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Abstract

Fertilizer is critical to agricultural productivity, but its use results in negative ex-
ternalities downstream in the form of aquatic hypoxic zones and harmful algal blooms.
The full economic cost of fertilizer has yet to be quantified at a large-scale, partly be-
cause most farm pollution is unregulated under the Clean Water Act in the United
States, and partly due to the lack of a temporally consistent, administrative-level
dataset on water quality. This study utilizes a novel satellite-derived measure of algal
bloom intensity that spans 30-plus years and encompasses lakes, riparian, and coastal
aquatic resources. We document a positive relationship between nitrogen fertilizer
use and algal blooms. We then find a significant negative economic impact in places
downstream from agricultural areas, as well as in water-reliant regions (e.g., coastal
areas) and economic sectors (e.g., fishing, tourism, recreation). From these results, we
estimate the social cost of nitrogen fertilizer.

1 Introduction

The US Environmental Protection Agency considers nutrient pollution one of the “most
widespread, costly and challenging environmental problems.”1 Increasing flows of nitrogen
have far exceeded earth’s handling capacity and have impaired ecosystem functioning (Vi-
tousek et al. 1997; Gruber and Galloway 2008; Erisman et al. 2013), and nitrogen and
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phosphorus levels are far past the zone of certainty under the planetary boundaries analy-
sis (Steffen et al. 2015).

Nutrient enrichment, hypoxia, and algal blooms are interrelated environmental phenom-
ena. They are caused by excess nitrogen and phosphorus, coming primarily from fertilizer
use but also from human and industrial waste. These nutrients leach into waterways and
feed the growth of phytoplankton in a process called eutrophication (Nixon 1995). Eu-
trophication can produce algal blooms which are considered harmful when concentrations
of algae (e.g., cyanobacteria) achieve sufficient density to create negative environmental or
health effects (Smayda 1997).

Occurring in both fresh and salt water, algal blooms can be produced by excess nutrients
and/or climactic anomalies like warmer water temperatures (Paerl and Huisman 2008;
Michalak et al. 2013; Ho et al. 2019). Algal blooms are often followed by hypoxia events,
defined by dissolved oxygen levels below two ml per liter, as dead phytoplankton sink to
the seafloor and are decomposed by bacteria. Sustained low oxygen levels, in turn, can
result in aquatic dead zones.

Algal blooms have increased in frequency and intensity over the decades (Anderson 1989;
Hallegraeff 1993; Hudnell 2008; Huisman et al. 2018; Ho et al. 2019). The quantity
and extent of dead zones have also increased across the globe (Diaz and Rosenberg 2008).
Dead zones are now considered a major threat to the health of aquatic ecosystems (2008;
Doney 2010). While natural processes like upwelling of nutrient-rich ocean water con-
tribute to eutrophication, anthropogenic nutrient loading is increasingly the driver of algal
blooms and hypoxia events.

Fertilizer use is mostly exempt from federal regulation under the Clean Water Act despite
being the major source of water quality impairment in the US (Olmstead 2010), and indi-
vidual states have been hesitant to regulate agricultural inputs (Kling 2013). While reg-
ulation of agriculture is politically difficult to implement, several other challenges also in-
hibit efficient regulation of this market.

First, the economic impacts of hypoxia and algal blooms and the related external cost of
fertilizer are difficult to quantify (Rabotyagov et al. 2014; Barbier 2012). This is partly
due to the inherent challenges of estimating the costs of nonpoint pollution (Shortle and
Horan 2001; 2013), in which those negatively affected are not those responsible for the
pollution. In an analysis of contributors to the dead zone in the Gulf of Mexico, David et
al. 2010 found that the highest nitrogen yields occurred in the tile-drained Corn Belt of
Minnesota, Iowa, Illinois, Indiana, and Ohio—areas 1,500 km upstream from the pollution
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culmination point at the mouth of the Mississippi River.

A second challenge to rigorous estimation of the social cost of fertilizer is the lack of temporally-
consistent and spatially-relevant data on water quality (Brooks et al. 2016) that can be
linked to economic outcomes. Most past studies of the impact of algal blooms have been
limited to specific geographies or relatively short time frames. To overcome this problem,
we construct a measure of county-level algal bloom intensity that is derived from over
three decades of Landsat satellite imagery, as well as a spatially-weighted measure of fer-
tilizer use linked to watersheds. We utilize aggregate county-level income to estimate the
cost of fertilizer-driven algal blooms.

Algal blooms can affect income through several potential channels: studies have docu-
mented that blooms affect water-based industries and water treatment systems (Rohlich
1969; Dodds et al. 2009), fisheries and fishing revenues, (Breitburg et al. 2009; Wolf et
al. 2017), and tourism (Larkin and Adams 2007; Morgan et al. 2009). Hedonic analyses
show a response to algal blooms in local housing prices (Wolf and Klaiber 2017; Bechard
2020). County-level income should capture many of these direct economic effects.

Recreational exposure to algal blooms has been linked to headaches and allergic reactions
(Falconer 1999; Stewart et al. 2006), as well as asthma and respiratory issues from the
inhalation of algal aerosols (Fleming et al. 2007). Algal-related wildlife and livestock ill-
nesses have been reported in a number of species (Hilborn and Beasley 2015).

There is also evidence that nitrates in drinking water may have a negative effect on human
health. Best documented is the ‘blue baby syndrome’, formally known as methemoglobine-
mia, a condition in which nitrites derived from nitrates combine with hemoglobin and pre-
vent oxygenation of the blood. There is additionally some evidence that nitrates are asso-
ciated with colorectal cancer, thyroid disease, and neural tube defects, but these connec-
tions are not rigorously established and are controversial (Ward et al. 2018; Hilborn et
al. 2014).

Here we focus only on the direct economic effects of algal blooms generated by nitrate
fertilizers and omit any consideration of the health effects, so that our estimates must be
seen as lower bounds for the total external costs of these fertilizers. However, hypoxia and
algal-related externalities linked to public health may to some degree be captured in our
measure of county income to the extent that they affect labor or other economic outcomes.

Studies have attempted to aggregate the cost of algal blooms for the US: Dodds et al. 2009
look across fourteen EPA ecoregions and estimate the total cost of freshwater algal blooms
to be $2.2 billion per year via its impact on real estate values, recreation, wildlife protec-
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tion, and water treatment. In an earlier analysis, Hoagland et al. 2002 estimate the cost of
algal blooms to be $50 million per year across several coastal states with public health and
fisheries being the largest components. However, these estimates are limited by the data
available on algal blooms, as well as uncertainties involved in generalizing cost estimates
derived for specific context at the national level.

We focus on nitrogen-based fertilizer in part because it is the most widely-consumed fertil-
izer nutrient of the three crop macro-nutrients. Nitrogen usage has steadily increased over
the last couple of decades, aided by the Haber Bosch process and low-cost energy (Glibert
2020), while the use of phosphate and potash-based fertilizers has flattened or declined, as
shown in Figure 1. However, phosphates are also an important driver of algal blooms. Ap-
pendix Figure A1 plots the relationship between nitrogen and phosphate use at the county
level. Again, we see a very high correlation.

Figure 1: USDA ERS fertilizer use aggregated nationally by fertilizer type and year

Determining the socially-optimal level of nitrogen use requires equating the marginal pri-
vate benefits of fertilizer to its consumers (i.e., farmers) with the private and external
marginal cost of fertilizer.2 The private benefit is conceptually straightforward and based
on agronomic relationships between yield and fertilizer use,3 as well as crop prices. Private
marginal costs are simply the cost of fertilizer.

Fertilizer is among the highest cost input in a farmer’s production function. For example,
if we assume 200 bushels per acre corn, 200 lb nitrogen (using the one-to-one bushels to
2 There may also be external social benefits of fertilizer use, such as reducing the cost of food to the bene-
fit of low-income groups. Here we focus exclusively on the external costs.

3 Optimal nitrogen calculator: http://cnrc.agron.iastate.edu/nRate.aspx
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pounds convention), and a price of nitrogen at $0.4/lb, this equates to $80 of nitrogen per
acre. At a $4 per bushel corn price, an acre yields $800 in revenue, and nitrogen fertilizer
alone accounts for 10% of the production value. Therefore farmers have a strong incentive
to optimize their fertilizer use in a way that takes into account marginal yield increases
relative to the marginal cost of fertilizer.

The external cost of fertilizer is more complex given the nonpoint nature of the pollution,
as well as the issues related to the variety of nitrogen forms, numerous end-user impacts,
and questions about spatial and temporal scale. Existing estimates of the aggregate cost
of nitrogen fertilizer tend to be higher than those looking at the impact of algal blooms.
Sobota et al. 2015 estimates that nitrogen use in agriculture costs the US $59–340 billion
annually through its impact on aquatic habitat and eutrophication. This component alone
is 75% of their aggregate nitrogen cost estimate, which also includes the climate change-
related cost of N2O emissions. Van Grinsven et al. 2013 find similarly high costs in Eu-
rope, estimating the cost of nitrogen pollution from agriculture in the range of €35-230
billion per year, exceeding the private benefit to farmers.

In 2015, nitrogen fertilizer consumption in the US was 13 million tons4 and world nitro-
gen demand was 119 million tons in 2019 (FAO 2018). At the current price of $0.4 per lb
nitrogen equivalent (or 0.88/kg and $880 per ton),5 this equates to a market value of $11
billion in the US and $105 billion globally. In the US, for example, this means that the so-
cial cost of fertilizer of $59–340 billion estimated by Sobota et al. 2015 is 5-31x the private
cost.6 However, using 2021 prices the average private benefit from fertilizer via increased
yields is 2-3x the commodity cost.

Gourevitch et al. 2018 derive a more conservative estimate of $0.50 per kg for the social
cost of nitrogen in Minnesota, which is the median estimate of a left-skewed distribution
ranging from $0.05 to $10. Their estimate is driven primarily by public health costs and
WTP surveys for clean drinking water. Assuming US consumption of 13 million tons of
nitrogen, this equates to an aggregate cost of $6.5 billion per year, which is notably lower
than the nitrogen cost estimated by Sobota et al. 2015, a discrepancy that could be due
to less nitrogen exposure among the Minnesota population. The study also does not in-
clude the impact of nitrogen on eutrophication and hypoxia, citing data constraints and
the lack of credible estimates.7 The wide gap in the estimated costs of algal blooms and
4 Fertilizer Use and Price: www.ers.usda.gov/data-products/fertilizer-use-and-price
5 Source: http://agfax.com
6 This study appears to rely on an estimate of the eutrophication cost of nitrogen of $16/kg (from Van
Grinsven et al. 2013), which is 18x the current cost $0.88/kg of fertilizer.

7 However, it is worth noting that their estimate is more in line with Dodds et al. 2009’s estimated cost of
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nitrogen fertilizer showcase the complexity of the issue. Keeler et al. 2016 shows that es-
timates of nitrogen cost can span several orders of magnitude depending on the specific
location, form of N, and endpoints of interest.

This study utilizes a novel satellite-derived measure of water quality that spans 30-plus
years and encompasses lakes, riparian, and coastal aquatic resources. We document a pos-
itive relationship between nitrogen fertilizer use and algal bloom intensity. We then find
a significant negative economic impact in places downstream from agricultural areas, as
well as in water reliant regions (i.e., coastal areas) and economic sectors (fishing, tourism,
hunting, recreation). We calculate a back-of-the-envelope cost estimate of $580 per ton of
nitrogen [range $370 to $1,400], which is roughly in line with its market value.

To our knowledge, this study is the first to 1) analyze the impact of algal blooms on ag-
gregate income, 2) link this to a social cost of fertilizer, and 3) perform the analysis at a
national-wide scale that includes both inland and coastal waters. We also hope that the
satellite product of water quality that we developed can be utilized in research on many
policy-relevant questions, including in relation to geographies outside of the United States.

2 Data

Fertilizer: We utilize the US Geological Survey (USGS)’s annual county-level estimates
of nitrogen and phosphorus use from 1987 to 2012 (Brakebill and Gronberg 2017), which
was recently updated for the year 2017 (Falcone 2021). We normalize values by the land
area in a given county. We further calculate the sum of fertilizer use in upstream coun-
ties within a given watershed (HUC 4) from a county. The upstream-downstream relation-
ship for a random subset of counties can be visualized in Figure 2. Our main measure is
farm fertilizer use, but results are robust to including non-farm fertilizer use as well. We
also utilize an alternative dataset of fertilizer sales compiled by the fertilizer industry body
AAPFCO which is available for a subset of states.

Algal blooms: We construct a county-level measure of algal bloom intensity derived
from over three decades of Landsat satellite imagery and processed using computing power
available through Google Earth Engine.8 Several satellite products have been used to de-
tect and monitor algal blooms, including the European Space Agency’s Medium Resolu-
tion Imaging Spectrometer (MERIS) product (Clark et al. 2017) and a Moderate Resolu-

algal blooms in the US of $2.2 billion per year.
8 Google Earth Engine, urlhttps://earthengine.google.com
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Figure 2: Watershed classification of counties based on their relative location within the USGS hydro-
logic unit code HUC-4 watershed boundary. Thirteen randomly-selected counties are shown in gray. Green
areas represent counties that are at least partly within the same HUC-4 and downstream from the gray
county, as determined by their overlap with finer resolution HUC-12 watersheds. Likewise, blue counties
are upstream from gray counties. Finally, the light blue ‘Both’ includes counties which have land area that
is both upstream and downstream from gray counties.

tion Imaging Spectroradiometer (MODIS) product for ocean color, which measures chloro-
phyll levels at 500m resolution in the ocean and large inland lakes. Each satellite product
has its own tradeoffs around duration, revisit time, resolution, and geographic extent. We
opt for Landsat given its longer time series and the higher spatial resolution at 30m, which
allows us to better capture small inland water bodies and rivers.

We build on Ho et al. 2019’s approach to analyzing global lakes. We use Landsat The-
matic Mapper top-of-atmosphere (TOA), combining Landsat 5 (1984-2000) and Landsat 7
(2000-present). The bloom algorithm is based on the near infrared (NIR) band with an at-
mospheric correction for short wave radiation (SWIR): B4 - 1.03*B5 (Wang and Shi 2007).
In matching the Landsat 5 with Landsat 7 we subtract the satellite bias based on the dif-
ference in county-level bloom values during the years in which the products overlapped.

We filter out all images with over 25% cloud cover. Unlike Ho et al. 2017, we do not fil-
ter out pixels beyond a certain hue threshold. We then take the temporal average of the
bloom measure across all the 16-day revisit periods during the peak bloom time in late
summer (July-Sept). We then take the US county-level mean over a 30m water mask from
the National Land Cover Dataset (NLCD) for the maximum water extent from 2001 to
2016. US state boundaries extend three nautical miles from the coast, and this area is in-
cluded in each state’s county calculations of bloom intensity. Thus we include both saline

7



coastal waters as well as inland freshwater. We exclude counties lacking significant water
features (less than 5 km2 of surface water), dropping about 25% of US counties. However,
the results are robust to their inclusion.

It is worth noting that our calculated index is not a direct measure of either concentra-
tions of chlorophyll or any specific algal species. Rather it measures relative greenness in
the upper layer of the water column. Many studies over the years have used Landsat to
identify algal blooms (Tyler et al. 2006; Duan et al. 2007; Tebbs et al. 2013). This spe-
cific algorithm has been validated on-the-ground in Lake Erie (Ho et al. 2017) and globally
through tests of how the index reflects the spatial gradients of chlorophyll-a levels within
lakes (Ho et al. 2019).

Additional datasets include the following: watershed boundaries of hydrologic unit code
HUC-4 and HUC-12 from USGS. County-level climate data comes from NOAA’s Climate
Divisional Database (nCLIMDIV) of monthly temperature and precipitation levels. An-
nual estimates of hypoxic extent in the northern Gulf of Mexico spanning 1985 to 2019
from Nancy Rabalais, LUMCON, and R. Eugene Turner, LSU.9 County-level data on agri-
cultural yields come from the US Department of Agriculture’s historical census and Na-
tional Agricultural Statistics Service (NASS). County-level socioeconomic data come from
the Department of Commerce’s Bureau of Economic Analysis.

2.1 Satellite-derived bloom intensity trends

The contribution of the bloom index can be visualized in Panel A of Figure 3, along with
how the bloom index changes over time in Panel B. Figure 4 showcases the temporal and
spatial patterns of the constructed bloom index across US counties. As expected, bloom
intensity is higher in agricultural regions. There is significant geographic variation in where
bloom intensity increased and decreased, although there seems to be a general upward
trend in the upper Great Plains and along the 100th meridian.

Figure 5 graphs average annual bloom intensity by US region from 1984 to 2020. Most
locations appear flat. A trend of decreasing bloom intensity in the US Southeast (South
Atlantic) signifying potential water quality improvement may be attributable to a reduc-
tion in cropland area in that region. In line with the pattern shown on the map in Figure
4, algal blooms have intensified in the upper Midwest (West North Central) beginning in
the mid-2000s. This may be linked to Corn Belt cropland expansion and intensification
9 Source: https://www.epa.gov/ms-htf/northern-gulf-mexico-hypoxic-zone
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Panel A

Panel B

Figure 3: Panel A shows late summer bloom index averaged over 20 years from 1999 to 2019 in the
US Corn Belt, then with a close-up of the boundary region of Iowa, Illinois and Missouri where the Des
Moines River meets the Mississippi. Panel B shows the late summer algal bloom index at two discrete
points in time (1999 and 2019) in the Houston-Beaumont region.
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Panel A Panel B

Figure 4: Panel A plots the county-level late summer bloom index averaged over the entire sample time
period from 1984 to 2020. Panel B plots long-term change from 1985 to 2019 using three-year averages
around the endpoints (i.e., 1984-1986 for 1985). Gray counties lack enough surface water for a reading.

Figure 5: Trends in late summer algal bloom intensity from 1984 to 2020 by US Census region. ‘North-
east’ includes New England and the Middle Atlantic. Color coded legend map on bottom right.
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driven by ethanol demand in response to the Energy Policy Act of 2005. Note that four of
the five largest ethanol producers in the US are included in the West North Central region
(Iowa, Nebraska, South Dakota, Minnesota).

3 Empirical Strategy

We employ several empirical approaches: a difference-in-difference approach using a panel
of county-year observations to assess annual variation, a five-year panel to assess interme-
diate variation, and a long-difference cross-sectional approach to assess longer-term effects.
We apply these approaches to a first stage that estimates the impact of fertilizer on algal
blooms, and then a second stage that estimates the impact of algal blooms on income.

Difference-in-difference

bloomit =β1fertitw + β2Wit + states(i) + αi + γt + εit (1)

incomeit =β1bloomit + β2bloomit ∗ featurei + β3Wit + states(i) + αi + γt + εit (2)

In the first model, the outcome variable, bloom, is the satellite-derived measure of late
summer algal bloom intensity in county i and year t. fert is tons of nitrogen fertilizer
in county i and year t, or alternatively the sum of fertilizer use in counties upstream of
county i but within its watershed w. Fertilizer values are normalized by dividing by land
area. W is a vector of climate controls including mean summer temp and precip.

We use county-level fixed effects α to demean the observations and allowing for interan-
nual comparisons, as well as year level fixed effects γ to account for national level variation
(i.e., commodity prices). State-specific annual time trends state are also included to ac-
count for differential state-level policy. Standard errors are clustered at state level s.

In the second model the outcome variable, income, is log income per capita in county i
and year t, bloom is the satellite-derived measure of late summer algal bloom intensity in
county i and year t. feature is an interaction variable based on some non-time varying
characteristic of county i. This can include the proportion of a county that is water, or a
dummy for coastal counties, or a dummy if the county income is highly reliant on certain
sectors (i.e., fishing, recreation, farming). Other variables are the same as above.
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Long-difference

∆bloomi =β1∆ferti + β2∆Wi + states + εi (3)

∆incomei =β1∆bloomi + β2∆bloomi ∗ featurei + β3∆Wi + states + εi (4)

The outcome variable, ∆ bloom, is the change in our satellite-derived measure of late sum-
mer algal bloom intensity between 1987 and 2017, each period calculated as a three year
average (i.e., period 1987 is the average of 1986 to 1988) to reduce the likelihood of anoma-
lous years influencing outcomes. Similarly, ∆ fert and ∆W represent the change in each
variable at the county level over that same time period. We also employ state-level fixed
effects state to isolate within-state variation. Standard errors are again clustered at the
state level. Note we restrict our analysis to the continental US. We drop counties with lit-
tle surface water (less than 5 km2), as well as counties with no cropland area. However,
results are robust to the inclusion of such counties.

Five-year panel
As a final approach, we estimate ‘intermediate’ effects with a panel of five-year intervals
using rolling-window moving averages calculated over our annual panel dataset. This al-
lows us to account for a multi-year process. For example, it often takes several years for
fertilizer to leach into downstream waterways (Rabotyagov et al. 2014), and likewise, fertil-
izer use over a multi-year period may result in elevated bloom intensity over the course of
several years. In addition, one could imagine that the economic effects of the algal blooms
could spill over into subsequent years. For this intermediate analysis, we utilize the five-
year panel of county-level fertilizer data developed by (Falcone 2021).

4 Results

4.1 Drivers of fertilizer use

We first analyze the drivers of fertilizer use at the county level. For an individual farmer,
the yield-response of fertilizer is well-known. As described earlier, nitrogen fertilizer ac-
counts for a large cost component of commercial farm operations (∼10% of production
value). There is a strong incentive to apply an amount that optimizes yield response rela-
tive to the marginal cost of fertilizer. Since fertilizer and crops have transparent commod-
ity pricing, we are not concerned about pricing differentials across location driving changes
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in input use.

At the county-level we expect fertilizer use to be driven by changes in land use. In Table
1, we regress county-level nitrogen use on several potential land use variables: total har-
vested acres of the four major crops in the US (corn, soy, wheat, cotton), the ratio of corn-
to-soy acres, and acres of land enrolled under the USDA Conservation Reserve Program
(CRP). Cropland area is strongly related to nitrogen use. We would expect that places
that increased corn production relative to soy production would increase their nitrogen
fertilizer use given that soybeans are a nitrogen-fixing leguminous plant that require less
nitrogen compared to corn. Finally, we see a negative relationship with CRP enrollment,
which makes sense given that this program entails taking land out of active farm produc-
tion.

Table 1: Drivers of farm nitrogen use

Dependent variable:

Nitrogen use (1,000 tons)

(1) (2) (3) (4)

Crop area 0.009∗∗∗ 0.012∗∗∗ 0.009∗∗∗ 0.012∗∗∗

(0.003) (0.003) (0.003) (0.003)

Corn-soy ratio 0.929∗∗∗ 0.920∗∗∗

(0.252) (0.248)

CRP acres −0.008∗∗∗ −0.010∗∗

(0.003) (0.004)

County FE X X X X
Year FE X X X X
State-Yr trends X X X X
Observations 83,094 51,538 82,804 51,458
R2 0.954 0.956 0.954 0.956

Notes: Linear regression. Dependent variable is aggregate farm-level nitrogen
use (1,000s of tons) at the county level. Crop area is the total harvested acres of
corn, soy, wheat, and cotton. Corn-soy ratio is the amount of corn acres divided
by the sum of corn and soybean acres. CRP acres is the amount of acres under
the USDA Conservation Reserve Program. Time series to 1987 to 2012 and 2017.
Sample size varies based on extent of counties with both corn and soy production
and CRP data. Standard errors clustered at the state level. *p<0.1; **p<0.05;
***p<0.01

Overall, these results reassure us that fertilizer use is responding to the individual and
aggregate-level factors that one would expect, and that our nitrogen use data is capturing
meaningful variation across counties and over time.
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4.2 Fertilizer on blooms

We next test the relationship between nitrogen use and algal bloom intensity at the county
level, as captured by a satellite measure of late summer water greenness. In Table 2 we
separately test for effects of nitrogen use in the county and the sum of nitrogen use over
upstream counties within the county’s watershed. We further control for weather condi-
tions and and county and year fixed effects, as well as state-year trends, as described ear-
lier.

Table 2: Late summer algal bloom intensity and fertilizer use per km2

Dependent variable:

Algal boom intensity

(1) (2) (3) (4)

Nitrogen, in county 1.409∗∗∗ 0.589∗

(0.440) (0.320)

Nitrogen, upstream 1.576∗∗∗ 0.529
(0.448) (0.471)

County FE X X X X
Year FE X X X X
State-Yr trend X X
Controls Weather Weather Weather Weather
SE cluster State State State State
Observations 61,020 61,020 54,221 54,221
R2 0.856 0.858 0.858 0.860

Notes: Linear regression. Dependent variable is county-level average bloom in-
tensity from July to September in areas with water. Nitrogen is 1,000s of tons of
farm-level use per km2 land area of either county or counties upstream within the
HUC4 watershed. Time series to 1987 to 2012 and 2017. Counties with less than 5
km2 of water dropped from analysis. Standard errors clustered at the state level.
*p<0.1; **p<0.05; ***p<0.01

Figure 6 plots the coefficients for the annual panel, a five-year panel, and long difference
cross-section over thirty years from 1987 to 2017. We see that algal bloom intensity re-
sponds to nitrogen use across short term, medium term, and long term horizons.

There are valid concerns about the extent to which weather is a potential confounder given
its influence on farm-level decisions (e.g., reducing fertilizer use in response to adverse
weather) as well as bloom intensity directly through phytoplankton biological processes.
While we cannot completely untangle this relationship, in Appendix Figure A2 we run the
analyses from Figure 6 but omit the controls for growing season precipitation and temper-
ature. The resulting coefficients are quite similar.
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Figure 6: Coefficient plot. Red lines include the same specification as Table 2. Green lines includes observations every
five years from 1987 to 2017, using average values in the year prior through the year after each point. Blue lines are the re-
sults of the cross-sectional long difference from 1987 to 2017, similarly using three year average values around the endpoints.
All models control for average weather conditions. Counties with less than 5 km2 of water dropped from analysis. Standard
errors clustered at the state level. Error bars are at the 95% confidence range.

4.3 Income effect

We test the relationship between algal bloom intensity and income in Table 3. Model (1)
shows that bloom intensity alone has little effect on county-level income. Models (2)-(7)
include interaction terms to determine if there are differential effects by county character-
istics. Model (8) drops coastal counties to test whether effects are present in inland water-
ways.

We find that the negative effect of blooms are larger in coastal counties, counties with a
high proportion of surface area covered by water, and counties with high levels of fishing
income (top quintile). On the contrary, the relationship is positive in counties with high
levels of farm income.

We interpret the results to mean that places more dependent on water resources for in-
dustry, recreation, tourism, and real estate are more negatively affected by algal blooms.
Farm-intensive counties see higher income which likely reflects the fact that farmers are
using more fertilizer in these places, and thus getting higher yields. This, in turn, results
in higher county income, especially during times of high crop commodity prices.

We split the sample sub-periods and confirm that the results generally hold across the 35
years in which satellite-derived algal bloom data is available. Figure 7 plots coefficients
from Model (5) in Table 3. The non-interacted bloom term is again close to zero, and the
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Table 3: Impact of late summer algal blooms on county income, 1984-2019

Dependent variable:

County income per capita (log)

(1) (2) (3) (4) (5) (6) (7) (8)

Bloom 0.03 0.04 0.06 0.06 −0.04 −0.02 −0.03 −0.03
(0.05) (0.05) (0.05) (0.05) (0.04) (0.04) (0.04) (0.04)

Bloom:Coastal −0.26∗∗ −0.18∗

(0.10) (0.09)

Bloom:Water Prop −0.98∗∗∗ −0.77∗∗

(0.34) (0.31)

Bloom:Fishing High −0.19∗∗∗ −0.14∗∗∗ −0.12∗∗

(0.05) (0.04) (0.06)

Bloom:Farm Income High 0.40∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.40∗∗∗

(0.12) (0.12) (0.12) (0.12)

County FE X X X X X X X X
Year FE X X X X X X X X
State-Yr trend X X X X X X X X
Sample All All All All All All All Non-coastal
Controls Weather Weather Weather Weather Weather Weather Weather Weather
SE cluster State State State State State State State State
Observations 81,231 81,231 81,231 81,231 81,231 81,231 81,231 73,305
R2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

Notes: Linear regression. Dependent variable is county-level log income per capita. Bloom is county-level average
bloom intensity from July to September in areas with water. Time series from 1984 to 2019. Counties with less than
5 km2 of water dropped from analysis. Standard errors clustered at the state level. *p<0.1; **p<0.05; ***p<0.01
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interacted terms behave similarly: blooms are associated with reduced income in coastal
counties and positive income in farm-intensive counties—although the relationship weakens
after 2000.

Figure 7: Coefficient plot using Model (4) specification in Table 3. Fishing High and Farm Income High are indicators
for counties with high levels of fishing income and farm income, respectively (top quintile). All models control for average
weather conditions. Counties with less than 5 km2 of water dropped from analysis. Standard errors clustered at the state
level. Error bars are at the 95% confidence range.

4.4 Robustness

The Appendix includes several robustness tests. As discussed earlier, while weather influ-
ences bloom intensity directly, it also affects economic outcomes through channels unre-
lated to algal blooms (Dell et al. 2012). To this end, we replicate the analysis of the effect
of blooms on economic outcomes from Table 3 but drop the weather covariates. The re-
sulting coefficients in Table A1 are unchanged. While this does not illuminate the complex
weather-agriculture-ecological interactions, it at at least ensures that weather anomalies
are not driving our results. Substituting average growing season temperature with a non-
linear measure of crop growing degree days above and below 29◦C as per Schlenker and
Roberts 2009 does not change results either.

We also utilize non-log transformed county income as our outcome variable in Table A2, as
well as alternate measures of farm income that include both continuous and time-varying
values in Table A3. For the latter, our non-interacted bloom coefficients become negative,
implying that within-year increases in farm income may be driving observed “positive”
income associations with algal blooms—although this should be interpreted with caution
given the correlation between overall income and farm income.

We next test whether the relationship holds over longer time periods, and not just year-to-
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year: i.e., is it the case that places where blooms are getting worse experience less income
growth over time. Figure 8 plots the interacted coefficients from the annual panel in Table
3 along with coefficients from models using the five-year panel and long difference cross-
section spanning 30-plus years.

Overall, the estimates for the five-year panel and the long difference are less precisely es-
timated, partly because of fewer observations. We see a clear and increasingly negative ef-
fect of blooms on medium and long-term income growth in counties with a high proportion
of water. For coastal counties the negative effect of blooms increases in the medium term,
implying there may be lagged and/or cumulative impacts on tourism, industry, or real es-
tate. However, we no longer see an association over the course of three decades. The long-
term relationship is less clear in fishing-intensive counties, which could imply a shift away
from fishing as a response to water pollution or an adaptive response given the complex
interactions between fish populations and nutrient enrichment (Breitburg et al. 2009). In-
terestingly, we no longer see a positive relationship for farm-intensive counties over longer
time periods. The estimates are negative, albeit imprecise, suggesting that fertilizer use
may coincide with higher year-to-year income, but that otherwise blooms do not benefit
farm-intensive counties.

Figure 8: Coefficient plot. ‘Annual panel’ plots the interacted coefficients from models in Table 3. ‘Five year panel’ in-
cludes observations every five years from 1987 to 2017, using average values in the year prior through the year after each
point. ‘Long difference’ is a cross-sectional long difference from 1987 to 2017, similarly using three year average values around
the endpoints. Annual and five-year panels include fixed effects for county, year, and state time trends. State fixed effects in-
cluded in the long difference. The four panels show bloom intensity interacted with counties by whether they are coastal (top
left), in the top quintile of fishing income (bottom left) and farming income (top right), and their water area proportion (bot-
tom right). All models control for average weather conditions. Counties with less than 5 km2 of water dropped from analysis.
Standard errors clustered at the state level. Error bars are at the 95% confidence range.
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4.5 Combined model estimation

We next combine the two models to assess the economic impact of blooms using fertilizer
use as an instrumental variable. The general idea is that we seek to isolate the variation
in bloom levels that is driven by fertilizer use, and then estimate the resulting economic
impact from that variation. We note that this is not an optimal instrument given that
fertilizer use is related to income through non-water quality channels. As discussed ear-
lier, farmers may apply more fertilizer when the economy is good (e.g., credit is easily
available), and increased fertilizer use can increase crop production and increase county
income, particularly during periods of high commodity prices.

The first stage regression is shown in Appendix Table A5 using the same specification as
Model (2) of Table 2. We include the F-statistic for the excluded instrument, nitrogen use.
There is some evidence of a weak instrument when clustering at the state-level, which is
the standard error treatment we use in this analysis. Other clustering approaches yield
a much stronger relationship. Nevertheless, caution is warranted when interpreting the
results.

Table 4 shows the IV results with proximate OLS estimates like in Table 3, except re-
stricted in years to when fertilizer use data is available. We consistently see that the IV
coefficients for the interaction with water-reliant counties (e.g., the bloom impact in coastal
areas) are negative and larger in magnitude than OLS. For farm intensive counties the IV
coefficient is still positive but less significant.10 The non-interacted bloom terms become
large in the IV, perhaps capturing the general economic value of increased fertilizer use, or
alternatively the weaknesses described surrounding this instrument.

10 Alternatively, we bootstrap the IV standard errors of the interacted bloom coefficient 1,000 times which
produces lower standard error values: Bloom:Coastal (0.205), Bloom:Water Prop (0.438), Bloom:Fishing
High (0.111), Bloom:Farm Income High (0.217)
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Table 4: IV (Annual panel): Impact of late summer algal blooms on county income, in-
strumented by nitrogen use

Dependent variable:

County income per capita (log)
OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Bloom 0.09∗∗ 5.27∗ 0.10∗∗ 5.13∗ 0.10∗∗ 5.30∗ −0.003 4.76∗

(0.05) (2.65) (0.05) (2.66) (0.05) (2.67) (0.03) (2.66)

Bloom:Coastal −0.34∗∗∗ −1.72∗∗∗

(0.10) (0.60)

Bloom:Water Prop −0.91∗∗ −1.87∗

(0.36) (0.96)

Bloom:Fishing High −0.20∗∗∗ −0.91∗∗∗

(0.06) (0.20)

Bloom:Farm Income High 0.39∗∗∗ 0.91∗

(0.14) (0.49)

County FE X X X X X X X X
Year FE X X X X X X X X
State-Yr Trend X X X X X X X X
Controls Weather Weather Weather Weather Weather Weather Weather Weather
SE cluster State State State State State State State State
Observations 61,016 61,016 61,016 61,016 61,016 61,016 61,016 61,016
R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Adjusted R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Notes: Linear regression. Dependent variable is county-level log income per capita. Bloom is county-level aver-
age bloom intensity from July to September in areas with water. Nitrogen is 1,000s of tons of farm-level use per
km2 land area at the county level. Time series from 1987 to 2017 when both fertilizer and bloom data is avail-
able. Counties with less than 5 km2 of water dropped from analysis. Standard errors clustered at the state level.
*p<0.1; **p<0.05; ***p<0.01
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5 Gulf of Mexico effect

This paper has focused on the within-county impact of algal blooms on economic outcomes
in that same county. While we account for nutrient pollution from the fertilizer utilized
upstream from the county, we do not explicitly assess downstream impacts. A proportion
of all fertilizer applied across the entire Mississippi River basin (3.2 million km2 and about
40% of the the continental US, and including the entire Midwestern Corn Belt) reaches
the Gulf of Mexico via the Mississippi River (and the nearby Atchafalaya river). This up-
stream nutrient loading creates hypoxic conditions in the Gulf of Mexico (Rabotyagov et
al. 2014). Appendix Figure A3 shows the correlation between upstream nitrogen and phos-
phate use and the size of the Gulf of Mexico hypoxic zone. We see the strong correlation
between nitrogen and phosphate fertilizer use, as well as a positive but weaker correlation
with hypoxic zone extent.

In Table 5 we estimate the impact of upstream nutrients on the extent of the hypoxic
zone. We take the inverse distance-weighted average of fertilizer use across all counties in
the Mississippi river basin. Since weather also affects hypoxia via its impact on water flow
and phytoplankton activity, we flexibly control for precipitation and temperature across
the Mississippi River basin and along the coast. We find a somewhat weak but persistently
positive relationship between nitrogen use and hypoxic extent: a 1,000 ton increase in up-
stream nitrogen adds 4 km2 to the hypoxic zone in the Gulf. The average hypoxic zone
during this time period was 14,000 km2. In log form, we see that a 1% increase in nitrogen
is associated with about a 6% increase in hypoxic extent in km2. We also show the results
for phosphates, the another important limiting factor in phytoplankton growth (Turner
and Rabalais 2013), in Appendix Table A4.
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Table 5: Mississippi River basin annual nitrogen use and Gulf hypoxia extent

Dependent variable:

—–Hypoxia (sq km)—– —–Log Hypoxia (sq km)—–

(1) (2) (3) (4) (5) (6)

Nitrogen 4.386∗∗ 3.702∗ 4.633∗

(2.087) (1.960) (2.409)

Log Nitrogen 6.571∗∗ 5.448∗∗ 5.709∗

(2.902) (2.577) (3.241)

Weather upstream X X X X
Weather coastal X X
Observations 26 26 26 26 26 26
R2 0.155 0.375 0.398 0.176 0.455 0.456
Adjusted R2 0.120 0.290 0.247 0.142 0.380 0.320
F Statistic 4.417∗∗ 4.407∗∗ 2.641∗ 5.128∗∗ 6.117∗∗∗ 3.356∗∗

Notes: Linear regression. Dependent variable is Gulf of Mexico summer hy-
poxic extent as defined by the estimated area where bottom-water dissolved
oxygen is below 2 mg/L. Nitrogen is measured in 1,000s of tons for farm use,
inverse weighted by distance from the mouth of the Mississippi River and
summed across all counties in the Mississippi river basin. Weather controls
include average temperature and precipitation from January to June of the
given year for all counties in the Mississippi River basin (upstream) and
counties along the coast of the Gulf of Mexico (coastal). Time period from
1985 to 2019. *p<0.1; **p<0.05; ***p<0.01
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6 External cost

Next, we estimate the external cost of nitrogen fertilizer. Table 3 contains results from an
annual panel regression of county-level income on late summer algal bloom intensity. The
standard deviation in algal bloom intensity across time and counties is 0.04. Using Mod-
els (5)-(7), a one standard deviation increase in algal bloom intensity is associated with a
0.7% decline in coastal counties (0.04 x 0.18) and a 0.5% decline in fishing-intensive coun-
ties (0.04 x 0.14). For each additional 12% of county area that is water, which is the stan-
dard deviation across US counties, there is a 0.3% decline in income (0.04 x .77 x 0.12).
We see an opposite effect in relation to agriculture: a one standard deviation increase in
bloom intensity equates to a 1.5% increase in income in farming-reliant counties (0.04 x
0.4).

We can link these estimates back to Table 2, the annual panel regression of algal bloom
intensity on fertilizer use. The standard deviation in nitrogen use (tons per county km2

land) across time and counties is 0.002. Therefore, using coefficients from Models (1) and
(3) in Table 2, a one standard deviation increase in fertilizer is associated with a 0.003 in-
crease in algal bloom intensity (0.002 x 1.5). Using the Bloom:Coastal coefficient in Model
(5) of Table 3 (0.18) and the fertilizer-driven increase in algal bloom intensity, we would
expect a reduction in coastal county income by 0.05% (0.003 x 0.18). Similarly, in fishing-
reliant counties this equates to 0.04% (0.003 x 0.14).

Coastal counties account for about one-third of US income. During our sample period
from 1984 to 2019, the average aggregate income of coastal counties was $3 trillion per
year, or $14 billion per county and $32,000 per capita. In terms of nitrogen use, a one
standard deviation is 5,000 tons within-county and 19,000 tons upstream of a county, or
12,000 tons on average. So one ton of nitrogen results in a cost of $580 [range $370 to
$1,400] to downstream coastal counties ([1/5,000 to 1/19,000] x 0.0005 x 14 billion). Inter-
estingly, this is in the range of the market price of nitrogen fertilizer cited earlier at $880
per ton.

7 Discussion

In this study, we seek to estimate the economic cost of fertilizer via water quality. This ex-
ercise has been challenging to date due to the fact that farm pollution is largely exempt
under the Clean Water Act as well as the lack of annual panel on water quality linked to
an administrative level. We create such a dataset using a satellite algorithm to approxi-
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mate algal bloom intensity at the US county level from 1984 to 2020.

We find significant geographic variation in where blooms occur, and where bloom inten-
sity has increased and decreased over time. On average bloom levels have been relatively
flat with the exception of an upward trend in the upper Great Plains and along the 100th

meridian starting in the mid 2000s. This may be linked to Corn Belt cropland expan-
sion and intensification driven by ethanol demand in response to the Energy Policy Act
of 2005.

We find a significant negative economic impact in places downstream from agricultural
areas, as well as water reliant regions (i.e., coastal areas) and economic sectors (fishing,
tourism, hunting, recreation). Using our reduced form estimates, we compute a back-of-
the-envelope estimate of $580 per ton of nitrogen [range $370 to $1,400] to downstream
coastal counties, which is roughly in line with its market value ($880 per ton N). Note that
this figure does not include any health damages associated with the use of nitrate fertiliz-
ers or climate impacts of nitrous oxide or methane emissions.

In terms of policy, a nitrogen fertilizer tax could help internalize the externality and move
the market toward efficiency. In addition to limiting fertilizer use, there are other policies
that may mitigate the negative externality, including land use programs like the USDA’s
Wetlands Reserve Program. The protection and restoration to wetlands of lowland area
under crop cultivation has been shown to significantly reduce downstream nutrient pollu-
tion in the Mississippi basin (Mitsch et al. 2005). Wetlands also have the added benefit of
reducing flood damages (Taylor and Druckenmiller 2021).

Further, we hope that this new satellite product of water quality, can be tested, refined,
and utilized in research on other policy-relevant questions, including the valuation of wet-
lands and other ecosystem services—in both the United States and internationally.
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8 Appendix

Figure A1: Scatter plot of USGS county-level farm nitrogen and phosphate use per km2.
Left panel shows annual levels, right panel shows annual change in term of growth rate
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Figure A2: Coefficient plot. Same as Figure 6 except does not include weather controls. Red lines include the same
specification as Table 2. Green lines includes observations every five years from 1987 to 2017, using average values in the year
prior through the year after each point. Blue lines are the results of the cross-sectional long difference from 1987 to 2017,
similarly using three year average values around the endpoints. All models control for average weather conditions. Counties
with less than 5 km2 of water dropped from analysis. Standard errors clustered at the state level. Error bars are at the 95%
confidence range.
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Figure A3: Scatter plots with line of best fit for weighted upstream basin fertilizer use of nitrogen (N)
and phosphate (P) in millions of tons and Gulf of Mexico hypoxic zone extent in km2. Diagonal line is
kernel density plots showing distribution of annual values.
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Table A1: Impact of late summer algal blooms on county income, 1984-2019, no weather
controls

Dependent variable:

County income per capita (log)

(1) (2) (3) (4) (5) (6) (7) (8)

Bloom 0.04 0.06 0.08 0.07 −0.03 −0.01 −0.01 −0.02
(0.05) (0.05) (0.06) (0.06) (0.04) (0.04) (0.04) (0.04)

Bloom:Coastal −0.28∗∗ −0.20∗∗

(0.11) (0.10)

Bloom:Water Prop −1.02∗∗∗ −0.80∗∗

(0.36) (0.32)

Bloom:Fishing High −0.20∗∗∗ −0.14∗∗∗ −0.12∗∗

(0.06) (0.04) (0.06)

Bloom:Farm Income High 0.41∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.41∗∗∗

(0.13) (0.13) (0.12) (0.12)

County FE X X X X X X X X
Year FE X X X X X X X X
State-Yr trend X X X X X X X X
Sample All All All All All All All Non-coastal
SE cluster State State State State State State State State
Observations 81,231 81,231 81,231 81,231 81,231 81,231 81,231 73,305
R2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

Notes: Linear regression. Dependent variable is county-level log income per capita. Bloom is county-level aver-
age bloom intensity from July to September in areas with water. Time series from 1984 to 2019. Counties with
less than 5 km2 of water dropped from analysis. Standard errors clustered at the state level. *p<0.1; **p<0.05;
***p<0.01
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Table A2: Impact of late summer algal blooms on county income per capita, 1984-2019

Dependent variable:

County income per capita ($1,000s)

(1) (2) (3) (4) (5) (6) (7) (8)

Bloom 0.22 1.39 2.71 2.23 −1.12 0.21 −0.37 −0.18
(1.72) (1.83) (1.87) (1.96) (1.22) (1.19) (1.33) (1.26)

Bloom:Coastal −17.15∗∗∗ −14.85∗∗

(6.32) (6.23)

Bloom:Water Prop −67.85∗∗∗ −61.50∗∗∗

(19.06) (18.57)

Bloom:Fishing High −11.52∗∗∗ −9.98∗∗∗ −9.18∗∗

(2.79) (2.52) (3.49)

Bloom:Farm Income High 12.29∗∗ 11.89∗∗ 12.21∗∗ 11.87∗∗

(5.20) (5.16) (5.10) (5.06)

County FE X X X X X X X X
Year FE X X X X X X X X
State-Yr trend X X X X X X X X
Sample All All All All All All All Non-coastal
Controls Weather Weather Weather Weather Weather Weather Weather Weather
SE cluster State State State State State State State State
Observations 81,231 81,231 81,231 81,231 81,231 81,231 81,231 73,305
R2 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Notes: Linear regression. Dependent variable is county-level income per capita ($1,000s). Bloom is county-level average
bloom intensity from July to September in areas with water. Time series from 1984 to 2019. Counties with less than 5 km2

of water dropped from analysis. Standard errors clustered at the state level. *p<0.1; **p<0.05; ***p<0.01
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Table A3: Impact of late summer algal blooms on county income, by farm income mea-
sure, 1984-2019

Dependent variable:

County income per capita (log)

(1) (2) (3) (4)

Bloom 0.026 −0.053 −0.143∗∗∗ −0.305∗∗∗

(0.046) (0.034) (0.040) (0.047)

Bloom:Farm Income High 0.414∗∗∗

(0.122)

Bloom:Farm Income Avg 0.210∗∗∗

(0.044)

Bloom:Farm Income Annual 0.323∗∗∗

(0.014)

County FE X X X X
Year FE X X X X
State-Yr trend X X X X
Sample All All All All
Controls Weather Weather Weather Weather
SE cluster State State State State
Observations 81,231 81,231 81,231 81,231
R2 0.976 0.976 0.976 0.978

Notes: Linear regression. Dependent variable is county-level log aggre-
gate income. Bloom is county-level average bloom intensity from July to
September in areas with water. Farm Income High is a non-time varying
indicator for counties with average farm income in the top quintile. Farm
Income Avg is a non-time varying continuous measure of average farm in-
come. Farm Income Annual is a time-varying measure of farm income per
capita. Time series from 1984 to 2019. Counties with less than 5 km2 of
water dropped from analysis. Standard errors clustered at the state level.
*p<0.1; **p<0.05; ***p<0.01
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Table A4: Mississippi River basin annual phosphate use and Gulf hypoxia extent

Dependent variable:

—–Hypoxia (sq km)—– —–Log Hypoxia (sq km)—–

(1) (2) (3) (4) (5) (6)

Phosphate 27.314∗ 26.447∗∗ 26.622∗

(13.499) (12.068) (13.379)

Log Phosphate 3.159 3.207 3.239
(2.908) (2.487) (2.671)

Weather upstream X X X X
Weather coastal X X
Observations 26 26 26 26 26 26
R2 0.146 0.404 0.404 0.047 0.390 0.415
Adjusted R2 0.110 0.323 0.255 0.007 0.307 0.269
F Statistic 4.094∗ 4.975∗∗∗ 2.714∗∗ 1.180 4.691∗∗ 2.836∗∗

Notes: Linear regression. Dependent variable is Gulf of Mexico summer hy-
poxic extent as defined by the estimated area where bottom-water dissolved
oxygen is below 2 mg/L. Phosphate is measured in 1,000s of tons for farm
use, inverse weighted by distance from the mouth of the Mississippi River and
summed across all counties in the Mississippi river basin. Weather controls in-
clude average temperature and precipitation from January to June of the given
year for all counties in the Mississippi River basin (upstream) and counties
along the coast of the Gulf of Mexico (coastal). Time period from 1985 to 2019.
*p<0.1; **p<0.05; ***p<0.01
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Table A5: IV First Stage: nitrogram fertilizer use on late summer algal blooms

Dependent variable:

County income per capita (log)

(1) (2) (3) (4)

Nitrogen 0.59∗∗∗ 0.59∗∗∗ 0.59∗∗∗ 0.59∗

(0.13) (0.15) (0.08) (0.32)

SE cluster None County Ecoregion State
County FE X X X X
Year FE X X X X
State-Yr Trend X X X X
Controls Weather Weather Weather Weather
F-stat 20.5 14.8 59 3.4
Observations 61,016 61,016 60,782 61,016
R2 0.86 0.86 0.86 0.86
Adjusted R2 0.85 0.85 0.85 0.85

Notes: Linear regression. Dependent variable is county-level average
bloom intensity from July to September in areas with water. Nitrogen is
1,000s of tons of farm-level use per km2 at the county level. Time series
from 1987 to 2017. F-stat is for nitrogen, the excluded instrument. Coun-
ties with less than 5 km2 of water dropped from analysis. Standard errors
clustered as described. *p<0.1; **p<0.05; ***p<0.01
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