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Abstract

Many committees—juries, political task forces, etc.—spend time gathering costly information

before reaching a decision. We report results from lab experiments focused on such information-

collection processes. We consider decisions governed by individuals and groups and compare

how voting rules affect outcomes. We also contrast static information collection, as in classical

hypothesis testing, with dynamic collection, as in sequential hypothesis testing. Generally, out-

comes approximate the theoretical benchmark and sequential information collection is welfare

enhancing relative to static collection. Nonetheless, several important departures emerge. Static

information collection is excessive, and sequential information collection is non-stationary, pro-

ducing declining decision accuracies over time. Furthermore, groups using majority rule yield

especially hasty and inaccurate decisions.
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1 Introduction

1.1 Overview

Juries, boards of directors, congressional and university committees, government agencies such as

the FDA or the EPA, and many other committees spend time deliberating issues before reaching

a decision or issuing a recommendation. An important component of such collective decisions is

the acquisition of information. The statistics literature has offered two leading models of costly

information collection. Perhaps the most well known and heavily utilized is classical hypothesis

testing, where the amount of information to be collected, often the size of a data set, is chosen at

the outset. Classical hypothesis testing has many practical advantages. Most notably, it requires

only one choice pertaining to the information volume, or sample size, to be collected. Sequential

hypothesis testing, going back to Wald (1947), calls for incremental choices of information collection.

The researcher sees one piece of information, then decides whether to proceed with another, and

so on. Sequential hypothesis testing has efficiency advantages: information collection occurs only

when its marginal benefits justify its cost. However, it is arguably more complex, requiring repeat

decisions and information monitoring over time.

In this paper we provide an experimental examination of how individuals and groups collect

information. We examine both static and sequential information collection by both individuals and

groups following a variety of decision-making protocols.

The main results of our investigation are the following. First, although average participants’

behavior is arguably close to the theoretical predictions, we see several consistent deviations. In

particular, we observe excessive information collection when information collection is static, as in the

classical hypothesis testing model. We also see agents’ becoming less demanding of accuracy over

time when information collection is sequential. Second, individuals and groups behave markedly

differently. Furthermore, the collective rules by which groups make decisions have substantial

impact on outcomes. Specifically, groups making decisions under majority rule make far hastier

decisions, utilizing substantially less information, than either individuals, or groups that decide

under unanimity rule. Ultimately, we see similar decision accuracies under static or sequential

protocols. Nonetheless, when accounting for information costs, sequential protocols yield greater

efficiency levels.
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The investigation of information collection, and deliberative processes more generally, is partic-

ularly challenging using field data. It is often difficult to assess the precision of samples collected

and the underlying preferences of decision makers. Natural procedures, such as those pertaining

to juries, boards of directors, or the FDA, often have rigid protocols and are therefore difficult to

compare in a controlled fashion. Lab experiments are therefore particularly useful in these settings.

At the core of our experimental design is the following decision problem. There are two ex-ante

equally likely states, A or B—a metaphor for a guilty or innocent defendant, an investment that is

worthwhile or not, etc. Ultimately, each participant needs to guess the state of the world and gets

rewarded when correct. Each state is associated with a Brownian motion. The drift is µ when the

state is A and −µ when the state is B. The Brownian motion’s variance is state independent. As

time goes by, the realized sample path of the Brownian motion becomes increasingly informative

about the underlying state. There is a flow cost of information collection, the cost of observing

the realized Brownian path. Whenever information collection terminates, participants know the

posterior probability that the state is A and submit their guess. Naturally, the optimal guess corre-

sponds to the more likely state. Our focus is on the non-trivial trade-off pertaining to information

collection: waiting longer before making a decision increases accuracy, but comes at a cost.

We consider both static and dynamic information-collection procedures. The static setting

emulates the classic hypothesis testing scenario. Participants determine, at the outset, the time

horizon during which they collect information—namely, observe the Brownian path. They then

indeed see the path unravel for the specified amount of time, get informed of the ultimate posterior

over states, and make their guess. In the dynamic setting, emulating the sequential sampling

scenario, participants track the evolution of the Brownian path and can stop at any time to submit

their guess.

As our introductory examples suggest, there are many applications in which information collec-

tion is undertaken by a committee. This motivates our choice of treatments. In some treatments,

decisions are made by individuals, as in the classic paradigms. In others, they are made in groups.

When in a group, we consider two commonly-used institutions: majority and unanimity. In the

static setting, group members all submit their desired information-collection horizon at the outset.

Under majority rule, the median time is implemented for the group, whereas under unanimity, the

maximal time is implemented. In the dynamic setting, group members decide at each point in
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time whether to stop or continue searching. Under majority, whenever two members wish to stop

and agree on a guess, information collection terminates for the group, and the majority guess is

submitted. Analogously, under unanimity, whenever all members wish to stop and agree on the

guess, information collection terminates and that guess is implemented. In particular, in all our

group treatments, all group members receive the same payoff, derived from the jointly-determined

information cost, and the guess’ accuracy.

Our individual treatments offer a natural benchmark for the basic predictions emerging from

the canonical statistical information-collection procedures. In the static setting, our parameters are

such that the optimal information-collection horizon is 30 seconds. In our experiments, individuals

choose 42 seconds, a choice that is 40% higher than is optimal. In the dynamic setting, it is optimal

to use a constant threshold on posterior beliefs, set at 0.81 for our parameters. Intuitively, whenever

one becomes sufficiently confident in the assessment of which state had been realized, the cost of

further information collection outweighs its benefits. In our experimental treatments, individuals’

mean posteriors at decision time is remarkably similar to that predicted by theory, standing at

0.77. Nonetheless, individuals do not seem to use constant thresholds. We see decreasing threshold

over time, with participants becoming more lenient as time passes.

By design, our groups are homogeneous. Theoretically, there is a unique efficient equilibrium

mimicking the optimal individual choices. Therefore, our group treatments allow for the investiga-

tion of pure group effects. We find that groups behave differently from individuals, and that this

behavior depends on the voting rule governing group decisions.

Majority and unanimity generate different behaviors and outcomes in our setting. Groups

governed by majority decide much faster than individuals, and therefore under-collect information

to an even greater extent. Groups governed by unanimity decide more slowly than individuals, and

come extremely close to the theoretical benchmark in terms of decision accuracy.

Individuals choosing on their own exhibit heterogeneity in behavior. Could the mere grouping

of heterogeneous individuals explain the patterns observed in our group treatments? In order to an-

swer this question, we simulate groups composed of participants from our individual treatments and

record how such artificial groups would have decided under majority and under unanimity, absent

any changes in behavior. Differences between these simulated groups’ outcomes and individuals’

capture a mechanical effect of aggregating heterogeneous individuals.
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We find that differences between outcomes of groups using unanimity and individual outcomes

can be fully explained through the mechanical effect of aggregation.1 In contrast, majority decides

substantially faster than simulated groups of heterogeneous individuals. This presents a puzzle: why

are groups deciding using majority rule so hasty, while groups deciding using unanimity are not?

We suggest that majority creates a demand for agency that leads agents to vote early. Remarkably,

we find that the decision accuracy under majority replicates the decision accuracy of the most

lenient members in our simulated groups. This feature suggests an additional force impacting the

first voter under majority. That first voter can accelerate her vote in order to strategically influence

the timing of the second, pivotal vote.

We then turn to a comparison between static and sequential information collection. We find

that, consistent with theoretical predictions, sequential information collection outperforms static

information collection. However, often decision bodies’ decisions affect a large segment of the

population. The decision’s accuracy is then of much greater import than then cost experienced by

a small fraction of society. When considering decision accuracies, sequential information collection

no longer dominates static information collection. In fact, under majority rule, static information

collection leads to superior accuracy relative to sequential information collection.

1.2 Related Literature

The problem of testing statistical hypotheses is an old one. Its origin can be traced back to Thomas

Bayes, who provided the well-known formulation of posterior probabilities of event “causes” in the

18’th century. Classical hypothesis testing has been used, formally or informally, for centuries, see

Stephan (1948). It came of age with the development of statistical hypotheses tests by Neyman and

Pearson (1933), who showed that the likelihood ratio test is the most powerful test for assessing

hypotheses with a given data set. Examples abound for its uses. It is still arguably the most heavily

applied approach for deducing inferences from limited observation sets. See, for example, Greene

(2018).

Sequential sampling, proposed by Wald (1945, 1947), introduced the idea of collecting data

dynamically. With each piece of data, a likelihood ratio test is performed to determine whether more

1The effect is nonetheless real: every individual in a group within our unanimity treatment is affected by the
group member with the most stringent threshold.
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observations are needed to accomplish a desired level of statistical confidence. When data come at

a cost, Wald’s method offers efficiency gains over its static counterpart—when data is collected in

increments, a researcher can condition additional data collection on what had already been observed.

Sequential sampling has been used widely to describe how individuals collect information, more on

that below, and to guide researchers in the creation of databases, see Dominitz and Manski (2017)

and references therein.

Recent theoretical work has investigated how groups approach the deliberative process, linking

information acquisition with ultimate decisions. Persico (2004), Martinelli (2006), and Gerardi

and Yariv (2007, 2008) investigate environments in which information collection by a committee

is “static,” reminiscent of the classical hypothesis testing. In those models, each individual can

acquire a costly signal about a payoff-relevant state. The aggregation process then introduces free-

riding motives. This contrasts with our setting, where any information collected by the group is

public, with its costs equally shared.

Strulovici (2010), Chan et al. (2018), and Henry and Ottaviani (2019) consider environments in

which information collection is sequential: the committee decides at each date whether to continue

acquiring costly information, or whether to stop and choose an alternative. In particular, Chan

et al. (2018), which our dynamic group treatments mimic, as well as Henry and Ottaviani (2019),

and McClellan (2017) build on the literature on sequential hypothesis testing that started with

Wald (1947).

In terms of experiments, there is a large literature that studies how individuals collect and

process information statically. Many papers consider the collection of information when agents

have non-instrumental motives, for example seeking confirmatory information as in Fischer et al.

(2005) or ego-promoting information as in Eil and Rao (2011). Relatively few papers study exper-

imentally how individuals trade off precision of payoff-relevant information and its costs, which is

at the heart of the classic hypothesis testing paradigm. Ambuehl and Li (2018) elicit valuations

of payoff-relevant information structures. They show that valuation of useful information under-

reacts to increased informativeness and that individuals value information that may yield certainty

disproportionately highly. Hoffman (2016) uses a field experiment in which business experts are

compensated for their guess of the price and quality of actual websites. Participants can acquire a

costly signal before deciding. He also finds that participants underpay for information when signals
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are valuable and overpay when signals are less valuable. Our static treatments add to this literature

by illustrating how both individuals and groups resolve the accuracy-cost trade-off.2

To our knowledge, there is little experimental work that speaks directly to the sequential sam-

pling setup.3 Several papers inspect individual dynamic search behavior experimentally, see Gabaix

et al. (2006), Brown et al. (2011), Caplin et al. (2011), and references therein. In these experiments,

participants also spend resources over time in the hopes of identifying a good alternative. However,

the underlying optimization problem is quite different from ours.

The neuroscience literature has produced a rich body of work that inspects binary perceptual

tasks. Response times are often interpreted as costly, turning the problem into a sequential sampling

one, often termed the drift-diffusion model. Much of the focus of this literature concerns the

association between correct choice rates and response times, see for instance Swensson (1972),

Luce et al. (1986), Ratcliff and Smith (2004), and Ratcliff and McKoon (2008). The main insight

emerging from this literature is that quick decisions tend to be more accurate. This insight is in

line with our observation of declining thresholds in the dynamic treatments: as time passes, our

participants stop information collection with less certainty on the correct choice. An important

contrast with these studies is that we observe—in fact, provide—the posterior probability that any

choice is correct over time. This allows us to speak directly to new theories of dynamic choice that

have emerged recently, see Baldassi et al. (2020) and Fudenberg et al. (2018).

2 Experimental Design

At the core of our experimental design is the choice of the amount of information to acquire prior

to making a binary decision. There are two possible states: A and B. Although neutrally labeled in

the lab, these can stand for a guilty or innocent defendant in the jury context, a good or bad policy

in the political context, a profitable or unprofitable investment in a financial context, etc. At the

start of each period, one of the states is chosen at random with equal probabilities. Participants

ultimately need to guess which state had been chosen and are paid according to whether or not their

2Several studies inspect information collection in strategic settings different from ours. See for example, Elbittar
et al. (2016) and Bhattacharya et al. (2013), who consider information aggregation settings in which individuals
acquire private information, Szkup and Trevino (2015), who explore information collection in the context of global
games, or Gretschko and Rajko (2015), who focus on auctions.

3Interestingly, the idea of using sequential experimental designs has been suggested in various contexts, see El-
Gamal and Palfrey (1996), Chapman et al. (2018), Imai and Camerer (2018), and references therein.
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guesses are correct. In the lab, participants receive $2 for a correct guess and nothing otherwise.

Prior to making a choice, participants have access to information that evolves according to a

continuous-time Weiner process. When the state is A, the process has drift µ and variance σ2; When

the state is B, the process has drift −µ and variance σ2. Throughout our treatments, µ = 0.84 and

σ2 = 1

There are two dimensions that we vary across our treatments: whether information acquisition

decisions are static or sequential and whether choices are made by individuals, groups using majority

rule, or groups using unanimity rule.

In what follows, we begin by describing our sequential treatments, which are the more novel

part of our experiment. The design choices of the dynamic treatment also guided our choices for

the design of the static treatments, which are described next.

Sequential Sampling In our dynamic treatments, participants observe the information evolve

over time and, at each instant, have a choice of guessing A, B, or waiting for further information

by choosing W . Time spent acquiring information comes at a fixed cost of 40 cents a minute.

In the treatment in which individuals make decisions on their own—the Individual Dynamic

treatment—a round ends for a participant as soon as he or she selects one of the A or B guesses.

In our group treatments, participants are randomly matched to create groups of 3 in each round.

A round ends as soon as a quorum of q individuals agrees on an A or B guess. In the Majority

Dynamic treatment, q = 2, whereas in the Unanimity Dynamic treatment, q = 3. As long as a

quorum has not been reached, participants can change their decisions between A, B, and W at any

time. Throughout, participants observe choices others made within their group.

Static Sampling Our static treatments mimic the setting of the classical hypothesis testing

environment. At the beginning of each round, participants decide on the amount of time they

would like to spend collecting information. As in the dynamic treatment, information costs are

fixed at 40 cents a minute.

When individuals make decisions independently—the Individual Static treatment—they observe

the information evolve for their desired time.4 Their guess is then automated to reflect the state

4This design was chosen for two reasons. First, we wanted to maximize comparability with the sequential-sampling
treatments. Second, we wanted to offer participants sufficient learning opportunities.
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that is more likely given the information collected: either A or B.5

Our static-sampling group treatments are analogous to those corresponding to the dynamic

treatment. In each round, participants are matched into groups of 3. At the outset of each round,

participants submit simultaneously their desired waiting time. The resulting group waiting time

is the median desired waiting time of group members in our Majority Static treatment; it is the

maximal desired waiting time of group members in our Unanimity Static treatment. As in the

individual variant, participants observe the information evolve for the group’s waiting time. The

group guess, A or B is again automated to best respond to the information collected.

Feedback and Payments In all treatments, the feedback at the end of each round contains

participants’ payoffs and other group members’ choices whenever relevant.

Each treatment was preceded by two practice rounds, followed by 30 “real” rounds. Participants

were ultimately paid for 20 randomly selected rounds.

Information Processes The 30 information processes experienced by participants were identi-

cal across treatments. These processes were selected in the following way. We randomly generated

15 Weiner processes, with the parameters specified above, that are “representative” in that the

mean, median, and five quintiles of the theoretically optimal sequential stopping times matched

those of the underlying distribution (see the following section for a description of the theoretical

predictions). These processes correspond to the first 15 real rounds in each treatment. The last 15

processes in each treatment were derived by generating the reflected “mirror images” of the first

15 processes. Namely, whenever the realized state in the original process was A (or B), it was B

(or A) in the reflected processes. Furthermore, at any time t, if the original process indicated a

probability p that the state is A, the reflected process indicated a probability 1− p that the state

is A. The reflected processes were used in the same order as the original processes. In that way,

participants effectively faced the same 15 decision problems twice during a session, with a gap of

15 rounds in between. This design element allows us to evaluate learning in a highly controlled

fashion.6

5The guess is automated in order to reduce noise in our data. Because participants’ guesses in the Individual
Dynamic treatment best respond to the information 98% of the time, it is unlikely this restriction impacts our
qualitative results. Note that this choice could not easily be automated in the dynamic treatment.

6Because we describe the evolution of a process over time through posterior probabilities that change over time
(on our interface, five times a second), it is practically impossible for subjects to identify these effective process
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The evolution of a Weiner process continuously provides information on the likelihood of either

state prevailing. Nonetheless, the Bayesian calculus necessary to deduce this likelihood is non-trivial

and this difficulty is orthogonal to our investigation. Indeed, it is well known that lab participants

are frequently challenged by statistical updating, see references in our literature review. In order

to mitigate the impacts of subjects’ limitations exclusively pertaining to statistical analysis, in our

design, participants are presented with the evolution of the probability that the state is A directly.

Auxiliary Elicitations At the end of each session, participants completed two risk-elicitation

tasks as in Gneezy and Potters (1997). Namely, participants were provided with 200 tokens that

they had to allocate between a safe investment, returning token for token, and a risky investment

with mean higher than 1 and non-trivial variance (e.g., one paying 2.5 the amount invested with

probability 50%). In addition, participants participated in two dictator-games, one in which the

amount of tokens transferred was translated 1 : 1 and one in which the amount of tokens transferred

was doubled for the recipient. Participants were paid for one randomly-chosen risk-elicitation task

and one randomly-chosen dictator game.7

Summary The experiments were run at the Princeton Experimental Laboratory for the Social

Sciences (PExL) with 254 participants. Each treatment entailed at least four sessions for each

group treatment, with at least 12 participants in each. Table 1 summarizes our treatments and

the corresponding volume of participants. The experimental software was programmed using oTree

(Chen et al., 2016).

Table 1: Participants and Rounds

Dynamic Static
Participants Rounds Participants Rounds

Individual 34 1,020 31 930
Majority 48 480 48 480

Unanimity 48 480 45 450

repetitions. Such recollection would require the memory of hundreds of ordered values and the realization that they
are mirrored.

7Elicitations were duplicated in order to allow for measurement-error correction as suggested in Gillen et al. (2019).
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3 Theoretical Predictions

We now briefly discuss the optimal information-collection policies in our various treatments. For

details, see Dvoretzky et al. (1953) or Chan et al. (2018).

We assume a setting as described in our experimental design. An agent assesses which one of

two ex-ante equally likely states, A or B, are realized. Information follows a Weiner process with

a variance of 1. When the state is A, the process has drift µ = 0.84; When the state is B, the

process has drift −µ = −0.84 and variance 1. Tracking this information comes at a flow cost of c.

We assume the agent guesses the state that is more likely once information collection terminates.

For ease of presentation, we normalize the reward for an ultimately correct guess of the state to be

1. With this normalization, the flow cost corresponding to that used in our experiments is c = 0.2.

It is convenient to denote by µ′ ≡ 2µ2. The agent’s posterior belief is then given by a Wiener

process, with drift µ′ and instantaneous variance 2µ′ under state A and drift −µ′ and variance 2µ′

under state B. A higher value of µ′ (higher µ or lower ρ) indicates a more informative process.

Given our parameters, µ′ = 1.4.

3.1 Static Treatments

The probability of guessing the true state correctly at any given time t is:

∫ ∞
0

1√
4πµ′t

e
− (x−µ′t)2

4µ′t dx =
1

2

(
erf

(√
µ′t

2

)
+ 1

)
.

In the static setting, a risk-neutral agent maximizes:

max
t

1

2

(
erf

(√
µ′t

2

)
+ 1

)
− c t

The optimal wait time is then:

t∗ =
2W

(
(µ′)2

32πc2

)
µ′

,

where W (·) is the Lambert W or product log function.

With our experimental parameters, t∗ = 0.49, or 29.58 seconds, since one unit of time in the
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lab is one minute. Thus, in expectation, a risk-neutral agent maximizes her payoff by waiting for

29.58 seconds.8

Consider now a group of n > 1 identical agents who choose their desired search times simul-

taneously. The group then collects information for a duration corresponding to either the median

or the maximal specified time. As before, the group guess corresponds to the more likely state

realized when information collection terminates. Group members are (identically) rewarded as in

the one-agent setting.

The utilitarian efficient equilibrium for the group corresponds to the optimal search time de-

scribed above, namely 29.58 seconds. Furthermore, this choice is a best response for any agent,

regardless of the strategies other agents in the group utilize.

3.2 Sequential Treatments

One of the main contribution of Wald (1945) and the continuous-time counterpart of Dvoretzky

et al. (1953) is to illustrate that, in the sequential-sampling setting, an optimizing agent uses

a simple threshold policy. Namely, at any time t, the agent calculates the log-likelihood ratio

θt = log (Pr[A]/Pr[B]). The optimal policy specifies a pair of cutoffs (g,G), with G ≥ g, such that

the agent stops information collection and guesses the state is A whenever θt ≥ G. Similarly, the

agent stops information collection and guesses the state is B whenever θt ≤ g.

For θ ∈ [g,G], let u(θ|g,G) represent the expected payoff from the deliberation process. A

similar derivation to that of Chan et al. (2018) yields:9

u(θ|g,G) =
eG(eθ − eg) + (eG − eθ)

(1 + eθ)(eG − eg)

− c

µ′
(G− θ)(eG+θ + eg) + (θ − g)(eg+θ + eG)− (G− g)(eθ + eG+g)

(1 + eθ)(eG − eg)
.

The corresponding first-order condition with respect to the lower boundary is then:10

∂u(θ|g,G)

∂g
=

−(eG − eθ)
(1 + eθ)(eG − eg)2

[
eg(eG − 1)− c

µ′
(
(G− g)eg(eG − 1) + (eG − eg)(1− eg)

)]
= 0.

8Analysis of this setting in the presence of risk aversion is presented in Section 11.1 of the Appendix. This analysis
suggests that risk aversion has no substantial impact on behavior.

9Our formulation here differs from that of Chan et al. (2018) in that they consider discounted utilities, whereas we
consider flow costs of time spent on information collection. This modification simplifies the experimental interface.

10The first-order approach is indeed valid, we omit details for the sake of brevity.
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This condition shows that the cutoffs satisfying the first-order condition do not depend on the

current log-likelihood ratio θ. Thus, solutions are stationary.

Because the problem is symmetric, the solution satisfies g = −G. The optimal value of G can

then be determined by:

c
(
2eGG+ e2G − 1

)
− eGµ′ = 0

With µ′ = 1.4 and c = 0.2, we numerically calculate the optimal boundary as G∗ = 1.461. Trans-

lated into probabilities, this value becomes e1.461

1+e1.461
= 0.81. Thus, in the dynamic version, the

theoretical prediction is that a risk-neutral agent should wait until the probability of the most

likely state is 81%.

Consider now a group of n > 1 identical agents. At each date, each agent decides whether

she would like to stop and guess A, stop and guess B, or wait. The group continues information

collection until either a majority or a unanimity of agents in the group choose to guess the same

state.

The utilitarian efficient equilibrium for the group corresponds to the optimal search policy

described above, namely utilizing a threshold of 81%. Furthermore, as long as agents use symmetric

cutoff policies, this choice is a best response for any agent, regardless of the cutoffs chosen by other

agents in the group.

4 Approach to Data Analysis

As may be expected, subjects behavior changes during the early rounds as they learn about the

problem. However, most of the learning that we observe occurs within the first 15 rounds. In fact,

we see no evidence for substantial learning at later rounds. For details, see Section 11.4 in the

Appendix. Throughout the paper, we present figures aggregated across all experimental rounds as

those displayed appear virtually identical when we use either the first half or the second half of

our sessions. Regression results are presented for data corresponding to all rounds and to the last

15 rounds. Recall that, in our design, the first and last 15 rounds utilized the same ordered set of

information processes. Thus, the sample of settings participants encounter in the first and second
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half of each session is identical.

Risk attitudes and altruism proclivities do not appear to explain any aspect of our data, even

after measurement-error correction. We therefore do not include data from these elicitations in our

main specifications. Section 11.3 in the Appendix offers some additional analyses that explicitly

speak to this claim.

5 Broad Patterns of Behavior

Table 2 displays an aggregate overview of some of our results. It illustrates the mean posterior

when a decision has been made and the mean time for a decision across our treatments. As can

be seen, our Individual and Majority Dynamic treatments lead to less accurate decisions than

theoretically predicted, whereas the Unanimity Dynamic treatment yields outcomes that are statis-

tically indistinguishable from those theory predicts. Furthermore, the Majority Dynamic treatment

corresponds to the least amount of waiting, an observation we shall return to.

Differences between observed decision posteriors and those predicted by theory may, at first

blush, appear small. Nonetheless, these differences translate to large differences in wait times.

For instance, the Unanimity Dynamic treatment leads to double the wait time compared to the

Majority Dynamic treatment. This is a common feature in information-collection settings, where

the cost of precision is effectively convex—the higher is the current posterior precision, the more

time needs to be spent to establish a certain marginal precision increase.

Static treatments yield excessive waiting relative to that predicted by theory. Again, the

majority-rule treatment generates the hastiest decisions, though differences are not significant.

When comparing the static and dynamic treatments, we see that, contrary to the theoretical

predictions, mean decision times are longer in the static treatments. Furthermore, mean poste-

riors at decision times are comparable or only slightly lower than those observed in our dynamic

treatments, which is also in contrast with theoretical predictions. These observations have clear

welfare implications. When committees collecting information make decisions that affect a large

population, such as juries, the FDA, and so on, the population welfare, captured by the quality

of decisions, is similar under both static and dynamic protocols. We return to this point when

discussing performance in our different treatments in Section 8.
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Table 2: Aggregate Behavior

Dynamic Treatment Static Treatment
Mean Posterior Mean Time Waited Mean Posterior Mean Time Waited

All Rounds Last 15 All Rounds Last 15 All Rounds Last 15 All Rounds Last 15

Individual
0.77 0.78 33.56 37.55 0.75 0.75 41.69 40.45

(0.003) (0.005) (0.687) (1.12) (0.004) (0.006) (0.561) (0.824)

Majority
0.73 0.73 23.07 24.38 0.74 0.74 36.25 34.48

(0.002) (0.003) (0.335) (0.51) (0.003) (0.005) (0.326) (0.515)

Unanimity
0.82 0.84 46.71 53.68 0.76 0.75 40.46 37.77

(0.002) (0.003) (0.724) (1.11) (0.004) (0.005) (0.343) (0.547)

Theory 0.81 39.03 0.72 29.58

Standard errors in parentheses

Figure 1 depicts the evolution of posteriors and the choices made in each of our 15 processes in

the individual treatments, both static and dynamic. Our use of identical processes across treatments

allows for such a direct comparison. In order to simplify the presentation, each panel aggregates

observations from two reflected processes (for example, panel 1 corresponds to the first and sixteenth

process, panel 2 to the second and seventeenth process, etc.). The Figure illustrates the point at

which individuals “pulled the trigger.”

The Figure suggests some important themes that appear in our more detailed analysis below.

First, it is apparent that decisions are quite heterogeneous, with some individuals demanding a

lot more accuracy than others. Second, many observations are close to optimal. In particular, in

the dynamic setting, participants clearly respond to information in that decisions are more highly

clustered around higher posteriors. Moreover, many decisions are taken with accuracy predicted by

theory (and corresponding to the horizontal dashed lines within each panel). Third, individuals in

the dynamic setting appear to be more lenient over time, requiring less accuracy to stop. Consider,

for example, process 10. Several individuals decide late in the process, when posteriors are close

to 50%, despite choosing not to stop at two earlier points, when posteriors were close to 80%.

Last, because in the static treatment individuals cannot condition their choices on the history, the

resulting decision posteriors are far more dispersed. Processes 2 and 14 provide extreme examples.

In these processes, some static decisions involve a substantial wait time, but culminate in decision

posteriors of around 50%. Continuation would clearly be preferable if agents could see the posterior

(as they do in the dynamic setting). In contrast, in processes 12 and 15, some static choices take

place at extremely high posteriors. Earlier stopping could have been preferable if agents had been

able to condition their behavior on the history.
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The analogous figure for our majority and unanimity treatments appears in Section 11.2 in the

Appendix. As we soon discuss, behavior is different in those treatments and it is natural to compare

only pivotal agents under the two decision protocols, majority and unanimity. Nonetheless, some

observations remain. We see heterogeneous decisions, responses to information and more leniency

over time in the dynamic treatments, and decisions at extreme posteriors, either low or high, in

the static treatments.

Figure 1: Pulling the Trigger: Individual Treatments
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In what follows, we analyze the behavior that underlies these initial observations. The next

section describes behavior in our dynamic treatments. The section that follows offers a comparison

with their static counterparts.

std(pdynamic) = 0.990, std(pstatic) = 0.134, std(tdynamic) = 23.22, std(tstatic) = 15.16

6 Sequential Information Collection

6.1 The Impacts of Decision Procedures

We consider three procedures for information collection and choices: by individuals, by groups using

majority, and by groups using unanimity. Figure 2 displays the cumulative distribution functions

of decision posteriors on the left panel, as well as induced times on the right panel, for each of
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these procedures. We see an important impact of the governing decision rule. Distributions are

ordered via first order stochastic dominance, with the Unanimity Dynamic treatment yielding the

highest-accuracy decisions and taking the longest to conclude, and the Majority Dynamic treatment

yielding the least-accurate and hastiest decisions. In particular, the averages presented in Table 2

are not principally driven by outliers.

Figure 2: Dynamic Treatment CDFs
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Given the heterogeneity we observe at the individual level, one may naturally wonder whether

the differences we observe across our dynamic treatments are simply a mechanical artifact of the

grouping of three random individuals that respond heterogeneously to the task at hand. In order to

assess whether the differences we see among these treatments are purely mechanical, we artificially

generate groups of three from our individual treatment.11

Figure 2 presents the resulting cumulative distribution functions from these simulated groups

in addition to the distributions we observe in our data. As can be seen, the additional accuracy

granted by groups using unanimity appears to be a purely mechanical phenomenon. In fact, a

two-sided Kolmogrov-Smirnov (K-S) test, with a p-value of 0.345, fails to reject the hypothesis that

these distributions, the simulated and observed unanimity group decisions, are identical.

In contrast, our simulated groups using majority rule yield substantially more accurate decisions

than participants in the group majority treatment, suggesting that hasty majority choices are not

a mechanical effect. A two-sided K-S test does not reject the hypothesis that these distributions

11Specifically, for each round, we randomly group the 34 participants in our individual treatment into 11 groups of
3 participants each a 1, 000 times. Across all 30 rounds, 330, 000 groups are then simulated.
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are different.12

6.2 Declining Thresholds

Table 3 displays regression analysis pertaining to group and individual choices—the posterior at

which the pivotal vote was cast—in our dynamic treatments. We use the short-hand of I, M , and

U for the individual, majority, and unanimity treatments, respectively. The variables dM and dU

are dummy variables for the majority and unanimity treatments. To allow for learning, we include

dummy variables of the form Last 15 X, with X denoting the treatment, that indicate whether

observations are taken from the last 15 rounds of our sessions. Last, we consider the impacts

of time spent collecting information. We do so in two ways. First, we classify the processes as

“Slow” or “Quick.” For this classification, we calculate the time it takes to reach the theoretically

optimal threshold of 0.81 in each process. If a process takes more time than the median process to

pass the 0.81 threshold (i.e., 29.8 seconds) we label it “Slow,” otherwise it is labeled as “Quick.”

The resulting variable Slow X is a dummy variable indicating whether a process is slow in each

treatment X. We also consider the time spent collecting information in each treatment X, denoted

by Time X. The last three specifications allow for fixed effects corresponding to the individuals

casting the pivotal votes. Errors are clustered at the individual level. 13

The first column of Table 3 echoes our observations from the previous section. We see significant

differences between treatments, with less precise, or hasty, majority decisions and more precise, or

longer, unanimous decisions. Compared to the individual treatment, the mean posterior with which

the pivotal majority vote is cast is about 4 percentage points lower, while the mean posterior with

which the unanimity vote is cast is about 5 percentage points higher.

Throughout, we see a significant effect of learning over the first 15 rounds, with participants

becoming more patient, casting their vote with a significantly higher decision posterior. Since both

the individual and majority treatments choose, on average, at posteriors well below the theoretically

optimal, the increase in decision posteriors reflects changes towards the optimal choice. In the

unanimity treatment, however, learning leads to overshooting, with an average decision posterior

12Certainly, observations generating these figures are correlated. This makes standard statistical tests for comparing
these distributions questionable. We soon use regression analysis to statistically determine what affects decisions in
terms of both the institution in place and the governing information process in question.

13Alternative specifications are presented in Section 11.3.1 of the Appendix.
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of 0.84 in the last 15 rounds. As mentioned at the outset, and elaborated on in the Appendix, we

do not see evidence of substantial learning beyond the first 15 rounds.

The second and third columns consider the impacts of the underlying process, whether it is

slow or quick. Slow processes are associated with significantly lower decision posteriors across our

treatments. This association is present and similar in both magnitude and significance, even when

restricting attention only to the last 15 rounds of each session. It is most pronounced for groups

deciding through majority rule, and least pronounced in groups using unanimity. Theoretically,

whether a process is slow or quick should not impact the emergent decision posterior, only the time

at which the decision is taken. Lower decision posteriors in slow processes indicate a non-stationary

threshold for halting information collection. The observation hints at the idea that individuals and

groups become less demanding of accuracy as time progresses.

The last two columns of Table 3 illustrate a declining-threshold pattern more directly. Namely,

we introduce an explicit dependence on the time at which a pivotal vote is cast.14 The estimated

coefficients corresponding to decision times are negative and statistically significant: the longer it

takes for the pivotal vote to be cast, the lower is the decision posterior. As before, the least affected

treatment is unanimity and the most affected treatment is majority. In particular, in the last 15

rounds, since the estimated parameter value for Time M is −0.0018, for each 5 seconds that the

group decision is delayed, the typical decision posterior decreases by about one percentage point.

Our finding that thresholds are decreasing is connected to the drift-diffusion model DDM (e.g.,

Swensson (1972), Luce et al. (1986), Ratcliff and Smith (2004), and Ratcliff and McKoon (2008).)

As mentioned above, this literature finds that quick decisions tend to be more accurate. An

important contrast with these studies is that we observe—in fact, provide—the posterior probability

that any choice is correct over time. This allows us to speak directly to new theories of dynamic

choice that have emerged recently, see Baldassi et al. (2020) and Fudenberg et al. (2018). The

explanation provided by Fudenberg et al. (2018) for the relationship between speed and accuracy

relies on decision makers being uncertain about the process they face. In our setting, this is, in

principle, not a relevant explanation since all features of the problem are known. Of course, it could

14The fixed-effect specification is appropriate since, without it, we could conceivably identify a misleading positive
association between decision times and decision posteriors. Indeed, mechanically, since we consider a diffusion with
drift, posteriors naturally exhibit an increasing trend. Group fixed effects cannot be used due to the random matching
protocol we utilize. We therefore use pivotal-voter fixed effects to adequately capture the response to time passed.
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be the case that participants experience subjective uncertainty of the type present in Fudenberg

et al. (2018). However, learning does not significantly reduce the degree to which thresholds are

decreasing in our setting. Since such “subjective errors” would come at a cost, we find this an

unlikely explanation of our observations.15

Table 3: Decreasing Thresholds

Posterior

Ordinary Regression Fixed Effects Regression

All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 0.755∗∗∗ 0.785∗∗∗ 0.806∗∗∗

(0.00846) (0.00738) (0.0109)
dM -0.0362∗∗∗ -0.0303∗∗∗ -0.0372∗∗∗

(0.0112) (0.0107) (0.0128)
dU 0.0444∗∗∗ 0.0347∗∗∗ 0.0431∗∗∗

(0.0103) (0.00885) (0.0124)
Last 15 I 0.0247∗∗∗ 0.0247∗∗∗ 0.0299∗∗∗

(0.00647) (0.00647) (0.00790)
Last 15 M 0.0162∗∗∗ 0.0162∗∗∗ 0.0224∗∗∗

(0.00613) (0.00611) (0.00653)
Last 15 U 0.0376∗∗∗ 0.0376∗∗∗ 0.0430∗∗∗

(0.00717) (0.00688) (0.00726)
Slow I -0.0648∗∗∗ -0.0576∗∗∗

(0.00557) (0.00625)
Slow M -0.0774∗∗∗ -0.0736∗∗∗

(0.00717) (0.0101)
Slow U -0.0440∗∗∗ -0.0271∗∗∗

(0.00652) (0.00989)
Time I -0.000651∗∗∗ -0.00110∗∗∗

(0.000209) (0.000238)
Time M -0.00130∗∗∗ -0.00165∗∗∗

(0.000340) (0.000523)
Time U -0.000524∗∗∗ -0.000723∗∗∗

(0.000132) (0.000218)

N 1980 1980 990 1980 990

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

6.3 Voting First, Second, and Third

In our experimental interface, we record all votes cast by participants. In a group setting, if a

pivotal vote has not been cast yet participants are allowed to change their minds. That is, they

can change their vote, from say A, to W, or to B, and vice versa. Thus, it is not straightforward

to determine how each vote corresponds to the first, second, and third order statistic. However, in

the majority treatment 86% of games end the moment the second participant casts their first vote,

15Brown et al. (2011) provide an experimental analysis of sequential search. Because the model is stationary, the
optimal reservation value is a constant wage. In analogy to our declining-threshold observation, their main finding
is that participants’ reservations values sharply decline over time. They attribute this phenomenon to participants
experiencing non-stationary subjective costs of time spent searching.
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whereas in the unanimity treatment 85% of games end the moment the third participant casts their

first vote. Hence, given our data, using the first vote cast by each participant, we believe, is a good

approximation of the first, second, and third order statistic in both the majority and the unanimity

treatments. In Figure 3 we present the distribution of the first, and second vote in the majority

treatment, and the distribution of the first, second, and third vote in the unanimity treatment.

Alongside these distributions, we simulate groups of 3 generated from the individual treatment via

the procedure described in Section 6 and present the resulting distribution of the first, second, and

third order statistics.

Figure 3: Dynamic Treatment CDFs by Vote Order
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An implication of our discussion in Section 6.1 is that that the third order statistic from the

individual simulated treatment is very close to the distribution of the third (and pivotal) voter

from the unanimity treatment. Figure 3 confirms this finding and reveals that this similarity also

holds for the first and second order statistic/voter. This figure therefore reinforces the idea that

individual voter behavior under unanimity is very similar to behavior of individuals when they are

not in a group, and that the differences in outcomes under unanimity are exlusively due to the

aggregation rule. Regarding the majority treatment, Figure 3 demonstrates that hasty behavior

is not only a characteristic of the second (and pivotal) voter; the first voter appears to be quite

hasty as well. Both the first and second order statistic from the simulated individual treatment

stochastically dominate the first, and second voter from the majority treatment. Interestingly, the

distribution of second voters under majority is very similar to the distribution of first voters in the

individual simulated treatment.
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6.4 Hasty Majority Decisions and a Demand for Agency

Why are majority decisions so hasty, whereas unanimity decisions are not? One possible explanation

is a demand for agency. Prior work suggests that individuals have a taste for agency, that is, the

ability to influence outcomes.16 When operating as individuals, or as members of a group under

unanimity voting, this agency is guaranteed because, in both cases, a decision can only be made

after each participant has cast a vote. In contrast, under majority rule, the group decision is made

by two out of three group members, those who are first to cast their votes. Thus, agency would

elude a participant who is more demanding in terms of her threshold. At face value, a demand for

agency would then encourage participants to cast their votes earlier, to ensure that they have an

impact on outcomes.

The argument above is, however, incomplete. Under majority rule, a demand for agency ought

to only affect the speed with which the second vote is cast. After the first participant has cast

her vote, others may feel pressured to hasten their decisions in order to take part in the process

and attain agency. Figure 3, however, illustrates clearly that the posteriors at which first voters

make decisions are first order stochastically dominated by those corresponding to first voters under

unanimity, or in the simulated groups based on our individual treatments. In other words even first

voters also hasten their decisions under majority rule. How can we reconcile these observations

with the simple demand for agency narrative?

It is useful to understand whether the second voter’s hastiness is affected by how quickly the

first voter votes. In order to evaluate this relationship, we need to attempt to purge artificial

connections that are due, for instance, by voters being affected by features of the history of their

shared sample paths. Furthermore, as the posterior corresponding to the first vote increases, one

may expect the second vote to follow suit more quickly as information more strongly supports the

dominant alternative. In order to purge these spurious relationships, we compare how voters vote

under majority (and unanimity) with how voters vote in simulated groups. Any connection in

simulated groups must be due to the process because the “first” voter is fictitious.

Table 4 displays the results of a regression in which, within each treatment, within each group,

within each round, we calculate the difference between the posterior at which the second vote was

16See for instance Fehr et al. (2013), Bartling et al. (2014), and Pikulina and Tergiman (2020).
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cast, and the posterior at which the first vote was cast.

Recall that dM and dU are dummy variables equal to 1 if the data corresponds to our majority

and unanimity treatments, respectively. These variables allow for different intercepts across the

treatments. The variable p1 stands for the posterior associated with the first vote cast in the group.

The regressors p1×dM and p1×dU correspond to the interactions between p1 and the corresponding

treatment dummies, allowing for different slopes across treatments. As in previous regressions, Last

15 is a variable that equals 1 if the data comes from the last 15 rounds. The variables Last 15×dM

and Last 15×dU capture the different impacts that learning has on the gap between the first and

the second vote across treatments. The same goes for Slow×dM and Slow×dU—these capture

the different impact that a slow process has on the gap between the first and second vote across

treatments. To calculate the difference between the posteriors with which votes are cast, we rely on

choices across different individuals. Thus, we cluster errors on the process level. Although there is

a natural sequencing of votes in our majority and unanimity treatments, no such sequencing exists

for the individual treatment. We once more rely on simulating the first, second, and third voters

from the individual treatment based on the procedure described in Section 6.17

As can be seen from this table, there is no statistically significant difference between either

the intercepts or the slopes of the unanimity treatment and the simulated individual treatment.

However, dM and p1 × dM are both statistically significant at the 1% significance level, indicating

a different slope and intercept for the majority treatment. In our majority treatment, the second

voter places a lower “premium” on top of the posterior with which the first vote is cast. In other

words, second voters are hastier under majority than they are under unanimity, or in the simulated

groups based on the individual treatment.18

17Since p1 can take values between 0.5 and 1, before running the regression, we re-normalize all the values of p1 by
subtracting 0.5. Thus, the intercept corresponds to the additional accuracy required by the second voter when the
first voter casts a vote with a posterior of 0.5.

18In Section 11.3.2, we compare the difference between the posteriors of the third and second vote in the unanimity
treatment with that of the simulated individual treatment. There appears to be no statistically significant difference
between the intercepts, whereas the slope of the unanimity treatment appears different at the 10% significance level.

23



Table 4: Difference in Posterior:
Second vs First Voter

(p2 − p1)

Constant 0.225∗∗∗

(0.0126)

dM -0.147∗∗∗

(0.0337)

dU -0.0251

(0.0354)

p1 -0.712∗∗∗

(0.0484)

p1 × dM 0.154∗∗∗

(0.0511)

p1 × dU 0.0203

(0.0454)

Last 15 0.0226∗∗∗

(0.00638)

Last 15×dM -0.00996

(0.00661)

Last 15×dU 0.00733

(0.00741)

Slow -0.0463∗∗

(0.0174)

Slow×dM 0.00191

(0.0118)

Slow×dU 0.0115

(0.0109)

N 330960

Standard errors in parentheses

Process-level clustering

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

These observations are consistent with the implications of

a demand for agency by those who vote second in our major-

ity treatment. Interestingly, given this relation, the first voter

can benefit from artificially speeding up the process in order

to induce a stopping posterior that is more in line with her

preferences. Indeed, this may explain why we observe that the

distribution of second voters under majority rule is very similar

to the distribution of first voters in simulated groups. The first

voter may benefit from manipulating the second voter’s response

and induce her to stop the group process exactly where the first

voter would have chosen had she been by herself.

Certainly, other considerations could explain first voters’

hastiness in our majority treatment. For instance, diffusion of

responsibility, combined with a demand for agency, could induce

an attempt to vote first: one maintains a say in the outcome,

but does not conclusively determine it. Such preferences would

introduce a race component to participants’ strategic interac-

tion and could generate results consistent with those we observe.

Nonetheless, they would also suggest an advantage to choosing

early in our unanimity treatments, which we do not observe.

7 Static Information Collection

7.1 Group Level Distributions

In the dynamic treatments, our focus was on the posterior prob-

abilities associated with votes. In contrast, in the static treat-

ments, because participants choose the time window for information acquisition, our focus shifts to

the time chosen for information collection.

Figure 4 presents the cumulative distribution functions of chosen times across our static treat-

ments. Although in the dynamic case we saw that the distributions were naturally ordered by first
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order stochastic dominance, the ordering is less clear. In fact, the distributions of the chosen times

appear remarkably similar across the three treatments.

Figure 4: Static Treatment CDFs
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The similarity between the distributions across voting rules must be interpreted with caution.

The figures show that, in each treatment we observe a lot of heterogeneity in the times chosen

by different individuals and groups. Therefore, it must be that individuals behave differently in

unanimity from majority or when choosing by themselves. Indeed, absent any explicit “group

effect,” the mechanical effect presented by groups choosing by majority, selecting the median of

three suggested wait times, or unanimity, selecting the maximum of suggested times, would imply

differences in distributions. Formally, distributions corresponding to our majority or unanimity

treatments should correspond to those of the order statics of the distribution corresponding to our

individual treatment. Following the procedure described in Section 6, we simulate the majority

and unanimity decision based on our individual-treatment data. We superimpose these resulting

cumulative distributions in Figure 4.

Under unanimity, it is the “most patient” group member who governs the group’s decisions. It is

then perhaps unsurprising that the distribution of wait times derived from the simulated unanimity

substantially differs from that corresponding to individual decisions or from the distribution we

observe in our unanimity treatment. Indeed, the two-sided Kolmogorov-Smirnov test, presented

in Table 5, fails to reject the hypothesis that the distributions associated with the simulated and

observed unanimity decisions are different. This test also fails to reject the hypothesis that the

majority-simulated distribution differs from the observed majority distribution.
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Table 5: Static Treatment Two-Sided Kolmogorov-Smirnov Test

Majority Treatment Unanimity Treatment

Max Distance p-value Corrected Max Distance p-value Corrected

Observed above Simulated 0.2069 0.000 0.5278 0.000
Simulated above Observed 0.0063 0.963 0.0044 0.982
Combined K-S 0.2069 0.000 0.000 0.5278 0.000 0.000

Thus, in the static treatments, there seems to be a group effect that goes beyond the purely

mechanical one, under both the majority and unanimity voting rules. In particular, both types of

collective procedures lead to hastier decisions than those generated by our simulated groups.

The regressions reported in Table 6 echo some of the observations above and illustrate the impact

of experience in our static treatments. The dummy variable dM equals 1 if the data comes from

the static median treatment, and equals 0 otherwise. The dummy variable dU takes the value of 1

if the data comes from the static unanimity treatment, and the value of 0 otherwise. The dummy

variables Last 15 I, Last 15 M, and Last 15 U equal 1 if the data comes from the last 15 rounds

and from the individual, majority, or unanimity treatment, respectively. Each column represents

a separate regression, while standard errors are clustered at the individual-level.19 Versions with

no clustering, process level clustering, as well as additional specifications in which we control for

the elicited measures of benevolence and risk preferences, are presented in Section 11.3.3 in the

Appendix.

Table 6: Static Treatment Group Level Regression

Seconds Waited

All Rounds Last 15 Rounds

Constant 41.69∗∗∗ 42.92∗∗∗ 40.45∗∗∗

(2.309) (2.244) (2.716)
dM -5.436∗∗ -4.902∗ -5.970∗

(2.665) (2.488) (3.295)
dU -1.222 0.233 -2.676

(2.582) (2.475) (3.311)
Last 15 I -2.473

(1.861)
Last 15 M -3.542∗∗

(1.482)
Last 15 U -5.382∗∗∗

(2.001)

N 1860 1860 930

Standard errors in parentheses

Individual-level Clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

19In the majority and unanimity treatment, clustering is based on the pivotal voter.
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In these regressions we see no statistically significant difference between the time waited in the

individual and unanimity treatments.20 In contrast, on average, subjects in the majority treatment

chose to wait 5.47 seconds less than the individual treatment, a difference that is statistically signif-

icant at the 0.05% significance level. The first regression also make clear that all three treatments

yield excessive information collection. Recall from Section 3 that the optimal waiting time is 29.58

seconds. For lower values, the gain in precision outweighs the costs per period, whereas, for values

higher than 29.58, the gain in precision is lower than the flow costs participants pay. The deviation

from the theoretically-optimal level is quite substantial. In our individual treatment, participants

wait 41.69 seconds on average; in our majority treatment, they wait 36.25; and in our unanimity

treatment, they wait 39.11 seconds.

Regression results reported in the second column of Table 6 suggest that in all three treatments,

experience leads to a reduction in the average chosen time to wait. Since information collection

was excessive to begin with, this is a move toward the optimal choice. However, this difference is

not statistically significant for the individual treatment when we cluster at the individual level.21

The average time for the individual, majority, and unanimity treatments drops from 42.92, 38.02,

and 43.15, to 40.45, 34.48, and 37.77 respectively. Note that learning is more pronounced in group

settings, probably because subjects can observe others choosing lower values, and they decide to

experiment with lower values themselves.

Regression results in the third column of Table 6 utilize data only from the last 15 rounds.

As can be seen, the estimated parameter values do not change drastically. The gap between the

individual treatment and the majority treatment, as well as between the individual and unanimity

treatments, grows slightly. Yet, with individual-level clustering, this difference remains statistically

insignificant. In other words, although we see some evidence of learning, the extent of learning is

limited and, by round 15, participants seem to converge in their behavior.

20In Table 11 in the Appendix, where we present the same results with no clustering and with process level
clustering, dU appears statistically significant at the 0.05% or even at the 0.01% in some of the specifications.

21In Table 11 in the Appendix, where we present the same results with no clustering and with process level
clustering, Last 15 I appears statistically significant at the 0.05%.
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7.2 Individual Level Distributions

The static and dynamic treatments are similar in that group decisions are sealed by the pivotal

vote. There are several differences in how decisions are made, however. First, while in the dynamic

treatments participants may change their votes throughout the process (a point we return to below),

participants choose only once in the static treatments. Second, while in our dynamic majority

treatment we do not observe the choices of those who do not vote before a majority consensus is

reached, in the static counterpart, we record all cast votes.

In Figure 5 we present the distribution of the shortest, median, and longest chosen times for

the majority and unanimity static treatments. We also present the distribution of the analogous

distributions from simulated groups based on the procedure described in Section 6.

Figure 5: Static Treatment CDFs by Vote Order
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Figure 5 reveals a clear first order stochastic dominance relationship for the shortest, median,

and longest times chosen across our treatments. The distributions of all three times corresponding

to the unanimity treatment are dominated by those corresponding to the majority treatment, which

are dominated by those corresponding to the simulated groups based on the individual treatment.

In particular, behavior under both majority and unanimity differs from that in the individual

treatments. This echoes our conclusion that group effects are present and go beyond the pure

mechanical effects driven by heterogeneity in our sample.
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8 Performance

In this section, we compare the performance of individuals and groups in our treatments to shed

light on the impact of procedures and decision rules on ultimate outcomes, accounting for both

decision quality and information costs. We discuss two alternative ways to evaluate performance.

The most first criterion is the welfare of the committee that balances accuracy against the cost of

acquiring information. A second criterion is to only consider the accuracy of the decision, which,

in our setting, is captured by the posterior with which the committee stops information collection.

This is a useful criterion when evaluating the impact of information collection on a broader group

of individuals. For instance, juries are composed of a small set of individuals, but the accuracy

of verdicts is of interest to the justice system and society at large. Similarly, political committees

may encompass a handful of representatives who explore policies that ultimately affect the entire

population. We first discuss performance from the point of view of the latter criterion that we call

accuracy or “decision quality.”

In the theoretical benchmark, individuals and groups make the same choices regardless of the

voting rule, and the only distinction is between static and dynamic information collection. The

predicted accuracy is .81 in dynamic and .72 in static. However, as we have seen, through in our

discussion of aggregate behavior in Section 4.1, in static treatments, on average subjects choose

excessively long times in all our treatments, and in individual and majority dynamic treatments, on

average subjects terminate information collection too early. Therefore, the observed difference in

the quality of decisions between dynamic and static treatments is smaller than predicted. In fact,

under majority rule, static information collection leads to superior accuracy on average compared

to dynamic information collection. This suggests that, as long as information acquisition costs do

not play an important role in the design objective, simpler static procedures do not under perform

nearly as badly as the theory predicts.

As we now show, this conclusion changes when we evaluate performance according to the first

criterion, which incorporates information acquisition costs. However, this comparison is slightly

more complex, and we discuss alternative ways to measure performance, moving from raw measures

to more sophisticated approaches that attempt to purge some of the inherent noise.

In each round, participants can potentially receive up to 200 points and, for each minute they
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wait, they pay 40 points (where 100 points translate to $1). We re-normalize the potential payoff

for a correct guess to 1, the cost to 0.2, and divide the time waited in seconds by 60. Utilizing the

posterior and time when the pivotal vote was cast, we calculate the following performance measure:

λi,g = pi,g − 0.2ti,g,

where i represents a treatment, g represents a particular group in a particular round within the

treatment, and λi represents the computed performance. That is, we calculate the expected payoff

for each group and treatment given the posterior and time at which that group stopped information

collection.22 Table 7 reports regression results that link these performance measures with dummy

variables for each treatment. The benchmark is the individual static treatment.23 The first column

reports results for our entire data set, while the second restricts attention to the last 15 rounds in

our treatments.

Table 7: Performance Regression

Performance

All Data Last 15 Rounds

Individual D 0.0401∗∗∗ 0.0381∗∗∗

(0.00473) (0.00585)
Majority D 0.0347∗∗∗ 0.0373∗∗∗

(0.00569) (0.00667)
Unanimity D 0.0471∗∗∗ 0.0416∗∗∗

(0.00696) (0.00892)
Majority S 0.00196 0.00478

(0.00603) (0.00812)
Unanimity S 0.00508 0.00342

(0.00540) (0.00797)
Constant 0.615∗∗∗ 0.616∗∗∗

(0.00325) (0.00399)

N 3840 1920

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In line with theoretical predictions, all of our dynamic treatments generate significantly higher

performance than all of our static treatments. The average performance of the majority and

22Experimental payoffs, taking into account the realized states corresponding to each process, yield similar com-
parisons. We present the expected payoffs in order not to confound conclusions with the inherent randomness of
outcomes in our limited number of 30 rounds.

23That is, estimated coefficients represent the difference of the mean performance of other treatments from the
individual static treatment. The mean performance of the individual static treatment is captured by the Constant.
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unanimity static treatments is higher than the mean performance of the individual static treatment

and the average performances of the individual and unanimity dynamic treatment is higher than

the mean performance in the dynamic majority treatment. However, these differences are not

statistically significant. Learning does not seem to have important impacts on performance: results

from the last 15 rounds resemble those from the entire data set.

The performance measure assessed above necessarily inherits a certain element of randomness

imposed by the particular information processes participants face. Take, for example, our static

treatments. Ultimately, participants select the time at which information collection stops. The

precise posterior that time generates depends on the realized process. This inherent randomness

introduces noise in our assessments, which could render comparisons between treatments insignifi-

cant. When considering performance, one may then be interested in the expected welfare, accounting

for the expected decision accuracy implied by each choice of stopping time. Similarly, in our dy-

namic treatments, it is natural to consider the expected time induced by any choice of posterior and

assess performance accordingly. We now discuss how to use the theory to obtain measures that are

less subject to this noise.

For the static case, from the analysis in Section 3.1, we know that t∗ = 29.58 and that the

expected posterior given any t is E [p|t] = 1
2

(
erf
(√

µt
2

)
+ 1
)

. The expected performance under the

optimal stopping time is then:

λtheorystatic = E [p|t∗]− ct∗ =
1

2

(
erf

(√
µt∗

2

)
+ 1

)
− ct∗ = 0.623

For the dynamic case, from Section 3.2, we know that the optimal threshold is p∗ = 0.81. The

expected stopping time, given any fixed threshold p, is E[t|p] =
(2p−1) log

(
p

1−p

)
µ .24 The expected

performance when choosing the optimal posterior threshold is then:

λtheorydynamic = p∗ − cE[t|p∗] = p∗ − E[t|p∗] = p∗ − c
(2p∗ − 1) log

(
p∗

1−p∗
)

µ
= 0.680

24For simplicity, we effectively assume a stationary threshold here.
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These expected performance values offer upper bounds on expected performance.

Consider now an immediate decision, corresponding to a choice of posterior 0.5 in the dynamic

treatments, or a choice of 0 waiting time in the static treatments. Immediate decisions generate

the correct guess 50% of the time and come at no information costs. This benchmark constitutes

a plausible lower bound on performance and results in an expected payoff of λ = 0.5.25 We now

construct a new performance measure as follows:

λ̃i =
λi − λ

λTheoryi − λ
i ∈ {Static, Dynamic}

This new measure captures the relative performance of each treatment between the “worst” and

the theoretically best performance. A score of 0 would indicate that, on average, the treatment

performs no better than an immediate decision that incorporates no information. A score of 1

would indicate that, on average, the treatment exhibits optimal performance.

With this measure, we see significant differences between our various dynamic treatments and

our various static treatments. Relative performance in the dynamic unanimity treatment is statis-

tically higher than that observed in our individual and majority dynamic treatments (p < 0.05);

Relative performance in the static majority treatment is statistically higher than that observed in

our individual and unanimity static treatments (p < 0.05).26

25It is certainly possible to achieve lower performance. For example, an excessively long wait can yield negative
expected payoffs. However, we do not observe such behavior in the lab.

26Specifically, the assessed performance in our dynamic individual, majority, and unanimity treatments are 0.862,
0.832, and 0.901, respectively. The assessed performance in our static individual, majority, and unanimity treatments
are 0.935, 0.951, and 0.976, respectively. Nearly identical values are observed in the last 15 rounds.
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9 Additional Features of Individual Behavior

9.1 Individual Voting Order

Figure 6 describes the voting order of our subjects across all rounds.

Figure 6: Dynamic Treatments Voting Order
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The horizontal axis represents the number of rounds the participant is the first voter, whereas

the vertical axis represents the number of rounds the participant is the second voter. If a participant

was never the third voter, or in the majority case, a round never ended without them voting, then

they would lie on the gray line. The further away they are from the gray line, the higher the

number of rounds they were the third voter, or in the majority treatment, the higher the number

of times they did not get to vote. We observe a lot of heterogeneity in voting order, but there is

some degree of persistence in behavior.

For the individual treatment, of course there are no groups and hence no first, second or third

voters. However we present the distribution of vote orders by randomly grouping individuals who

voted in isolation. The “Individual Treatment” presents one such random grouping, thus the

number of observations is on the order of the number of observations in Majority and Unanimity

treatments. On the other hand the “Simulated Individual” represents these shares from 30,000

simulated groups.
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Figure 7 performs a similar exercise for our static treatments and we see similar patterns.

Figure 7: Static Treatments Voting Order
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9.2 Multiple Voting

The participants initial position is W , which stands for wait. Throughout the game they can choose

to move to A or B, and depending on the treatment, if a pivotal vote has not been cast yet, they can

move back to W , or jump fro A to B directly, or vice-versa, if they so choose. These options are of

course not available in the individual treatment. In the individual treatment once the participant

moves from W to A or B the game immediately ends. The interesting cases then are unanimity

and majority treatments.

Figure 8 represents the number of times a participant cast at least one, two, three, and so

on, votes. In the unanimity treatment, a decision can not be made without each participant

casting at least one vote, which is why the number of times participants cast at least one votes is

48× 30 = 1440.
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Figure 8: Voting Times by Treatment
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Figure 9 represents the share of times a participant who previously cast a vote on A or B, and

votes at least one more time, follows this vote with a vote on W . As can be seen, in the majority

treatment, there is a mass point on 0, implying that some participants never utilize W and thus

jump from A to B, or vice-versa, directly. In both the majority and unanimity treatments there is

a mass-point on 1, implying that these participants always follow a vote on A or B with a vote on

W .

Figure 9: W Utilization by Treatment
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10 Conclusions

This paper documents experimentally how individuals and groups collect information under vari-

ous institutional constraints governing both the timing of decisions and the procedures by which

opinions are aggregated. There are several important insights. Overall, our participants come re-

markably close to the theoretically optimal information-collection policy. However, groups deciding

via majority dynamically are far hastier than both individuals and groups using unanimity. Fur-

thermore, when individuals or groups collect information dynamically, they become more lenient

over time—they make less accurate decisions as time goes by. As theory suggests, dynamic informa-

tion collection generates greater utilitarian welfare than static information collection for deciding

bodies. Nonetheless, excessive information collection in static treatments yields more accurate

decisions in those settings than in dynamic ones.

Taken together, our study provides some guidance for the design of decision protocols. When

the deciding body impacts a large segment of the population, as is the case for juries, political

committees, etc., decision accuracies may be of utmost importance and static information collection

may be desirable. In other cases, or when information collection inherently takes place over time,

decisions made by individuals or by groups with more stringent voting rules may yield superior

outcomes.
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11 Appendix

11.1 Beyond Risk-Neutrality

11.1.1 Static Version

Let:

p(t) :=
1

2

(
erf

(√
µt

2

)
+ 1

)

Then the problem for the static case becomes:

max
t

p(t)u(x− ct) + (1− p(t))u(−ct)

Where x represents the reward, c represents the cost, t represents time the participant decides to

wait, and u(·) is the utility function of the agent. The first order condition leads to:

u(x− ct)− u(−ct)
p(t)u′(x− ct) + (1− p(t))u′(−ct)

p′(t) = c (1)

Where:

p′(t) =
µe−

1
4
(µt)

4
√
π
√
µt

Given that:

u(x− ct) = u(−ct) +

∫ x−ct

−ct
u′(s)ds

The above can be written as:

∫ x−ct
−ct u′(s)ds

p(t)u′(x− ct) + (1− p(t))u′(−ct)
p′(t) = c

Which reduces to x p′(t) = c in the risk neutral case. The part multiplying p′(t) is not always lower

or greater than one for any x, c, t. Thus, it is not clear whether risk averse agent chooses to wait

more or less than a risk neutral agent.

37



Example I That a risk averse agent does not necessarily wait more or less than a risk neutral

agent can be seen in the following example:

u(z) = γ
(
1− e−z

)
+ (1− γ)z

For γ = 0 we are back to the risk neutral case, and for values of γ > 0 the utility function has

curvature. We employ this utility function as it is well defined even for negative values. We then

have:

E [u(z)] =
∑
i

u(zi)pi

= p(t)
(
γ
(

1− e−(x−ct)
)

+ (1− γ)(x− ct)
)

+ (1− p(t))
(
γ
(

1− e−(−ct)
)

+ (1− γ)(−ct)
)

Plugging in p(t) which was defined earlier, the above expression becomes:

E [u(z)] =
1

2

(
erf

(√
µt

2

)(
γ (ex − 1) ect−x − γx+ x

)
+ 2c(γ − 1)t− γ (ex + 1) ect−x + 2γ − γx+ x

)

For any value of γ > 0 there is no closed form solution. Whereas, for γ = 0, the optimal solution

from part Section 3 holds. With x = 1, µ = 1.4, and c = 0.2, with no risk aversion γ = 0, optimal

waiting time will be t∗ = 0.49, corresponding to 29.6 seconds. On the other hand, if γ = 1, we

numerically find that the expected utility is maximized when t∗ = 0.64, corresponding to 38.4

seconds. Furthermore, for the given parameter values x, µ, and c, as γ increases from 0 to 1, the

optimal waiting time monotonically increases.

Consider now the same problem with reward x = 3, cost c = 0.7, and unchanged drift µ = 1.4.

Once more, from the closed form solution in the risk-neutral case, γ = 0, we find that the optimal

waiting time is t∗ = 0.38 while numerically we find that the optimal waiting time when γ = 1

reduces to 0.33. Furthermore, for the given parameter values, as γ increases from 0 to 1, the

optimal waiting time now monotonically decreases.
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Example II Consider yet another example with CRRA utility function. Let:

u(z) =
1

1− θ
z1−θ θ > 0

We put no further restrictions on θ. For values of z lower than 0, the above function will not be

well defined. In particular, the expected utility will be:

E [u(z)] = p(t)

(
1

1− θ
(x− ct)1−θ

)
+ (1− p(t))

(
1

1− θ
(−ct)1−θ

)

To avoid ending up with a negative value, we can add an additional payoff of y in both states, this

can be thought of as the show-up-fee in the experiment. As long as t ≤ y
c both states will have

non-negative payoffs. However, adding y is not without loss of generality. Shifting both states by

y changes the agents risk attitude. Nonetheless, we proceed with the analysis in this fashion. The

expected payoff is then:

E [u(z)] = p(t)

(
1

1− θ
(x+ y − ct)1−θ

)
+ (1− p(t))

(
1

1− θ
(y − ct)1−θ

)

The first order condition leads to:

1

4

(
−2c

(
erf

(√
µt

2

)
+ 1

)
(−ct+ x+ y)−θ − 2cerfc

(√
µt

2

)
(y − ct)−θ

)
+

1

4

(
+
µe−

1
4
(µt)(−ct+ x+ y)1−θ√
π(1− θ)

√
µt

+
µe−

1
4
(µt)(y − ct)1−θ√
π(θ − 1)

√
µt

)
= 0

If θ = 0, optimal t is once more in line with Section 3, and thus for x = 1, c = 0.2 and µ = 1.4 we

have t∗ = 0.49. For any value of θ 6= 0, there is no closed form solution for optimal t. Let y = 0.3,

allowing for t ∈ [0, 1.5] without introducing a negative payoff in any state. We numerically find

that the optimal waiting time with θ = 0.2 is t∗ = 0.51, while with θ = 0.8, thus, with more risk

aversion, the optimal waiting time is t∗ = 0.46. Hence, even with a CRRA utility function there

seems to be no monotonicity with respect to the effect that risk aversion has on the optimal waiting

time.

To summarize, for non risk-neutral agents, the new optimally condition is defined by equation

1. Since the part multiplying p′(t) for different parameter values may be higher or lower than one,
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it is not clear whether risk averse agents wait more or less than risk neutral agents. The particular

examples show that for risk averse agents both longer and shorter optimal choices are possible. To

build intuition of why this behavior occurs, note that to reduce uncertainty the agents have to wait

longer. However, waiting longer shifts both payoffs downward, both −ct and x − ct decrease as t

increases. A higher risk aversion might make it beneficial to decrease payoffs in both states for the

sake of more certainty. However, higher risk aversion, from the additional curvature, makes ending

up with the lower −ct state more costly, pushing towards the other side of the trade-off. Hence,

depending on the particular utility function and the parameter values, a more risk averse agent

would either find it optimal to decrease uncertainty, choose to wait more, or choose to wait less so

that the bad outcome is less painful.

11.1.2 Dynamic Version

Consider the individual dynamic case. Lets just assume that a threshold equilibrium is being

played, where the threshold is equal to p̃. This threshold then gives rise to a distribution of end

times, f(t|p̃) (for which only a Fourier series representation can be constructed). For any t̂ in which

the game ends, the agent then receives the following lottery:

p̃u(x− ct̂) + (1− p̃)u(−ct̂)

The agent would be choosing the optimal p̃ to maximize her expected utility:

max
p̃∈[0.5,1]

∫ ∞
0

(p̃u(x− cs) + (1− p̃)u(−cs)) f(s|p̃)ds

So then, by choosing a larger p̃ the agent minimizes the uncertainty in the lottery she receives,

however this increases the uncertainty regarding the ending time. It is not clear what a risk averse

agent would prefer, or that such a preference would be stable throughout different parameter values.
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11.2 Pulling the Trigger

Figure 10: Pulling the Trigger: Majority Treatments
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Figure 11: Pulling the Trigger: Unanimity Treatments
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11.3 Additional Analysis and Alternative Specifications

11.3.1 Dynamic Treatment Regressions

In this section we analyze alternative specifications of the dynamic treatment regression presented

in Table 3. In the first regression in Table 8, first column, continues to cluster standard errors on

the individual level while introducing two new variables as regressors, Tokens Sent and Tokens Not

Invested. As mentioned in Section 2, at the end of each session, participants completed two risk-

elicitation tasks as in Gneezy and Potters (1997). Namely, participants had 200 tokens to invest

in a safe or risky asset. Tokens that were not invested were kept in the safe asset. The variable

Tokens Not Invested which can have a value between 0 and 200, represents the amount participants

did not invest on the risky asset.27 Thus, roughly speaking, the higher this value is, the more risk

averse the participant seems. At the end of each session participants also played a dictator game,

in which they were given 200 tokens and decided how much to keep for themselves, and how much

to give to another participant with whom they have been randomly paired. The variable Tokens

Sent represents the amount of tokens the participant gave to the matched paired partner.28 Since

we elicit each measure twice, we run an instrumental variable regression, using the first elicitation

as an instrument for the second. Doing so accounts for the fact that these are noisy elicitations.

Table 8: Dynamic Treatment Alternative Specifications

Posterior

Individual Level Clustering No Clustering Process Level Level Clustering

All Rounds All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 0.744∗∗∗ 0.767∗∗∗ 0.755∗∗∗ 0.744∗∗∗ 0.767∗∗∗ 0.755∗∗∗ 0.744∗∗∗

(0.0371) (0.00293) (0.00411) (0.00993) (0.0119) (0.0135) (0.0123)
dM -0.0329∗∗ -0.0404∗∗∗ -0.0362∗∗∗ -0.0329∗∗∗ -0.0404∗∗∗ -0.0362∗∗∗ -0.0329∗∗∗

(0.0134) (0.00519) (0.00727) (0.00738) (0.00539) (0.00688) (0.00640)
dU 0.0453∗∗∗ 0.0508∗∗∗ 0.0444∗∗∗ 0.0453∗∗∗ 0.0508∗∗∗ 0.0444∗∗∗ 0.0453∗∗∗

(0.0141) (0.00519) (0.00727) (0.00750) (0.00469) (0.00468) (0.00432)
Last 15 I 0.0247∗∗∗ 0.0247∗∗∗ 0.0247∗∗∗ 0.0247∗∗∗ 0.0247∗∗∗

(0.00643) (0.00581) (0.00582) (0.00768) (0.00741)
Last 15 M 0.0162∗∗∗ 0.0162∗ 0.0162∗ 0.0162∗∗∗ 0.0162∗∗∗

(0.00614) (0.00847) (0.00849) (0.00467) (0.00450)
Last 15 U 0.0376∗∗∗ 0.0376∗∗∗ 0.0376∗∗∗ 0.0376∗∗∗ 0.0376∗∗∗

(0.00665) (0.00847) (0.00849) (0.00958) (0.00924)
Tokens Sent 0.000252 0.000252∗∗ 0.000252∗∗∗

(0.000212) (0.000106) (0.0000656)
Tokens Not Invested 0.0000434 0.0000434 0.0000434

(0.000307) (0.0000904) (0.0000463)

N 1980 1980 1980 1980 1980 1980 1980

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Neither Tokens Sent, nor Tokens Not Invested appear statistically significant. On the other

27In the majority and unanimity treatments, this variable represents the group average tokens not invested.
28In the majority and unanimity treatments, this variable represents the group average tokens sent.
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hand, the sign and magnitude of all other estimated parameters remains roughly unchanged.

The following three regressions/columns in Table 8 represents regressions akin to the ones found

in Table 3 with and without Tokens Sent and Tokens Not Invested. The difference here is that

standard errors have not been clustered. Whereas the last three regressions/columns in Table 8

represent the same analysis with standard errors clustered at the process level. As explained in

Section 2, we draw a total of 15 Wiener processes with a drift, each utilized twice. It is at this

process level that we cluster in the last four columns. The statistical significance with respect to the

initial parameters remains unchanged. Whereas Tokens Sent now appears statistically significant.

However, considering that about 60% of the participants send a value of 0 tokens, and more than

80% send less than 50 tokens, given the estimated parameter value, this variable does not seem

to have the potential to explain a substantial portion of the variation in the posterior. The same

argument can be made with regards to Tokens Not Invested, as that value can range from 0 to 200.

Table 9 presents regression results identical to the ones presented in Table 3, with process-level

clustering or no clustering. Notice that the fixed effects regression can not be presented with process

level clustering as the panels are not nested within clusters.

Table 9: Decreasing Thresholds Alternative Clustering

Posterior

Process Level Clustering No Clustering

OLS Regression Ordinary Regression Fixed Effects Regression

All Rounds Last 15 Rounds All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 0.785∗∗∗ 0.806∗∗∗ 0.785∗∗∗ 0.806∗∗∗ 0.777∗∗∗ 0.821∗∗∗

(0.00929) (0.00912) (0.00463) (0.00542) (0.00426) (0.00585)
dM -0.0303∗∗∗ -0.0372∗∗∗ -0.0303∗∗∗ -0.0372∗∗∗

(0.00973) (0.0109) (0.00819) (0.00958)
dU 0.0347∗∗∗ 0.0431∗∗∗ 0.0347∗∗∗ 0.0431∗∗∗

(0.00521) (0.00677) (0.00819) (0.00958)
Last 15 I 0.0247∗∗∗ 0.0247∗∗∗ 0.0299∗∗∗

(0.00768) (0.00546) (0.00521)
Last 15 M 0.0162∗∗∗ 0.0162∗∗ 0.0218∗∗∗

(0.00467) (0.00796) (0.00775)
Last 15 U 0.0376∗∗∗ 0.0376∗∗∗ 0.0431∗∗∗

(0.00958) (0.00796) (0.00794)
Slow I -0.0648∗∗∗ -0.0576∗∗∗ -0.0648∗∗∗ -0.0576∗∗∗

(0.0171) (0.0177) (0.00547) (0.00793)
Slow M -0.0774∗∗∗ -0.0736∗∗∗ -0.0774∗∗∗ -0.0736∗∗∗

(0.0160) (0.0170) (0.00798) (0.0116)
Slow U -0.0440∗ -0.0271 -0.0440∗∗∗ -0.0271∗∗

(0.0217) (0.0227) (0.00798) (0.0116)
Time I -0.000651∗∗∗ -0.00110∗∗∗

(0.000149) (0.000180)
Time M -0.00133∗∗∗ -0.00167∗∗∗

(0.000397) (0.000553)
Time U -0.000517∗∗∗ -0.000700∗∗∗

(0.000184) (0.000240)

N 1980 990 1980 990 1980 990

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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The only noticeable difference from Table 3 seems to be the weakening, or loss of the statistical

significance of Slow M under process level clustering.

11.3.2 Difference in Posterior: Third vs Second Voter

Table 10 presents a regression similar to the regression presented in Table 4. The dependent variable

here is the difference between the posterior of the third and second vote. Furthermore, since in the

majority treatment only two votes are required for a decision to be made, this regression utilizes

data only from the unanimity treatment as well as the simulated individual treatment.29

Table 10: Difference in Posterior: Third vs Second Voter

(p3 − p2)
Constant 0.186∗∗∗

(0.0204)
dU -0.0794

(0.0498)
p2 -0.548∗∗∗

(0.0492)
p2 × dU 0.100∗

(0.0561)
Last 15 0.0228∗∗∗

(0.00765)
Last 15×dU -0.00942

(0.00780)
Slow -0.00672

(0.0221)
Slow×dU -0.00266

(0.0126)

N 330518

Standard errors in parentheses

Process-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As can be seen, the there is no statistically significant difference of the intercept between the

simulated individual treatment and the unanimity treatment. Whereas, the p2 × dU is statistically

significant at the 10% significance level. Indicating that the unanimity treatment may have a

slightly flatter slope than the simulated individual treatment. However, since it’s intercept is also

lower, the difference between the two remains rather small.

29Since p1 can take values between 0.5 and 1, before running the regression we re-normalize all the values of p1 by
subtracting 0.5. Thus, the intercept corresponds to the additional posterior the second voter places when the first
voter cast a vote with a posterior of 0.5.
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11.3.3 Static Treatment Regressions

In this section we analyze alternative specifications of the static treatment group level regression

presented in Table 6. The first three regressions/columns, and the last three regressions/columns

of Table 11 have the same specification as the three regressions/columns in Table 6. The difference

is the level on which we cluster the standard errors. In Table 6 we presented individual level

clustered standard errors, where the individual was the pivotal vote caster. In Table 11, in the

first three regressions/columns we present the results with no clustering, whereas in the last three

regressions/columns we present the results with process level clustering. As explained in Section 2,

we draw a total of 15 Wiener processes with a drift, each utilized twice. It is at this process level

that we cluster in the last three columns. Compared to the individual level clustering, a in either

case presented here, almost all parameter values show an increase in statistical significance.

Table 11: Static Treatment Group Level Regression Alternative Clustering

Seconds Waited

No Clustering Process Level Clustering

All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 41.69∗∗∗ 42.92∗∗∗ 40.45∗∗∗ 41.69∗∗∗ 42.92∗∗∗ 40.45∗∗∗

(0.492) (0.691) (0.743) (0.576) (0.970) (0.430)
dM -5.436∗∗∗ -4.902∗∗∗ -5.970∗∗∗ -5.436∗∗∗ -4.902∗∗∗ -5.970∗∗∗

(0.843) (1.184) (1.273) (0.470) (0.730) (0.462)
dU -1.222 0.233 -2.676∗∗ -1.222∗∗ 0.233 -2.676∗∗∗

(0.861) (1.210) (1.300) (0.432) (0.601) (0.865)
Last 15 I -2.473∗∗ -2.473∗∗

(0.977) (0.962)
Last 15 M -3.542∗∗∗ -3.542∗∗∗

(1.360) (0.670)
Last 15 U -5.382∗∗∗ -5.382∗∗∗

(1.404) (1.060)

N 1860 1860 930 1860 1860 930

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The regressions presented in Table 12 introduces two new variables as regressors, Tokens Sent

and Tokens Not Invested. What these variables represent has been described in Section 11.3. Since

we elicit each measure twice, we run am instrumental variable regression, using the first elicitation

as an instrument for the second. Doing so accounts for the fact that these are noisy elicitations.
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Table 12: Static Treatment Group Level Regression with Benevolence and Risk Preferences

Seconds Waited

All Rounds Last 15 Rounds
No Clustering Individual Clustering Process Clustering No Clustering Individual Clustering Process Clustering

Constant 42.67∗∗∗ 42.67∗∗∗ 42.67∗∗∗ 43.95∗∗∗ 43.95∗∗∗ 43.95∗∗∗

(1.465) (7.633) (0.903) (2.098) (8.338) (0.846)
dM -4.555∗∗∗ -4.555 -4.555∗∗∗ -5.717∗∗∗ -5.717 -5.717∗∗∗

(1.286) (4.483) (0.790) (1.498) (5.090) (0.457)
dU 0.687 0.687 0.687 -1.927 -1.927 -1.927∗

(1.368) (4.910) (0.499) (1.641) (5.495) (1.017)
Last 15 I -2.473∗∗ -2.473 -2.473∗∗∗

(0.972) (1.851) (0.928)
Last 15 M -3.542∗∗∗ -3.542∗∗ -3.542∗∗∗

(1.353) (1.480) (0.646)
Last 15 U -5.382∗∗∗ -5.382∗∗∗ -5.382∗∗∗

(1.397) (1.966) (1.023)
Tokens Sent -0.0323 -0.0323 -0.0323 -0.106 -0.106 -0.106∗∗∗

(0.0476) (0.210) (0.0248) (0.0733) (0.239) (0.0314)
Tokens Not Invested 0.00424 0.00424 0.00424 -0.0256 -0.0256 -0.0256∗∗∗

(0.0123) (0.0659) (0.00518) (0.0188) (0.0706) (0.00760)

N 1860 1860 1860 930 930 930

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The first three regressions/columns presented in Table 12 utilize the whole data, whereas the last

three regressions/columns utilize the data from the last 15 rounds only. Not clustered, individual

level clustered, and process level clustered standard errors are presented in each case in separate

columns. As can be seen, Tokens Sent and Tokens Not Invested appear statistically insignificant

in all but the last regression/column, in which, data from the last 15 rounds has been utilized and

errors are clustered at the process level. The estimated parameter value for Tokens Sent is −0.106,

while for Tokens Not Invested the estimated parameter value is −0.0256. Thus, according to this

specification, more “benevolent” participants tend to choose lower waiting times, as do more “risk

averse” participants. Initially, intuitively, it might seem odd that more “risk averse” participants

choose lower waiting times. However, as we discuss in Section 11.1, it is not straightforward how

risk aversion impacts the optimal waiting time. In some specifications, more risk aversion leads

to shorter optimal waiting times, while in other specifications, or for alternative parameter values,

longer waiting times may be optimal, relative to risk-neutral agents.

11.4 Learning

11.4.1 Dynamic Treatment Learning

We begin our study of how decisions change throughout the experiment by examining whether there

is a trend in the posterior with which participants cast their individual votes. In Table 13 we regress
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the posterior with which individuals cast their individual vote on Round, which stands for the game

round, Slow, which identifies the process occurring during the round as a slow or a quick process,

and an interaction between Round and Slow, allowing for a different learning trend depending on

the process. 30 We run a individual level fixed effects regression, allowing for a different intercept

for each participant. By running the regression separately for each dynamic treatment we allow for

learning to affect these treatments with different magnitudes. To see whether there were enough

rounds for learning to converge, we run additional regressions separately for the first and the last

15 rounds. In addition, we control for Correctt−1 which is equal to 1 if the last period individual

decision, or group decision in the majority and unanimity treatment, was correct, and equal to

0 if the decision was incorrect. And finally we control for Differencet−1, which is equal to the

difference of the participants last period choice from the mean of other participant’s choices in the

last period. This can be calculated for the majority and unanimity cases only.

Table 13: Dynamic Treatment Learning

Posterior

Individual Treatment Majority Treatment Unanimity Treatment

All Rounds First 15 Last 15 All Rounds First 15 Last 15 All Rounds First 15 Last 15

Round 0.00154∗∗∗ 0.00511∗∗∗ -0.000277 0.00150∗∗∗ 0.00177 0.00271∗∗∗ 0.00192∗∗∗ 0.00267∗∗∗ 0.00360∗∗∗

(0.000555) (0.00114) (0.00118) (0.000420) (0.00150) (0.000742) (0.000276) (0.000788) (0.000764)
Round× Slow 0.000619 0.00223 0.00190 -0.000186 0.0110∗∗∗ 0.00184 0.000912∗ 0.00904∗∗∗ -0.00246∗

(0.000445) (0.00249) (0.00163) (0.000701) (0.00253) (0.00175) (0.000515) (0.00182) (0.00134)
Slow -0.0705∗∗∗ -0.0860∗∗∗ -0.101∗∗ -0.0712∗∗∗ -0.168∗∗∗ -0.119∗∗∗ -0.0782∗∗∗ -0.147∗∗∗ -0.000178

(0.00882) (0.0220) (0.0372) (0.0133) (0.0251) (0.0405) (0.00966) (0.0169) (0.0296)
Correctt−1 -0.0218∗∗∗ -0.0402∗∗∗ -0.00913 -0.0256∗∗∗ -0.0333∗∗∗ -0.0183∗ -0.0287∗∗∗ -0.0247∗∗∗ -0.0364∗∗∗

(0.00655) (0.00910) (0.00997) (0.00687) (0.00912) (0.00969) (0.00588) (0.00643) (0.00968)
Differencet−1 0.0367 0.0290 -0.0172 0.0417 0.0319 -0.0348

(0.0371) (0.0610) (0.0427) (0.0282) (0.0338) (0.0387)
Individual Level FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 986 476 510 728 339 389 1392 672 720

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

From the estimated coefficients on Correctt−1 throughout all the specification, we see that

on average participants cast their individual votes with a lower posterior in round t if their/their

group’s guess in round t − 1 was correct, compared to the posterior with which they typically

cast their votes when their/their group’s guess guess was wrong in round t − 1. In contrast, the

coefficients on Differencet−1 is never statistically significant, implying that participants are not

30Additionally what motivates us to allow for a different intercept and slope for quick and slow processes is to
avoid falsely identifying a trend where there is none. We showed earlier that participants tend to vote with a lower
posterior when faced with a slow process compared to a quick processes. If in earlier rounds there are more quick
processes, whereas in later rounds there are more slow processes, had we not allowed for a separate intercept and
slope, it would appear that the average posterior has gone down thought the rounds, or vice versa.
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greatly affected by the decisions of other participants in the previous round.

The main focus in this analysis is to compare the magnitude and statistical significance of

Round and Round × Slow in the first 15 and last 15 rounds. By doing so we aim to understand

whether participants had enough rounds to learn and adjust their strategies. In our view, the best

setting to evaluate this, is the individual treatment, as each choice made is the final implemented

decision, whereas in the other two treatments, the individual decision might not necessarily be the

pivotal one. However, we present the results for each treatment. The regressions in column two

and three reveal that both the magnitude and statistical significance of Round and Round× Slow

drops in the last 15 rounds compared to the first 15 rounds in the individual treatment. Similar

comparisons for the majority treatment, column five and six, and the unanimity treatment, column

eight and nine, reveal a decrease in statistical significance and magnitude. Even in the cases where

statistical significance persists, the magnitude is much lower in the last 15 round. For example,

in the majority treatment, the slope is highest in the first 15 rounds when the process is slow

Round + (Round × Slow) = 0.00177 + 0.0110 = 0.01277, which drops to 0.00455 in the last 15

rounds. In the unanimity treatment the most significant slope in the first 15 rounds is also for slow

processes Round + (Round × Slow) = 0.00267 + 0.00904 = 0.01171, which in the last 15 rounds

drops to 0.00114. The finding that the magnitude of learning tends to be much lower in the last

15 rounds compared to the first 15 rounds, as well as the decrease in statistical significance leads

us to believe that in our experiment there would not be much value to allowing subjects to have

additional rounds.

11.4.2 Static Treatment Learning

We now perform a similar analysis for the static treatment where we examine whether there is a

trend in the decisions participants make throughout the rounds. The specification of the regressions

presented in Table 14 is as described in Section 11.4.1. However the dependent variable, the

participant’s main choice, is now time waited (ALESSANDRO: IS THIS A GOOD NAME?), instead

of the posterior. Furthermore, in the static case participants cannot react differently to slow and

quick processes, because the process evolves only after decisions have been made. Thus, we do not

include Slow and Round× Slow in the regression below.

48



Table 14: Static Treatment Learning

Time Waited

Individual Treatment Majority Treatment Unanimity Treatment

All Rounds First 15 Last 15 All Rounds First 15 Last 15 All Rounds First 15 Last 15

Round -0.223∗ -0.758∗∗∗ -0.140 -0.260∗∗∗ -0.628∗∗∗ -0.0220 -0.444∗∗∗ -0.767∗∗∗ -0.241∗

(0.117) (0.232) (0.138) (0.0931) (0.211) (0.130) (0.0900) (0.190) (0.128)
Correctt−1 -1.964∗ -2.228∗ -0.0829 -1.458∗∗ -1.856 -0.747 0.0774 -0.574 0.619

(1.020) (1.093) (1.437) (0.623) (1.369) (0.716) (0.813) (0.901) (0.930)
Differencet−1 0.384∗∗ 0.381∗∗ 0.0656∗ 0.140∗∗∗ 0.0669 0.0685

(0.155) (0.165) (0.0366) (0.0456) (0.0596) (0.0562)
Individual Level FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 899 434 465 1392 672 720 1305 630 675

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The estimated coefficients on Correctt−1 and Differencet−1 are typically insignificant, imply-

ing that participants do not greatly react to whether or not the last period decision was correct, or

to the difference between their last period decision and other group member’s last period decision.

Once more, the magnitude and the statistical significance of Round seems to be greatly reduced

in the last 15 rounds compared to the initial 15 rounds. This leads us to believe that participants

had sufficient rounds to learn and adjust their decisions.

11.5 Alternative Performance Measures

To compute the performance measure in Section 8 we utilized the posterior p and time t when the

group decision was made. In this section we present two alternative performance measures. To

construct the firs new performance measure we will utilize the actual realization, that is, whether

or not the group guessed correctly, instead of the posterior p, which represents the probability with

which the group would have guessed correctly. Thus, we compute:

λrealizedi,g = ci,g − 0.2ti,g

Where ci,g ∈ {0, 1} represents whether or not in a particular round, a particular group g in treat-

ment i guessed correctly. This performance measure is influenced by “luck” much more than the

performance measure presented in Section 8. For example, a group which cast the pivotal vote

with a posterior of 0.90 within say 30 seconds, would have ended up scoring 0.90− 0.2 · 0.50 = 0.80

under the previous measure, whereas with the new measure, if by chance the group’s guess turned
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out to be incorrect, they would be assigned a score of 0− 0.2 · 0.5 = −0.10. While the influence of

luck is smaller in the previous performance measure, it still has an impact. For example, consider

a group in the static treatment that decides to wait for 30 seconds. The expected posterior for

this group is E [p|t] = 1
2

(
erf
(√

µt
2

)
+ 1
)

= 1
2

(
erf
(√

1.4·0.5
2

)
+ 1
)

= 0.72. While, by chance, for this

group the resulting posterior might turn out to be 0.55 or perhaps the group got lucky and the

resulting posterior turned out to be 0.95. Thus, the performance measure calculated in Section 8

is influenced not only by the actions of the group, but by random chance as well.

Motivated by these observations we construct a third and final performance measure. To com-

pute this performance measure, for the static treatment, realizing that the choice variable is simply

the time the group waits, instead of utilizing the realized posterior value, we utilize the expected

posterior value. Thus, for the static treatment we compute the new performance measure as follows:

λexpectedi,g = E [p|ti,g]− 0.2ti,g

Similarly for the dynamic treatment, at least in theory, participants choose when to cast their votes

based on the posterior they observe. If a participant decides to cast their vote with a posterior

of 0.80, sometimes they might get lucky and achieve this posterior within a few seconds, whereas,

in other cases they might have to wait a rather long time before observing their desired posterior

level. To reduce the impact that luck may have on these performance measures, for the dynamic

treatment, for the new measure we will utilize the expected time given a posterior, rather than the

actual time.

λexpectedi,g = pi,g − E [t|pig]

Table 15 presented below, is similar to Table 7, however, it presents the estimated parameter values

by utilizing the two new performance measures.
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Table 15: Alternative Performance Regression

Performance

All Rounds Last 15 Rounds

λrealized λexpected λrealized λexpected

Individual D 0.0499∗∗∗ 0.0428∗∗∗ 0.0618∗∗∗ 0.0426∗∗∗

(0.0131) (0.00362) (0.0182) (0.00419)
Majority D 0.0423∗ 0.0390∗∗∗ 0.0415 0.0421∗∗∗

(0.0225) (0.00347) (0.0293) (0.00363)
Unanimity D 0.0386∗∗ 0.0514∗∗∗ 0.0730∗∗∗ 0.0503∗∗∗

(0.0184) (0.00314) (0.0251) (0.00371)
Majority S 0.000513 0.00638∗∗ 0.0161 0.00470∗

(0.0205) (0.00248) (0.0299) (0.00283)
Unanimity S -0.0171 0.00506∗∗ -0.000399 0.00435

(0.0229) (0.00243) (0.0282) (0.00280)
Constant 0.591∗∗∗ 0.609∗∗∗ 0.586∗∗∗ 0.609∗∗∗

(0.0103) (0.00213) (0.0144) (0.00221)

N 3840 3840 1920 1920

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Once more, as in Table 7, the dynamic treatments seem to outperform the static treatments.

However, the significance levels are somewhat lower with the λrealized performance measure. This

is, of course not surprising, as as was stated above, this performance measure is impacted by luck

more than any other performance measure, and as such, it will be much noisier than the other two.

References

Ambuehl, S. and Li, S. (2018). Belief updating and the demand for information. Games and

Economic Behavior, 109:21–39.

Baldassi, C., Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and Pirazzini, M. (2020). A

behavioral characterization of the drift diffusion model and its multialternative extension for

choice under time pressure. Management Science.

Bartling, B., Fehr, E., and Herz, H. (2014). The intrinsic value of decision rights. Econometrica,

82(6):2005–2039.

Bhattacharya, S., Duffy, J., and Kim, S. (2013). Information acquisition and voting mechanisms:

Theory and evidence. mimeo.

51



Brown, M., Flinn, C. J., and Schotter, A. (2011). Real-time search in the laboratory and the

market. American Economic Review, 101(2):948–74.

Caplin, A., Dean, M., and Martin, D. (2011). Search and satisficing. American Economic Review,

101(7):2899–2922.

Chan, J., Lizzeri, A., Suen, W., and Yariv, L. (2018). Deliberating collective decisions. Review of

Economic Studies, 85(2):929–963.

Chapman, J., Snowberg, E., Wang, S., and Camerer, C. (2018). Loss attitudes in the us population:

Evidence from dynamically optimized sequential experimentation (dose). mimeo.

Chen, D. L., Schonger, M., and Wickens, C. (2016). otree—an open-source platform for laboratory,

online, and field experiments. Journal of Behavioral and Experimental Finance, 9:88–97.

Dominitz, J. and Manski, C. F. (2017). More data or better data? a statistical decision problem.

The Review of Economic Studies, 84(4):1583–1605.

Dvoretzky, A., Kiefer, J., Wolfowitz, J., et al. (1953). Sequential decision problems for processes

with continuous time parameter. testing hypotheses. The Annals of Mathematical Statistics,

24(2):254–264.

Eil, D. and Rao, J. M. (2011). The good news-bad news effect: Asymmetric processing of objective

information about yourself. American Economic Journal: Microeconomics, 3(2):114–38.

El-Gamal, M. A. and Palfrey, T. R. (1996). Economical experiments: Bayesian efficient experimen-

tal design. International Journal of Game Theory, 25(4):495–517.

Elbittar, A., Gomberg, A., Martinelli, C., and Palfrey, T. R. (2016). Ignorance and bias in collective

decisions. Journal of Economic Behavior & Organization.

Fehr, E., Herz, H., and Wilkening, T. (2013). The lure of authority: Motivation and incentive

effects of power. American Economic Review, 103(4):1325–59.

Fischer, P., Jonas, E., Frey, D., and Schulz-Hardt, S. (2005). Selective exposure to information:

The impact of information limits. European Journal of Social Psychology, 35(4):469–492.

52



Fudenberg, D., Strack, P., and Strzalecki, T. (2018). Speed, accuracy, and the optimal timing of

choices. American Economic Review, 108(12):3651–3684.

Gabaix, X., Laibson, D., Moloche, G., and Weinberg, S. (2006). Costly information acquisition:

Experimental analysis of a boundedly rational model. American Economic Review, 96(4):1043–

1068.

Gerardi, D. and Yariv, L. (2007). Deliberative voting. Journal of Economic Theory, 134(1):317–338.

Gerardi, D. and Yariv, L. (2008). Information acquisition in committees. Games and Economic

Behavior, 62(2):436–459.

Gillen, B., Snowberg, E., and Yariv, L. (2019). Experimenting with measurement error: Techniques

with applications to the caltech cohort study. Journal of Political Economy, 127(4):1826–1863.

Gneezy, U. and Potters, J. (1997). An experiment on risk taking and evaluation periods. Quarterly

Journal of Economics, 112(2):631–645.

Greene, W. H. (2018). Econometric Analysis, 8th Edition. Pearson/Prentice Hall.

Gretschko, V. and Rajko, A. (2015). Excess information acquisition in auctions. Experimental

Economics, 18(3):335–355.

Henry, E. and Ottaviani, M. (2019). Research and the approval process: The organization of

persuasion. American Economic Review, 109(3):911–55.

Hoffman, M. (2016). How is information valued? evidence from framed field experiments. The

Economic Journal, 126(595):1884–1911.

Imai, T. and Camerer, C. F. (2018). Estimating time preferences from budget set choices using

optimal adaptive design. mimeo.

Luce, R. D. et al. (1986). Response times: Their role in inferring elementary mental organization.

Oxford University Press on Demand.

Martinelli, C. (2006). Would rational voters acquire costly information? Journal of Economic

Theory, 129(1):225–251.

53



McClellan, A. (2017). Experimentation and approval mechanisms. Unpublished working paper.

Neyman, J. and Pearson, E. S. (1933). Ix. on the problem of the most efficient tests of statistical

hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character, 231(694-706):289–337.

Persico, N. (2004). Committee design with endogenous information. Review of Economic Studies,

71(1):165–191.

Pikulina, E. S. and Tergiman, C. (2020). Preferences for power. Journal of Public Economics,

185:104173.

Ratcliff, R. and McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice

decision tasks. Neural Computation, 20(4):873–922.

Ratcliff, R. and Smith, P. L. (2004). A comparison of sequential sampling models for two-choice

reaction time. Psychological review, 111(2):333.

Stephan, F. F. (1948). History of the uses of modern sampling procedures. Journal of the American

Statistical Association, 43(241):12–39.

Strulovici, B. (2010). Learning while voting: Determinants of collective experimentation. Econo-

metrica, 78(3):933–971.

Swensson, R. G. (1972). The elusive tradeoff: Speed vs accuracy in visual discrimination tasks.

Perception & Psychophysics, 12(1):16–32.

Szkup, M. and Trevino, I. (2015). Costly information acquisition in a speculative attack: Theory

and experiments. mimeo.

Wald, A. (1945). Sequential method of sampling for deciding between two courses of action. Journal

of the American Statistical Association, 40(231):277–306.

Wald, A. (1947). Sequential Analysis. New York.

54


	Introduction
	Overview
	Related Literature

	Experimental Design
	Theoretical Predictions
	Static Treatments
	Sequential Treatments

	Approach to Data Analysis
	Broad Patterns of Behavior
	Sequential Information Collection
	The Impacts of Decision Procedures
	Declining Thresholds
	Voting First, Second, and Third
	Hasty Majority Decisions and a Demand for Agency

	Static Information Collection
	Group Level Distributions
	Individual Level Distributions

	Performance
	Additional Features of Individual Behavior
	Individual Voting Order
	Multiple Voting

	Conclusions
	Appendix
	Beyond Risk-Neutrality
	Static Version
	Dynamic Version

	Pulling the Trigger
	Additional Analysis and Alternative Specifications
	Dynamic Treatment Regressions
	Difference in Posterior: Third vs Second Voter
	Static Treatment Regressions

	Learning
	Dynamic Treatment Learning
	Static Treatment Learning

	Alternative Performance Measures


