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Abstract

Despite the rapid pace of innovation in information and communications technologies (ICT)
and electronics, aggregate US productivity growth has been disappointing since the 1970s.
We propose and empirically explore the hypothesis that this is because of the unbalanced
sectoral distribution of innovation over the last several decades. Because an industry’s success in
innovation depends on complementary innovations among its input suppliers, rapid productivity
growth in just a subset of sectors may create bottlenecks and fail to translate into commensurate
aggregate productivity gains. Using data on input-output linkages, citation linkages, industry
productivity growth and patenting, we find evidence in support of this hypothesis: the variance
of supplier TFP growth or innovation adversely affects an industry’s own TFP growth and
innovation. Our estimates suggest that a substantial share of the productivity slowdown in
the US and several other industrialized economies can be accounted for by the sizable increase
in cross-industry variance of TFP growth and innovation. For example, if the TFP growth
variance had remained at the same level as between 1977 and 1987, the US manufacturing
productivity would have grown twice as fast in 1997-2007 as it did, reaching a higher level of
growth than in 1977-1987 and 1987-1997.
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1 Introduction

One of the most enduring macroeconomic puzzles of the last several decades is the pervasive

slowdown in productivity growth across industrialized nations in the midst of breakneck ad-

vances in information and communication technologies (ICT) and electronics. Figure 1 provides

a glimpse of recent breakthroughs in ICT and electronics by plotting the distribution of patents

granted over the last several decades.1 Two patterns are evident from the figure: first, there is

a rapid takeoff in the number of total patents in the 1980s, and second, the share of ICT and

electronics patents surges during the same time interval. For example, between 1990 and 2010,

the total number of patents granted annually rose from 99,000 to 208,000, while the number of

ICT and electronics patents granted increased by approximately 87,000, accounting for the bulk

of increased patenting in the US. Figure 2 depicts the growth rate of Total Factor Productivity

(TFP) in the US economy and in the leading OECD economies in recent decades. We see that

productivity growth has been slower everywhere, with the possible exception of Germany. In

the US, for example, there has been very little TFP growth since 2005.

The exponential advance of ICT and electronics innovation has led some commentators to

conclude that we are on the verge of a new age of abundance, or even “singularity” driven by

“superintelligent” machines (e.g., Kurzweil (2005), Diamandis and Kotler (2012), and Bostrom

(2014)). Others, looking at the TFP data, have concluded that we have entered an age of

slower growth because most promising technologies have already been developed and exploited

(Cowen (2011), Gordon (2017)).2

This paper offers a potential reconciliation of these two puzzling macroeconomic trends

based on the idea that technological advances over the last several decades have been unbal-

anced across sectors and have thus created endogenous bottlenecks, holding aggregate pro-

ductivity back. We propose a simple framework in which new technologies or products in a

sector require simultaneous improvements in the quality of the several inputs. For example,

breakthroughs in automotive technology cannot be achieved just with advances in sensors and

1The orange bars correspond to the share of USPTO patents granted in ICT and electrical products and
electronics, while the blue bars plot the share patents granted in electricity and electronics. The green line
shows the total number of patents granted. See below for data details.

2Those subscribing to the first view often claim that growth is mismeasured, which is undoubtedly true.
Nevertheless, mismeasurement does not seem to account for the broad outlines of the productivity slowdown
since the 1970s. First, growth was almost surely also mismeasured in the decades that followed World War II,
when many new consumer goods and technologies were introduced. Second, many of the implications of growth
mismeasurement thesis, such as faster productivity growth in sectors with less mismeasurement potential, do
not receive support from the data (Byrne et al. (2016), Syverson (2017)). Third, there is no evidence for even
the most basic predictions of the ICT-driven fast productivity growth, for example, with more ICT-intensive
industries (outside of ICT-producing industries themselves) exhibiting, if anything, slower growth of nominal
and real value-added (Acemoglu et al. (2014)).
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software, but will necessitate compatible improvements in energy storage, drivetrains, and tire

adhesion. When some of those innovations, say batteries, do not keep pace with the rest, we

may simultaneously observe rapid technological progress in some sectors, but slow productivity

growth in the aggregate. The bottleneck created by batteries, in this case, is endogenous in the

sense that it is the advances in the other inputs that have turned batteries into a bottleneck.

Our perspective also emphasizes how a more balanced distribution of technological progress

(and research and development) can improve aggregate productivity performance. In fact,

bottlenecks may signal the potential for significantly faster aggregate productivity growth in

the future if and when there are major advances in areas acting as bottlenecks.

Several transformative technologies of the last three decades illustrate how bottlenecks

emerge and how their alleviation can accelerate innovation and growth. High energy-density

rechargeable batteries, which figuratively and literally power the mobile electronics and electric

vehicle industries, provide a key example. Battery technology was a bottleneck even prior to

the 1970s, when the available technology for rechargeable batteries, lead-acid electrochemistry,

had low energy density, slow charging rates, a short life cycle, and an unwelcome property of

releasing explosive hydrogen gas during recharging. Lead-acid batteries were succeeded in the

1970s by nickel-cadmium and nickel metal hydride (NiMH) cells, which enabled the first com-

mercially successful gasoline-electric hybrid car, the Toyota Prius, introduced in 1997. However,

the primary drive unit in the Prius remained a conventional gas engine and its NiMH battery

provided only supplemental electric propulsion and regenerative breaking capacity. The battery

bottleneck was substantially overcome by lithium-ion batteries, invented in 1973 and refined in

the 1980s. The lithium-ion battery’s high energy density not only enabled fully electric mass

production vehicles, but also catalyzed a host of unforeseen innovations: a surge in onboard

automotive processing power, allowing vehicle autonomy; battery-powered drone aircraft, now

used in weather forecasting, emergency response, construction planning, filmmaking, and in-

frastructure inspection (e.g., bridge suspension systems); and the emerging electric passenger

aviation industry. In awarding the prize in Chemistry in 2019 to John B Goodenough, M Stan-

ley Whittingham and Akira Yoshino for their invention of the lithium-ion battery, the Nobel

committee observed that their work had “enabled the mobile revolution.”

Even more foundational to the current era is the transistor, an electronic switch capable of

amplification, switching, and rectification of electrical signals (Park et al. (1976)). Through the

1950s, electromechanical switches and vacuum tubes were a clear bottleneck. Though used in

virtually every kind of electronic device, telephone lines, radios, transmitters, audio amplifiers,

and early computers, they were bulky, fragile and slow (Sosa (2013)). The transistor supplied

a tiny, fast, and ultimately very cheap mass-produced alternative to vacuum tubes, thus break-
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ing the bottleneck impeding progress in technologies as disparate as computers, long distance

telephony, and audio amplifiers. Due to its extraordinary switching speed, the transistor also

ushered in the age of digital communications on which all transmission of symbolic data de-

pends. Many of the central technologies of the present—the Internet, artificial intelligence,

mobile computing, digital imaging, autonomous vehicles—are transistor-dependent innovations

that were largely unforeseen prior to the availability of digital switching. The transistor is esti-

mated to be the most manufactured device in history, at 13 sextillion (1021) units to date, with

billions more produced each day (Iancu (2019); Laws (2018)). The transistor’s immense foot-

print is also visible in Figure 1, where the surge in patenting in electricity and electronics and

in instruments and information would not have been feasible without the transistor technology.

The Global Positioning System (GPS) constitutes a third innovation that broke a techno-

logical bottleneck and enabled a suite of technologies that have become foundational to modern

life. Historically, navigating an offshore or airborne vessel required either relying on sight-lines

to charted objects or applying a combination of optical instruments, precise clocks, and de-

tailed tables. Traditional navigation was supplemented with radio-positioning systems in the

1970s, but these tools offered either poor accuracy or limited geographic coverage and hence

did not penetrate beyond military and commercial shipping applications. GPS overcame these

shortcomings and added a second crucial feature: atomic-level time-keeping. First launched in

1978, GPS satellites provide geolocation and date and time information to any GPS receiver on

or near the earth. While GPS was built by and for the US military, the United States opened it

to civilian use in 1983, after a Korean commercial airliner inadvertently navigated over Soviet

airspace and was shot down. In addition to breaking the geo-positioning logjam, GPS enabled a

set of highly consequential innovations that were surely not envisioned by the military planners

who commissioned the system. GPS now enables precision agriculture, mining, and oil explo-

ration; it supplies atomic time information for synchronization of power transmission systems;

it enables remote surveying for geology and weather prediction; and it powers innumerable

consumer-facing services such as ride-hailing, targeted advertising, and person locators.

With these motivating examples in mind, we first outline a simple conceptual framework,

which helps formalize the ideas explained in the context of the three technologies discussed in

the previous paragraphs. The main ingredient of our conceptual framework is that technological

advances (modeled as quality improvements) in a sector depend upon simultaneous improve-

ments in its supplier industries. Although advances in each upstream sector are potentially

beneficial, these advances are complements, so that an imbalance among them is detrimental

to further innovation. Our conceptual framework thus emphasizes that a balanced distribution

of technological advances across sectors is important for the viability of further innovations.
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This mechanism is distinct from a standard neoclassical channel where changes in input prices

cause a sector to move along a fixed production possibility frontier. Our framework yields a

simple estimating equation, linking growth in sectoral TFP to average TFP and dispersion

(variance) of TFP among that sector’s inputs. We estimate this equation using 462 four-digit

manufacturing industries between 1977 and 2007 and 42 three-digit in the US between 1987

and 2007.

Our estimates indicate that greater dispersion of TFP growth among an industry’s suppliers

exerts a powerful negative influence on its own growth opportunities. Our preferred specification

suggests that a doubling of the variance of input supplier TFP growth is associated with about

0.9 percentage points slower TFP growth for a sector.

We further document that, as conjectured, the dispersion of TFP growth among key in-

dustries has increased significantly over the last several decades. Our estimates suggest that

this higher dispersion can account for essentially all of the aggregate productivity slowdown

in manufacturing between the 1970s and 2007. For example, our results imply that if the

cross-industry dispersion of TFP growth in manufacturing had remained at the same value

as in 1977-1987, aggregate TFP growth in manufacturing would have been slightly faster in

1997-2007 than in the previous two decades.

Our methodology also clarifies which sectors are major bottlenecks and singles out a number

of industries, including pharmaceutical preparation, basic inorganic chemicals, electronic con-

nectors and surface active agents, as the leading bottlenecks. According to our results, a 20%

decrease in the TFP growth of the 10 fastest growing industries with a simultaneous increase

in TFP growth of each of the the bottom 50% of industries so as to keep average TFP the same

would have prevented 40% of the observed rise in the variance of supplier TFP over this period

and, as a result, aggregate TFP growth in manufacturing would have been 1.1 percentage points

higher. Our estimates additionally reveal that surgical and medical instruments, gas engines,

and industrial valves are among the most consequentially bottlenecked sectors, meaning that

they are large contributors to GDP but are inhibited by high TFP growth dispersion among

their suppliers.

We confirm that these empirical patterns are robust. They hold for the entire economy

and within manufacturing (where TFP is better measured), and they are present in weighted

and unweighted specifications, in various subperiods, with various additional controls, and with

different alternative measures of productivity dispersion. We also verify that they are not driven

by outliers or just by the rapid advances in computers and electronics sectors.

There is an obvious endogeneity concern in the results we present: technological trends

or productivity shocks may impact supplier and customer sectors simultaneously, which could

4



cause us to conflate the impact of sectoral linkages with correlated shocks. As a partial remedy

to this threat, we exploit international (non-US) technological opportunities as a source of

variation in the variance of supplier TFP growth and obtain very similar results.

Another important concern relates to whether these results could be driven by relative price

effects that change input intensity (e.g., less innovative inputs become more expensive and are

used less intensively).3 We show that this is unlikely to be the case using three complementary

strategies. First, we document that our results are driven by TFP, not by quantities and

prices. Second, a similar relationship holds when we focus on TFP growth dispersion among

the “idea suppliers” rather than the input suppliers to an industry—that is, among sectors

that an industry’s innovations typically rely on for ideas. We measure these idea linkages

by calculating the patent classes that a sector’s own patent applications typically cite (see

Acemoglu et al. (2016)). Since the citation network is distinct from the input-output network,

the dispersion of TFP among the idea suppliers to an industry should be less closely linked to

the relative input prices it faces. When our hypothesized mechanism is operational, however,

imbalances in idea generation relevant to a sector can become another constraint on innovation,

and this is what we find in the data. Third, and perhaps most directly, we document a similar

relationship in patents: industries with greater patenting variance across input suppliers are

less likely to patent themselves.4

Finally, we document analogous patterns using international data and establish that disper-

sion in productivity among key domestic and international supplier industries has also been a

major impediment to productivity growth for several leading OECD economies.

We view our results as suggesting an important role for endogenous productivity bottlenecks

and unbalanced sectoral productivity growth in constraining aggregate productivity growth.

While further work is needed to test causal relationships, we can already conclude that this

mechanism implies a more nuanced view of the poor productivity performance among industri-

alized nations over the last three decades. In particular, our hypothesis and supporting evidence

suggest that once important breakthroughs arrive in sectors acting as bottlenecks, there should

be an acceleration of both industry and aggregate productivity growth.

A second set of issues raised by our paper is whether the dispersion of productivity growth

across sectors is inefficiently unbalanced. High dispersion may result either from changing

technological opportunities or from inefficient allocation of research effort across industries.

3See Atalay (2017) and Baqaee and Farhi (2019) for such neoclassical effects, which arise once we depart
from unitary elasticities in production.

4The link between patents and productivity in our sample is modest, which may be due to the imperfect
correspondence between industry classifications and patent technology classes. Still, it is informative that the
role of bottlenecks are detectable using both measures of innovation.
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Our strategy is not geared towards answering this normative question. Positively, our evidence

implies that a more balanced trajectory of technological change would generate substantial

aggregate gains.

Our paper is related to a small but growing literature on the causes of the productivity slow-

down. In addition to the perspectives that view the current era as either the pinnacle of very

rapid but highly mismeasured productivity growth or as an exemplar of an economy running

out of ideas, several other perspectives may help to explain the productivity slowdown.5 First,

and most closely related to our work, several authors have argued that productivity growth from

new technologies, especially from new general purpose technological (GPT) platforms, tends to

lag the underlying breakthroughs substantially because GPT-using sectors only slowly discover

how to harness new technological capabilities. This idea was first proposed in the economics lit-

erature by David (1990) in the context of the effects of the electrification of American industry,

which David argued took place after considerable delays. It was further elaborated by Bresna-

han and Trajtenberg (1995) and Helpman and Trajtenberg (1996) who proposed mechanisms

for the slow emergence of productivity gains from general purpose technologies. Closer still to

our hypothesis, Brynjolfsson et al. (forthcoming) argue that productivity gains from AI and

other digital technologies will trace a J-shaped curve because complementary investments and

capabilities will take time to develop. Our approach, emphasizing that imbalanced innovation

across sectors will act as a bottleneck, provides a specific mechanism for extensive delays in the

realization of productivity gains from new technologies and platforms. Differently from these

works, our paper highlights how the extent and duration of the productivity slowdown will

depend not primarily on complementary investments and learning-by-doing in the GTP-using

sector but on the sectoral imbalance of innovation and the speed with which breakthroughs can

take place in lagging sectors.

Second, Andrews et al. (2016) provide evidence suggesting that much of the aggregate pro-

ductivity slowdown is related to the poor productivity performance of non-leader firms across

various sectors and countries, while leading firms have continued to experience steadily growing

productivity. Several other works have emphasized specific market imperfections or failures

as contributing to the productivity slowdown. These include: barriers to innovation and en-

trepreneurship (e.g., Decker et al. (2017), Aghion et al. (2019), and Akcigit and Ates (2019));

over-investment in automation (Acemoglu and Restrepo (2019)); insufficient government in-

vestment in R&D (Mazzucato (2013), Gruber and Johnson (2019)); and patent rent-seeking

5The most sophisticated version of the “running out of ideas” hypothesis is developed in Bloom et al. (2020),
who argue that new innovations have become difficult in many fields, but the rate of innovation has not declined
as much because the amount of effort devoted to invention and innovation has increased.
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by so-called nonpracticing entities (“trolls”) that discourage further innovation (Cohen et al.

(2016)). Our explanation is complementary to these ideas but distinct in its focus on produc-

tivity interactions across sectors rather than primarily sector-specific or aggregate factors.

Finally, conceptually, our framework builds on models of input-output and idea linkages.

Acemoglu and Azar (2020) provide a framework where innovation depends on the endogenous

combinations of inputs a sector uses. Our approach here is related but emphasizes that inno-

vation depends on how advanced (and how balanced) the set of exogenously-specified inputs is.

Our framework also relates to the motivating model in Acemoglu et al. (2016), where patenting

in a sector depends on the number of patents in other sectors whose patents it has typically

cited. The key distinction between our approach and prior work is our focus and results on the

drag that dispersion across sectors creates on aggregate innovation and productivity growth.

The rest of the paper is organized as follows. Section 2 presents a motivating conceptual

framework that will guide our empirical exploration. Section 3 overviews our data sources.

Section 4 presents our main results, focusing on the variance of supplier TFP growth as the

measure of sectoral imbalance of innovation. This section also draws out the quantitative

implications of our estimates and establishes their robustness. Section 5 provides several pieces

of evidence that support our claim that the variance of supplier TFP growth captures the effects

of imbalanced innovation across sectors. Section 6 presents analogous results for a cross-country

panel, while Section 7 concludes. Additional information on our data, industry correspondences

and robustness checks are presented in the (online) Appendix.

2 Model

In this section, we provide a motivating conceptual framework, which will then be used to

derive our estimating equations.

2.1 Basic Setup

Our starting point is the idea that new product or quality innovations in a sector depend on

improvements in the quality of the inputs that they use—a point emphasized by our case studies

of technological bottlenecks in the Introduction. To develop this idea with minimal complexity,

we consider a framework that borrows elements from existing models of input-output linkages

(such as Long and Plosser (1983), Acemoglu et al. (2012), and especially, Acemoglu and Azar

(2020)) and from canonical quality-ladder models (such as Aghion and Howitt (1992) and

Grossman and Helpman (1991)).
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Suppose in particular that there are N sectors, denoted by i = 1, 2, . . . , N . Assume also

that the production function of sector i at time t is

Yit = BiAitL
1−

∑
j∈Si

αij

it

∏
j∈Si

X
αij
ijt . (1)

Here, Yit denotes the output of sector i at time t, Ait is the productivity of this sector at time t,

and Bi is a normalizing constant.6 In addition, each sector uses labor, Lit, and inputs that are

necessary for production, which are those in the time-invariant set Si.
7√ For simplicity, these

inputs are assumed to be combined with a constant returns to scale Cobb-Douglas technology,

where αij are input shares and 1−
∑

j∈Si αij is the share of laborin production.

The most important building block of our conceptual framework is the way in which quality

improvements (or equivalently the introduction of new, higher-quality products) take place.

Here, we introduce the quality-ladder structure by assuming that Ajt = λnjt where λ > 1 and

njt is the number of innovations this sector has experienced in the past. Each innovation,

therefore, increases productivity by a factor λ.

Our critical assumption is that the arrival rate of innovation depends on the distribution of

technologies of all the inputs the sector uses:

φit = H

(∑
j∈Si

αijh(Ajt)

)
, (2)

where φit denotes the arrival rate of a new innovation at time t, and h and H are monotone

continuous functions, and we normalize H(0) = 0.8 Different choices for these functions give

different relationships between the quality distribution of the inputs of the sector and its in-

novation propensity. For example, we could take h(x) = xρ and H(x) = x1/ρ to obtain a

CES (constant elasticity of substitution) aggregator. Particularly important in this context

is whether the function h in equation (2) is convex or concave. The former corresponds to a

situation in which innovation in each sector is determined by how advanced its most advanced

inputs are, which makes innovation across different sectors substitutes and implies that greater

(mean-preserving) dispersion in innovations across inputs helps innovation. Alternatively, the

6Bi =
(

(1−
∑
j∈Si

αij)
1−

∑
j∈Si

αij
∏
j∈Si

α
αij

ij

)−1
. See Acemoglu and Azar (2020) for more details on this

functional form.
7It is straightforward to allow these sets to be time-varying, but we do not do so to reduce notation. In our

empirical work, we explore models both with and without time-varying input sets.
8We have equated the importance of an input for innovation to its share in production, αij . This is not

necessary for any of our main arguments, but it is the benchmark functional form assumption we use in our
empirical work. We also consider an alternative where the importance of an input innovation is measured by
the number of patent citations between industries. See Acemoglu and Azar (2020) for a discussion.
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concave case, arises when innovations across different inputs are complements, so that greater

(mean-preserving) dispersion hinders innovation. We find this concave case to be empirically

more relevant, because it captures the intuitive idea, already highlighted in our case studies

in the Introduction, that new product and quality improvements necessitate simultaneous im-

provements in a range of inputs, and if some of the relevant inputs fall behind, they will act

as a bottleneck, retarding technological progress.9 Note also that, in both the convex and the

concave case, because both h and H are monotone, a higher level of technology for any input

always helps innovation in the sector in question.

A second-order Taylor expansion of the right-hand side of equation (2) around its mean

gives:

φit ≈ H
[
αijh(Āit) + h′′(Āit)var({αijAjt}j∈Si)

]
,

where Āit ≡
∑

j∈Si αijAjt is the (cost-share weighted) mean of productivities of the inputs to

sector i, and var({αijAjt}j∈Si) is the (weighted) variance of the productivity as of the inputs

to sector i. Next, taking a first-order expansion of H around 0 and also approximating h(Āit)

by h′(Āit)Āit gives:

φit ≈ ηimeanĀit + ηivariancevar({αijAjt}j∈Si), (3)

where ηimean ≡ H ′(0)h′(Āit) represents the effect of the mean of the technological advances

across inputs, which we always control for in our empirical work, while ηivariance ≡ H ′(0)h′′(Āit)

captures the effect of dispersion across inputs (holding the mean constant). Equation (3) will

be the basis of our empirical work in the rest of the paper. The estimates of the parameter

ηvariance will show whether, in terms of our framework, the function h is convex or concave.

This coefficient will also indicate the extent to which unbalanced innovations across key inputs

in the economy may hold down aggregate productivity growth.10

To illustrate this point succinctly, suppose that Si = S for all i and some S ⊂ {1, . . . , N} and

αij = αj for all i and j ∈ S. Suppose also that h is concave, so that ηvariance ≡ H ′(0)h′′(Āt) < 0,

and we start with Ajt = Āt for all j ∈ S. Then consider a mean-preserving spread of the Ajt’s

so that they now have a weighted variance, var({αijAjt}j∈Si), given by σ2. Equation (3) implies

9The inputs that need to make technological advances for sector i to innovate successfully may be a subset
of the inputs in Si, but since we do not have a way of determining which subset of inputs is important for
innovation in our empirical work, we assume that all inputs in Si are relevant, and then verify robustness using
other measures of industry linkages.

10Even when ηivariance < 0, an increase in the productivity of an input supplier industry is always beneficial
(and thus this effect is less than the impact through the mean, ηimean), because the functions h and H are
monotone.
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that the aggregate productivity of the economy will be reduced by ηvarianceσ
2. So if σ2 and

ηvariance are both large, there will be a sizable negative impact on aggregate productivity.11

2.2 Endogenous Innovation Effort

It is straightforward to endogenize innovation and characterize the general equilibrium.12 While

the potential endogeneity of innovation does not play an important role in our empirical work,

it is nevertheless useful to consider it to motivate our later discussion of potential inefficiencies

from unbalanced innovative effort. We add this channel to the model by modifying equation

(2) to

φit =
1

γ
H

(∑
j∈Si

αijh(Ajt)

)1−γ

zγit, (4)

where γ ∈ (0, 1) and zit is research effort devoted to innovation in industry i at time t (e.g.,

overall research spending or research-related resource use such as scientific effort). This speci-

fication implies that there are intra-temporal diminishing returns to research effort in a given

field, which could arise from crowding out when multiple researchers pursue similar ideas si-

multaneously. We include 1/γ as a constant in front of the H function for simplicity.

Suppose also that the per-unit cost of research in industry i is κi, and the reward to an

innovation in the sector at time t is πit. The cost κi depends on the opportunity cost of research-

related resources in non-research activities, but may additionally include sector-specific distor-

tions, as well as misperceptions or fads among researchers (e.g., researchers being motivated

to pursue a particular field beyond its social value). We interpret the reward πit as a market-

outcome determined by prices, market sizes and markups, though fads and misperceptions may

affect rewards as well.

Given this setup, privately optimal research effort devoted to sector i at time t will be

z∗it =

(
πit
κi

) 1
1−γ

H

(∑
j∈Si

αijh(Ajt)

)
,

11As we explain in the next subsection, it may not be possible to reduce the dispersion of technological
progress across sectors without affecting the mean. In particular, such a mean-preserving dispersion reduction
would require that the cost of improving technology in any sector is the same.

12The general equilibrium will additionally involve the determination of the equilibrium wage rate (and the
allocation of labor across sectors) and the equilibrium interest rate (as a function of the aggregate growth rate
of the economy). We do not derive these additional (and standard) aspects of the general equilibrium.
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and thus

φ∗it =
1

γ

(
πit
κi

) 1
1−γ

H

(∑
j∈Si

αijh(Ajt)

)
, (5)

which is proportional to the exogenous-specified success probability in equation (2). This

ensures that equation (3) applies as before, and highlights that whether there is endogenous or

exogenous innovation success probabilities is not central for our empirical work.

Equation (5) emphasizes that, to the extent that the κi’s vary across sectors for reasons

unrelated to the social cost of innovation in sector i, the unequal (unbalanced) rates of tech-

nological progress across sectors could be inefficient. In such a scenario, policies that reduce

the dispersion of the rates of technological progress across sectors may improve the allocation

of resources. For example, if the marginal cost of innovation were the same across sectors, a

social planner could reduce dispersion without affecting mean technology, improving aggregate

productivity (and welfare). Conversely, if differences in κi’s across sectors reflect differences

in the social costs of innovation, then it may be infeasible to reduce the sectoral dispersion of

technological progress without lowering mean productivity in the economy. Since we do not

know where differences in the rate of innovation across sectors come from, these observations

caution against drawing strong normative conclusions from the results that follow.

3 Data Sources

The data sources that form the backbone of our paper combine time-series for industry TFP

growth with input-output linkage data. For manufacturing industries, we use data from the

NBER-CES Manufacturing database. These data are sourced from the Annual Survey of Manu-

facturers and include annual industry-level data from 1958-2011 on output, employment, input

costs, investment, capital stocks, TFP, and industry-specific price industries. We include 462

manufacturing industries corresponding to six-digit NAICS codes. As is standard throughout

the literature, TFP is defined as the residual of the change in real output after subtracting the

cost-share weighted change in each of five factors (capital, production labor, non-production

labor, energy, and non-energy materials). We supplement the manufacturing data with an-

nual TFP estimates for non-manufacturing industries from the BLS Multifactor Productivity

Database from 1987-2011. As with the manufacturing data, TFP outside manufacturing is de-

fined as the difference between real output growth and a shares-weighted combination of growth

in five inputs (capital, labor, energy, materials and purchased services).13

13The BLS also produces similar statistics for aggregated three-digit manufacturing industries. Although
we do not use these BLS measures in our analysis, these statistics are highly correlated with the Census data
multifactor productivity measures for manufacturing
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We construct input-output tables using the detailed Make and Use Tables provided by

the US Bureau of Economic Analysis from 1977-2002, which are available every five years,

corresponding to the years of the Economic Census. These tables provide information on the

amount that each industry spends on various commodities and the amount that they produce

of each commodity, respectively. From these two tables, we construct the dollar value that each

industry i uses as intermediates from other industries. Since each year’s release of these tables

is in industry codes particular to that year’s classification, we convert each table to a set of

time-consistent NAICS-based industry codes, the details of which are documented further in

the Appendix. Table 1 presents summary statistics for these main economic variables, both

across all manufacturing industries and the distribution of them across supplying industries.

Panel A shows the results for manufacturing industries only, while Panel B depicts averages

for all sectors. We see that average TFP growth over a five-year period across manufacturing

sectors over this time period was 1.8 percentage points. The average TFP growth of upstream

industries is substantially higher, reflecting the fact that more productive industries are used

more intensely as intermediate inputs.

As an alternate measure of productivity by sector, we also collected information on patenting

by industry from 1976-2006 from the NBER patent data project. Each patent in this dataset

is assigned to a US Patent code, which we convert to a SIC-based industry classification using

the mapping produced by Kerr (2008). We use this dataset to construct a time-series for total

patents and total patent citations for each industry. We supplement patent citations data

with information on “high-value” patenting by industry constructed in Kogan et al. (2017),

who identify these patents from stock-market responses to patent announcements as those that

are in the top quintile of the distribution of stock market excess returns. As with the other

patenting measures, we assign high-value patents to industries using the mapping from USPTO

codes to SIC-based industry codes. Panel A of Table 1 shows the growth in these patenting

measures, both on average and among supplying industries. Consistent with Figure 1, there

is an enormous growth in patenting over this time period, while the input-adjusted growth in

patents is slightly lower than the simple average across manufacturing industries.

As an additional measure of innovation, we follow Acemoglu et al. (2016) and construct

citation-based innovation linkages between industries. Specifically, we calculate the fraction of

citations for patents in industry i that come from patents in industry j. In order to simulta-

neously capture potential time-variation in this network of citations and account for the lags

in citation patterns, we construct the citation network for year t using all citations occurring

between years t−12 and t to patents granted during years t−8 through t−12 . Thus, the 1987

citation network is calculated as the total number of citations on patents that were granted be-
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tween 1975 and 1979, the 1992 citation network is calculated using citations to patents granted

between 1980 and 1985, and so on. We also show robustness of our results to using a single

time-invariant citation network that pools all years.

Lastly, we supplement the domestic US data with data for select European countries. We

take data on value-added and TFP from the 2012 EU KLEMS Growth and Productivity ac-

counts. In this exercise, we use data from 1982-2007 for 30 industries in Spain, France, Austria,

Finland, the Netherlands, Italy, Germany and the UK. We combine these data with country-

specific input-output tables from the World Input Output Tables for 2000, the earliest year

available. The relevant entry in the world IO table, αik,jl, is the share of inputs from industry

i in country k that came from industry j in country l.14 Panel C of Table 1 shows the TFP

growth among this sample. Overall, the growth in TFP across each five-year period in this

sample was 4.6 percentage points.

4 Sectoral Imbalances and Productivity Growth

This section presents our main results linking the total factor productivity (TFP) growth of

an industry to the dispersion of productivity growth among its suppliers—corresponding to

imbalance, under our hypothesis. Concretely, we estimate a version of equation (3), derived

above, using data on 462 four-digit manufacturing industries between 1977 and 2007, and 42

non-manufacturing industries in 1987-2007. We also report the quantitative implications of

these estimates and document their robustness to control vectors, sample periods, and sources

of variation in productivity growth.

4.1 Main Results

Our main estimating equation is the empirical analogue of (3):

∆TFPit = βmean
∑
j

αijt−1∆TFPjt (6)

+βvarianceVAR (∆TFPjt) + X′it−1βother + δt + εit

14In our baseline specification, this share includes inputs from all other countries. We explore alternative
definitions and show the robustness of the results to using only the domestic input-output table specific to each
country.
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where t refers to five-year time periods, ∆TFPit is the TFP growth of industry i during the

five-year time interval denoted by t,

VAR (∆TFPjt) ≡
∑
j

αijt−1

(
∆TFPjt −

∑
j

αijt−1∆TFPjt

)2

,

and
∑

j αijt−1∆TFPjt is the average TFP growth among the suppliers of industry i in the

five-year time period, calculated using the share of inputs from the industry in question in the

intermediate costs of industry i in the beginning of the time period (αijt−1). The variance of

TFP growth among the suppliers of industry i is also computed using cost shares as weights.

In addition, X′it−1 denotes a vector of other (predetermined) covariates, which include sector

fixed effects (allowing sector-specific linear trends) in some of our specifications; δt denotes a

full set of time dummies; and εit is a heteroscedastic and potentially serially-correlated error

term, capturing all omitted factors.

This equation is comparable to our model-derived equation (3) above, with several opera-

tional refinements. First, we use TFP growth as our primary measure of innovation since we

do not have direct measures (though we will look at patenting as well). Second, instead of

relating innovation to the level of technologies across inputs as in equation (3), we link TFP

growth in each sector to the TFP growth rate across inputs, since the level of TFP is not well

defined. Third, we have included an error term and additional covariates. Fourth, instead of the

sector specific coefficients in front of the mean and the variance in equation (3), the ηimean and

ηivariance’s, we have imposed constant coefficients, to be interpreted as local average treatment

effects.

Throughout, even though we always control for the mean effect of supplier TFP growth,

the main coefficient of interest for our study is βvariance, which captures the effect of supplier

TFP growth/innovation dispersion on a sector’s productivity/innovation, holding the mean

of supplier TFP growth/innovation constant. We expect this coefficient to be significantly

negative if, as we hypothesize, imbalances in the rate of technological progress across suppliers

to an industry imposes a productivity penalty on that industry.

Table 2 reports estimates of equation (6) for 462 four-digit manufacturing and 42 three-digit

non-manufacturing industries. Panel A is for manufacturing industries, for which TFP estimates

are more reliable and available for a longer time period. Panel B combines the manufacturing

and the non-manufacturing industries to include the full set of sectors. Odd-numbered columns

include no covariates other than time dummies, while even-numbered columns (and column 9)

also include industry fixed effects, thus allowing each industry to have its own linear time trend

in TFP. The standard errors account for arbitrary heteroscedasticity and serial correlation at
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the industry level throughout. Our baseline regressions shown in columns 1 through 6 are

unweighted. We present results weighting industries by their share of 1987 real value added in

columns 7 through 9.

Column 1 shows the relationship between industry TFP growth and mean supplier (up-

stream) TFP growth—focusing only on the first term in equation (6). We detect a strongly

positive relationship between mean supplier TFP growth and downstream industry TFP growth.

Adding the variance term in columns 2 and 3 strengthens the effect of mean supplier TFP

growth, and more importantly, shows a precisely-estimated and quantitatively large negative

relationship between the variance of supplier TFP growth and industry TFP growth. For exam-

ple, in Panel A the coefficient estimate of the variance term is -0.744 (standard error = 0.121)

in the base model in column 2. Adding linear industry trends modestly increases this coefficient

to -0.912 (standard error = 0.118). When we include non-manufacturing industries in Panel

B, the point estimates are similar, even if a little larger. Figure 3 depicts the industry-level

variation producing these estimates. Specifically, we report binscatters for the regression model

in column 2 of Panel A. The left panel depicts the strong positive relationship between aver-

age supplier TFP growth and industry TFP growth, and the right panel showcases the strong

negative relationship between the variance of supplier TFP growth and industry TFP growth.

The specification in (3) is a natural one, capturing all the effects from supplier TFP growth

dispersion by the variance term (which, as we have shown, can be thought of as a second-order

approximation to any type of complementarities between innovations and inputs). Nevertheless,

it is useful to see whether both very well performing and very poorly performing supplying

sectors impact TFP growth. To investigate this question, columns 4 and 5 replace the variance

term with TFP growth in the 10th and 90th percentiles of the (weighted) TFP distribution of

suppliers (while we still continue to control for meat supplier TFP growth). Consistent with

our hypothesis, bottom decile supplier TFP growth predicts faster own-industry TFP growth,

while the top decile supplier TFP growth predicts slower own-industry TFP growth (with

both relationships typically statistically significant at 5% or less). Lastly, columns 7 through

9 replicate the main specifications weighting each industry by its share of real-value added in

1987. These weighted estimates are very similar to the unweighted specifications.

Overall, the estimates in Table 2 uniformly show a negative estimate of TFP growth disper-

sion across a sector’s suppliers. In terms of our motivating conceptual framework, this suggests

that productivity growth and innovation in a sector is held back when advances among its

suppliers is imbalanced. In the rest of the paper, we explore the quantitative implications of

our estimates, demonstrate their robustness, and provide additional evidence that they capture

the effects of imbalanced innovations across suppliers.

15



4.2 Quantitative Implications

The Table 2 estimates imply that an imbalance in productivity growth across sectors could

be a drag on aggregate growth. Temporarily deferring robustness checks, we explore whether

such sectoral imbalances could be a quantitatively meaningful contributor to the productivity

slowdown in the US. For this to be the case, two conditions need to be satisfied. First, the

coefficient estimates in Table 2 must be economically large. Second, the dispersion of sectoral

TFP growth must have increased over the decades during which we witnessed the productivity

slowdown.

Figure 4 confronts the latter issue by plotting the evolution of the variance of TFP across

manufacturing industries. The top two plots in Figure 4 depicts the simple variance of TFP

growth across manufacturing industries, while the middle and bottom plots show the average

variance of the industry supplier TFP growth in manufacturing and in the economy overall,

respectively. Within manufacturing and in the economy overall, there was a striking rise in the

dispersion of sectoral productivity growth in the US economy over the last several decades. This

is true both overall and when weighting industries by their input share. Quantitatively, the

TFP variance in manufacturing was about 0.002 before the 1970 and now is three times as large,

around 0.006. As suggested by the patenting time-series in Figure 1, a large portion of this

increase in TFP variance through the 1990s is accounted for by the electronics and computer

sectors. The right panels of Figure 4 documents that when these sectors are taken out, the rise

in the variance of TFP growth is significantly smaller, though still present in the recent period.

When we zoom out to include non-manufacturing industries, there is again a large increase in

the variance of TFP growth from 1987-92 to the present, but the pattern is not monotone,

perhaps reflecting the fact that TFP is measured less reliably outside of manufacturing.

How much of the productivity slowdown can the rising variance of TFP growth potentially

explain? Figure 5 addresses this question by applying the value-added weighted estimates

reported in column 7 of Panel A and Panel B in Table 2. We find a sizable productivity penalty

from TFP growth dispersion. The estimates imply that TFP dispersion reduced TFP growth

by over 0.5 percentage points in manufacturing in each of the recent 10-year periods (as shown

by the green bars) and by about 0.2 percentage points in the entire economy in each five-year

period. In combination with the trends in TFP variance reported Figure 4, we find that rising

TFP variance accounts for a substantial part of the productivity slowdown. If, counterfactually,

TFP variance in manufacturing from 1997-2007 had remained at its average level from 1977

through 1987, our estimates imply that aggregate TFP growth in manufacturing between 1997-

2007 would have been 3.1% (as shown in the orange bars) instead of the observed TFP growth of
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-1.6 (as shown in the blue bars). This counterfactual growth rate is slightly more rapid than the

3% actual TFP growth in manufacturing in the previous two decades. The implied effects for

the overall economy in the right panel are also sizable: had the overall variance of TFP growth

stayed at its 1987 through 1992 level, aggregate TFP growth would have continued to rise over

the sample period, averaging 1.7 percentage points higher than its observed growth rate in each

five-year period. Thus, the quantitatively sizable estimates in Table 2 can potentially account

for the bulk of the US productivity slowdown in recent decades.

To provide more detailed insight into these aggregate relationships, we explored the iden-

tities of the sectors that have contributed to this quantitative effect. The variance of supplier

TFP in manufacturing increased over this period both because lagging industries failed to grow

and because leading industries pulled away from the rest. Panel A of Table 3 lists illustra-

tive examples of the fast-growing industries that have had the largest effect on the variance

between 1997 and 2007.15 These include electronic computers, computer storage devices and

semiconductors. To gauge the economic leverage of these outlier industries, consider a hypo-

thetical mean-preserving contraction of TFP growth dispersion: reduce TFP growth of the 10

fastest growing industries between 1997 and 2007 by 0.2 percentage points and increase the

TFP growth of each of the the bottom 50% of industries just enough to keep the average TFP

growth constant. In this scenario, the variance of supplier TFP growth between 1977 and 2007

would have been 40% lower and aggregate TFP growth in manufacturing would have been 1.1

percentage points higher.

The remaining panels of Table 3 round out the evidence on bottleneck industries. Panel

B reports illustrative examples of slow-growing industries that became the biggest bottlenecks

over the same time periods. These include pharmaceutical preparation, basic organic chemicals,

printed circuit assembly and turbine generators. Panel C reports example industries that are

bottlenecked—that have been most held back by the uneven innovation across their suppliers.

These include surgical and medical instruments, gas engines, and industrial valves.

4.3 Robustness

Table 4 investigates the robustness of our results to the inclusion of a battery of controls and

different specifications. For brevity, we focus on the manufacturing sample and report analogous

results for the full sample in the Appendix (see Table A5). Panel A documents robustness for

the specification without industry fixed effects, Panel B includes industry fixed effects that allow

for linear trends in industry TFP, and Panel C shows robustness for the weighted regressions,

15Appendix Table A4 reports the full set of top ten industries for all panels of Table 3.
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which may be more informative for aggregate magnitudes.

We begin in column 1 of Table 4 by reporting for reference our baseline specification, which

includes only the mean and the variance of TFP (as well as time dummies). In column 2, we

estimate the same models but now using 10-year periods rather than the five-year intervals

in Table 2. This specification purges higher-frequency variation in TFP and focuses on the

downstream impacts of innovations over a longer time interval. The results from these models

are similar to the baseline estimates.

Our estimating equation (3) defines sectors that are falling behind as those that have rela-

tively slow TFP growth in the contemporaneous five-year period. However, if high variance in

the current period reflects mean reversion from rapid growth in the recent past, this would not

correspond to an imbalance but rather a potential rebalancing. Column 3 provides a check on

this possibility by including the covariance between supplier TFP growth in the current and

prior periods in our regressions.16 Intuitively, this covariance term accounts for the potential

role of persistence (or its opposite) in industry-level TFP changes. We find that accounting

for the covariance of TFP across periods does not change the relationship of primary interest:

the coefficient on the variance term in Panel A is now only slightly larger, -0.640 (with a stan-

dard error of 0.127), while the covariance term is relatively small and imprecisely estimated.

The estimate on the covariance term is larger and statistically significant in Panel B, but in

both Panels B and C the coefficient on the variance of upstream TFP growth is largely unaf-

fected by the inclusion of the covariance term. We infer from these results that the first and

second moments of the upstream TFP distribution provide informative measures of sectoral

imbalances.

The subsequent columns of Table 4 provide additional robustness checks. Column 4 adds

a lag of the dependent variable to test whether mean reversion in industry TFP confounds

the estimates. The lagged dependent variable is insignificant and small in Panels A and C,

and small and opposite-signed, albeit statistically significant, in Panel B. Accounting for mean

reversion does not substantially change our estimates of the effects of supplier TFP dispersion:

the coefficient estimate of the variance term is -0.747 (standard error = 0.115) in Panel A and

-0.908 (standard error = 0.120) in Panel B.

Another factor that could affect measured industry TFP is changing import penetration.

Columns 5 controls for average imports from China (from Autor et al. (2013)). Accounting for

imports does not appreciably change the coefficient on supplier TFP variance.

16Specifically, we calculate the covariance among suppliers between the TFP growth in the previous five-year
period (t − 10 to t − 5) and the curent period (t − 5 to t), weighting each supplying industry by their input
share in t− 10.
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We noted the importance of the electronics and computer sectors above. Column 6 shows

that the negative relationship between industry TFP growth and supplier TFP dispersion holds

even when computers and electronics manufacturing (NAICS code 334) are excluded from both

the calculation of the upstream metrics and from the estimation sample. The variance term

is now less precisely estimated, as expected, with these key sectors excluded. Nevertheless, it

remains statistically significant at 5% or less in all of our specifications: -1.231 (standard error

= 0.587) in Panel A, -1.197 (standard error = 0.624) in Panel B, and -1.770 (standard error

= 0.869) in Panel C. These estimates highlight that our hypothesized mechanism is present

even when the ICT and electronics sectors are excluded. Simultaneously, they also highlight

that the ICT and electronics sectors showcase our mechanism and contribute substantially to

its identification and quantitative implications (as indicated by the examples in Table 3).

Column 7 shows a similar relationship to our baseline estimates when we use a fixed input-

output matrix, rather than the time-varying input-output matrix from our baseline specifica-

tion. Column 8 probes robustness to our definition of input shares. Here, we define upstream

shares αijt−1 as total cost shares rather than as shares among the cost of intermediates as in our

baseline specification. These two share measures will differ to the extent that the intermediate

share varies across sectors. The results are once again very similar.

Finally, column 9 provides a placebo check by including the mean and variance of future

input TFP growth rather than current TFP growth. Under our hypothesized mechanism,

the mean and variance of future TFP growth should have no impact on productivity today.

Reassuringly, our estimates confirm this expectation, and future input TFP growth and variance

have very little predictive power for an industry’s current TFP. Results are again similar if we

also include the contemporaneous mean and variance of TFP growth (not reported).17

Since our empirical analysis is confined to 426 manufacturing or 504 total industries, our

estimates will not capture any imbalances in innovation or productivity growth happening at

more disaggregated levels. To explore whether these more micro imbalances may also matter

and further probe the robustness of our results, in the Appendix we use estimates of within-

industry, across-establishment TFP growth the U.S. Census Bureau’s Dispersion Statistics on

Productivity (DiSP). Figure A2 shows that these measures of dispersion have also increased

during our sample period. Nevertheless, Appendix Table A3 documents that the average up-

17Appendix Table A1 confirms that our results are very similar when we drop outliers or use an outlier robust
estimator that minimizes the effects of individual observations on coefficient estimates. Appendix Table A2
shows results using industry value added per worker instead of TFP (Panel A) and estimates with lagged mean
and variance of supplier TFP (Panel B). The results are broadly similar to those in Table 2, but more sensitive
to outliers in Panel A and significantly weaker in Panel B, perhaps reflecting the fact that TFP variance is very
weakly correlated over time. (The correlation between lagged TFP growth and current TFP growth is 0.05.)
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stream TFP growth dispersion among input suppliers, when added to our regression, is itself

not statistically significant and does not change the relationship between our measure of sup-

plier TFP growth dispersion and own TFP growth. A more systematic investigation of these

issues necessitates firm-level data, which we leave for future work.

In summary, these estimates, and those in the Appendix Table A5 for the entire economy,

confirm that the negative relationship between industry TFP growth and supplier TFP variance

is statistically significant, pervasive, and largely unaffected by the inclusion of a variety of

potential confounders.

4.4 Instrumental-Variables Estimates

Since the estimates above regress industry-level TFP growth on the contemporaneous TFP

growth of its suppliers, productivity shocks that are common across several industries might

generate mechanical correlations between our right-hand side and left-hand side variables. Iso-

lating industry productivity changes that emanate from common technological developments

across several advanced economies can alleviate this simultaneity concern. This is what we do

in Table 5 by exploiting changes in industry TFP in major OECD countries, as reported by

the 2012 EU KLEMS Growth and Productivity accounts. In Panel A, we use the mean and

variance of supplier TFP in Germany, France and the UK as instruments for the corresponding

variables in the United States. To purge measurement error in these instruments, Panels B

and C use the analogous measures computed from the ranks of TFP growth by industry within

country.18

The first-stage F-statistics are given at the bottom of Panel A and Panel B of Table 5,

and are somewhat low in Panel A but higher in Panel B, where we use the rank of TFP as

the instrument (the first stages are reported in Table A6 in the Appendix). Nevertheless, the

Limited Information Maximum Likelihood estimates in Panel C, which are consistent even in

the presence of weak instruments, confirm that our estimates are not driven by weak instrument

problems.

The instrumental variables estimates of the relationship between supplier TFP mean and

variance and industry TFP growth correspond closely to our earlier OLS estimates. This can

be seen by comparing columns 1 and 2 of each panel of Table 5, which report OLS estimates

for the IV subsample, and columns 3 and 4 of each panel, which report the corresponding IV

18We calculate these instruments using the US-based IO table but taking the TFP growth across industries
from each of these three European countries. Because the international industry data are more aggregated than
our underlying NAICS data, TFP growth in six-digit NAICS industries that map to the same international
industry code is assigned the same value of the instrument.
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models. In columns 1 and 3, which do not include industry fixed effects, the OLS coefficient on

the variance term is -0.907 (standard error= 0.166), while the IV estimate for the same variable

in the same specification is -0.902 (standard error = 0.379) using the level of TFP growth and

is -0.667 (standard error =0.326) using the rank of TFP as the instrument. Adding industry

fixed effects (even-numbered columns) reduces precision, as expected, but the point estimates

remain stable across specifications.19

Lastly, since TFP growth in other countries could also affect US TFP growth through its

effect on imports, columns 5 and 6 show IV estimates that control for the growth in imports

to the US from each country (France, Germany and the UK) in the focal industry and in

its suppliers. This makes little difference in practice, suggesting that this channel is not an

important source of bias in our estimates.

The congruence between the OLS estimates and those exploiting TFP changes in other

leading economies bolsters our confidence that our main results are not driven by shocks that

are common to industries and their suppliers in the US. We also note that since the IV coefficient

estimates are similar to the OLS estimates from Table 2, the implied quantitative magnitudes

are comparable as well.

4.5 Prices, Quantities and Productivity

Could these patterns be explained by mismeasurement of TFP? In a standard neoclassical set-

ting, industries benefit when their suppliers increase their productivity because this reduces

input costs (e.g., Acemoglu et al. (2012)). If TFP were measured correctly, it would be unaf-

fected by fluctuations in employment, demand factors, and input costs that induce industries to

move along their production possibility frontiers rather than changing those frontiers. If TFP

were mismeasured, however, these neoclassical effects could erroneously spill over to TFP es-

timates, and neoclassical relative price effects that arise with non-unitary elasticities, explored

in Atalay (2017) and Baqaee and Farhi (2019), might confound our results.

We investigate the role for these neoclassical channels in Table 6, where we add the mean

and variance of supplier prices and employment levels to our baseline regressions. Panel A of the

table uses the time-varying input-output linkages, while Panel B focuses on the time-invariant

input-output network case. For comparison, columns 1 and 2 replicate our baseline estimates.

The various specifications reported in Table 6 indicate that controlling for these neoclassical

channels does not qualitatively change the relationship between supplier TFP variance and

industry TFP growth (and these additional variables themselves are typically insignificant).

19See Appendix Table A7 for robustness of these IV results to using only a subset of countries as instruments.
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For example, when we include the mean and variance of supplier prices in column 3 of Panel

A (without industry fixed effects), the TFP variance term has a coefficient of -0.686 (standard

error = 0.232), which is 90% as large as the baseline estimate, though less precisely estimated.

In Panel B, the estimate of the variance term is actually larger than in the baseline model, -1.061

(standard error = 0.237). When we include the mean and variance of supplier employment levels

in column 5 (again without industry fixed effects), the coefficient estimate on TFP variance is

-0.703 (standard error = 0.118) in Panel A and -0.639 (standard error = 0.161) in Panel B, both

nearly identical to the baseline estimates in column 1. The results are also similar when we

include both sets of variables (prices and employment) together. When we additionally include

industry fixed effects, the estimates are again very similar to our baseline results.

The evidence in Table 6 suggests that the relationship between supplier TFP and industry

TFP detected above is not a reflection of (potentially mismeasured) neoclassical effects. Instead,

we believe that it captures economic effects working through the innovation or product quality

mechanism identified by our model. We next offer more direct evidence on this mechanism.

5 Innovation

In this section, we investigate whether innovation, as encoded in patents, is one of the underlying

mechanisms accounting for the results presented so far. Tables 7 and 8 provide evidence on

the role of innovation linkages in productivity growth. In Table 7, we estimate models akin to

our baseline setup for TFP, but replacing the input-output network with the patent citation

network calculated in Acemoglu et al. (2016).20 The regressions in this table thus assess whether

greater dispersion in TFP growth among industries typically cited by the patents of a sector

is associated with that sector itself experiencing slower TFP growth. Since neoclassical effects

working through prices and quantities should be less directly relevant for industry linkages

based on knowledge flows, this exercise also allows us to explore whether, as hypothesized, the

estimated adverse impact of TFP dispersion stems in part from its relationship to innovation.21

The results in Table 7 document a powerful negative relationship between the variance

of TFP growth in an industry’s citation network and its own TFP growth. The first four

columns show unweighted regressions, while columns 5 through 8 present estimates weighting

20As described in Section 3, in order to balance the lagged timing of citations with the noise inherent in
measuring the citation network, we define the 1987 citation network to include the set of patents registered
between 1975 and 1980, regardless of when in the following years they were cited, and similarly for later years.
We find that results are analogous when using a time-invariant citation network that pools all years. See Panel
B of Table 7.

21However, the moderately high correlation between the citation-based and the input-output-based mean and
variance measures implies that separating these two effects is difficult in practice.
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each industry by its share of value added in 1987. In column 1 of Panel A, which does not

include industry trends, the variance term has a coefficient of -1.201 (standard error = 0.388).

The coefficient of interest is larger and still highly significant, albeit less precise, when we

additionally include industry fixed effects in column 2. The point estimates are even larger in

the corresponding weighted specifications in columns 5 and 6.

Columns 3-4 and 7-8 present a horse-race between industry linkages based on citation net-

works and input-output networks. Across all columns, the estimates pertaining to the input-

output network are more precise, confirming the robustness of our baseline results. The variance

of TFP growth in the citation network remains negative across all columns, but is no longer

precisely estimated in these horse-race specifications. This likely reflects the greater mismea-

surement of idea linkages via citations than our baseline linkages based on inputs. On balance,

we interpret the estimates as showing that both sets of network linkages appear to simultane-

ously exert leverage on TFP growth in downstream sectors.

To probe robustness, Panel B and Panel C of Table 7 fix the industry linkages (both citations

and input-output shares) across industries at their 1987 level, or alternatively use a more

aggregated industry-level citation network. Both sources of linkages point in the same direction

as Panel A and confirm that greater dispersion of TFP growth among linked industries predicts

slower TFP growth.

Our evidence so far establishes a robust relationship between an industry’s TFP growth and

the TFP growth of its suppliers. Because TFP is an inferred rather than observed measure of

technological progress, these relationships constitute indirect evidence linking supplier industry

innovations to downstream customer industry innovations. Table 8 supplements this evidence

by testing for a direct link between an industry’s innovative output and the distribution of

innovations among its suppliers. Specifically, we estimate a variant of equation (6) where we

replace industry TFP with industry patenting on the left-hand side, and use the mean and

variance of the suppliers’ patent growth on the right-hand side. We focus on three measures

of supplier patents: the number of patents (Panel A); the citation-weighted count of patents

(Panel B); and the count of patents in the top 20% of value (Panel C) as defined following

Kogan et al. (2017). We view the latter two measures as most reliable since they capture

patent quality as well as quantity. The sample now runs from 1982 to 2002, and we conduct

the analysis using 490 SIC-based industry codes in manufacturing.22

The results in Table 8 illustrate the strong linkage between an industry’s innovations and its

suppliers’ innovations, and confirm that sectoral imbalance in innovations impedes innovation.

22We run this analysis at the level of SIC codes rather than NAICS codes to reduce noise because the patent-
to-industry linkage is available only at the SIC level.
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Whether supplier linkages are measured using the input-output network (columns 1 and 2) or

the citation network (columns 3 and 4), we find a consistent negative relationship between the

variance of supplier innovation and an industry’s own patenting (as well as the expected strong

positive relationship for the mean of supplier patenting). These relationships are typically (but

not always) more precisely estimated when using the citation network (columns 3 and 4) in

place of the input-output network, which appears plausible since the citation network should

be more relevant for patenting, even if measured with greater imprecision as noted above.23

In Panels B and C, we switch from our quantity-based measure of patenting inputs in Panel

A to the two quality-based measures: the citation-weighted count of patents in Panel B, and

the count of top quintile patents in Panel C. Using these quality-based estimates substantially

increases the precision of the key explanatory variable. In column 1 of Panel B, the variance

of supplier innovation has a coefficient of -1.563 with standard error = 0.228, and in Panel C,

it has a coefficient of -0.687 with standard error = 0.092 (compared to the noisier estimate of

-0.750 with standard error = 0.495 in Panel A).

Appendix Table A10 demonstrates the robustness of these specifications to many of the

modifications explored for the baseline results in Table 4. Specifically, similar patterns appear

in weighted regressions, when we exclude the computer and electronics sector, and when we

fix the upstream network, either the input-output structure or the citation network, in a given

year. Results are also robust to using alternate measures of high-value patenting, such as the

number of breakthrough patents identified in Kelly et al. (2018).

Overall, the results in Tables 7 and 8 bolster our interpretation that a main channel linking

supplier productivity to an industry’s productivity growth is innovation.

6 International Evidence

Our primary analysis focuses on productivity growth and innovation in the United States.

We supplement that evidence here by estimating a variant of equation (6) for productivity

growth across European countries. As outlined in Section 3, we use WIOD data to construct

consistent input-output linkages for 30 industries for Spain, France, the US, Austria, Finland,

the Netherlands, Italy, Germany, and the UK. We fix the global input-output table in 2000

and focus on industry TFP growth in this cross-country sample ranging from 1987 to 2007.

These data enable us to include international input-output linkages, which we exploit in our

23In Appendix Table A9, we explore the relationship between supplier patenting and downstream TFP.
Unsurprisingly given the imprecision of the crosswalk between patent classes and industry classification, these
results are noisy and do not provide a clear picture.
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calculations of the mean and variance of supplier TFP growth.24

We report these cross-country estimates in Table 9. We report our baseline specifications

in the first four columns. These specifications are unweighted and all include a combination of

country effects, year effects, and year-by-country effects or year-by-industry effects, as noted at

the base of each column. In column 1, we focus on a specification containing country and year

effects and verify that an industry’s TFP growth is predicted by the average TFP growth of

its suppliers. Column 2 includes the variance of supplier TFP growth. The coefficient on this

measure is negative, highly significant and broadly similar to the US-based estimates: -0.824

(standard error = 0.212).

Subsequent columns probe the robustness of this finding. Column 3 includes country-by-

year effects, thus exploiting only within-country variation to identify the relationship between

industry TFP growth and the mean and variance of supplier TFP growth. The relationship is

similar although somewhat smaller. In particular, the coefficient on the variance term is -0.535

(standard error = 0.143). Column 4 additionally includes industry-by-year interactions, so that

the identifying variation is only within-industry cross-country rather than cross-industry as in

the other specifications in the paper. In this demanding specification, the coefficient on the

variance term remains negative and statistically significant, at -0.444 (standard error = 0.157).

The negative effect of supplier TFP variance is also present when we include the lagged

dependent variable to control for mean reversion dynamics (column 5). It is weaker but still

present when we use (nominal) value-added weights instead of our baseline unweighted spec-

ification (columns 6 and 7, with and without controlling for lagged dependent variable). It

is equally large, and in this case statistically significant, when we focus on a 10-year panel

rather than stacked five-year changes in column 8.25 For the baseline specification, we used the

full international input-output table, incorporating inputs from each country-industry pair. In

column 9, we show that the estimates are similar when we only use each country’s domestic

input-output network.26

These cross-country models also enable us to investigate whether our mechanism can account

for the international slowdown in productivity growth. Figure 6, which is analogous to Figure

5 for the US, reports the results of this exercise. Across the European countries in our sample,

we estimate that the rising variance of supplier TFP reduced aggregate productivity growth in

24Specifically, we use the world input-putput tables to calculate the input share αik,jl as the share of inputs
from industry i in country k that came from industry j in country l. The shares are based only on the nine
countries listed above.

25See Appendix Table A11 for robustness of results for the United States aggregated to the the 30 industries
used in Table 9.

26We do not report estimates using the manufacturing sample in this case, because manufacturing industries
are not sufficiently disaggregated in this data set, and doing so would reduce our sample by about two-thirds.
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eight of nine countries—all except Italy. This bottleneck effect is largest in Finland and the

Netherlands, where we estimate that it reduced aggregate TFP growth over this period by 30%

and 60%, respectively.

7 Conclusion

Despite the exponential pace of innovations in the information and communications technology

and electronics sectors, aggregate productivity growth in the United States and many other

industrialized nations has been disappointing since the 1970s, and ever more so since the early

2000s. Some have interpreted this pattern as reflecting a severe underestimation of quality

and actual productivity growth or, alternatively, a lull that proceeds an inexorable surge in

productivity. Others have read it as evidence of a permanent slackening of productivity growth

as good ideas have become harder to find.

We propose a different hypothesis—one that implies neither a permanent slowdown in pro-

ductivity growth nor an incipient surge—and investigate it empirically. The main idea driving

our approach is that innovation in any one industry relies on complementary innovations in

its input suppliers (or other industries linked to it). When innovation is unbalanced across

industries, this holds up aggregate productivity by creating innovation bottlenecks along the

input-output network.

After presenting a simple version of this productivity bottleneck hypothesis, we explore it

using data on input-output linkages, citation linkages, patenting, and total factor productivity

growth. Across a variety of measurement approaches, productivity outcomes, and countries,

we verify the primary prediction of this hypothesis, which is that an industry’s productivity

growth is augmented by the mean productivity growth of its suppliers (measured by TFP or

innovation) and is hampered by the variance of their productivity growth. Our primary evidence

is established by using input-output linkages and TFP growth to document the sensitivity of

industry productivity growth to the mean and variance of supplier productivity growth. We

bolster this evidence by documenting a similar relationship when we look at supplier linkages

traced via knowledge flows (the patent citation network) and when we focus on patenting

behavior, rather than TFP growth, as our productivity measure.

Our estimates suggest that the bulk of the productivity slowdown in the US (and several

other industrialized economies) can be accounted for by the sizable increase in the cross-industry

variance of TFP growth and innovation. If, for example, the variance of TFP growth had re-

mained at its 1977-1987 level for the subsequent two decades, we calculate that US manufactur-

ing productivity would have grown twice as rapidly in 1997-2007 as actually occurred—yielding
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a counterfactual growth rate in this decade exceeding its observed level in either of the two

prior decades.

We view our paper as a first step in the theoretical and empirical investigation of the in-

terlinked nature of innovation across sectors. Many areas of research appear fruitful based on

our results. First, our hypothesis raises a critical theoretical question: will the endogenous

direction of technological progress tend to clear productivity bottlenecks, or might the mar-

ket mechanism exacerbate imbalances? Second, our results highlight the need for alternative

empirical strategies for exploring dependencies among innovating sectors and the innovations

generated by their suppliers. Third, these same relationships could be tested using firm-level

data, where we suspect that the importance of supplier-customer linkages would be even larger.

Fourth, it would be valuable to explore this hypothesis using historical data, focusing for ex-

ample on major technological breakthroughs in the first half of the 20th century. Finally, our

framework makes an important prediction whose verification awaits the passage of time: if and

when lagging industries increase their innovation and productivity growth rate, a rapid takeoff

in aggregate productivity can become possible.
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8 Tables and Figures

Figure 1: Time Series for U.S. Patents

Notes: TO BE ADDED
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Figure 2: Time Series for Aggregate Total Factor Productivity

(a) United States (̇b) Select OECD Countries
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Notes: Left panel shows TFP time series in the United States for 1987 - 2017. Data comes from BLS Multifactor
Productivity database. Right panel shows TFP time series from 1987-2010 for the listed countries. Data for
OECD countries comes from 2012 release of KLEMS.

Figure 3: Bottleneck Patterns: Distribution of Upstream TFP Growth
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Notes: Figure reports binscatters with 50 bins for the regression model in column 2 of Panel A of Table 2 for
the relationship between manufacturing TFP growth and the mean and variance of supplier TFP growth. In
the left panel, variables on the x and y axis are residuals from a regression of the variable on time fixed effects
and the upstream variance of TFP growth. In the right panel, variables on the x and y axis are residuals from
a regression of the variable on time fixed effects and the upstream average of TFP growth. Regressions include
stacked 5-year changes from 1977-2007. Industries are unweighted.
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Figure 4: Variance of TFP growth
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Panel B: Variance of Supplier TFP: Manufacturing Industries
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Panel C: Variance of Supplier TFP: All Industries
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Notes: Each industry is weighted by its share of nominal value-added. For panel A, sample includes the annual
change in TFP for all years from 1958-2011 and for panel B and C, sample includes stacked 5-year changes from
1977-2007. In Panel B and Panel C, the input-output network is defined at the beginning of the 5-year period.
Figures on the right exclude the computer and electronics sector (NAICS code 334).
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Figure 5: Magnitude of Bottleneck Estimates
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Notes: Coefficients on upstream average TFP and upstream variance of TFP for the left and right panel come
from Panel A and Panel B of Table 2, Column 3, respectively. Industries are aggregated using each industry’s
share of 1987 real value-added as the weight. In the left panel, counterfactual TFP is the TFP that would have
obtained if the variance of TFP growth had been as it was from 1977-1987. This is calculated as actual TFP
growth less the coefficient on the upstream variance times the difference between the variance of TFP in the
given period and the variance of TFP between 1977-1987. In the right panel, the counterfactual holds constant
the variance of TFP from 1987-1992.

Figure 6: Magnitude of Bottleneck Estimates in International Data
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the TFP that would have obtained if the variance of TFP growth had been as it was from 1992-1997. This is
calculated as actual TFP growth less the coefficient on the upstream variance times the difference between the
variance of TFP in the given period and the variance of TFP between 1992-1997.
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Table 1: Summary Statistics Table

Downstream Upstream Average Upstream Variance

Mean SD Mean SD Mean SD
Panel A: Manufacturing Industries
Growth in log(Employment) -.08 .258 -.087 .115 .027 .021
Growth in Price Index .134 .178 .125 .172 .033 .059
Growth in log(TFP) .018 .152 .033 .075 .022 .048
Growth in log(Patents) .132 .19 .085 .119 .015 .012
Growth in log(Citation-weighted patents) .139 .233 .092 .138 .02 .019
Growth in log(Number of top patents) .27 .322 .177 .205 .04 .036

Panel B: All Industries
Growth in log(Employment) -.079 .266 -.084 .123 .025 .023
Growth in Price Index .095 .147 .081 .145 .04 .069
Growth in log(TFP) .015 .155 .034 .079 .028 .057

Panel C: International panel
Growth in log(TFP) .046 0.16 .041 .068 .018 .023

Notes: Panel A includes stacked 5-year changes for 462 manufacutring industries from 1977-2007. Panel B
includes stacked 5-year changes for 504 industries from 1987-2007. Panel C includes stacked 5-year changes for
30 industries from 1987-2007 for 9 countries (United States, Spain, France, Austria, Finland, the Netherlands,
Italy, Germany and the UK) Upstream metrics are taken using intermediate cost shares from the input-output
matrix. Indiviudal industries are unweighted.
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Table 2: Relationship between industry TFP growth and supplier TFP growth

(1) (2) (3) (4) (5) (6) (7) (8)
A. Manufacturing Only

Input Average 0.425 0.810 0.653 0.676 0.255 0.837 0.617 0.193
(0.139) (0.130) (0.074) (0.170) (0.122) (0.133) (0.086) (0.165)

Input Variance -0.744 -0.912 -0.889 -0.874
(0.121) (0.118) (0.109) (0.101)

Input Bottom Decile 0.059 0.378 0.396
(0.113) (0.091) (0.152)

Input Top Decile -0.110 -0.081 -0.099
(0.033) (0.032) (0.039)

Ind. Fixed Effects no no yes no yes no yes yes
Industry Weighting None None None None None Real VA Real VA Real VA
Observations 2772 2772 2772 2772 2772 2772 2772 2772
R-Squared 0.108 0.133 0.371 0.118 0.361 0.168 0.434 0.425

B. All Industries

Input Average 0.343 0.915 0.780 0.636 0.387 0.278 0.219 -0.104
(0.178) (0.161) (0.119) (0.183) (0.170) (0.249) (0.228) (0.332)

Input Variance -0.905 -1.087 -0.442 -0.974
(0.158) (0.191) (0.230) (0.303)

Input Bottom Decile 0.164 0.422 0.499
(0.099) (0.115) (0.260)

Input Top Decile -0.117 -0.139 -0.128
(0.034) (0.035) (0.072)

Ind. Fixed Effects no no yes no yes no yes yes
Industry Weighting None None None None None Real VA Real VA Real VA
Observations 2016 2016 2016 2016 2016 2016 2016 2016
R-Squared 0.079 0.102 0.399 0.090 0.395 0.022 0.365 0.380

Notes: Standard errors are clustered at the industry level. In columns 7, 8 and 9, observations are weighted
by the industry’s 1987 share of real value-added. Regressions in Panel A include stacked 5-year changes from
1977-2007 and regressions in Panel B include stacked 5-year changes from 1987-2007. Time fixed effects are
included in all specifications and industry fixed effects are included where indicated. Industries are defined using
1997 NAICS codes.
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Table 3: Examples of Limiting and Limited Industries

Panel A: List of Select Fast-Growing Industries that Drive Rising TFP Variance
Semiconductor and Related Devices

Electronic Computers
Iron and Steel Mills

Computer Storage Devices
Radio and Television Broadcasting and Wireless Communications Equipment

Panel B: List of Select Bottleneck Industries
Petroleum Refineries

Pharmaceutical Preparation
Turbine and Turbine Generator Set Units

Printed Circuit Assembly
Basic Organic Chemicals

Panel C: List of Select Limited Industries
Surgical and Medical Instruments

Relay and Industrial Controls
Gasoline Engine and Engine Parts
Guided Missile and Space Vehicles

Industrial Valves

Notes: Bottleneck industries are defined as those that, were TFP in that industry to increase by 10%, the
variance of TFP growth across supplying industries would fall the most. Fast growing industries are conversely
defined as those that, were TFP in that industry to increase by 10%, the variance of TFP growth across supplying
industries would fall the least. Limited industries are defined as those with the highest variance of TFP among
suppliers among the 100 manufacturing industries with the highest value-added and further, the 50 of those top
100 with the highest average TFP growth among suppliers. Sample is restricted to 462 manufacturing industries
from 1997-2007. See Appendix Table A4 for the ordered list of top 10 industries in each category over this time
period.
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Table 4: Robustness for Downstream TFP and Upstream TFP: Manufacturing Industries

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Baseline 10-year Cov. Lagged China No Fixed All Leads

Shock Comp. IO Inputs

A: Without Industry Trends

Input Average 0.810 0.931 0.660 0.776 0.554 0.560 0.878 1.723
(0.130) (0.182) (0.116) (0.108) (0.122) (0.066) (0.115) (0.256)

Input Variance -0.744 -0.477 -0.640 -0.747 -0.718 -1.231 -0.711 -0.788
(0.121) (0.094) (0.127) (0.115) (0.114) (0.587) (0.161) (0.441)

Input Covariance -0.069
(0.170)

Lagged 5-year TFP 0.106
(0.091)

Future Input Average 0.166
(0.145)

Future Input Variance 0.065
(0.098)

Observations 2772 1386 2310 2772 1386 2604 2772 2772 2772
R-Squared 0.133 0.100 0.123 0.142 0.129 0.122 0.153 0.130 0.085

B: With Industry Trends

Input Average 0.653 0.704 0.482 0.655 0.510 0.652 0.716 1.530
(0.074) (0.122) (0.074) (0.078) (0.100) (0.072) (0.071) (0.173)

Input Variance -0.912 -0.641 -0.647 -0.908 -0.704 -1.197 -0.961 -1.562
(0.118) (0.107) (0.131) (0.120) (0.156) (0.624) (0.139) (0.347)

Input Covariance -0.399
(0.143)

Lagged 5-year TFP -0.209
(0.043)

Future Input Average -0.006
(0.079)

Future Input Variance -0.010
(0.101)

Observations 2772 1386 2310 2772 1386 2604 2772 2772 2772
R-Squared 0.371 0.549 0.385 0.396 0.478 0.252 0.379 0.367 0.334

C. Weighting by Industry Real Value-Added

Input Average 0.837 0.981 0.745 0.822 0.619 0.675 0.989 1.715
(0.133) (0.242) (0.127) (0.110) (0.132) (0.092) (0.133) (0.279)

Input Variance -0.889 -0.624 -0.775 -0.898 -0.816 -1.770 -0.891 -1.225
(0.109) (0.111) (0.143) (0.098) (0.105) (0.869) (0.135) (0.426)

Input Covariance -0.129
(0.158)

Lagged 5-year TFP 0.161
(0.108)

Future Input Average 0.120
(0.184)

Future Input Variance 0.004
(0.159)

Observations 2772 1386 2310 2772 1386 2604 2772 2772 2772
R-Squared 0.168 0.094 0.168 0.191 0.176 0.167 0.199 0.152 0.096

Notes: Standard errors are clustered at the industry level. All regression includes stacked 5-year changes, except
for in column 2 where we include stacked 10-year changes. Time fixed effects are included in all specifications
and industry fixed effects are included in Panel B. Observations are unweighted in Panel A and B and are
weighted by the industry’s share of 1987 real value-added in Panel C.
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Table 5: Country-Specific Instruments

(1) (2) (3) (4) (5) (6)
A: 2SLS Estimates

OLS Estimates 2SLS Estimates

Upstream Average 1.119 0.951 1.369 1.416 1.414 1.322
(0.312) (0.143) (0.363) (0.655) (0.648) (0.627)

Upstream Variance -0.907 -1.175 -0.902 -0.887 -0.882 -1.231
(0.212) (0.103) (0.385) (0.527) (0.521) (0.724)

Ind. Fixed Effects no yes no yes yes yes
Upstream Network IO IO IO IO IO IO
Controls for Imports Down Up and Down
Observations 2940 2940 2478 2478 2478 2478
R-Squared 0.136 0.373 0.105 0.350 0.351 0.369
First-Stage F-Stat 0 0 1.38 .63 .6 .51

B: Rank of TFP growth, 2SLS Estimates

OLS Estimates 2SLS Estimates

Upstream Average 1.119 0.951 0.928 1.093 1.090 1.122
(0.312) (0.143) (0.338) (0.348) (0.334) (0.310)

Upstream Variance -0.907 -1.175 -0.667 -1.480 -1.483 -1.675
(0.212) (0.103) (0.445) (0.661) (0.655) (0.661)

Ind. Fixed Effects no yes no yes yes yes
Upstream Network IO IO IO IO IO IO
Controls for Imports Down Up and Down
Observations 2940 2940 2478 2478 2478 2478
R-Squared 0.136 0.373 0.117 0.374 0.374 0.375
First-Stage F-Stat 0 0 .8 2.1 2.07 1.83

C: Rank of TFP growth, LIML Estimates

OLS Estimates LIML Estimates

Upstream Average 1.119 0.951 0.928 1.094 1.091 1.123
(0.312) (0.143) (0.342) (0.349) (0.336) (0.311)

Upstream Variance -0.907 -1.175 -0.664 -1.482 -1.485 -1.677
(0.212) (0.103) (0.449) (0.665) (0.659) (0.665)

Ind. Fixed Effects no yes no yes yes yes
Upstream Network IO IO IO IO IO IO
Controls for Imports Down Up and Down
Observations 2940 2940 2478 2478 2478 2478
R-Squared 0.136 0.373 0.117 0.374 0.374 0.375
First-Stage F-Stat 0 0 .8 2.1 2.07 1.83

Notes: Standard errors are clustered at the industry level. Time fixed effects are included in all specifications.
The three countries we use as instruments are France, Germany and the UK. Panels A and B report the
two-stage least squares estimates and Panel C reports the limited information maximum likelihood estimates.
Column 5 includes controls for the growth in an industry’s imports from each country to the US and column 6
also includes the growth in imports from each country to the supplying industries.
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Table 6: Exploring Neoclassical Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline Prices Employment Combined

A: Time-Varying Input Shares

TFP Average 0.810 0.653 0.815 0.692 0.720 0.497 0.602 0.436
(0.130) (0.074) (0.113) (0.083) (0.134) (0.075) (0.107) (0.089)

TFP Variance -0.744 -0.912 -0.686 -0.527 -0.703 -0.786 -0.655 -0.424
(0.121) (0.118) (0.232) (0.243) (0.118) (0.115) (0.233) (0.245)

Input Price Average 0.006 0.077 -0.141 -0.069
(0.085) (0.061) (0.091) (0.065)

Input Price Variance -0.051 -0.329 -0.123 -0.381
(0.204) (0.198) (0.201) (0.201)

Input Employment Average 0.224 0.244 0.264 0.262
(0.045) (0.056) (0.051) (0.062)

Input Employment Variance 0.166 -0.106 0.117 -0.213
(0.219) (0.235) (0.218) (0.246)

Ind. Fixed Effects no yes no yes no yes no yes
Observations 2772 2772 2772 2772 2772 2772 2772 2772
R-Squared 0.133 0.371 0.133 0.373 0.149 0.384 0.152 0.387

B: Time-Invariant Input Shares

TFP Average 0.878 0.716 0.840 0.741 0.802 0.574 0.669 0.512
(0.115) (0.071) (0.098) (0.078) (0.119) (0.071) (0.093) (0.082)

TFP Variance -0.711 -0.961 -1.061 -0.760 -0.639 -0.828 -0.912 -0.535
(0.161) (0.139) (0.237) (0.225) (0.161) (0.131) (0.234) (0.217)

Input Price Average -0.026 0.059 -0.156 -0.081
(0.067) (0.053) (0.075) (0.057)

Input Price Variance 0.314 -0.182 0.161 -0.326
(0.239) (0.237) (0.232) (0.235)

Input Employment Average 0.131 0.153 0.170 0.181
(0.038) (0.051) (0.043) (0.055)

Input Employment Variance -0.149 -0.338 -0.150 -0.410
(0.173) (0.213) (0.173) (0.215)

Ind. Fixed Effects no yes no yes no yes no yes
Observations 2772 2772 2772 2772 2772 2772 2772 2772
R-Squared 0.153 0.379 0.154 0.379 0.163 0.389 0.167 0.391

Notes: Standard errors are clustered at the industry level. All regressions include year fixed effects and industry
fixed effects are included where indicated. Sample includes stacked 5-year changes for manufacturing industries
from 1977-2007.
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Table 7: Comparing Innovation Network: Input-Output and Citation Networks

(1) (2) (3) (4) (5) (6) (7) (8)
A: Time-Varying Input Shares

Input Average (Citations) 1.421 1.143 1.137 0.853 1.397 0.947 1.030 0.702
(0.227) (0.274) (0.227) (0.294) (0.257) (0.311) (0.282) (0.310)

Input Variance (Citations) -1.201 -1.542 -0.639 -0.909 -1.457 -2.239 -0.715 -1.458
(0.388) (0.706) (0.663) (0.831) (0.423) (0.679) (0.712) (0.945)

Input Average (IO) 0.295 0.296 0.370 0.249
(0.113) (0.100) (0.130) (0.114)

Input Variance (IO) -0.437 -0.481 -0.515 -0.411
(0.173) (0.164) (0.143) (0.154)

Ind. Fixed Effects no yes no yes no yes no yes
Industry Weighting None None None None Real VA Real VA Real VA Real VA
Observations 1844 1844 1844 1844 1844 1844 1844 1844
R-Squared 0.125 0.408 0.133 0.415 0.159 0.474 0.174 0.481

B: Time-Invariant Input Shares

Input Average (Citations) 1.483 1.156 1.134 0.810 1.404 0.932 0.889 0.448
(0.222) (0.277) (0.229) (0.302) (0.259) (0.315) (0.267) (0.333)

Input Variance (Citations) -1.225 -1.709 -0.884 -1.237 -1.371 -2.244 -0.780 -1.535
(0.394) (0.766) (0.831) (1.120) (0.427) (0.718) (0.738) (1.051)

Input Average (IO) 0.340 0.347 0.550 0.537
(0.105) (0.106) (0.123) (0.118)

Input Variance (IO) -0.364 -0.438 -0.558 -0.575
(0.287) (0.243) (0.221) (0.205)

Ind. Fixed Effects no yes no yes no yes no yes
Industry Weighting None None None None Real VA Real VA Real VA Real VA
Observations 1844 1844 1844 1844 1844 1844 1844 1844
R-Squared 0.129 0.410 0.137 0.417 0.159 0.474 0.182 0.492

C: Aggregated Citation Network

Input Average (Citations) 1.656 1.381 1.407 1.120 1.637 1.154 1.286 0.912
(0.228) (0.284) (0.238) (0.310) (0.263) (0.346) (0.296) (0.341)

Input Variance (Citations) -1.309 -1.678 -0.769 -1.117 -1.474 -2.228 -0.742 -1.476
(0.426) (0.808) (0.716) (0.931) (0.453) (0.781) (0.689) (0.951)

Input Average (IO) 0.235 0.254 0.316 0.219
(0.116) (0.103) (0.126) (0.111)

Input Variance (IO) -0.381 -0.416 -0.470 -0.392
(0.169) (0.165) (0.132) (0.141)

Ind. Fixed Effects no yes no yes no yes no yes
Industry Weighting None None None None Real VA Real VA Real VA Real VA
Observations 1848 1848 1848 1848 1848 1848 1848 1848
R-Squared 0.137 0.416 0.143 0.421 0.172 0.480 0.185 0.486

Notes: Standard errors are clustered at the industry level. Observations in columns 5 through 8 are weighted
by the industry’s 1987 share of real value-added. The regressions include stacked 5-year changes from 1987-2007
and include 462 manufacturing industries. Time fixed effects are included in all specifications and industry fixed
effects are included where indicated. See Appendix Table A8 for results using just the input-output network
(i.e. our baseline results) for this abbreviated time period.
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Table 8: Bottleneck Patterns Using Patents

(1) (2) (3) (4)
A: Number of Patents

Input Average 1.095 0.943 1.909 1.839
(0.049) (0.065) (0.041) (0.060)

Input Variance -0.750 -1.155 -1.371 -1.187
(0.495) (0.676) (0.293) (0.345)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 1350 1350
R-Squared 0.438 0.717 0.740 0.851

B: Citation-Weighted Number of Patents

Input Average 1.035 0.981 1.890 2.048
(0.044) (0.063) (0.038) (0.046)

Input Variance -1.563 -0.804 -0.617 -0.380
(0.228) (0.294) (0.191) (0.194)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 1350 1350
R-Squared 0.713 0.836 0.882 0.931

C: Number of Top 20% Patents

Input Average 1.190 1.163 1.879 1.805
(0.049) (0.062) (0.024) (0.036)

Input Variance -0.687 -0.714 -0.244 -0.249
(0.092) (0.106) (0.046) (0.076)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 1350 1350
R-Squared 0.897 0.928 0.970 0.978

D: International IV Estimates

Input Average 0.924 1.015 1.810 1.890
(0.073) (0.122) (0.042) (0.062)

Input Variance -1.951 -2.687 -1.080 -3.288
(0.582) (1.219) (0.529) (1.591)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 1350 1350
R-Squared 0.711 0.827 0.882 0.918

Notes: The dependent variable in each regression is the growth in the patenting measure. The patenting
measure indicated in the panel heading refers to both the upstream and downstream patenting variable. Panel
D instruments growth in citation-weighted US patenting with growth in foreign patenting. Standard errors are
clustered at the industry level. Time fixed effects are included in all specifications and industry fixed effects
are included where indicated. All regressions include a control for the lagged dependent variable. Regression
includes stacked 5-year changes from 1982-2002 for 490 SIC-based manufacturing industries. Top 20% patents
are defined following Kogal et al (2017).
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Table 9: International Patterns: Cross-Country Regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lagged VA VA 10-year Within-

Baseline Dep. Var Weight Weight Changes Country IO

Upstream Average 0.258 0.270 0.108 -0.229 0.263 0.274 0.258 0.277 0.279
(0.075) (0.080) (0.080) (0.113) (0.085) (0.106) (0.084) (0.116) (0.082)

Upstream Variance -0.824 -0.535 -0.444 -0.822 -0.563 -0.751 -0.725 -0.716
(0.212) (0.143) (0.157) (0.182) (0.585) (0.422) (0.363) (0.215)

Year FEs X X X X X X X
Country FEs X X X X X X X X
Year*Country FEs X
Year*Industry FEs X X
Lagged Dep. Var. X X
Observations 982 982 982 982 896 982 896 462 982
R-Squared 0.065 0.076 0.363 0.401 0.118 0.063 0.197 0.120 0.075

Notes: Standard errors are clustered at the industry level. All regressions include stacked 5-year changes from
1987-2007 for 30 industries and 9 countries: Spain, France, the US, Austria, Finland, the Netherlands, Italy,
Germany and the UK
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9 Data Appendix

9.1 Constructing Time-Consistent Industry Codes

In order to facilitate comparisons over time, we convert each input-output table to 1997 NAICS

codes that correspond to 6-digit NAICS codes within manufacturing and roughly 3-digit NAICS

codes outside of manufacturing (i.e. the level of aggregation available in the BLS multiproduc-

tivity database). The Bureau of Economic Analysis releases the detailed Input-Output tables

in year-specific codes. In all years, the data is more detailed within manufacturing than in non-

manufacturing sectors.The Bureau of Economic Analysis provides a mapping between these

aggregate codes and that year’s SIC or NAICS codes (i.e. the mapping between the 1987 IO

table codes and the 1987 SIC codes). In order to preserve the highest level of disaggregation

within manufacturing, when industry detail in the IO table is less than either 4-digit SIC codes

or 6-digit NAICS codes, we apportion each industry’s commodity purchases to the associated

SIC codes on the basis of the sub-industry’s material/energy costs (which we observe for all

manufacturing industries in the NBER-ASM data). Similarly, we apportion each industry’s

production based on the sub-industry’s share of shipments. Finally, using weighted industry

mappings between SIC and NAICS codes over time, we convert each input-output table to 1997

NAICS codes.
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10 Appendix Tables and Figures

Figure A1: Variance of TFP Growth Across All Industries
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Notes: Each industry is weighted by its share of nominal value-added. Sample includes all years from 1987-2011.
There are 70 industries, corresponding to the detailed manufacutring and non-manufacturing industries in the
BLS Multifactor Productivity data.
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Table A1: Robustness of Bottleneck Patterns to Outliers

Manufacturing All Industries

Dropping Outliers Outlier Robust Dropping Outliers Outlier Robust
(1) (2) (3) (4) (5) (6) (7) (8)

Input Average 0.573 0.600 0.592 0.597 0.700 0.691 0.776 0.696
(0.061) (0.060) (0.043) (0.048) (0.087) (0.095) (0.075) (0.085)

Input Variance -1.107 -2.515 -0.774 -0.757 -0.817 -2.750 -0.984 -1.139
(0.719) (0.747) (0.059) (0.068) (0.927) (1.184) (0.087) (0.104)

Ind. Fixed Effects no yes no yes no yes no yes
Industry Weighting None None None None None None None None
Observations 2772 2772 2772 2772 2016 2016 2016 2016
R-Squared 0.163 0.317 0.208 0.487 0.135 0.346 0.170 0.589

Notes: TBA

Table A2: Robustness of Bottleneck Patterns: Value-Added per Worker and Lagged TFP

Manufacturing All Industries

Panel A: Value-Added Per Worker
(1) (2) (3) (4) (5) (6) (7) (8)

Input Average 0.565 0.439 0.540 0.374 0.355 0.134 0.152 0.297
(0.092) (0.062) (0.104) (0.035) (0.150) (0.126) (0.144) (0.066)

Input Variance 0.009 -0.290 -0.391 -0.280 0.202 -0.154 -0.557 -0.360
(0.098) (0.085) (0.127) (0.060) (0.125) (0.133) (0.301) (0.083)

Ind. Fixed Effects no yes yes yes no yes yes yes
Industry Weight None None Real VA None None None Real VA None
Estimator OLS OLS OLS Robust OLS OLS OLS Robust
Observations 2772 2772 2772 2772 2016 2016 2016 2016
R-Squared 0.194 0.384 0.439 0.586 0.044 0.328 0.321 0.566

Panel A: Lagged TFP

Input Average 0.118 -0.122 -0.139 -0.214 0.048 -0.207 0.081 -0.225
(0.134) (0.074) (0.076) (0.081) (0.125) (0.094) (0.296) (0.106)

Input Variance -0.069 -0.172 -0.085 0.214 -0.102 -0.300 -0.096 0.041
(0.115) (0.110) (0.126) (0.109) (0.140) (0.145) (0.262) (0.145)

Ind. Fixed Effects no yes yes yes no yes yes yes
Industry Weight None None Real VA None None None Real VA None
Estimator OLS OLS OLS Robust OLS OLS OLS Robust
Observations 2310 2310 2310 2310 2016 2016 2016 2016
R-Squared 0.086 0.360 0.425 0.551 0.069 0.380 0.343 0.572

Notes: All regressions include year fixed effects. Columns 1 through 4 include all manufacturing industries from
1977-2007 and columns 4 through 8 include all industries from 1987-2007. Columns 4 and 8 show estimates
using outlier-robust regressions (using rreg command in stata).
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Figure A2: Variance of TFP Within Industryes
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Notes: Within-industry variance comes from Dispersion Statistics on Productivity (DiSP) provided by the U.S.
Census Bureau. Left panel shows the average within-industry cross-firm variance in TFP, where the average is
taken over 4-digit NAICS industries. Right panel shows the average within-industry variance among supplying
industries (i.e. weighting by the input share of the industry). The average is taken over each 5-year period,
weighting using industries by their share of value-added.

Table A3: Robustness of Bottleneck Patterns to Including Within-Industry Variance

(1) (2) (3) (4) (5) (6) (7) (8)

Upstream Average 0.509 0.090 0.202 -0.116 0.568 0.038 0.168 -0.290
(0.166) (0.179) (0.169) (0.206) (0.174) (0.184) (0.168) (0.259)

Upstream Variance -1.132 -1.502 -1.142 -1.379
(0.192) (0.247) (0.208) (0.318)

Upstream Within Industry Variance 0.265 0.031 0.010 -0.351 0.123 -0.110 -0.569 -0.686
(0.126) (0.119) (0.285) (0.294) (0.147) (0.133) (0.356) (0.356)

Ind. Fixed Effects no no yes yes no no yes yes
Industry Weighting None None None None Real VA Real VA Real VA Real VA
Observations 924 924 924 924 924 924 924 924
R-Squared 0.135 0.092 0.597 0.553 0.191 0.118 0.636 0.562

Notes: Notes: Within-industry variance comes from Dispersion Statistics on Productivity (DiSP) provided by
the U.S. Census Bureau. Sample includes 5-year changes from 1997-2002 and 2002-2007. Within-industry
metrics are provided at the 4-digit NAICS level and are averaged across all years within the 5-year window. All
regressions include year fixed effects.
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Table A4: Top 10 Limiting and Limited Industries

Panel A: List of Fastest-Growing Industries

1997-2002 Industries 2002-2007 Industries
Semiconductor and Related Devices Semiconductor and Related Devices
Electronic Computers Electronic Computers
Paper (except Newsprint) Mills Computer Storage Devices
Other Animal Food Biological Product
Soybean Processing Sawmills
Motor Vehicle Electrical and Electronic Equip. In-Vitro Diagnostic Substances
Poultry Processing All Other Basic Inorganic Chemical Manufacturing
Iron and Steel Mills Petrochemicals
Flavoring Syrup and Concentrate Radio/TV Broadcasting & Wireless Comm. Equip.

Panel B: List of Bottleneck Industries
1997-2002 Industries 2002-2007 Industries

Commercial Lithographic Printing Petroleum Refineries
All Other Basic Organic Chemical Pharmaceutical Preparation
Printed Circuit Assembly (Electronic Assembly) Other Communication and Energy Wires
Corrugated and Solid Fiber Boxes Manifold Business Forms Printing
Petrochemicals Corrugated and Solid Fiber Boxes
Radio/TV Broadcasting & Wireless Comm. Equip. Printed Circuit Assembly (Electronic Assembly)
Bare Printed Circuit Boards Turbine and Turbine Generator Set Units
Other Electronic Components Motor Vehicle Electrical and Electronic Equip.
Petroleum Refineries Medicinal and Botanical Manufacturing
Paint and Coatings Unsupported Plastics Film and Sheets

Panel C: List of Limited Industries
1997-2002 Industries 2002-2007 Industries

Photographic and Photocopying Equipment In-Vitro Diagnostic Substances
Relay and Industrial Control Medicinal and Botanical
Sawmills Guided Missile and Space Vehicles
Surgical and Medical Instruments Wineries
Guided Missile and Space Vehicles Petroleum Refineries
All Other Motor Vehicle Parts Manufacturing All Other Basic Organic Chemicals
Motor Vehicle Transmission and Power Train Parts Other Commercial and Service Industry Machinery
Gasoline Engine and Engine Parts Cement
Motor Vehicle Metal Stamping Relay and Industrial Controls
Motor Vehicle Electrical and Electronic Equip. Industrial Valves

Notes: Bottleneck industries are defined as those that, were TFP in that industry to increase by 10%, the
variance of TFP growth across supplying industries would fall the most. Fast growing industries are conversely
defined as those that, were TFP in that industry to increase by 10%, the variance of TFP growth across
supplying industries would fall the least. Limited industries are defined as those with the highest variance
of TFP among suppliers among the 100 manufacturing industries with the highest value-added and further,
the 50 of those top 100 with the highest average TFP growth among suppliers. Sample is restricted to 462
manufacturing industries.
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Table A5: Robustness for Downstream TFP and Upstream TFP: All Industries

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Baseline 10-year Cov. Lagged China No Fixed All Leads

Shock Comp. IO Inputs

A: Without Industry Trends

Input Average 0.915 1.093 0.909 0.915 0.934 0.699 0.996 1.278
(0.161) (0.233) (0.163) (0.151) (0.168) (0.108) (0.126) (0.248)

Input Variance -0.905 -0.638 -0.798 -0.923 -1.026 -2.029 -0.845 -1.014
(0.158) (0.117) (0.176) (0.152) (0.159) (0.710) (0.207) (0.382)

Input Covariance -0.228
(0.204)

Lagged 5-year TFP 0.070
(0.115)

Future Input Average -0.003
(0.178)

Future Input Variance 0.244
(0.133)

Observations 2016 1008 2016 1974 1512 1904 2016 2016 2016
R-Squared 0.102 0.070 0.103 0.107 0.116 0.103 0.119 0.090 0.073

B: With Industry Trends

Input Average 0.780 0.892 0.687 0.724 0.896 0.770 0.876 1.169
(0.119) (0.173) (0.118) (0.117) (0.134) (0.122) (0.124) (0.194)

Input Variance -1.087 -1.024 -0.907 -0.889 -1.200 -1.490 -1.139 -1.565
(0.191) (0.251) (0.196) (0.173) (0.214) (0.767) (0.204) (0.402)

Input Covariance -0.760
(0.196)

Lagged 5-year TFP -0.362
(0.045)

Future Input Average -0.171
(0.110)

Future Input Variance 0.343
(0.158)

Observations 2016 1008 2016 1974 1512 1904 2016 2016 2016
R-Squared 0.399 0.665 0.406 0.464 0.471 0.291 0.409 0.392 0.375

C. Weighting by Industry Real Value-Added

Input Average 0.278 0.466 0.276 0.304 0.289 0.167 0.498 0.502
(0.249) (0.376) (0.253) (0.255) (0.281) (0.267) (0.231) (0.454)

Input Variance -0.442 -0.264 -0.508 -0.474 -0.480 -3.076 -0.735 -0.947
(0.230) (0.209) (0.311) (0.227) (0.261) (1.232) (0.234) (0.405)

Input Covariance 0.162
(0.488)

Lagged 5-year TFP 0.050
(0.123)

Future Input Average 0.352
(0.229)

Future Input Variance 0.077
(0.242)

Observations 2016 1008 2016 1974 1512 1904 2016 2016 2016
R-Squared 0.022 0.015 0.022 0.026 0.025 0.057 0.035 0.023 0.036

Notes: Standard errors are clustered at the industry level. All regression includes stacked 5-year changes, except
for in column 2 where we include stacked 10-year changes. Time fixed effects are included in all specifications
and industry fixed effects are included in Panel B. Observations are unweighted in Panel A and B and are
weighted by the industry’s share of 1987 real value-added in Panel C.
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Table A6: First Stage for Country-Specific Instruments

Partial First Stage First Stage Partial First Stage First Stage

Dependent Variable: Average Variance Average Variance Average Variance Average Variance

A: Level of TFP growth

Upstream Average France 0.106 0.084 0.208 0.015 -0.020 0.095
(0.172) (0.168) (0.144) (0.114) (0.101) (0.073)

Upstream Average Germany 0.064 0.121 -0.039 0.052 0.131 -0.054
(0.021) (0.031) (0.021) (0.047) (0.049) (0.048)

Upstream Average UK 0.117 0.127 0.002 0.097 0.113 -0.053
(0.066) (0.061) (0.022) (0.077) (0.076) (0.049)

Upstream Variance France 0.395 0.312 0.228 0.385 0.429 0.114
(0.287) (0.362) (0.210) (0.232) (0.338) (0.088)

Upstream Variance Germany -0.029 0.075 -0.040 -0.002 0.125 -0.045
(0.021) (0.038) (0.024) (0.005) (0.044) (0.038)

Upstream Variance UK -0.477 -0.067 -0.027 -0.740 -0.260 -0.481
(0.378) (0.521) (0.147) (0.422) (0.690) (0.284)

Ind. Fixed Effects no no no no yes yes yes yes
Observations 2520 2520 2520 2520 2520 2520 2520 2520
R-Squared 0.250 0.091 0.256 0.144 0.524 0.524 0.533 0.534

B: Rank of TFP growth

Upstream Average France -0.052 -0.042 -0.323 0.109 0.116 -0.175
(0.265) (0.254) (0.219) (0.166) (0.170) (0.120)

Upstream Average Germany -0.344 -0.392 0.057 -0.435 -0.454 0.061
(0.087) (0.073) (0.040) (0.106) (0.097) (0.063)

Upstream Average UK -0.120 -0.115 -0.089 -0.096 -0.079 0.008
(0.109) (0.108) (0.057) (0.111) (0.114) (0.053)

Upstream Variance France 0.032 0.038 0.037 0.040 0.031 0.037
(0.022) (0.032) (0.026) (0.028) (0.033) (0.025)

Upstream Variance Germany -0.010 -0.024 -0.012 -0.024 -0.024 -0.027
(0.012) (0.020) (0.012) (0.027) (0.041) (0.027)

Upstream Variance UK -0.017 -0.022 -0.012 -0.015 -0.018 -0.015
(0.016) (0.021) (0.013) (0.014) (0.022) (0.014)

Ind. Fixed Effects no no no no yes yes yes yes
Observations 2520 2520 2520 2520 2520 2520 2520 2520
R-Squared 0.265 0.106 0.285 0.171 0.551 0.539 0.563 0.550

Notes: Standard errors are clustered at the industry level. Time fixed effects are included in all specifications.
In panel B, the dependent variables are multiplied by 100.
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Table A7: Robustness of Country-specific Instruments

Ranked Baseline Fixed IO Dropping UK Dropping Germany

Upstream Average 0.928 1.093 1.148 1.344 0.972 1.138 0.415 0.917
(0.338) (0.348) (0.286) (0.245) (0.352) (0.393) (0.803) (0.874)

Upstream Variance -0.667 -1.480 -0.281 -0.918 -0.658 -1.480 -0.225 -1.331
(0.445) (0.661) (0.519) (0.573) (0.426) (0.683) (0.817) (0.852)

Ind. Fixed Effects no yes no yes no yes no yes
Upstream Network IO IO IO IO IO IO IO IO
Controls for Imports
Observations 2478 2478 2478 2478 2478 2478 2478 2478
R-Squared 0.117 0.374 0.123 0.375 0.116 0.373 0.103 0.377
First-Stage F-Stat .8 2.1 3.97 3.25 1.02 2.72 1.93 .54

Notes: Standard errors are clustered at the industry level. All regressions are estimated using 2SLS. Columns 1
through 4 and columns 7 and 8 use TFP growth in France, Germany and the UK as instruments while columns 5
and 6 use TFP growth in France and Germany. Time fixed effects are included in all specifications and industry
fixed effects are included where specified.

Table A8: Comparing Innovation Network: Input-Output Specification on Modified Sample

(1) (2) (3) (4)
A: Time-Varying Input Shares

Input Average (IO) 0.197 0.580 0.123 0.465
(0.130) (0.121) (0.088) (0.088)

Input Variance (IO) -0.635 -0.763
(0.114) (0.134)

Ind. Fixed Effects no no yes yes
Industry Weighting None None None None
Observations 1848 1848 1848 1848
R-Squared 0.087 0.108 0.384 0.405

B: Time-Invariant Input Shares

Input Average (IO) 0.343 0.640 0.339 0.521
(0.130) (0.107) (0.102) (0.099)

Input Variance (IO) -0.608 -0.813
(0.153) (0.152)

Ind. Fixed Effects no no yes yes
Industry Weighting None None None None
Observations 1848 1848 1848 1848
R-Squared 0.098 0.115 0.390 0.407

Notes: Standard errors are clustered at the industry level. The regressions include stacked 5-year changes from
1987-2007 and include 462 manufacturing industries. Time fixed effects are included in all specifications and
industry fixed effects are included where indicated.
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Table A9: Bottleneck Patterns Using Patents

(1) (2) (3) (4)
A: Number of Patents

Input Average 0.007 -0.034 -0.008 -0.076
(0.004) (0.021) (0.027) (0.188)

Input Variance 0.003 0.018 -0.011 -0.189
(0.002) (0.009) (0.012) (0.089)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 900 900
R-Squared 0.113 0.468 0.110 0.762

B: Citation-Weighted Number of Patents

Input Average 0.006 -0.041 -0.007 -0.154
(0.004) (0.019) (0.025) (0.146)

Input Variance 0.002 0.016 -0.008 -0.095
(0.002) (0.009) (0.011) (0.066)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 900 900
R-Squared 0.112 0.470 0.109 0.760

C: Number of Top 20% Patents

Input Average 0.006 -0.035 -0.014 -0.079
(0.003) (0.016) (0.020) (0.064)

Input Variance 0.003 0.012 -0.013 -0.014
(0.001) (0.007) (0.009) (0.035)

Ind. Fixed Effects no yes no yes
Upstream Network IO IO Cites Cites
Observations 1804 1804 900 900
R-Squared 0.113 0.470 0.111 0.759

Notes: Dependent variable in each regression is the TFP growth in the industry. Standard errors are clustered
at the industry level. Time fixed effects are included in all specifications and industry fixed effects are included
where indicated. All regressions include a control for the lagged dependent variable. Regression includes stacked
5-year changes from 1982-2002 for 490 SIC-based manufacturing industries.
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Table A10: Robustness of Bottleneck Patterns Using Patents

(1) (2) (3) (4)
A: Alternate Specifictions

Value-Added No . Fixed Fixed
Wgt. Comp. Network Network

Input Average 1.133 0.974 0.947 2.061
(0.108) (0.068) (0.073) (0.052)

Input Variance -0.915 -1.079 -0.958 -0.345
(0.442) (0.291) (0.331) (0.227)

Ind. Fixed Effects yes yes yes yes
Upstream Network IO IO IO Cites
Observations 1804 1588 1804 1800
R-Squared 0.858 0.837 0.830 0.929

B: Alternate Patenting Variables

Total Alt. Breakthrough Foreign
Citations Mapping Patents Patents

Input Average 1.895 1.599 1.925 2.119
(0.038) (0.167) (0.038) (0.050)

Input Variance -0.592 0.286 -0.467 -2.912
(0.196) (0.448) (0.090) (0.710)

Ind. Fixed Effects no no no no
Upstream Network Cites Cites Cites Cites
Observations 1350 1350 1350 1350
R-Squared 0.883 0.463 0.885 0.904

Notes: Dependent variable in each regression is the growth in the patenting measure. Standard errors are
clustered at the industry level. Time fixed effects are included in all specifications and industry fixed effects
are included where indicated. All regressions include a control for the lagged dependent variable. Regression
includes stacked 5-year changes from 1982-2002 for 490 SIC-based manufacturing industries. The patenting
measure in Panel A is citation-weighted patents.

Table A11: Aggregates Results for United States

Upstream Average 0.829 0.969 0.929 0.972 0.734 0.670 0.731 0.758
(0.555) (0.559) (0.671) (0.592) (0.411) (0.326) (0.453) (0.405)

Upstream Variance -5.386 -5.735 -4.966 -5.503 -5.939 -5.243 -6.042 -4.597
(2.490) (2.249) (3.548) (3.312) (1.491) (0.927) (2.356) (1.352)

Year FEs X X X X X X X X
Industry FEs X X X X
Industry Weight None None Value-Added Value-Added None None Value-Added Value-Added
Lagged Dep. Var.? No Yes No Yes No Yes No Yes
Observations 116 87 116 87 116 87 116 87
R-Squared 0.112 0.186 0.105 0.149 0.542 0.696 0.512 0.671

Notes: Standard errors are clustered at the industry level. All regressions include stacked 5-year changes from
1987-2007 for 30 industries within the US.
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