

intuition for our main result by introducing an illustrative example where a single juror

must be selected and the defendant and plaintiff have a single challenge available. In this

4476 U.S. 79 (1986) and 511 U.S. 127 (1994). In terms of legal procedures, the response to these decision
has consisted in allowing the parties to appeal peremptories from their opponent, allowing them to nullify a
peremptory if they can show that it was indeed based on race. These appeals are known as Batson appeals.

5See Raphael and Ungvarsky (1993): “In virtually any situation, an intelligent plaintiff can produce a
plausible neutral explanation for striking Pat despite the plaintiff’s having acted on racial bias. Consequently,
given the current case law, a plaintiff who wishes to offer a pretext for a race-based strike is unlikely to
encounter difficulty in crafting a neutral explanation.” See also Marder (2012) or Daly (2016) for why
judges rarely rule in favor of Batson appeals.
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example, we show that STR is more effective than S&R at excluding jurors from the tails

of the conviction probability distribution, but is less likely to select minority jurors.

The rest of the paper is devoted to characterizing conditions under which these results

extend beyond the illustrative example of Section 3. In Section 4 we call a juror extreme if

its conviction probability falls below (above) a given threshold. We prove that there always

exists a low enough threshold such that STR is more likely than S&R to exclude extreme

jurors. Moreover, we show that STR always selects fewer extreme jurors than a random

selection would, but that there are some (admittedly somewhat unusual) circumstances

in which S&R would not. Simulations assuming a wide range of conviction probability

distributions reveal that, in terms of excluding extreme jurors, the advantage of STR over

S&R can be substantial, even for relatively high thresholds.

Section 5 compares procedures according to their ability to select minorities and identi-

fies conditions under which S&R selects more minority jurors than STR. Our proof uses a

limiting argument showing that the result holds when the minority is vanishingly small and

the distributions of conviction probabilities for each group minimally overlap (i.e., groups

are polarized). However, simulations again suggest that the result remains true when the

size of the minority is relatively high and the overlap between distributions is significant. In

Section 6, we explore how changing the number of challenges affect the results of Sections

4 and 5.

Depending on the extent to which jurors of different races have polarized preferences

for conviction, the model has different empirical implications for the selection of jurors by

race. In Section 7 we exploit peremptory challenge data on a version of STR adopted in

Fifth Circuit Court District of Mississippi to estimate the groups’ distributions of conviction

probabilities, and to simulate the outcomes of counterfactual procedures. Estimates show

that groups appear to be substantially polarized in their preferences for convictions. Coun-

terfactuals show that the choice of procedure affects both the exclusion of extreme jurors

and minority representation substantially. The adoption of S&R would increase black juror

representation in trials against black defendants by about 4 percent, and would decrease

conviction rates by about 8 percentage points. In trials with 12 jurors, increasing black

representation in jury pools by one unit has the effect of decreasing conviction rates by 6

percentage points.

In Section 8 we show how our main theoretical results results extend to a different
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definition of extreme juries (i.e., a jury in which the highest (lowest) conviction-probability

juror is below (above) a given threshold). We also explore how the procedures compare in

selecting members of groups that are about equal size (such as male and females, as opposed

to minorities which induce groups of unequal sizes).

Related Literature

This paper belongs to a relatively small literature formalizing jury selection procedures.

Brams and Davis (1978) model S&R as a game and derive its subgame-perfect equilibrium

strategies which we use in our theoretical results and simulations. Perhaps closest to our

paper is Flanagan (2015) who shows that, compared to randomly selecting jurors, STR

increases the probability that all jurors come from one particular side of the median of the

conviction probability distribution (because STR induces correlation between the convic-

tion probability of the selected jurors). To our knowledge, this literature is silent on the

implications of jury selection for group representation and on the trade-off between exclud-

ing extreme jurors and ensuring adequate group representation induced by using different

procedures. These are the focus and main contributions of this paper.

While the group-composition of a jury has been shown to influence the outcome of a

trial (Anwar et al., 2012; Flanagan, 2018; Hoekstra and Street, 2021), legal scholars often

argue in favor of representative juries regardless of their effect on verdicts. Diamond et al.

(2009) for example argue that “unrepresentative juries [...] threaten the public’s faith in the

legitimacy of the legal system”. In an experiment on jury-eligible individuals, they show

that participants rate the outcome of trials as significantly fairer when the jury is racially

heterogeneous than when it is not. This motivates us to consider group-representativity

itself as a desirable feature of jury selection procedures.6

The empirical literature on jury selection has also identified systematic patterns of group-

specific challenges from the parties, with the plaintiffs being almost always more likely to

6One might also be interested in the impact of group-representation on the conviction of defendants
who themselves belong to different groups. Without taking groups into account or attempting to compare
procedures, Flanagan (2015) studies the impact of jury selection procedures on conviction rates. His results
in terms of conviction rates require to assume that the parties have correct beliefs about the probability that
jurors eventually vote for conviction (as well as about these probabilities are independent of one another). In
contrast, our results about group-representation and exclusion of extremes do not require that the parties’
belief at the moment of jury selection be accurate (at least if we are concerned with extremes as perceived
by the parties, as the U.S. Supreme Court seems to be when saying that the main purpose of peremptory
challenges is to enable “each side to exclude those jurors it believes will be most partial toward the other
side”, see Footnote 1 and associated quote).
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remove minority jurors than defendants (Turner et al., 1986; Rose, 1999; Diamond et al.,

2009; Anwar et al., 2012; Craft, 2018; Flanagan, 2018). This justifies our assumption that,

at least from the perspective of parties’ beliefs, jurors from different groups tend to have

different probabilities of voting for conviction.

Diamond et al. (2009) show that for a fixed number of challenges given to the parties,

larger juries are more representative of the pool’s demographic.7 In Section 6, we show that

limiting the number of challenges (while keeping the number of selected jurors fixed) can

have a similar effect, though at the expense of a less effective exclusion of extreme jurors.

2 Model

There are two parties to a trial, the defendant, D, and the plaintiff, P . The outcome of the

trial is decided by a jury of j jurors who must be selected from the population. The parties

share a common belief about the probability that a juror i will vote to convict the defendant.

We denote this probability ci ∈ [0, 1]. Jurors draw this probability independently from the

same random variable C, with probability distribution f(c). We denote its cumulative with

F (c) and its expected value with µ. Throughout, we assume that C is continuous. To

simplify the notation, we also assume that the boundaries of the support of C are 0 and 1.8

To address the issue of group representation, we assume that jurors belong to one of two

groups a or b. The parties have common beliefs about the probability that jurors from each

group vote to convict the defendant. We index the distributions representing these beliefs

and their averages with subscript g ∈ {a, b}: fg(c), Fg(c), and µg.
9 The corresponding

random variables are denoted by Ca and Cb. Although throughout conviction probabilities

and their distributions across groups should only be viewed as representing the parties

common-beliefs, we henceforth lighten the terminology and speak directly of conviction

probabilities (rather than parties’ beliefs about conviction probabilities).

We let r denote the proportion of group-a jurors in the population, and when discussing

group representation, we assume that C is obtained by drawing from Ca with probability r

7Diamond et al. (2009) take advantage of a feature of civil cases in Florida where juries are made of six
jurors unless one of the parties requests a jury of twelve jurors and pays for the costs associated with such
a larger jury.

8This assumption is without loss of generality and all our results hold if C is re-scaled in such a way that
F (c) = 0 or [1− F (1− c)] = 0 for some c ∈ (0, 1).

9 Empirical evidence, including the one we report in Section 7 shows that that parties use their challenges
unevenly across groups; see also the Related Literature section of the Introduction.
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and from Cb with probability (1− r) (in particular, f(c) = rfa(c) + (1− r)fb(c)).

Following the majority of the literature (Brams and Davis, 1978; Flanagan, 2015), we

assume that, at the level of jury selection, the parties do not account for the process of

jury deliberations and — perhaps as a way to cope with the complexity of jury selection

— view the probabilities that jurors votes for conviction as independent from one another.

Since conviction in most U.S. trials requires a unanimous jury, the parties then consider

that a jury composed of jurors with conviction probabilities {ci}ji=1 convict the defendant

with probability Πj
i=1ci. The defendant, therefore, aims at minimizing Πj

i=1ci while the

plaintiff wants to maximize the same product.

To influence the composition of jury, the defendant and the plaintiff are allowed to

challenge (veto) up to d and p of the jurors in a panel of n = j + d + p potential jurors

randomly and independently drawn the population (sometimes also called the pool).10 To

avoid trivial cases, we assume throughout that d, p ≥ 1. The parties use these challenges in

the course of a veto procedure M (formally, an extensive game-form). The jury resulting

from the procedure is called the effective jury.

The two veto procedures we study are the STRuck procedure (STR) and the Strike

And Replace procedure (S&R). For comparison, we also consider the Random procedure

(RAN ) which simply draws j jurors independently at random from the population. In all

procedures, we assume that once a potential juror i is presented to the parties, the parties

observe realized value of ci for that juror.11 The two procedures however differ in the timing

with which jurors are presented to the parties.

Under STR, the entire panel of j + d + p potential jurors is presented to the parties

before they have the opportunity to use any of their challenges. Each party, therefore,

observes the value of ci for every juror in the panel. The defendant and the plaintiff then

choose to challenge up to d and p of the jurors in the panel, respectively. In practice,

there are several types of STR procedures that differ in the way the parties exercise their

challenges after having questioned the jurors in the panel. For concreteness and tractability,

we focus in this paper on the STR procedure in which the parties have a single opportunity

10 In the legal literature, what we call “panel” is sometimes called “venire” (though terminology varies
and the latter term is sometimes used to speak of what we call the population).

11This is motivated by the practice of letting parties extensively question every juror they are presented
with, a process known in the legal terminology as voire dire. In turn, the fact that the parties have the same
assessment of the probability a juror will vote for conviction is motivated by the fact that voir dire occurs in
the presence of both parties, and that the parties therefore and have access to the same information about
the jurors’ demographics, background, and opinions.
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to exercise their challenges on the whole panel. In equilibrium, this leads the plaintiff to

challenge the p jurors in the panel with lowest conviction probabilities, and the defendant

to challenge the d jurors with highest conviction probabilities.12 Whether these challenges

happen simultaneously or sequentially has no impact on the equilibrium and our results for

STR apply in either case.13

In contrast, under S&R, groups of potential jurors are randomly drawn from the popula-

tion and sequentially presented to the parties. In contrast with STR procedures, the parties

must exercise their challenges on jurors from a given group without knowing the identity of

jurors from subsequent groups. There is variation among S&R used in practice in the size of

the groups that are presented in each round.14 Again, for concreteness and tractability, we

focus in this paper on the S&R procedure in which jurors are presented to the parties one

at a time. The defendant and the plaintiff start the procedure with d and p challenges left,

respectively. After each draw, the plaintiff and the defendant observe the potential juror’s

conviction probability and, if they have at least one challenge left, choose whether or not

to challenge the juror. If a juror is not challenged by either party, it becomes a member of

the effective jury. Any challenged juror is dismissed and the number of challenges available

to the challenging party is decreased by one. The process continues until an effective jury

of j members is formed.

The (subgame perfect) equilibrium of S&R was characterized by Brams and Davis (1978)

and takes the form of threshold strategies. In every subgame, D challenges the presented

juror i if ci is above a certain threshold tD, P challenges i if ci is below some threshold tP , and

neither of the parties challenges i if ci ∈ [tP , tD].15 We will sometimes refer to these values as

challenge thresholds. As Brams and Davis (1978) show, in any subgame, tP < tD and even

12Alternative methods used in the field include procedures in which the parties to challenge sequentially
out of subgroups of jurors from the panel only. As long as the procedure remains of the struck type (i.e.,
the entire panel — and not only the first subgroup — is questioned before the parties start exercising their
challenges), the equilibrium effective jury is often the same as under the STR procedure we consider here.
Other outcome-irrelevant aspects of the equilibrium might, however, be different such as the number of
challenges used by the parties (e.g., if the first group is made of the j “middle” jurors in the panel, they
may in some cases be selected as effective jurors without the parties exercising any of their challenges).

13Since C is continuous, the probability that two jurors in a panel have the same conviction probability and
one of the parties does not use all of its challenges in equilibrium is zero and this eventuality can therefore
be neglected.

14As well as in the ability of the parties to challenge, in a later round, potential jurors who were left
unchallenged in previous rounds, a practice known as “backstricking”.

15Each subgame can be characterized by the number of jurors κ that remain to be selected, the number of
challenges left to the defendant δ, and the number of challenges left to the plaintiff π. The parties threshold
in subgame (κ, δ, π) are a function of the value of subgames (κ−1, δ, π), (κ, δ−1, π), and (κ, δ, π−1) (which
can result from the parties action in (κ, δ, π)) and the distribution of C, see Brams and Davis (1978).
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if the challenges happen simultaneously and both parties are charged for their challenges

when they both decide to challenge the presented juror, the latter (i.e., a challenge by both

parties) never occurs in equilibrium. The equilibrium is therefore unaffected by the timing

of challenges in each round and our results for S&R apply regardless of this timing.16

In our description of S&R, Nature moves in each round drawing a new potential juror

from the population to present to the parties. To facilitate comparisons between STR and

S&R based on a particular fixed panel, it will sometimes be useful to consider an equivalent

description of S&R in which Nature first draws a panel of n jurors {c1, . . . , cn} (which the

parties are not aware of) and in each round k presents juror ck to the parties. For similar

purposes, it will sometimes be useful to view RAN as first drawing a panel of n jurors and

then (uniformly at random) selecting j jurors among these n to form the effective jury.

3 Excluding extremes and representation of minorities: An

illustrative example

To illustrate the differences between the two procedures, consider the simple case d = p =

j = 1 together with distributions Ca ∼ U [0, 0.5] and Cb ∼ U [0.5, 1]. Also, suppose that

r = 0.1, i.e., there is a minority of 10% of group-a jurors in the population.

Let Unx [l, l] denote the x-th order statistic for a U [l, l] random sample of size n. With this

notation, Figure 1 shows the group-membership and distribution of conviction probability

for the juror selected under STR, conditional on the composition of the panel. Observe

that in this example, if there are group-a jurors in the panel, one of them is systematically

challenged by the plaintiff. Therefore, for a group-a juror (i.e., a minority juror) to be

selected under STR, there need to be at least two group-a jurors in the panel of n = 3

presented to the parties. This occurs with probability 0.03.

In contrast, a group-a juror can be selected under S&R even if the panel contains a single

group-a juror. To understand why, consider the equilibrium of S&R which is illustrated

in Figure 2. If a group-b prospective juror with a sufficiently low conviction probability

(ci ∈ [0.5, 0.62]) is presented first, then it will be challenged by the plaintiff. This leads to a

subgame in which only the defendant has challenges left and a group-a juror is more likely

to be selected than if a juror was randomly drawn from the population. In particular, any

16By “timing”, here, we mean the order (potentially simultaneous) in which the parties decide whether or
not to challenge the presented juror.
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Figure 1: Illustrative example, equilibrium outcomes under STR
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Note: The figure describes the equilibirum of STR assuming j = p = d = 1, Ca ∼ U [0, 0.5], Cb ∼ U [0.5, 1],
and r = 0.10. The initial node illustrates distribution C = 0.10 · Ca + 0.9 · Cb. The numbers on each arrow
indicate the probability of drawing a panel with the group-composition represented in the pointed boxes
(conditional on each panel composition, the circled letter in the box corresponds to the group-membership
of the selected juror). Dashed arrows correspond to outcomes that lead to the selection of a group-a juror
and the graph underneath each box shows the distribution of conviction probabilities for the selected juror.

group-a juror presented at the beginning of this later subgame is left unchallenged by the

defendant and selected to be the effective juror (even if this juror is the only group-a juror

in the panel because the third juror — who, in this case, is never presented to the parties —

happens to be a group-b juror). This course of action follows from P ’s choice to challenge

a group-b juror with low conviction probability in the first round, which leaves P without

challenges left in the second round. This choice of P is optimal from the perspective of the

first round of S&R (before the plaintiff learns that the second juror in the panel is a group-a

juror), but suboptimal under STR where, having observed the conviction probability of all

jurors in the panel, the plaintiff would have challenged the group-a juror instead.

Considering only the branch of the S&R game-tree that starts with a challenge from P ,

the probability of selecting a group-a juror is almost 0.05 = 0.31·(0.54·0.1+0.10). Adding the

possibility that a minority juror is selected after D challenges in the first round followed by a

challenge from P in the second round (which happens with probability 0.4 ·0.47 ·0.1 ≈ 0.02),

the probability of selecting a minority juror under S&R is 0.067.17 This is larger than the

17These are the only cases in which a minority juror can be selected under S&R. In particular, jurors
accepted in the first round are always group-b jurors (ci ∈ [0.62, 0.78]). So are jurors accepted in the second
round following a challenge from D is the first round (ci ∈ [0.70, 1]).
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Figure 2: Illustrative example, equilibrium strategies and outcomes under S&R
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Note: The figure describes the equilibrium strategies conditional on the conviction probability of the juror
drawn in each round for the case j = d = p = 1, Ca ∼ U [0, 0.5], Cb ∼ U [0.5, 1] and r = 0.10. Dashed arrows
correspond to paths that may lead to the selection of a group-a juror. The numbers on each arrow indicate
the probability of the path conditional on reaching the previous node. The second row of text inside boxes
indicates an equilibrium action, whereas bold text below boxes indicates the group of the selected juror in
the game outcome. In round 3, challenges from both parties are exhausted and the parties do not take any
action.

probability under STR, 0.03, yet smaller than under RAN , 0.10.

In this example, the better representation of minority jurors produced by S&R comes

at the expense of selecting more extreme jurors. Suppose for the sake of illustration that

jurors are considered extreme if they come from the top or bottom 5th percentile of C.

In our example, the bottom and top 5th percentile corresponds to conviction probabilities

below 0.25 and above 0.94, respectively. The selected juror is within the bottom range with

probability 0.015 under STR versus 0.033 under S&R, and in the top range with probability

0.076 under STR versus 0.083 under S&R.

To understand the source of these differences, let us consider the bottom 5th percentile

[0, 0.25] (a symmetric explanation applies to the top 5th percentile). As indicated in Figure

1, when STR selects a group-a juror — the type of juror whose conviction probability
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could possibly be in the bottom 5th percentile — the distribution of that juror’s conviction

probability follows the middle or upper order-statistics of a random sample from Ca. These

order-statistics are unlikely to result in the selection of a juror with conviction probability

in the bottom 5th percentile. In contrast, as Figure 2 illustrates, all paths leading S&R to

select a group-a juror result in the juror’s conviction probability being drawn from U [0, 0.5]

itself,which makes S&R more likely to select a juror in the bottom 5th percentile than STR.

In the next two sections, we investigate the extent to which the advantages of S&R in

terms of minority-representation and of STR in terms of exclusion of extreme generalizes

beyond this illustrative example.

4 Exclusion of extremes

In the United States, one of the objectives of the jury selection process is to guarantee an

impartial jury as dictated by the Sixth Amendment of the Constitution. In this respect,

the peremptory challenge procedures implemented in U.S. jurisdictions are often viewed

as a way to foster impartiality by preventing extreme potential jurors from serving on the

effective jury.18 In the context of our model, we interpret this goal as that of limiting the

presence in the jury of jurors from the tails of the distributions of conviction probabilities.

We define a juror i as extreme if its conviction probability ci lies below or above given

thresholds (see Section 8 for results under an alternative definition). For brevity, we will

focus on jurors who qualify as extreme because their conviction probability lies below some

threshold c > 0. All our results about extreme jurors apply symmetrically to jurors whose

conviction probability lies above a given threshold c < 1.

In our example, jurors in the bottom 5th percentile of C are selected less often under

STR than S&R. This is not true in general. Fixing a particular threshold c > 0 — or

percentile of C — to characterize jurors as extreme, there always exists distributions of C

and values of d, p, and j such that S&R selects fewer extreme jurors than STR. However,

our first result shows that regardless of the distribution and of the parameter values, there

always exists a threshold sufficiently small such that, the probability of selecting extreme

jurors (i.e. below that threshold) is greater under S&R than under STR.

18See Footnote 1 and its associated quote. For legal arguments in favor of peremptory challenges based
on the Sixth Amendment, see, among others, Beck (1998), Biedenbender (1991), Bonebrake (1988), Horwitz
(1992), and Keene (2009).
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Let TM (x; c) denote the probability that there are at least x jurors with conviction

probability smaller or equal to c in the jury selected by procedure M .

Proposition 1. For any x ∈ {1, . . . , j}, there exists c > 0 such that TSTR(x; c) < TS&R(x; c)

for all c ∈ (0, c).

All proofs are in the appendix. A symmetric statement, which we omit, applies for

extreme jurors at the right-end of the distribution. Note that Proposition 1 can be rephrased

in terms of stochastic dominance. Let N c
M denotes the expected number of jurors of type

ci ≤ c in the jury selected by procedure M . Then, Proposition 1 says that there exists c > 0

and such that N c
S&R has first-order stochastic dominance over N c

STR for all c ∈ (0, c). A

direct corollary of Proposition 1 is therefore that the expected number of extreme jurors is

larger under S&R than under STR.

For some intuition about Proposition 1, consider the case x = 1. As illustrated in

Section 3, the panel must be composed of more than one extreme juror for STR to select

at least one such juror (since, if there is a single extreme juror in the panel, that juror is

systematically challenged by the plaintiff). In contrast, even in panels with a single extreme

juror, the extreme juror can be part of the effective jury resulting from S&R. This happens,

for example, if the extreme juror is presented to the parties after they both exhausted

all their challenges. The single extreme juror can also be accepted by both parties if its

conviction probability is sufficiently close to c and it is presented after the plaintiff used

most of its challenges on non-extreme potential jurors.19 The proof then follows from the

fact that, as c tends to zero, the probability that the panel contains more than one extreme

juror goes to zero faster than the probability the panel contains a single extreme juror.20

Proposition 1 is silent about the value of the threshold c below which STR selects fewer

jurors than S&R, as well as the size of TS&R(x; c)−TSTR(x; c) for c < c. These values depend

on the models’ parameters. To illustrate, we simulate TSTR(1; c) and TS&R(1; c) using j =

19Subgames in which the defendant has more challenges left than the plaintiff can lead the plaintiff to be
conservative and accept jurors who are “barely extreme” (ci ≈ c) in order to save its few challenges left for
“very extreme” jurors (ci ≈ 0).

20Proposition 1 crucially depends on averaging across all possible panels and does not state that STR
rejects more extreme jurors than S&R for any particular realization of the panel. The latter would obviously
imply Proposition 1 but turns out to be false in general. For a counterexample, let j = d = p = 1. Consider
a panel of three jurors with c2 < c3 < c and c1 > c and the index of the jurors indicating the order in which
they are presented under S&R. For this panel, STR always leads to the selection of extreme juror 3. In
contrast, provided c2 falls between the challenge thresholds of the defendant and the plaintiff in the first
round (which happens with positive probability), S&R selects non-extreme juror 2.
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Figure 3: Distributions of conviction probabilities by group under extreme,
moderate, and mild group-polarization
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12, d = 6, and p = 6, a typical combination of jury size and number of peremptory challenges

in U.S. jurisdictions. For the distribution of conviction probabilities in the population, we

use symmetric mixtures of beta distributions that represents a population made of two

groups with polarized views, which allows easier comparison with the results from Section 5

in which we study group-representation. We provide simulation results for three mixtures of

the distributions illustrated in Figure 3, which are meant to represent extreme (Panel (a)),

moderate (Panel (b)), and mild levels of polarization (Panel (c)). Additional simulations

results using U [0, 1] instead are reported in Appendix B.

Using these parameters, STR is found to exclude more extreme jurors than S&R even

when the threshold for defining jurors as extreme is relatively high. As illustrated in Fig-

ure 4, the difference between the propensity of STR and S&R to select extreme jurors is

sizable. For example, in all three sets of simulations, only about 1% of juries selected by

STR feature at least one juror with conviction probability below the 10th percentile of the

distribution (the 10th percentile corresponds to 0.01 under the extreme polarization distri-

bution, 0.17 under moderate polarization, and 0.25 under mild polarization). Under S&R,

the proportion of juries with at least one juror below the 10th percentile rises to 56% with

extreme polarization, 35% with moderate polarization, and remains quite high at 30% even

under mild polarization. For comparison, a random selection would have resulted in about
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Figure 4: Fraction of juries with at least one extreme juror
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(b) Moderate
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Note: For each set of parameters, results on the vertical axis are averages across 50,000 simulated jury
selections, fixing j = 12, d = p = 6, and C ∼ 0.5 · Ca + 0.5 · Cb throughout (distributions Ca and Cb
illustrated in Figure 3). Each line illustrates the fraction of juries with at least one extreme juror, where
a juror is considered extreme if her conviction probability falls below the threshold c corresponding to the
value on the horizontal axis.

73% of the juries featuring at least one such juror.

In these simulations, both procedures select fewer extreme jurors than a random draw

from the population. Somewhat surprisingly, this is not true in general. There exist dis-

tributions and values of the parameters d, p and j for which S&R selects more extreme

jurors than RAN , no matter how small the threshold below which a juror is considered as

extreme. In contrast, as we show in the next proposition, STR always selects fewer extreme

jurors than RAN .

Proposition 2. For any x ∈ {0, . . . , j − 1}, there exists c > 0 such that TSTR(x; c) <

TRAN (x; c) for all c ∈ (0, c).21

Figure 5 illustrates Proposition 2 and the fact that a similar statement does not hold

for S&R. For the simulations in the figure, we let j = d = p = 1 and adopt an extremely

polarized distribution of conviction probabilities with C ∼ 0.75 · U [0, 0.1] + 0.25 · U [0.9, 1].

In this case (as in others), STR excludes extreme jurors more often than RAN because,

21Proposition 2 generalizes Theorem 2 in Flanagan (2015) which shows that there always exists c > 0 such
that TSTR(n; c) < TRAN (n; c) for all c ∈ (0, c).
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Figure 5: Fraction of juries with at least one extreme juror (case in which S&R
is more likely to pick extreme jurors than RAN )
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Note: For each set of parameters, results on the vertical axis are averages across 50,000 simulated jury
selections, fixing j = d = p = 1, and C ∼ 0.75 · U [0, 0.1] + 0.25 · U [0.9, 1] throughout. Each line illustrates
the fraction of juries with at least one extreme juror, where a juror is considered extreme if her conviction
probability falls below the threshold c corresponding to the value on the horizontal axis.

for any realization of the panel, the juror with the lowest conviction probability is never

selected under STR (whereas the same juror is selected with positive probability under

RAN ). Under S&R, however, if the distribution is sufficiently right-skewed, the plaintiff is

more likely than the defendant to challenge in the first round. A challenge by the plaintiff

in the first round leads to a subgame in which only the defendant has challenges left and

the selection of an extreme juror is more likely than under a random draw. When they are

sufficiently large (i) the added probability of selecting an extreme juror when the defendant

has more challenges left than the plaintiff, coupled with (ii) the probability of a challenge

by the plaintiff in the first round can, as in the simulation depicted in Figure 5, lead to

S&R selecting more extreme jurors than RAN .

We could not fully characterize the situations in which S&R selects more extreme jurors

than RAN , and we never observed such a situation in simulations where C is a symmet-

ric mixture of beta or uniform distributions. The example in Figure 5 (as well as other

examples we found) requires extreme skewness in the distribution, which may be viewed

as unlikely. In this sense, situations in which S&R selects more extreme jurors than RAN
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might represent worst-case scenarios for S&R’s ineffectiveness at excluding extreme juror

(rather than ordinary situations).

5 Representation of minorities

In this section, we study the extent to which STR’s tendency to exclude more extreme jurors

than S&R impacts the representation of minorities under the two procedures. Without loss

of generality, we let group-a be the minority group. Since the parties do not care intrin-

sically about group-membership, any asymmetry in the use of their challenges arises from

heterogeneity in preferences for conviction between groups. In our simulations, we assume

that group-a is biased in favor of acquittal in the sense that Cb first-order stochastically

dominates Ca.
22

As suggested by Proposition 1, which procedure better represents minorities strongly

depends on the polarization between the two groups, and the concentration of minority

jurors at the tails of the distribution of conviction probabilities. To illustrate, suppose

that d = p = j = 1 and C ∼ U [0, 1]. For this case, the distributions of conviction

probabilities for the juror selected under RAN , STR, and S&R are displayed in Figure

6(a). Consistent with Proposition 1, below some threshold c ≈ 0.25, the probability of

selecting a juror i with ci < c is lower under STR than under S&R. If the two groups

are polarized and the distribution of Ca is sufficiently concentrated below c, it follows

that STR selects a minority juror less often than S&R. But the same is not true if the

distributions lack polarization or the minority is too large. For example, decompose C as

follows: C ∼ U [0, 1] = rU [0, r] + (1− r)U [r, 1]. Since the parties only care about a juror’s

conviction probability and not about its group-membership per se, the value of r in these

decompositions does not affect the distributions of conviction probabilities for the juror

selected under RAN , STR, or S&R. Then, letting Ca ∼ U [0, r] and Cb ∼ U [r, 1], Figure

6(b) illustrates how low values of r — which concentrate minorities at the bottom of the

distribution — make S&R select more minorities than STR, whereas higher values of r —

which spread the minority over a larger range of conviction-types — make STR select more

minorities than S&R.

From this example, we see that non-overlapping group-distributions are not sufficient to

22We also simulated the scenario in which the minority is biased towards conviction, the results, which we
report in the Appendix, are symmetrically very close).
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Figure 6: Jury selection and minority representation in size-1 juries
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(b) Minority representation in juries

Note: For each set of parameter, results on the vertical axes are averages across 20,000 simulated jury
selections, fixing j = 1, d = p = 1, and C ∼ r ·U [0, r] + (1− r) ·U [r, 1] throughout. The distribution in panel
(a) is independent of r whether the lines in panel (b) interpolate results from 20 values of r.

guarantee that S&R selects more minority jurors than STR. Neither is making the minority

arbitrarily small. For example, regardless of the size of the minority r, concentrating the

support of the minority distribution inside the interval [0.2, 0.3] would result in STR select-

ing more minorities, as can be seen from Panel 6(a). However, combining a small minority

with group-distributions that minimally overlap concentrates the distribution of group-a at

the tails which, as implied by Proposition 1, makes S&R select more minorities than STR.

Formally, consider a sequence of triples {(Cia, Cib, ri)}∞i=1. If,

(i) ri ∈ (0, 1] for all i ∈ N with limi→∞ r
i = 0, and

(ii) Cia and Cib converge in distribution to C∗a and C∗b , with either P(C∗a < C∗b ) = 0 or

P(C∗a > C∗b ) = 0,

then we say that there is a vanishing minority and group-distributions that do not

overlap in the limit. For any such sequence, let AiM (x) denote the probability that there

are at least x minority jurors in the jury selected by procedure M when group-distributions

are Cia and Cib and the proportion of minority jurors in the population is ri.
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Table 1: Representation of Group-a when Group-a is a minority of the pool

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.10 0.08 0.18 0.16 0.23 0.23 0.25

Standard deviation 0.11 0.11 0.12 0.12 0.12 0.12 0.12

Fraction of juries with at least 1 0.57 0.45 0.88 0.84 0.96 0.95 0.97

(a) Group-a represents 25% of the jury pool

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.02 0.00 0.05 0.04 0.09 0.08 0.10

Standard deviation 0.04 0.01 0.07 0.06 0.08 0.08 0.09

Fraction of juries with at least 1 0.17 0.02 0.47 0.38 0.67 0.64 0.72

(b) Group-a represents 10% of the jury pool

Note: The rows report the average number and standard deviation of group-a jury members, and the percent
of juries with at least one group-a jurors, out of 50,000 simulations of jury selection with parameters j = 12
and d = p = 6. Conviction probabilities are drawn for from Beta(5, 1), Beta(1, 5), respectively for Group-a,
Group-b jurors (Extreme), from Beta(4, 2), Beta(2, 4) (Moderate), and from Beta(4, 3), Beta(4, 3) (Mild);
see Figure 3 for the shape of these distributions.

Proposition 3. Suppose that, under {(Cia, Cib, ri)}∞i=1, there is a vanishing minority and

group distributions that do not overlap in the limit. Then for all x ∈ {1, . . . , j}, there exists

k sufficiently large such that AiS&R(x) > AiSTR(x) for all i > k.23

Given the result in Proposition 3, it is natural to wonder how small the minority and the

overlap between the group-distributions must be for S&R to select more minority jurors than

STR. When the latter is true, one may also wonder about the size of AS&R(x; r)−ASTR(x; r)

is. Again, the answer depends on the model’s parameters. To inform these questions, we

ran a set of simulations with d = p = 6 and j = 12 using the distributions displayed in

Figure 3, where the green lines in each panel represent fa and the yellow lines fb.

The results of our simulations, displayed in Table 1, suggest that S&R might select

more minority jurors than STR even when the size of the minority is relatively high (as

23Note that, despite the argument presented in the motivating example illustrated in Figure 6, Proposition
3 does not follow directly from Proposition 1. The reason is that, unlike in the motivating example, most of
the sequences {(Cia, Cib, ri)}∞i=1 covered by Proposition 3 are such that Ci = riCia + (1− ri)Cib varies across
the sequence (i.e., Cj 6= Ch for most j, h ∈ N).
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high as 25%) and the overlap between the group-distributions significant. However, without

stark polarization across groups,24 differences between the procedures’ propensities to select

minority jurors appear to be small. For example, under the distributions we labeled as

“extreme group heterogeneity” and with minorities representing 10% of the population, only

2.3% of juries selected by S&R include at least one minority juror whereas this number rises

to 17.1% under S&R (random selection would generate over 70% of such juries). However,

under the distributions we labeled as “mild group heterogeneity”, the same numbers become

66.5% under S&R and 64.5% under STR (random selection would generate over 71.9% of

juries with at least one minority juror in this second case).

6 Changing the number of challenges

So far, we have compared STR and S&R assuming that the number of challenges the parties

can use, d and p, was the same under each procedure. This was motivated by the fact that

judges often have a lot of freedom in selecting the procedure through which the parties use

their challenges (see Footnote 3). In contrast, the number of challenges that the parties can

use are typically specified more rigidly by state rules of criminal procedure.

In the last decades, several states have, however, reduced the number of challenges the

parties can use.25 In some instances, these reforms also clarify or alter the jury selection

procedures used in the state.26 In the context of such broader reforms, it is natural to ask

how the ability to change both the number of challenges the parties are entitled to and the

procedure through which the parties exert their challenges affect the trade-off between the

exclusion of extreme jurors and the representation of minorities.

Throughout this section, we fix an arbitrary value of j and consider varying d = p. For

any procedure M , let M -y denote the version of M when d = p = y. The notation for

the two previous sections then carries over, with TM -y(x; c) denoting the probability that

24Recall that Ca and Cb represent the parties’ beliefs that randomly drawn group-a or group-b jurors
eventually vote to convict the defendant. Polarized Ca and Cb, therefore, corresponds to groups that
are perceived by the parties to have different probabilities of voting for conviction (whether or not this
materializes when jurors actually vote on conviction at the end of the trial).

25Examples include California’s Senate Bill 843, passed in 2016, which reduces the number of challenges
a criminal defendant is entitled to from 10 to 6 (for charges carrying a maximal punishable of one year in
prison, or less).

26Examples include the 2003 reform of jury selection in Tennessee where some aspects of the jury selection
procedure were codified to apply uniformly across the state, while the number of peremptory challenges was
also slightly reduced (see Cohen and Cohen, 2003).
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Figure 7: The effect of varying the number of challenges
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Note: Fraction of juries with at least one juror below the 10th percentile (left panel) and fraction of minority
jurors (right panel) under STR (green stared markers) and S&R (orange square markers). For each set of
parameters, results on the vertical axes are averages across 50,000 simulated jury selections, fixing j = 12
and C ∼ 0.2 ·Ca + 0.8 ·Cb throughout (distributions Ca ∼ Beta(2, 4) and Cb ∼ Beta(4, 2), see Figure 3(b)).
The values of d = p are on the horizontal axes.

at least x jurors with conviction probability below c are selected under M -y, and AM -y(x)

the probability that at least x minority jurors are selected under M -y.27

For illustration, we first consider the case C ∼ 0.2 · Ca + 0.8 · Cb, Ca ∼ Beta(2, 4)

and Cb ∼ Beta(4, 2) (Ca and Cb are illustrated in the Figure 3(b)), and consider a juror

as extreme if its conviction probability falls in the bottom 10th percentile of C (0.27).

Unsurprisingly, the fraction of juries with at least one extreme jurors decreases as the

number of challenges awarded to the parties increases, regardless of the used procedure

(Figure 7(a)). Conversely, the fraction of minority jurors decreases with the number of

challenges under both procedures (Figure 7(b)). For both STR and S&R, more challenges

lead to fewer extreme jurors being selected at the expense of a lower minority representation.

As Figure 7(a) illustrates, however, increasing the number of challenges decreases the

selection of extreme jurors much faster under STR than under S&R. As a consequence, for

27Again, in the case of extreme jurors, we focus on jurors who qualify as extreme because their conviction
probability falls below a certain threshold c, though all of our results hold symmetrically for jurors who
qualify as extreme because their conviction probability lies above a certain threshold c,
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all values of y ∈ {2, . . . , 18}, there exists w < y such that STR-w performs better than

S&R-y in terms of both objectives.28

The latter is not true in general. Even when there exists w such that STR-w better

represents minorities than S&R-y, STR-w might still exclude fewer extreme jurors than

S&R-y if jurors are considered extreme when their conviction probability falls below an

arbitrary c > 0. However, an extension of Proposition 1 shows that when such a w exists,

there also exists c > 0 such that if jurors are considered extreme when their conviction

probability falls below c, STR-w performs better than S&R-y in terms of both objectives.

Proposition 4. Consider any x ∈ {1, . . . , j} and any y ≥ 1. Suppose that there exists

w ≥ 1 such that ASTR-w(x) > AS&R-y(x). Then for some c > 0, we also have TSTR-w(x; c) <

TS&R-y(x; c) for all c ∈ (0, c).

7 Empirical evidence

As emphasized in the analysis so far, group asymmetries in jury representation exist to the

extent that groups have polarized preferences for conviction. In this section, we use jury se-

lection data to estimate the distribution of conviction probabilities and provide quantitative

evidence of the different effects of jury selection procedures.

Jury selection data is to our knowledge relatively scarce.29 The empirical study of the

effects of adopting different jury selection procedures is challenging because procedures are

often chosen at the jurisdiction or state level, making it difficult to find sources of data with

random variation across procedures. Moreover, the endogenous choice of jurors generates

a selection bias that is difficult to control for when trying to identify the effect of jury

composition on trial outcomes. One approach is to exploit the quasi-random variation in

jury pool composition (see, e.g., Anwar et al. (2012) Flanagan (2018), Hoekstra and Street

(2021)). In what follows instead, we take the complementary approach of exploiting our

model’s structure to explicitly account for the jurors’ selection. This approach allows us

to provide detailed counterfactual predictions of alternative policies, and the distribution

28Specifically, in this example, for any y ∈ {2, . . . , 18}, there exists w ∈ {1, . . . , y−1} such that ASTR-w(1) >
AS&R-y(1) and TSTR-w(1; 0.27) < TS&R-y(1; 0.27)).

29Besides the data used in this section, another source is the data from North Carolina described in
Wright et al. (2018) and analyzed in Flanagan (2018). We do not use this source because the jury selection
procedures adopted in these jurisdictions do not conform to the rules we study in this paper.
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of their effects, accounting for non-linearities induced by the equilibrium outcomes, at the

cost of adopting specific functional form assumptions about the preference distributions.30

7.1 Data

For the purposes of this Section, we exploit data from Craft (2018) on peremptory strikes in

the Fifth Circuit Court District of Mississippi from 1992 to 2017, where a version of STR was

used to select, for the vast majority of trials, 12 regular jurors with 6 challenges per party.31

For each trial, the data reports the race and gender of the potential jurors, whether a juror

was struck by the defendant or the state, and the race and gender composition of the seated

jury and alternate jurors. We limit our analysis to the juries’ racial composition focusing

on Black and White jurors only.32 The data includes 292 trials. Being the sample of white

defendants’ trials too small (N = 66), we focus only on trials against black defendants.

In Table 2 we report summary statistics from for four samples of trials against black

defendants that vary depending on the size of the panel, and whether or not we include

panels containing jurors of unknown race. We exclude all jurors dismissed by the judge for

causes that are not the focus of our analysis. Hence, we define the size of the panel as the

sum of the number of jurors, alternate jurors, and jurors dismissed by either the state or the

defendant. Unfortunately, the data does not distinguish between jurors who were dismissed

in the course of selecting regular jurors, or in the course of selecting alternates.

The racial composition of juries and challenges is only weakly affected by the way we

select our sample. For the vast majority of trials, 12 jurors were selected, though the panels

are slightly over 24, mainly because they include potential alternate jurors (and because, in

some cases, judges may grant additional challenges to the parties). However, the moments

we use for identification rely only on race ratios and are relative stable across juries of

different size.33

30An additional issue with the causal identification approach is that the effect of adding one random white
juror to the jury may not be the policy-relevant treatment effect when jurors are heterogeneous in preferences
for conviction, as the evidence of peremptory challenges suggests.

31While the adopted procedure differs in some details from the stylized version we analyzed in this paper,
we assume that in equilibrium its outcome conforms to that of STR.

32The full sample includes almost 15,000 jurors, of which 26% are Black, 42% are White, 32% are of
unknown race, and only 3 Latinos and 1 Asian which we pool with the Whites.

33To simulate moments for estimation, we do not exploit the identification coming from variation in the
size of the jury pool, but simulate only juries with j = 12, d = p = 6. This is equivalent to assuming that
when challenging alternate jurors the parties strike behavior with the same frequencies as they do when
challenging regular jurors.
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Table 2: Summary statistics

Sample selection (1) (2) (3) (4)

Size of jury pool Any ≤ 27 Any ≤ 27

Include jurors of unknown race Yes Yes No No

N. of trials. 229 162 131 99

Trial statistics

Average size of jury pool. 26.9 23.7 26.2 23.5

(Std. dev.) (5.8) (2.5) (5.7) (2.6)

Average size of jury 12.0 12.0 12.0 12.0

(Std. dev.) (0.4) (0.4) (0.2) (0.2)

% with unknown race in jury pool 30.7 26.9 0.0 0.0

% guilty 87.7 85.2 84.5 82.8

Regression coef. of guilty on frac. white in jury 0.17 0.44 0.40 0.48

(SE) (0.12) (0.17) (0.18) (0.21)

Percentage of whites∗∗

in jury pool 62.7 63.1 66.5 65.9

in jury 66.8 67.8 70.5 69.7

among struck by the defense 91.4 92.3 93.1 92.9

among struck by the state 23.6 21.4 23.5 21.6

Trials against Black defendants in the Fifth Circuit Court District of Mississippi from 1992 to 2017 collected
by (Craft (2018). Notes: ∗Percentage of white jurors in samples 1 and 2 computed among jurors that have
been classified as either whites or blacks.

The fraction of whites in the pool is stable across all four samples, between 62.7 and 66.5

percent. Variation in the size of the jury pool has little impact on the racial composition

of the juries or challenged jurors. Instead, the behavior of the parties differ substantially

by race, consistently with our theory if jurors have polarized views that favor defendants of

their own race: in sample 4, which we use to estimate our model, 93% of the jurors struck

by the defendant are white, whereas only 22% of the jurors struck by the state are white.

As a result, juries have a higher percentage of whites than the panel does. The percent of

guilty black defendants in this sample is high, 82.8. However, regressing a guilty dummy

on the fraction of white jurors produces a large parameter, statistically significant in 3 out

of 4 samples.

In light of this evidence, we are not concerned by the presence of trials with a significant
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fraction of unknown-race jurors and with an unusual size of the jury pool. However to

estimate the model we use conservatively sample 4, the sample of trials without unknown-

race jurors and with a relatively homogeneous size of the jury pool.

7.2 Identification and estimation strategy

We assume that the distributions of conviction probabilities in each group belong to the

class of beta distributions. The model parameters are five: the fraction of whites in the jury

pool, 1−r, and the four parameters of fBlacks, fWhites. We set r to its empirical counterpart.

Consider the moments defined by the racial composition of defense and State’s challenges

(the last two rows of Table 2, which in turn determine the fraction of whites in the jury).

Given r, for any given fBlacks = Beta(αBl, βBl), it is always possible to find parameters of

fWhites = Beta(αWh, βWh) that match these two moments exactly. Intuitively, the reason

behind this lack of identification is that the racial composition of the jurors challenged by

defense and by the State is determined by the relative mass of black and white jurors at the

right and the left tails, respectively, of the two distributions.34 It is therefore possible, for

example, to appropriately shift the mass of both distributions to the right without changing,

on average, the racial composition of the juries. This would, however, increase conviction

frequencies. Therefore, additional identification can only be provided by matching trial

outcomes’ moments.

We proceed by estimating the parameters of fBlacks and fWhites using a simulated method

of moments procedure by matching four moments: the fractions of whites among the po-

tential jurors struck by (1) the defense and (2) the state, (3) the fraction of guilty after the

trial, and (4) the regression coefficient of the guilty dummy on the fraction of whites in the

jury. Our model is silent on jury deliberation procedures, therefore the implicit assump-

tion when using trial outcomes for identification is that pre-trial juror characteristics, as

observed by the two parties, determine expected conviction probabilities that account for

the effect of jury deliberations.

In simulations, we verified that the first three moments can be matched after fixing,

for example, αBl to any value we tried, implying that the other three parameters can

flexibly capture the relative mass of black and white potential jurors at the tail of the two

34With beta distributions, matching these two moments also matches the proportion of juries with x jurors
of a given race, for all x ∈ {0, . . . , j}, making it impossible to use higher moments for identification.
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Table 3: Estimates and moments fit

Parameter Estimate (SE)

αBl 1.00 (0.00)

βBl 0.33 (0.07)

αWh 12.15 (2.63)

βWh 0.16 (0.02)

Moment Model Data

% Whites struck by defense 92.9 92.9

% Whites struck by state 20.8 21.6

% Guilty 82.4 82.8

Regression coef. of guilty on fraction white in jury 0.475 0.476

Note: Bootstrapped standard errors based on 112 replications of the data set

distributions (determining moments (1) and (2)) and the average conviction probability

(determining the fraction of guilty verdicts, moment (3)). We also verified that when the

fixed parameter, αBl, is also allowed to change, the relative mass and location of selected

black and white jurors in the central portion of the distributions is also affected, allowing

the procedure to capture the fourth moment as well.

7.3 Estimation results and counterfactuals

Table 3 reports the parameters estimates obtained from sample 4 together with the moment

fit. The parameter estimates imply black members of the jury pool are on average less likely

to vote for conviction than white members (probability 0.75 (standard deviation: 0.28) vs

.99 (.03)). A Kolmogorov-Smirnov test strongly reject the null hypothesis that the estimated

distribution fBlacks first-order stochastically dominates fWhites with a p-value near zero.

Figure 8 reports the fraction of juries with at least one extreme juror computed from

simulations with the estimated parameters. The figure reveals that the procedure adopted

by this jurisdiction — a version of STR where each party is allowed 6 challenges — is

much more effective at excluding extreme jurors than a counterfactual S&R. The adopted

procedure includes less than 1% of the jurors below the 10-th percentile, c = 0.66, whereas

S&R with the same number of challenges would produce almost 7% juries with at least one
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Figure 8: Counterfactual analysis: juries with extreme jurors
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Note: Fraction of juries with at least one extreme juror, where a juror is considered extreme if her conviction
probability falls below the threshold c corresponding to the value on the horizontal axis (left panel), or below
the 25th percentile of C (right panel) under STR (green dashed lines) and S&R (orange continuous line).
Results are averages across 50,000 simulated jury selections per set of parameters, fixing j = 12, and
d = p = 6 (left panel), and d = p defined by the horizontal axes (right panel). Jurors are drown from
C ∼ 0.341 · Ca + 0.659 · Cb throughout (distributions Ca ∼ Beta(αBl, βBl) and Cb ∼ Beta(αWh, βWh) with
parameters reported in column 4 of Table 3.

such extreme juror. The right panel reports more simulations by varying the number of

challenges, but fixing the definition of extreme juror at c equal to the 25th percentile of the

distribution, 0.94. With this definition of extreme, the difference between S&R and STR

in the percent of simulated juries with at least one extreme juror is never below 9% for all

values of d = p we simulated, and over 30% for the baseline value d = p = 6. RAN would

select more than 97% of juries with at least one such extreme juror.

Figure 9 however suggests that a change to S&R could improve the representation of

minorities. Keeping the number of challenges at 6, S&R would include 4% more minorities

than STR (about 26% vs 25%) and would produce a jury with 4 black jurors (approximately

the black representation in the jury pool) 8% more often (about 38% vs 35%). To reach

a similar representation, the number of challenges in STR would have to be reduced to 3,

though this would increase juries with jurors below the 25th percentile from 37% to 48%.

The right panel reports substantial effects of the choice of procedure on the fraction
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Figure 9: Counterfactual analysis: number of challenges
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Note: Fraction of minority jurors (left panel) and average probability of conviction (right panel) under STR
(green stared markers) and S&R (orange square markers). Results are averages across 50,000 simulated jury
selections per set of parameters, fixing j = 12, varying d = p, and C ∼ 0.341 · Ca + 0.659 · Cb throughout
(distributions Ca ∼ Beta(αBl, βBl) and Cb ∼ Beta(αWh, βWh) with parameters reported in Column 5 of
Table 3). Values of d = p are on the horizontal axes.

of guilty verdicts. Under S&R, with 6 challenges the fraction of guilty verdicts declines

to 75%, 8 percentage points lower than under STR. The difference remains sizeable for all

number of challenges we simulated. The probability of conviction increases with the number

of challenges, because black jurors are the minority and are more easily excluded by the

prosecution when d = p increases.

In Figure 10 we report simulations computed fixing j = 12, d = p = 6, and varying the

racial composition of the jury pool. Increasing the number of blacks in the jury pool from

about 8, the average in the data, to less than 12 would have little effect on the fraction

of juries with at least one extreme jurors under STR (left panel), but has sizeable effects

on conviction rates (right panel). Increasing the number of blacks in the jury pool by one

unit starting from the average in the data increases the number of minorities in juries by

0.6 (on average), and decreases the probability of conviction by about 4 percentage points.

A policy of increasing the average number of blacks in jury pools by a number (about 1.5)

so that the number of blacks in juries, on average, increases by 1 unit, would decrease
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Figure 10: Counterfactual analysis: number of blacks in the jury pool
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Note: Fraction of juries with at least one juror below the 25th percentile (left panel) and average probability
of conviction (right panel) under STR (green dashed lines) and S&R (orange solid lines). The vertical grey
lines correspond to the average number of blacks in the jury pool in the data. The horizontal axis reports
the average number of whites in the 24-member jury pool. Results are averages across 50,000 simulated
jury selections per set of parameters, fixing j = 12, d = p = 6, and C ∼ 0.341 · Ca + 0.659 · Cb throughout
(distributions Ca ∼ Beta(αBl, βBl) and Cb ∼ Beta(αWh, βWh) with parameters reported in column 4 of
Table 3). Values of d = p are on the horizontal axes.

average convictions by 6 percentage points.35 The effects of similar policies under S&R are

comparable in magnitude, but as illustrated previously, S&R induces a higher fraction of

minorities in juries, higher number of selected extremes, and lower conviction rates (by over

6 percentage points when the average number of blacks in the jury pool is between 6 and

20).

This analysis suggests that the data is consistent with the parties believing that have

distributions of conviction probabilities making the two procedures significantly different in

their ability to selectively exclude extreme jurors. The data is also consistent with beliefs

in sizeable heterogeneity between juror-groups which, in turn, implies that the procedures

also differ in their ability to select minorities as well. The choice of procedure therefore has

35Flanagan (2018) regresses racial composition of jury pools and juries on outcomes of North Carolina
criminal trials adopting a combination of STR and S&R procedures Results imply that one additional black
in the jury pool would decrease conviction rates by 4 percentage points, whereas one additional black in the
seated in jury decreases conviction rates by 7.8 percentage points when the fraction of blacks in jury pool is
used as an instrument for the fraction of blacks in juries.
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large consequences on the trial outcomes.

8 Extensions

8.1 Excluding unbalanced juries

The primary purpose of jury selection is to prevent extreme jurors from serving (see Footnote

1). In our model, it seems natural to interpret this goal as that of limiting the selection of

jurors coming from the tail of the distribution, as we have done so far.

Another approach could be to consider the extremism of juries as a whole. For example,

extreme juries could be viewed as juries in which the juror with the highest or lowest

conviction probability is extreme. Through variants of the arguments in the proofs of

Propositions 1 and 2, one can show that, in that sense too, STR is more effective than both

S&R and RAN at excluding extreme juries.36

Another measure of juries’ extremism, proposed by Flanagan (2015), is whether a jury

is excessively “unbalanced” in the sense of featuring a disproportionate proportion of ju-

rors coming from one side of the median of C. Interestingly, Flanagan shows that STR

introduces correlation between the selected jurors, which leads the procedure to select more

unbalanced juries than RAN . Even though panels are the result of independent draws from

the population, jurors selected under STR have conviction probabilities between that of the

lowest and highest challenged juror. For example, the selection of two jurors with convic-

tion probabilities 0.25 and 0.75 indicates that challenges were used on jurors with conviction

probabilities outside the [0.25, 0.75] range. The latter makes it more likely that STR selected

additional jurors between [0.25, 0.75], introducing a correlation between selected jurors.

This intuition is formalized in Corollary 2 of Flanagan (2015) which shows that, even

when the parties have the same number of challenges (d = p), the probability that all

selected jurors come from one side of the median is larger under STR than under RAN .

Our next proposition generalizes this result. Using a new proof technique, we show that for

any x larger than half the jury-size, the probability of selecting at least x jurors from one

side of the median is larger under STR than under RAN . As in Section 4, we focus on the

36Specifically, for any x ∈ {0, . . . , j − 1}, there exists c > 0 and c̄ < 1, such that (a) for every c ∈ (0, c),
the probability that the lowest conviction-probability in the jury is smaller than c is larger under S&R and
RAN than under STR, and (b) for every c ∈ (c̄, 1), the probability that the highest conviction-probability
in the jury is larger than c is larger under S&R and RAN than under STR.
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Figure 11: Selection of jurors below the median
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Note: Fraction of juries with a at least given number of jurors below the median of C under STR (green
dashed line) and S&R (continuous lines) relative to the same fraction under RAN (i.e. TM (x;med[C]) −
TRAN(x;med[C])). Throughout, we fix j = 12, d = p = 6 and C ∼ r · Beta(1, 5) + (1 − r) · Beta(5, 1) (for
r ∈ {0.1, 0.25, 0.5}) whereas the number of jurors below the median is on the horizontal axis. For each set
of parameters, results for S&R are averages across 50,000 simulated jury selections, whereas values for RAN
and STR are computed analytically and are independent of r (see Footnote 37).

probability that the selected jurors are below the median (our results apply symmetrically

to selection of jurors above the median). Let med[C] denote the median of C.

Proposition 5. If d = p, then for any x ∈ {n/2 + 1, . . . , n} if n is even, and any x ∈

{n/2 + 1.5, . . . , n} if n is odd, we have TSTR

(
x;med[C]

)
> TRAN

(
x;med[C]

)
.

Figure 11 illustrates Proposition 5 and that a similar statement does not hold for S&R.

For M ∈ {STR,RAN}, the value of TM (x;med[C]) can be computed analytically and does

not depend on the distribution of C.37 For M = S&R, the value of TM (x;med[C]) depends

on the distribution in a complex fashion and it is not possible to generally compare S&R

with the two other procedures in terms of TM (x;med[C]). As the figure illustrates, the

probability to select at least x jurors below med[C] can, in some cases (in the figure, x = 7

and, barely, x = 8 jurors), be larger under S&R than under both RAN and STR. In other

cases, however, the same probability is lower under S&R than under both RAN and STR.

Figure 11 displays the result of simulations when the distribution of C is highly polarized

(a mixture of Beta(1, 5) and Beta(5, 1)) In Appendix B we present additional simulations

for less polarized distributions. These additional simulations suggest that high levels of

37Specifically, TRAN

(
x;med[C]

)
= P(Bi[j, 0.5] ≥ x) and TSTR

(
x;med[C]

)
= P(Bi[j + d+ p, 0.5] ≥ x+ p).
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polarization are required for S&R to more often select a majority of jurors below the median

than STR. Also, for lower levels of polarization, S&R more often selects fewer juries made

of a majority of jurors below the median than RAN .38

8.2 Representation of balanced groups

Concerns about the effect of jury selection on group-representation often focus on the repre-

sentation of racial minorities. Thought the U.S. Supreme Court initially banned challenges

based on race in Batson v. Kentucky (1986), it later also banned challenges based on gender

in J.E.B. v. Alabama (1994). It is natural to ask whether the advantages of S&R in terms

of minority representation comes at the cost of a worse representation of gender groups.

Unlike minorities which correspond to groups of unequal sizes represented by small

values of r, gender-groups can be thought of as even-sized groups and are better modeled

using r ≈ 0.5. With groups of similar sizes, both procedures almost always select at least

a few members from either group. It is therefore more interesting to compare procedures

in terms of the proportion of group-a jurors they select (than in terms of the probability of

selecting at least x members from group-a, as we did before).

In this last section, we let r = 0.5 and study the expected proportion of group-a jurors

selected under STR and S&R. We denote these proportions rSTR and rS&R and focus on how

close rSTR and rS&R are from the 50% of group-a jurors that prevail in the population.39

As in the last two sections, it is not possible to generally compare STR and S&R in

terms of the procedures’ ability to select an even proportion of group-a and group-b jurors.

In some cases, rSTR can be further away from 50% than rS&R, and the converse may be

true in other cases. For example, with d = p = 6 and j = 12, if Ca ∼ U [0, 1] and

Cb ∼ Beta(1, 5), simulations reveal that rSTR = 43.7% whereas rS&R = 45.8%. In contrast,

when Ca ∼ Beta[4, 2] and Cb ∼ Beta(1, 5), rSTR = 50.3% whereas rS&R = 52.2%.

These two examples however suggest that, as the group distributions become more

symmetrical, rSTR get closer to 50% . Our next proposition confirms this pattern. If the

38Because the parties’ actions under S&R are influenced by the mean of the distribution but not in any
clear way by the median (and because of the complexity of the game tree), we were unable to formalize the
effect of polarization on these comparisons in terms of the model parameters.

39Previous results are stronger in the sense that they establish a first-order stochastic dominance between
the number of jurors with certain characteristics (extremism or group-membership) selected under STR
and S&R. As we explain after Proposition 1, showing, for example, that TSTR(x; c) < TS&R(x; c) for all
x ∈ {1, . . . , j} directly implies that the expected proportion of selected jurors with conviction probability
ci < c is lower under STR than under S&R (whereas the converse is not true).
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Table 4: Representation of Group-a jurors with balanced group sizes

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.48 0.50 0.49 0.50 0.50 0.50 0.50

Standard deviation 0.18 0.20 0.16 0.17 0.15 0.15 0.14

(a) Group-a proportion r = 0.5, group distributions as in Figure 3.

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.39 0.40 0.42 0.42 0.45 0.44 0.45

Standard deviation 0.18 0.20 0.16 0.17 0.15 0.15 0.14

(b) Group-a proportion r = 0.45, group distributions as in Figure 3.

Polarization Extreme∗ Moderate∗ Mild∗ (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.47 0.50 0.49 0.48 0.49 0.48 0.50

Standard deviation 0.18 0.20 0.15 0.16 0.15 0.16 0.14

(c) Group-a proportion r = 0.5, group distributions slightly asymmetric∗

∗In panel (c) Extreme∗ corresponds to Ca ∼ Beta(1, 5) and Cb ∼ Beta(5, 2), Moderate∗ to Ca ∼ Beta(2, 4)
and Cb ∼ Beta(4, 3), and Mild∗ to Ca ∼ Beta(3, 4) and Cb ∼ Beta(4, 4).

Note: The rows report the average number and standard deviation of group-a jury members out of 50,000
simulations of jury selection with parameters j = 12 and d = p = 6.

group-distributions are symmetric or if they do not overlap, and if d = p, then rSTR = 50%

whereas S&R does not necessarily select an even proportion of jurors from each group. The

latter follows from the fact that, even when r = 50% and distributions are symmetrical, the

multiplicative utility function that the parties use to assess the value of a jury (which is itself

a consequence of the fact that juries must reach unanimous decisions) creates asymmetries

in the use of challenges under S&R.40

We say that random variables Ca and Cb are symmetric if fa(c) = fb(1 − c) for all

c ∈ [0, 1].

Proposition 6. Suppose that r = 0.5 and d = p. If (a) the two group distributions do not

40Flanagan (2015) shows that, in this symmetrical case, the asymmetry of the payoffs still forces the
defendant to be more conservative than the plaintiff when using its challenges, hence leading to an uneven
selection of jurors from the two groups.
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overlap,41 or (b) Ca and Cb are symmetric, then rSTR = rRAN .

Table 4(a) illustrates Proposition 6 and the fact that a similar statement does not hold

for S&R. Unlike STR, S&R can select unequal numbers of group-a and group-b jurors

even when distributions are symmetrical across groups. Therefore, as a consequence of

Proposition 6, rS&R can in these cases be further away than rSTR from the 50% of group-a

jurors that prevail in the population.

Table 4(a) however suggests that these differences may be quantitatively small, and that

sizable differences may require high levels of polarization between groups. Table 4(b) and

4(c) also report the results of simulations in which the symmetries required for Proposition 6

to hold are slightly relaxed. These indicate that the advantage of STR in the representation

of balanced groups established in Proposition 6 (i.e., the fact that rSTR is closer to 50%

than rS&R) may not be robust to even mild relaxations of these symmetries. In particular,

when r = 0.45, rSTR is consistently closer than rS&R to the 55% of group−a that prevail in

the population (see Table 1). Also, when r = 0.5 but the group-distributions are slightly

asymmetric, rS&R are identical except in the most polarized case.

9 Conclusion

In this paper, we study the relative performance of two stylized jury-selection procedures.

Strike and Replace presents potential jurors one-by-one to the parties, whereas the Struck

procedure presents all potential jurors before they exercise vetoes. When jurors differ in

their probability of voting for the defendant’s conviction, and on group membership, we

show that when groups have polarized views Strike is more effective at excluding jurors

with extreme views, but generally selects fewer members of a minority group than Strike

and Replace, leading to a conflict between these two goals.

The empirical evidence we analize with the guidance of the structure of our model

confirms that the choice of selection procedure has sizeable effects on jury selection and

trial outcomes.

Sociologists Small and Pager (2020) argue that systemic factors may lead to disparate

outcomes even in the absence of taste-based or statistical discrimination, the traditional

41That is either P(Ca > Cb) = 0 or P(Cb > Ca) = 0. The same result would apply if the two distributions
did not overlap in the limit as in Proposition 3.
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explanations in Economics. This paper formalizes an example in which the pursuit of one

objective, preventing extreme jurors to serve on juries, may lead to group disparities.
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A Appendix: Proofs

A.1 Preliminary technical results

A.1.1 Limit of a ratio of binomial probabilities

Lemma 1. For all η ∈ N and any k ∈ {1, . . . , η − 1},

lim
π→0

P[Bi(η, π) = k]

P[Bi(η, π) > k]
=∞.

Proof. Using the standard formula for the p.d.f. of a binomial and the representation of the

c.d.f. of the binomial with regularized incomplete beta function, we can re-write the ratio as

P[Bi(η, π) = k]

1− P[Bi(η, π) ≤ k]
=

(
η
k

)
πk(1− π)η−k

1− (η − k)
(
η
k

) ∫ 1−π
0 xη−k−1(1− x)kdx

(1)

As π → 0, both the numerator and the denominator tend to 0. We use L’Hopital’s rule to

complete the proof:

(∂/∂π)
(
η
k

)
πk(1− π)η−k

(∂/∂π)
(

1−
[
(η − k)

(
η
k

) ∫ 1−π
0 xη−k−1(1− x)kdx

])

=

(
η
k

)
·
[
kπk−1(1− π)η−k + πk(η − k)(1− π)η−k−1

]
−(η − k)

(
η
k

)
[(−1) · (1− π)η−k−1πk]

=
kπk−1(1− π)η−k

(η − k)(1− π)η−k−1πk
+
πk(η − k)(1− π)η−k−1

(η − k)(1− π)η−k−1πk

=
k(1− π)

(η − k)π
+ 1 −−−→

π→0
∞

�

A.1.2 Continuity of challenge thresholds in S&R as Ci converges in distribution

Lemma 2. Consider a sequence of random variables {Ci}∞i=1 that converges in distribution

to some random variable C∗. Let tI(γ,C
i
)

denote the challenge threshold used by party I ∈

{D,P} in an arbitrary subgame γ of S&R when the distribution of conviction probabilities

is Ci. For any such subgame γ, we have limi→∞ tI(γ,C
i
)

= tI(γ,C
∗).
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Proof. In any subgame γ̃, tI(γ̃, C
i
)

is the ratio of the value of continuation subgames if I

challenges the presented juror, or if both parties abstain from challenging (Brams and Davis,

1978). Therefore, limi→∞ tI(γ,C
i
)

= tI(γ,C
∗) follows directly if we show that the value of

any subgame, which we denote V (γ,Ci
)
, converges to V (γ,C∗) as i tends to infinity.42

The latter follows directly from the recursive characterization of V (γ,Ci
)

in Brams and

Davis (1978). Recall that each subgame γ can be characterized by the number of jurors

κ that remain to be selected, the number of challenges left to the defendant δ, and the

number of challenges left to the plaintiff π. With this notation, the recursive proof that

for all κ, δ, π ≥ 0, V
(
[κ, δ, π], Ci

)
converges to V

(
[κ, δ, π], Ci

)
as i tends to infinity can be

decomposed in a number of cases. Let F i(c) denote the the c.d.f. of Ci, F ∗(c) the c.d.f.

of C∗, and F (c) the c.d.f. of an arbitrary distribution C, with µi, µ∗, and µj being the

corresponding expected values. In each step, the initial formula for V
(
[κ, δ, π], Ci

)
is taken

from Brams and Davis (1978).

Case 1: κ = 0, δ ≥ 0, π ≥ 0. In this case, V
(
[0, δ, π], C) = 1 for all C and the

convergence of V
(
[0, δ, π], Ci

)
to V

(
[0, δ, π], C∗) follows trivially.

Case 2: κ > 0, δ = 0, π = 0. In this case, V
(
[κ, 0, 0], C) = µκ for all C and the

convergence of V
(
[0, δ, π], Ci

)
to V

(
[0, δ, π], C∗) follows from the fact that Ci converges in

distribution to C∗.

Case 3: κ > 0, δ = 0, π > 0. In this case, for all C,

V
(
[κ, 0, π], C) = V (κ− 1, 0, π) ∗

[
1−

∫ 1

tI([κ,0,π],C)
F (c) dc

]
,

and tI([κ, 0, π], C) = V
(
[κ, 0, π−1], C)/V

(
[κ−1, 0, π], C). The convergence of V

(
[κ, 0, π], Ci

)
to V

(
[κ, 0, π], C∗) then follows recursively from the previous cases and from Ci converging

in distribution to C∗.

Case 4: κ > 0, δ > 0, π = 0. In this case, for all C,

V
(
[κ, δ, 0], C) = V

(
[κ, δ − 1, 0], C)− V

(
[κ− 1, δ, 0], C) ∗

∫ tD([κ,δ,0],C)

0
F (c) dc,

where tD([κ, δ, 0], C) = V
(
[κ, δ−1, 0], C)/V

(
[κ−1, δ, 0], C). The convergence of V

(
[κ, δ, π], Ci

)
42Because we assume that all distributions of conviction probabilities are continuous, there are no issues

related to the possibility for the bottom of one of these ratios to converge to zero.
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to V
(
[κ, δ, π], C∗) then follows recursively from the previous cases and from Ci converging

in distribution to C∗.

Case 5: κ > 0, δ > 0, π > 0. In this case, for all C,

V
(
[κ, δ, π], C) = V

(
[κ, δ − 1, π], C)− V

(
[κ− 1, δ, π], C) ∗

∫ tD([κ,δ,π],C)

tI([κ,δ,π],C)
F (c) dc,

where tD([κ, δ, π], C) = V
(
[κ, δ − 1, π], C)/V

(
[κ − 1, δ, π], C) and and tI([κ, δ, π], C) =

V
(
[κ, δ, π − 1], C)/V

(
[κ − 1, δ, π], C). The convergence of V

(
[κ, δ, 0], Ci

)
to V

(
[κ, δ, 0], C∗)

then follows recursively from the previous cases and from Ci converging in distribution to

C∗.

�

A.1.3 Comparative statics of probabilities from a symmetric binomial

Lemma 3. P[Bi(η + 2, 0.5) ≥ k + 1] > P[Bi(η, 0.5) ≥ k] if and only if k > η
2 + 1

2 .

Proof. We can decompose P[Bi(η + 2, 0.5) ≥ k + 1] in terms of Bi(η, 0.5) and Bi(2, 0.5):

P[Bi(η + 2, 0.5) ≥ k + 1]

= P[Bi(η, 0.5) ≥ k + 1] + P[Bi(η, 0.5) = k] ∗ P[Bi(2, 0.5) ≥ 1] +

P[Bi(η, 0.5) = k − 1] ∗ P[Bi(2, 0.5) = 2]

= P[Bi(η, 0.5) ≥ k + 1] + P[Bi(η, 0.5) = k] ∗ 0.75 + P[Bi(η, 0.5) = k − 1] ∗ 0.25

Also,

P[Bi(η, 0.5) ≥ k] = P[Bi(η, 0.5) ≥ k + 1] + P[Bi(η, 0.5) = k].

Together, the last two equalities imply that P[Bi(η + 2, 0.5) ≥ k + 1] > P[Bi(η, 0.5) ≥ k]
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if and only if

P[Bi(η, 0.5) = k] ∗ 0.75 + P[Bi(η, 0.5) = k − 1] ∗ 0.25 > P[Bi(η, 0.5) = k]

P[Bi(η, 0.5) = k − 1] ∗ 0.25 > P[Bi(η, 0.5) = k] ∗ 0.25

P[Bi(η, 0.5) = k − 1] > P[Bi(η, 0.5) = k](
η

k − 1

)
0.5k−10.5η−(k−1) >

(
η

k

)
0.5k0.5η−k

η!

(η − [k − 1])!(k − 1)!
>

η!

(η − k)!k!

(η − k)!

(η − [k − 1])!
>

(k − 1)!

k!

1

η − k + 1
>

1

k

k >
η

2
+

1

2

�

A.1.4 Relationship between order statistics of symmetric distributions

For any number of draws w and any k ≤ w, let Ck,wg denote the k-th order statistic out of

w draws from distribution Cg, and fk,wg (x) the corresponding probability density function.

Lemma 4. Suppose that Ca and Cb are symmetric. Then, for any w ∈ N and any k ∈

{1, . . . , w}, we have fk,wa (c) = fw−k+1,w
b (1− c) for all c ∈ [0, 1].

Proof. Recall that, by definition, Ca and Cb being symmetric implies fa(c) = fb(1− c) for
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all c ∈ [0, 1], which, in turn, implies Fa(c) = Fb(1− c) for all c ∈ [0, 1]. We therefore have,

fka (c) = k

(
w

k

)
fa(c)[Fa(c)]

k−1[1− Fa(c)]w−k

= k

(
w

k

)
fb(1− c)[1− Fb(1− c)]k−1[1− (1− Fb(1− c))]w−k

= k
w!

(w − k)!k!
fb(1− c)[1− Fb(1− c)]k−1[fb(1− c)]w−k

= (w − k + 1)
w!

(w − k + 1)!(k − 1)!
fb(1− c)[(1− Fb(1− c)]k−1[Fb(1− c)]w−k

= (w − k + 1)
w!

(w − k + 1)!(w − (w − k + 1)!
fb(1− c)[1− Fb(1− c)]k−1[Fb(1− c)]w−k

= (w − k + 1)

(
w

w − k + 1

)
fb(1− c)[1− Fb(1− c)]k−1[Fb(1− c)]w−k

= fw−k+1
b (1− c)

�

A.2 Section 4: Effectiveness at excluding extremes

A.2.1 Proof of Proposition 1

Consider an arbitrary c ∈ (0, 1) and let us refer to jurors with conviction probability no

larger than c as extreme jurors. Let TM (x; c|k) denote the probability that at least x

extreme jurors are selected by procedure M conditional on there being exactly k of extreme

jurors in the panel of n. By the Law of Total Probability,

TM (x; c) =
n∑
k=x

P
[
Bi
(
n, F (c)

)
= k

]
TM (x; c|k). (2)

Consider first the STR procedure. Note that for all c, we have TSTR(x; c|x) = 0 because

if there are exactly x extreme jurors in the panel, one of them is necessarily challenged by

the plaintiff under STR (recall that p ≥ 1). Therefore, by (2), we have

TSTR(x; c) =
n∑

k=x+1

P
[
Bi
(
n, F (c)

)
= k

]
TSTR(x; c|k) ≤ P

[
Bi
(
n, F (c)

)
> x

]
, (3)

where the last inequality follows from the fact that TSTR(x; c|k) ∈ [0, 1] for all k (as

TSTR(x; c|k) is a probability).
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Next, consider procedure S&R. Our goal is to construct a lower bound for the probability

of selecting an extreme juror and show that, as c→ 0, this lower bound does not converge

to 0 as fast as (3). To do so, we introduce an decreasing function σ(c) > 0 such that, when

c is sufficiently small, TS&R(x; c|k) ≥ σ(c) for any k ≥ x. To construct σ, consider the

restricted sample space in which there are k extreme jurors in the panel.

Let tP be the lowest challenge threshold used by the plaintiff in any subgame of the

S&R procedure. Clearly, tP > 0.43 Henceforth, we focus on c ∈ (0, tP ).

We first consider the function α(c) defined as the probability that cj ∈ (c, tP ) for all the

(n− k) non-extreme jurors in the panel. Because C is continuous and 0 is the lower-bound

of its support, there exists y > 0 sufficiently small such that α(c) > 0 for all c ∈ [0, y].44

Also, α(c) is weakly decreasing in c.

By construction of tP , for such panels (with k extreme jurors and cj ∈ (c, tP ) for all the

(n − k) non-extreme jurors), the plaintiff uses all its challenges on the p first jurors it is

presented with, and the defendant never uses any challenges.45 Therefore, for these panels,

the probability that all k extreme jurors are selected is the probability that none of these

jurors are among the p first jurors presented to the parties, i.e.,
(
n−p
k

)
/
(
n
k

)
. Overall, for

c ∈ (0, tP ), we have TS&R(x; c|k) ≥ α(c) ·
(
n−p
k

)
/
(
n
k

)
, and σ(c) := α(c) ·

(
n−p
k

)
/
(
n
k

)
has the

desired property.

Applying TS&R(x; c|k) ≥ σ(c) to (2) with M = S&R, we obtain for all c sufficiently

small (specifically c ∈ (0, tP ))

TS&R(x; c) ≥
n∑
k=x

P
[
Bi
(
n, F (c)

)
= k

]
∗ σ(c) ≥ P

[
Bi
(
n, F (c)

)
= x

]
∗ σ(c). (4)

43Formally, if Γ denotes the set of subgames of S&R and tP (γ) the plaintiff’s challenge threshold in any
subgame γ ∈ Γ, then tP = minγ∈Γ tp(γ) (the minimum is well-defined since Γ is of finite size). In any
subgame γ of S&R, there is always a conviction probability c > 0 low enough such that if the juror who is
presented to the parties in the first round of γ is of type c, the plaintiff will challenge that juror. Therefore,
tP > 0.

44By definition of the support, because 0 is the lower-bound of the support, P(C ∈ [0, ε]) > 0 for all ε > 0.
Because C is continuous, there must therefore exists some δ > 0 such that P(C ∈ [δ/2, δ]) > 0. We then
have α(c) > 0 for all c < δ.

45The latter follows from the fact that, in any subgame, the threshold used by the defendant is always
higher than the threshold used by the plaintiff (in equilibrium, the defendant and the plaintiff never both
want to challenge the presented juror).
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Overall, combining (3) and (4) yields

lim
c→0

TS&R(x; c)

TSTR(x; c)
≥ lim

c→0

P
[
Bi
(
n, F (c)

)
= x

]
∗ σ(c)

P
[
Bi
(
n, F (c)

)
> x

] =∞, (5)

where the last equality follows from Lemma 1 and the fact that σ(c) > 0 is decreasing

in c.46 In turn, limc→0 TS&R(x; c)/TSTR(x; c) = ∞ and the fact that limc→0 TS&R(x; c) =

limc→0 TSTR(x; c) = 0 together imply implies that there exists some c > 0 small enough

such that TSTR(x; c) < TS&R(x; c) for all c ∈ (0, c).

A.2.2 Proof of Proposition 2

Using the same notation as in the proof of Proposition 1, we have

TRAN(x; c) ≥ P
[
Bi
(
n, F (c)

)
= x

]
∗ TRAN(x; c|x). (6)

Note that TRAN(x; c|x) is the probability that an Hypergeometric random variable with x

success, n − x failures, and j draws, results in the draw of exactly x successes. Therefore,

TRAN(x; c|x) > 0. Finally, combining (6) and (3) yields

lim
c→0

TRAN(x; c)

TSTR(x; c)
≥ lim

c→0

P
[
Bi
(
n, F (c)

)
= x

]
∗ TRAN(x; c|x)

P
[
Bi
(
n, F (c)

)
> x

] =∞,

where the last equality follows from Lemma 1 and the fact that TRAN(x; c|x) > 0. The

result then follows as in the proof of Proposition 1.

A.3 Section 5: Representation of minorities

A.3.1 Proof of Proposition 3

The structure of the proof is similar to that of the previous propositions. We focus on the

case we analyzed in the main paper, where the minority uniformly favors the defendant,

i.e., limi→∞ P(Cia > Cib) = 0. The proof for the other case is symmetrical.

For now, consider arbitrary Cia, C
i
b, and ri. Similar to the previous proofs, for any triple

46To apply Lemma 1, note that because C is continuous and the lower-bound of the support of C is 0, we
have F (c) > 0 for all c > 0 and limc→0 F (c) = 0.
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(Cia, C
i
b, r

i), we first decompose AiSTR(x) and AiS&R(x) by conditioning on the number of

minority jurors in the panel.

First, consider STR and let us decompose AiSTR(x) conditional, on the one hand, on the

panel containing more than x minority jurors — which occurs with probability P
[
Bi(n, ri) >

x
]
, and on the other, on the panel containing exactly x minority jurors — which occurs

with probability P
[
Bi(n, ri) = x

]
. In the first case (i.e., more than x minority jurors in the

panel), the probability that the panel contains at least x minority jurors is an upper bound

on the probability that STR selects them. In the second case (i.e., exactly x minority

jurors in the panel), STR selects at least x minority jurors provided that none of the

minority jurors in the panel are challenged. This occurs with a probability no larger than

the probability that the lowest conviction-probability among minorities is larger than the p-

th conviction probability among majority jurors (since the latter is required for the plaintiff

not to challenge any of the minority jurors in the panel). Recall that for any number of

draws w and any k ≤ w, we let Ck,wg denote the k-th order statistic out of w draws from

group g ∈ {a, b}. With this notation, we therefore have,

AiSTR(x) ≤ P
[
Bi(n, ri) > x

]
+ P

[
Bi(n, ri) = x

]
∗ P
(
[Cia]

1,x > [Cib]
p,n−x). (7)

Note that because limi→∞ P(Cia > Cib) = 0, we have limi→∞ P
(
[Cia]

1,x > [Cib]
p,n−x) = 0.

Second, consider S&R. Clearly, AiS&R(x) is no smaller than the probability for S&R

to select at least x minority jurors when there are exactly x minority jurors in the panel.

The latter is equal to P
[
Bi(n, ri) = x

]
∗ σ(x; ri, Cia, C

i
b), where σ(x; ri, Cia, C

i
b) denotes the

probability that S&R selects x minority jurors conditional on having x minority jurors in

the panel, as a function of ri, Cia, and Cib. In summary, with this notation, we have,

AiS&R(x) ≥ P
[
Bi(n, ri) = x

]
∗ σ(x; ri, Cia, C

i
b). (8)

We now show that limi→∞ σ(x; ri, Cia, C
i
b) > 0. For all i ∈ N, let Ci = riCia + (1− ri)Cib.

Observe that because limi→∞ ri = 0 and because Cib converges in distribution to C∗b , Ci

converges in distribution to C∗b . By Lemma 2, this implies that for any subgame γ of S&R

and both I ∈ {D,P}, we have limi→∞ tI(γ,C
i
)

= tI(γ,C
∗
b

)
. Note that tI(γ,C

∗
b

)
lies in

the interior of the support of C∗b for both I ∈ {D,P}. Also recall that in the limit, the

supports of Cia and Cib do not overlap as we have P(C∗a > C∗b ) = 0. Therefore, in the limit,
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the defendant never challenges a minority juror, which in turn implies that

(a) as i tends to infinity, the probability that the defendant challenges one of the x minority

jurors in the panel tends to zero.

Because tI(γ,C
∗
b

)
lies in the interior of the support of C∗b for both I ∈ {D,P}, there is

also a range of conviction probabilities [c, c] low enough inside the support of C∗b such that

P (C∗b ∈ [c, c]) > 0 and P challenged the juror presented in subgame γ if her conviction

probability lies within [c, c]. Furthermore, the probability that a juror with conviction-

probability in [c, c] is a majority juror is strictly positive (and tends to one as i tends to

infinity). Overall, in the limit,

(b) the probability that the plaintiff challenges a majority juror presented in subgame γ is

strictly positive.

Combining (a) and (b), in the limit and given a panel containing x minority jurors, there

is a positive probability that p majority jurors are presented first, are all challenged by P ,

and are followed by the xminority jurors which are left unchallenged by the parties (resulting

in a jury composed of at least x minority jurors). That is, limi→∞ σ(x; ri, Cia, C
i
b) > 0.

We are now equipped to complete the proof. Combining (7) and (8) yields

lim
i→∞

AiSTR(x)

AiS&R(x)

≤ lim
i→∞

P
[
Bi(n, ri) > x

]
+ P

[
Bi(n, ri) = x

]
∗ P
(
[Cia]

1,x > [Cib]
p,n−x)

P
[
Bi(n, ri) = x

]
∗ σ(ri, Cia, C

i
b)

= lim
i→∞

P
[
Bi(n, ri) > x

]
P
[
Bi(n, ri) = x

]
∗ σ(ri, Cia, C

i
b)

+
P
[
Bi(n, ri) = x

]
∗ P
(
[Cia]

1,x > [Cib]
p,n−x)

P
[
Bi(n, ri) = x

]
∗ σ(ri, Cia, C

i
b)

= lim
i→∞

P
[
Bi(n, ri) > x

]
P
[
Bi(n, ri) = x

] ∗ 1

σ(ri, Cia, C
i
b)

+
P
(
[Cia]

1,x > [Cib]
p,n−x)

σ(ri, Cia, C
i
b)

= lim
i→∞

P
[
Bi(n, ri) > x

]
P
[
Bi(n, ri) = x

]︸ ︷︷ ︸
=0, by Lemma 1

∗ lim
i→∞

1

σ(ri, Cia, C
i
b)︸ ︷︷ ︸

<∞, by limi→∞ σ(x;ri,Cia,C
i
b)>0

+ lim
i→∞

P
(
[Cia]

1,x > [Cib]
p,n−x)

σ(ri, Cia, C
i
b)︸ ︷︷ ︸

=0,
by limi→∞ P([Cia]1,x>[Cib]

p,n−x)=0,

and limi→∞ σ(x;ri,Cia,C
i
b)>0

= 0
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In turn, limi→∞AiSTR(x)/AiS&R(x) ≤ 0 and the fact that limi→∞AiSTR(x) = limi→∞

AiS&R(x) = 0 together imply that there exists some j sufficiently large such that AiS&R(x) >

AiSTR(x) for all i > j.

A.4 Section 2: Changing the number of challenges

A.4.1 Proof of Proposition 4

The structure of the proof is similar to that of the previous propositions. Observe that (3)

and (4) are true regardless of the number of challenges awarded to the parties in STR or

S&R. That is, by the same arguments as in the proof of Proposition 1, the following two

inequalities hold regardless of the values of w, y, ASTR-w(x), or AS&R-y(x),47

TSTR-w(x; c) =

n∑
k=x+1

P
[
Bi
(
n, F (c)

)
= k

]
TSTR-w(x; c|k) ≤ P

[
Bi
(
n, F (c)

)
> x

]
,

TS&R-y(x; c) ≥
n∑
k=x

P
[
Bi
(
n, F (c)

)
= k

]
∗ σ(c) ≥ P

[
Bi
(
n, F (c)

)
= x

]
∗ σ(c).

(9)

The proposition then follows from the same argument as in the proof of Proposition 1 (in

particular, see (5)).

A.5 Section 8: Extensions: Unbalanced juries and representation of bal-

anced groups

A.5.1 Proof of Proposition 5

The probability that STR selects at least x jurors with conviction-probability above the

median is the probability that at least x + d of the jurors in the panel have conviction-

probability above the median (since d of these jurors are challenged by the defendant).

Because d = p, for any x ∈ {1, . . . , n}, we therefore have

TSTR

(
x;med[C]

)
= P [Bi(j + d+ p, 0.5) ≥ x+ d] = P [Bi(j + 2d, 0.5) ≥ x+ d]

47Recall that the proposition assumes w, y ≥ 1.

45



In contrast, we have

TRAN

(
x;med[C]

)
= P [Bi(j, 0.5) ≥ x].

Therefore, by repeated application of Lemma 3, x > (n/2)+(1/2) implies TSTR

(
x;med[C]

)
>

TRAN

(
x;med[C]

)
. Since n is integer-valued, the last inequality corresponds to x ≥ n/2 + 1

if n is even and x ≥ n/2 + 1.5 if n is odd.

A.5.2 Proof of Proposition 6

Part (a). Under STR, since the group-distributions do not overlap, each party first uses all

of its challenges on one of the two groups before challenging the lowest conviction probability

jurors from the other group. For concreteness and without loss of generality, suppose that

group a favors the defendant (i.e., P(Ca > Cb) = 0). Let m denote the number of jurors

from group-a in the panel.

Note that because r = 0.5, the probability that m = k is the same as the probability

that m = n−k for all k ∈ {1, . . . , bn/2c}. Also, because d = p, the number of group-a jurors

who are selected when m = k is equal to the number of group-b jurors who are selected

when m = n − k.48 Therefore, the expected number of group-a jurors in the jury selected

by STR is exactly j/2.

Part (b). The proof is similar to the proof of Part (a). Consider the set of panel

configurations {a, b}n where, for example, vector (a, b, a, . . . , b, b, b) ∈ {a, b}n indicates that

the juror with the lowest conviction probability in the panel is a group-a juror, the juror

with second-lowest conviction probability is a group-b juror, the juror with the third-lowest

conviction probability is a group-a juror, ..., and the jurors with the three highest conviction

probabilities are all group-b jurors. To explain the structure of the proof, suppose that n

is even (we explain below how the argument generalizes to any n). We first construct a

partition of {a, b}n into two subsets Sa and Sb of equal size and construct a bijection q

between Sa and Sb. We then show that for every panel configuration l ∈ Sa which results

in ml group-a jurors being selected, (a) the panel configuration q[l] result j −ml group-a

48First, suppose that k ≤ p. Then, if m = k, no jurors from group-a (and j jurors from group-b)
are selected, whereas if m = n − k, no jurors from group-b (and j jurors from group-a) are selected.
Second, suppose that k ∈ {p + 1, . . . , bn/2c}. Then, if m = k, k − p = k − d jurors from group-a (and
j − (k − p) = j − (k − d) jurors from group-a) are selected, whereas if m = n− k, k − d = k − p jurors from
group-b (and j − (k − d) = j − (k − p) jurors from group-b) are selected.
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jurors being selected, and (b) panel configurations l and q[l] are equally likely. As in the

proof of Part (b), the result then follows directly.

Similar to the proof of Part (b), the bijection q[l] is obtained by (i) mirroring l around

the bn/2c position, and (ii) inverting the group of each juror in the resulting panel config-

uration. For example, panel configuration q[(a, a, b, a)] is obtained by mirroring (a, a, b, a)

around position bn/2c, which results in (a, b, a, a), and then inverting the group of each

jurors in (a, b, a, a), which results in (b, a, b, b). Formally, if inv[l] denotes the configura-

tion that results from turning all the a’s in l into b’s and all the b’s in l into a’s, then

q[(l1, l2, . . . , ln−1, ln)] = inv[(ln, ln−1, . . . , l2, l1)].

Let Sa and Sb be two sets that together contain all l for which l 6= q[l] and are such

that l ∈ Si implies q[l] /∈ Si. Since q
[
q[l]
]

= l, the sets Sa and Sb have equal sizes. Also

let S∗ contain all l for which l = q[l], if any (S∗ 6= ∅ if and only if n is even). Note that

{Sa, Sb, S∗} forms of partition of {a, b}n. Therefore, if we let (#m|l) denote the number

of group-a juror that are selected conditional on configuration l and P(l) the probability of

configuration l, we have

rSTR =
∑
l∈Sa

P(l) ∗ (#m|l) + P(q[l]) ∗ (#m|q[l]) +
∑
l∈S∗

P(l) ∗ (#m|l).

Part (b) then follows from the fact that (A) P(l) = P(q[l]) for all l ∈ Sa, (B) (#m|l) =

n− (#m|q[l]) for all l ∈ Sa, and (C) (#m|l) = j/2 for all l ∈ S∗.

Properties (B) and (C) follow directly from the construction of q and the fact that d = p.

Property (A), on the other hand, follows from Lemma 4 which establishes the symmetry of

order statistics for symmetric distributions. A formal proof of (A) using Lemma 4 requires

heavy and tedious notation. Instead, we show how (A) follows from Lemma 4 in a simple

example that clarifies how the argument generalizes to other cases.

Consider the case of (a, a, b) for which q[(a, a, b)] = (a, b, b). We can obtain the probabil-

ity of any configuration by integrating the p.d.f. of the appropriate order statistics from the

bottom to the top of [0, 1]. For example, using the notation for order statistics introduced
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before Lemma 4, we have

P[(a, a, b)] = P[m = 2] ∗ P [(a, a, b)|m = 2]

= P[Bi(3, 0.5) = 2] ∗
∫ 1

a
f1,2a (x)

[∫ 1

x
f2,2a (y)

(∫ 1

y
f1,1b (w) dw

)
dy

]
dx. (10)

We can also obtain the probability of any configuration by reverting the list of order statistics

and integrating from the top to the bottom of [0, 1]. For example,

P[(a, b, b)]

= P[m = 1] ∗ P [(a, b, b)|m = 1]

= P[Bi(3, a.5) = 1] ∗
∫ 1

a
f2,2b (1− x)

[∫ 1

x
f1,2b (1− y)

(∫ 1

y
f1,1a (1− w) dw

)
dy

]
dx. (11)

Finally, by Lemma 4, f1,2a (x) = f2,2b (1−x), f2,2a (y) = f1,2b (1−y), and f1,1b (w) = f1,1a (1−w),

which together with symmetry of the binomial with 0.5 probability of success implies that

the expressions in (10) and (11) are equal.

B External Appendix: Additional simulations

B.1 Excluding extremes, uniform distribution of conviction probabilities

Figure B.1: Fraction of juries with at least one extreme juror
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Note: Results from 50,000 simulations of jury selections with parameters j = 12, d = p = 6, and C ∼ U [0, 1]
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B.2 Minority representation when minorities favor conviction

Table B.1: Representation of Group-a jurors in the effective jury when Group-a
is a minority of the jury pool

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.12 0.08 0.18 0.16 0.23 0.23 0.25

Standard deviation 0.11 0.11 0.12 0.12 0.12 0.12 0.12

Fraction of juries with at least 1 0.76 0.45 0.89 0.85 0.96 0.95 0.97

(a) Group-a represents 25% of the jury pool

Polarization Extreme Moderate Mild (All)

Procedure S&R STR S&R STR S&R STR RAN

Average fraction of minorities 0.01 0.00 0.05 0.04 0.09 0.08 0.10

Standard deviation 0.03 0.02 0.06 0.06 0.08 0.08 0.09

Fraction of juries with at least 1 0.09 0.02 0.44 0.38 0.66 0.64 0.72

(b) Group-a represents 10% of the jury pool

Note: The rows report the average number and standard deviation of group-a jury members, and the percent
of juries with at least one group-a jurors, out of 50,000 simulations of jury selection with parameters j = 12
and d = p = 6. Conviction probabilities are drawn for from Beta(1, 5), Beta(5, 1), respectively for Group-a,
Group-b jurors (Extreme), from Beta(2, 4), Beta(4, 2) (Moderate), and from Beta(3, 4), Beta(4, 3) (Mild);
see Figure 3 for the shape of these distributions.
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B.3 Excluding unbalanced juries, simulations from mild and moderate

polarization

Figure B.2: Probability of selecting jurors below the median, difference with
RAN
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(b) Mild polarization

Note: The chart displays the probability of selecting a number of jurors with ci below the median under STR
(green dashed line) and S&R (orange lines) relative to the same probability under RAN , i.e. TM (x;med[C])−
TRAN(x;med[C]). The model parameters are j = 12, d = p = 6 and C ∼ r ·Beta(2, 4)+(1−r) ·Beta(4, 2) for
Panel (a) and C ∼ r ·Beta(3, 4) + (1− r) ·Beta(4, 3), for r = {0.1, 0.25, 0.5} Values for S&R are the results
from 50,000 simulations of jury selection, whereas values for RAN and STR are computed analytically and
are independent of r (see Footnote 37).
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