
Impulse response analysis for structural dynamic models with
nonlinear regressors∗

Sílvia Gonçalves†, Ana María Herrera‡, Lutz Kilian§and Elena Pesavento¶

June 17, 2021

Abstract

We study the construction of nonlinear impulse responses in linear structural dynamic models
that include nonlinearly transformed regressors. We derive the closed-form solution for the popu-
lation impulse responses to a given shock and propose a control function approach to estimating
these responses without taking a stand on how the remainder of the model is identified. Our plug-in
estimator dispenses with the need for simulations and, unlike conventional local projection (LP)
estimators, is consistent. A modified LP estimator is shown to be consistent in special cases, but
less accurate in finite samples than the plug-in estimator.

JEL codes : C22, C32, C51
KeyWords: structural model, censored regressor, nonlinear transformation, nonlinear responses,

partial identification, control function, block recursive model, Monte Carlo integration, local pro-
jection.

∗Acknowledgments: The views expressed in this paper are our own and should not be interpreted as reflecting the
views of the Federal Reserve Bank of Dallas or any other member of the Federal Reserve System. We thank Jörg Breitung,
Atsushi Inoue, Helmut Lütkepohl, Mikkel Plagborg-Møller, the editor, the associate editor, and three anonymous referees
for helpful comments.
†McGill University, Department of Economics, 855 Sherbrooke St. W., Montréal, Québec, H3A 2T7, Canada. E-mail:

silvia.goncalves@mcgill.ca.
‡University of Kentucky, Department of Economics, 550 South Limestone, Lexington, KY 40506-0034, USA. E-mail:

amherrera@uky.edu.
§Federal Reserve Bank of Dallas, Research Department, 2200 N. Pearl St., Dallas, TX 75201, USA. E-mail: lkil-

ian2019@gmail.com.
¶Emory University, Economics Department, 1602 Fishburne Dr. Atlanta, GA 30322, USA. E-mail: epe-

save@emory.edu.



1 Introduction

We study the construction of nonlinear impulse responses generated by linear models that include

regressors that are censored or otherwise nonlinearly transformed. Such models have played an impor-

tant role in recent years in capturing asymmetries, thresholds and other nonlinearities in the responses

of macroeconomic variables to exogenous shocks.1

For any scalar variable xt, let f(xt) denote a nonlinear transformation of xt. For example, we may

define f(xt) = max(0, xt), in which case f (xt) corresponds to a censored version of xt. Our analysis

covers a range of censored regressors that have been employed in the empirical literature as well as

powers of regressors. We follow a large existing literature in postulating that (xt y
′
t)
′ is a multivariate

structural dynamic process such that, in general, xt may linearly depend on its own lags and lags of

yt, whereas yt depends on current and lagged values of xt and f(xt) as well as its own lags. Thus,

xt is assumed to be predetermined with respect to yt. In many applications, xt reduces to a directly

observed exogenous shock. For example, xt may be an exogenous policy shock and yt may consist of

macroeconomic outcome variables such as inflation and output growth. We are interested in estimating

the response of the elements of yt+h, h = 1, ...,H, to a one-time shock to the innovation in xt of size

δ. This response is nonlinear in general, even though the model is linear in the parameters.

Traditionally, such structural models have been estimated using equation-by-equation ordinary

least squares (OLS) under the assumption that the model is fully recursive. The impulse response

functions have been evaluated numerically by Monte Carlo integration (MCI) (Kilian and Lūtkepohl

2017). There are two drawbacks of this approach. One is that the construction of impulse response

estimators by MCI is computationally demanding. The other is that the assumption of a fully recur-

sive structural model is rarely economically plausible, except in the bivariate setting. Without this

assumption it is not possible to directly estimate the structural model by OLS, as required for the

implementation of the MCI approach.

In this paper, we show how to estimate the population responses under the weaker assumption of a

block recursive data generating process (DGP) using a control function approach (see e.g. Wooldridge

2010). This approach takes advantage of the fact that the identification of the shock to xt is typically

uncontroversial in applied work, while allowing us to remain agnostic about how the remainder of the

model is identified. We propose a simple plug-in estimator that dispenses with the need for simulations.

We formally prove the consistency of this plug-in estimator. The proof covers situations in which xt is a

directly observed i.i.d. shock, an exogenous serially correlated variable, or a predetermined endogenous

1Examples include Alsalman and Herrera (2015), Barnichon, Matthes and Ziegenbein (2020), Hamilton (2011), Her-
rera, Lagalo and Wada (2011, 2015), Herrera and Karaki (2015), Hussain and Malik (2016), Hwa, Kapinos and Ramirez
(2018), Kilian and Vigfusson (2011a,b, 2017), Tenreyro and Thwaites (2016) and Venditti (2013).
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variable.

In some cases, the nonlinear responses of interest in this paper have instead been estimated using a

variation of the linear local projection (LP) estimator of Jordà (2005, 2009), as popularized by Ramey

(2016) (e.g., Tenreyro and Thwaites 2016, Hwa, Kapinos and Ramirez 2018, Barnichon, Matthes and

Ziegenbein 2020). The asymptotic validity of the LP estimator under a wide range of conditions

has been discussed in Plagborg-Møller and Wolf (2021), but there has been no work justifying the

use of LP estimators for models involving nonlinearly transformed regressors. We find that, unlike

in vector autoregressive (VAR) models, the asymptotic equivalence between estimators based on the

structural model and LP estimators breaks down in the presence of nonlinearly transformed regressors.

Conventional linear LP estimators of the impulse response function are inconsistent in our setting, even

when the structural model is recursive, because they ignore the nonlinearity of the responses.

We propose a modified LP estimator that remains asymptotically valid when xt is a directly

observed i.i.d. shock. This modified LP estimator, however, is not valid under the weaker assumptions

that xt is a serially correlated exogenous process or that xt is only predetermined with respect to yt.

Simulation evidence shows that the modified LP estimator is less accurate in finite samples than the

plug-in and MCI estimators. It tends to have much higher variance and hence higher mean-squared

error (MSE). The relative performance of the modified LP estimator and the plug-in estimator tends

to be the same when the regression model is dynamically misspecified.

In fully recursive models, there is little to choose between the MCI estimator and the plug-in

estimator in terms of accuracy, but the plug-in estimator typically reduces the computational cost by at

least 98%, which is a significant improvement when conducting bootstrap inference. For example, when

estimating the variance of the impulse response estimator by bootstrap, as required for asymptotic tests

of the symmetry of response functions, even in bivariate models with only one lag, the computation

time drops from one hour to under one minute. When allowing for more lags, the speed gains become

even more pronounced. More importantly, whereas the MCI approach is feasible only in the special

case of fully recursive models, the more computationally effi cient plug-in estimator can be used without

taking a stand on the identification of the remaining shocks.

Consistent with the many empirical applications, our analysis mainly focuses on the estimation

of the unconditional impulse response function. When xt is a directly observed i.i.d. shock, the

unconditional response function coincides with the response function conditional on the history of the

data. As we illustrate by example, more generally, analytical solutions for the conditional response

function require additional assumptions about the distribution of the error term of xt.

The remainder of the paper is organized as follows. In Section 2, we introduce the model and we
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discuss the definition of the unconditional and conditional impulse response functions in structural

dynamic models with nonlinearly transformed regressors. We also review examples from the empirical

literature of how researchers have transformed regressors and why. In Section 3, we derive an exact

solution for the unconditional population response function in the general block recursive model.

Section 4 introduces a plug-in estimator for this response function and establishes its consistency.

Section 5 examines the ability of conventional LP estimators to recover the responses of interest. We

also propose a modified LP estimator and establish its consistency in special cases of the general

model. In Section 6, we use simulations to assess the relative accuracy of the LP estimator, the MCI

estimator and the plug-in estimator. We also provide evidence on the computational advantages of the

plug-in estimator and assess the consequences of dynamic model misspecification. Section 7 contains

an empirical illustration. The concluding remarks are in Section 8. Details of the proofs can be found

in the appendix.

2 Framework

2.1 The model

Let zt ≡ (xt, y
′
t)
′ denote an n × 1 vector of strictly stationary time series, where yt is n1 × 1 with

n1 = n− 1. A widely used structural DGP that allows for the inclusion of nonlinear regressors is

B0zt = b+B (L) zt−1 + C (L) f (xt) + εt, (1)

where b = (b1, b
′
2)′ and εt = (ε1t, ε

′
2t)
′ are partitioned accordingly. We let

B (L) = B1 +B2L+ . . .+BpL
p−1 and C (L) = C0 + C1L+ . . .+ CpL

p,

where we assume that the order of B (L) and C (L) is p−1 and p, respectively.2 For convenience, we col-

lect all structural parameters in the vector θ =
(
b′, vec (B0)′ , vec (B1)′ , . . . , vec (Bp)

′ , vec (C0)′ , . . . , vec (Cp)
′)′.

We partition B (L) and C (L) as

B (L) =

(
B11 (L) B12 (L)
B21 (L) B22 (L)

)
and C (L) =

(
C11 (L)
C21 (L)

)
,

respectively, where Aij denotes the (i, j) block of any partitioned matrix A.

We postulate that

B0
n×n

=

(
1 0

−B0,21 B0,22

)
, (2)

2This is without loss of generality because we can set p equal to the maximum lag order and zero out the elements
that exceed the true lag order.
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where B0,21 is n1× 1 and B0,22 is n1× n1. We assume that B0,22 is nonsingular such that its diagonal

elements are equal to 1, which is a standard normalization. Under these assumptions, xt is predeter-

mined with respect to yt, which is a reasonable assumption in typical applications (e.g., Romer and

Romer 2004, 2010; Kilian and Vega 2011). Note that we do not constrain B0,22 to be lower triangular,

allowing B0 to be block recursive.

We also assume that the first element of C (L) is zero. Under this assumption, the first equation

does not include the nonlinear function f (xt) as a regressor. Realizations of xt may depend on lagged

values of f (xt) when B12 (L) 6= 0. Note that, in line with the existing literature, we also rule out

the possibility that xt depends on nonlinear functions of the remaining variables in the system. With

these restrictions, we can rewrite (1) as
xt = b1 +B11 (L)xt−1 +B12 (L) yt−1 + ε1t

B0,22yt = b2 +B0,21xt +B21 (L)xt−1 +B22 (L) yt−1 + C21 (L) f (xt) + ε2t.
(3)

When there are no nonlinearities, C21 (L) = 0 , in which case (3) is a block recursive linear VAR

model for zt = (xt, y′t)
′ . When C21 (L) 6= 0, yt depends on f (xt) and lags of f (xt). We will discuss

two economically interesting examples of f(·) at the end of this section.

Furthermore, we impose the following set of assumptions.

Assumption 1. {ε1t} and {ε2t} are mutually independent time series such that

εt ≡
(
ε1t

ε2t

)
∼ i.i.d.

((
0
0

)
,

(
σ2

1 0
0 Σ22

))
, where Σ22 is diagonal.

Assumption 2. The roots of the equation det (D (L)) = 0 are outside the unit circle, where D (L) ≡

In −B−1
0 B (L)L, and the process zt is strictly stationary and ergodic.

Assumption 3. suptE |xt| <∞ and suptE |f (xt)| <∞.

Under Assumption 1, the structural errors ε1t and ε2t are i.i.d. over time and follow mutually

independent processes. Assumption 2 contains two parts. First, we assume that the roots of the

determinantal equation associated with the matrix polynomial D (L) = In−B−1
0 B (L)L are all outside

the unit circle. This assumption ensures the absolute summability of the inverse filter Ψ (L) ≡ D (L)−1,

which will be used below to obtain the impulse response function. Although this condition is suffi cient

for the stationarity and ergodicity of zt when C21 (L) = 0, it is not when C21 (L) 6= 0. We therefore

impose stationarity and ergodicity of zt as a high level assumption. For the bivariate case, when xt

is exogenous (i.e. B12 (L) = 0), we can show that yt in model (3) is a special case of the nonlinear

bivariate ARX model studied by Masry and Tjøstheim (1997), where the only additive nonlinear
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term is itself an additive function of current and lagged values of f (xt). In this case, more primitive

conditions on εt and f(xt) can be provided for the stationarity and ergodicity of zt (see Section 5).

When both C21 (L) 6= 0 and B12 (L) 6= 0, providing more primitive conditions under which stationarity

and ergodicity hold is more challenging. This question is outside the scope of this paper.

Model (3) encompasses several special cases that feature prominently in the empirical literature.

For example, xt may be a directly observable shock such that xt = ε1t, as postulated in a number of

recent studies on fiscal policy and monetary policy shocks (e.g., Romer and Romer 2004, 2010, Ramey

2011, 2016, Tenreyro and Thwaites 2016, Ramey and Zubairy 2018), OPEC oil supply shocks (e.g.,

Hamilton 2003, Kilian 2008, Bastianin and Manera 2018), technology shocks (e.g., Basu, Fernald and

Kimball 2006), news shocks (e.g., Ramey 2011, Kilian and Vega 2011, Kilian and Hicks 2013), financial

market shocks (e.g,. Barnichon, Matthes and Ziegenbein 2020) and shocks to market expectations

(e.g., Kuttner 2001, Cochrane and Piazzesi 2002, Piazzesi and Swanson 2008; Baumeister and Kilian

2016). Alternatively, we may allow for xt to be an exogenous serially correlated variable. This

specification accommodates the concern raised in Alloza, Gonzalo and Sanz (2020) that some measures

of exogenous shocks used in the literature actually are serially correlated.3 Finally, we allow for xt

to be endogenously determined with respect to yt, but predetermined, as in Kilian and Vigfusson’s

(2011a,b) analysis of the relationship between the real price of oil and U.S. real GDP growth, for

example.

Our goal is to estimate the impulse response function of selected elements of yt+h at horizon

h = 0, 1, ...,H to a shock of magnitude δ in ε1t. For notational convenience, we suppress the subscript

denoting this element. Note that even though model (3) is linear in the parameters, it is nonlinear

in the variables. Hence, the impulse responses are inherently nonlinear. We discuss the identification

and estimation of this response function in Section 4.

2.2 Nonlinear impulse responses

Nonlinear impulse response functions can be defined in many different ways (e.g., Gallant, Rossi and

Tauchen 1993, Koop, Pesaran and Potter 1996, Potter 2000, Gourieroux and Jasiak 2005, Kilian and

Vigfusson 2011a). A natural starting point is to compare two sample paths for the variable of interest,

one where ε1t is subject to a shock at time t and another one where no such shock is present. The

difference between the values of the outcome variable over time under these two scenarios can be

interpreted as a measure of the impulse response function.

3This does not mean that all narrative shock measures are serially correlated. For example, the Romer and Romer
(2004) monetary policy shock is arguably not serially correlated, and the Romer and Romer (2010) tax shock series is
clearly serially uncorrelated. Likewise, the Hussain and Malik (2016) tax shock measure and the Kilian (2008) OPEC
oil supply shock measure are serially uncorrelated as are VAR-based shock measures (e.g., Barnichon et al. 2020).
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More specifically, we trace out the effect of a shock in ε1t at time t on the future values of the

outcome variables yt+h, for h = 0, 1, . . . ,H by comparing two sample paths for yt+h. One is the

baseline path, which we denote by {yt+h}. This path is implied by the sequence of structural shocks

ε∞ = {. . . , ε1t−1, ε1t, ε1t+1, . . . , ε2t−1, ε2t, ε2t+1, . . . , } .

The other sample path is {yt+h (δ)}, which is the path implied by the sequence of shocks

ε∞ (δ) = {. . . , ε1t−1, ε1t + δ, ε1t+1, . . . , ε2t−1, ε2t, ε2t+1, . . . , } .

The only difference between ε∞ and ε∞ (δ) occurs at time t, when ε1t (δ) = ε1t + δ. All other shocks

are the same. Thus, this thought experiment involves perturbing by δ the structural innovation ε1t

that is driving the variable xt in model (1). This shock translates into a contemporaneous change in

xt of the same magnitude, but a one-time shock to ε1t may imply a persistent change in xt over time.

Our definition of the nonlinear impulse response function is as follows.

Definition 1 (Unconditional IRF) The unconditional nonlinear impulse response function of yt+h

to a shock of size δ in ε1t is given by IRFh,δ = E (yt+h (δ)− yt+h), for h = 0, 1, 2, . . . ,H.

Several remarks are in order. First, as expected from the literature on nonlinear impulse response

functions, the presence of nonlinearities implies that the dynamic response of yt+h to a shock in ε1t de-

pends on the entire sample path of the process. In particular, it depends on current and future values of

the shocks in the model. Our approach in this paper is to integrate out this randomness, by considering

the expected value of the difference between {yt+h (δ) : h = 0, 1, . . . ,H} and {yt+h : h = 0, 1, . . . ,H}.

Second, unlike Gallant, Rossi and Tauchen (1993), Koop, Pesaran and Potter (1996), Potter (2000),

Gourieroux and Jasiak (2005), our main results do not condition on the history of the process up to

time t − 1, denoted Ωt−1. Alternatively, one could consider a version of our response function that

conditions on Ωt−1 as in Kilian and Vigfusson (2017).

Definition 2 (Conditional IRF) The conditional nonlinear impulse response function of yt+h to a

shock of size δ in ε1t is given by IRFh,δ,Ωt−1 = E[(yt+h (δ)− yt+h) |Ωt−1], for h = 0, 1, 2, . . . ,H.

The special challenges of estimating the latter impulse response function in our context are briefly

discussed in Section 3 and in Appendix B.

Third, a further difference with respect to some of the previous literature is the type of shocks that

are presumed to occur between t and t+h. Koop et al. (1996), Potter (2000) and Kilian and Vigfusson

(2011a), for example, set ε1t (δ) equal to δ in the perturbed model and let ε1t denote a random draw of
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the shock at t in the baseline model. In contrast, we consider the impact of ε1t (δ) = ε1t+δ versus ε1t ,

averaged over the possible realizations of ε1t. Although this difference does not matter for some model

specifications (such as when B11 (L) = 0 and B12 (L) = 0), it may matter for other specifications.

Finally, our approach is closely related to that of Gallant, Rossi and Tauchen (1993) and Gourieroux

and Jasiak (2005), with the difference that Gallant, Rossi and Tauchen (1993) consider shocks to the

outcome variable rather than shocks to innovations, and Gourieroux and Jasiak (2005) consider shocks

to a sequence of nonlinear innovations within the context of univariate reduced-form models. Our

premise is that the shocks εt = (ε1t, ε
′
2t)
′ in the structural model (1), are i.i.d. over time and mutually

independent. This allows us to perturb one of these structural shocks, namely ε1t, without perturbing

the other structural shocks ({ε2s} and {ε1s, for s 6= t}).

2.3 Examples of nonlinearly transformed variables

Our analysis focuses on two leading examples of economically interesting nonlinear transformations f(·)

of xt. One example is the censored variable x+
t ≡ max(0, xt). Note that model (1) with f(xt) = x+

t is

equivalent to a model that includes both x+
t and x

−
t ≡ min(0, xt) with potentially different coeffi cients.

This specification was originally proposed by Mork (1989) and allows for asymmetries in the response of

the economy to positive and negative oil price shocks. Mork argued that increases in oil prices matter

more than decreases. This proposition has been explored by Kilian and Vigfusson (2011a, 2017),

Herrera, Lagalo and Wada (2011, 2015), Alsalman and Herrera (2015), and Herrera and Karaki (2015),

among others. Other applications of this framework include the potentially asymmetric passthrough

of oil price shocks to gasoline prices (Venditti 2013), the differential effects of positive and negative

tax changes on U.S. real GDP (Hussain and Malik 2016), the effects of positive and negative shocks

to financial regulation on inflation and industrial output growth (Barnichon, Matthes and Ziegenbein

2020), the effect of positive and negative shocks to regulatory bank oversight (Hwa, Kapinos and

Ramirez 2018), and the effects of contractionary and expansionary monetary policy shocks on the

economy (Cover 1992, Tenreyro and Thwaites 2016).

The other example involves powers of xt. For example, Tenreyro and Thwaites (2016) consider an

exogenous shock series xt and include f(xt) = x3
t in the regression in addition to xt. This specification

allows larger values of xt of either sign to have more powerful effects on the outcome variable. A

similar approach has also been employed by Hwa, Kapinos and Ramirez (2018) to study the impact

of large exogenous changes in ratings by bank supervisors on economic activity.

Next, we derive closed-form expressions for the nonlinear impulse response functions. This will

allow us to obtain an estimator of the IRF that does not require Monte Carlo integration.
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3 A closed-form expression for the population IRF

To describe the population IRF, we evaluate the difference between yt+h (δ) and yt+h. Recall that

B0zt = b+B (L) zt−1 + C (L) f (xt) + εt. (4)

Since B0 satisfies (2), the inverse matrix of B0 exists and is given by

B−1
0 =

(
1 0

B−1
0,22B0,21 B−1

0,22

)
≡
(

1 0
B21

0 B22
0

)
.4

Pre-multiplying (4) by B−1
0 yields

zt = B−1
0 b+B−1

0 B (L) zt−1 +B−1
0 C (L) f (xt) +B−1

0 εt,

which we rewrite as

zt = k +A (L) zt−1 +G (L) f (xt) + ut, (5)

where k = B−1
0 b, and

A (L) = B−1
0 B (L) ≡

p∑
i=1

AiL
i−1, where Ai = B−1

0 Bi,

G (L) = B−1
0 C (L) ≡

p∑
i=0

GiL
i, where Gi = B−1

0 Ci, and ut = B−1
0 εt.

If C (L) = 0, then (5) is the reduced-form version of the structural model (1). When C (L) 6= 0, (5)

is not quite a reduced-form model because f (xt) still appears in the second block of equations of the

system and this variable is correlated with ut. We therefore refer to (5) as the “pseudo-reduced form”

model. We will propose a method of estimating the parameters of this model in Section 4, but for

now we use this model to define the population IRF.

It follows from (5) that

(In −A (L)L)︸ ︷︷ ︸
=D(L)

zt = k +G (L) f (xt) + ut, (6)

where D (L) is a pth degree lag matrix polynomial whose inverse matrix filter Ψ (L) ≡ D (L)−1 ex-

ists and is absolutely summable under Assumption 2. Using the definition of the inverse filter, i.e.

Ψ (L)D (L) = In, we can show that Ψ0 = In, Ψ1 = Ψ0A1,. . . , and Ψj = Ψj−1A1 + . . . + Ψj−pAp, for

any j ≥ p.

By pre-multiplying (6) by Ψ (L) and using the fact that ut = B−1
0 εt, we can write

zt = µ+ Θ (L) εt + Γ (L) f (xt) , (7)

4For any matrix A, we let Aij denote the block (i, j) of A−1.
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where

µ = Ψ (1) b = Ψ (1)B−1
0 k,

Θ (L) ≡ Ψ (L)B−1
0 ,

Γ (L) ≡ Ψ (L)G (L) = Ψ (L)B−1
0 C (L) .

If C (L) = 0, then Γ (L) = 0, and (7) is the vector moving average representation of zt. In this case,

we can obtain the IRF from the first column of Θ (L). With Γ (L) 6= 0, additional terms must be

added to the IRF. Let

Θ·1 (L)
n×1

=

(
Θ11 (L)
Θ21 (L)

)
and Θ·2 (L)

n×n1
=

(
Θ12 (L)
Θ22 (L)

)
,

where Θ·1 (L) denotes the first column of Θ (L) and Θ·2 (L) denotes its remaining columns. Note that

for any i, j, Θij (L) = Θ0,ij + Θ1,ijL+ . . .+ Θh,ijL
h + . . . , implying that, for example,

Θ·1 (L) = Θ0,·1 + Θ1,·1L+ . . .+ Θh,·1L
h + . . . ,

with Θh,·1 =
(

Θh,11,Θ
′
h,21

)′
.

From (7), for the baseline model, we can write

zt+h = µ+ Θ·1 (L) ε1t+h + Θ·2 (L) ε2t+h + Γ (L) f (xt+h) ,

whereas for the δ-perturbed model,

zt+h (δ) = µ+ Θ·1 (L) ε1t+h (δ) + Θ·2 (L) ε2t+h (δ) + Γ (L) f (xt+h (δ)) .

Since ε1t (δ) = ε1t + δ, ε1s (δ) = ε1s for all s 6= t, and ε2s (δ) = ε2s for all s, we have that

zt+h (δ)− zt+h = Θh,·1δ + Γ (L) [f (xt+h (δ))− f (xt+h)] .

Our definition of the two sequences of shocks implies that xt+h (δ) = xt+h for any h < 0. Hence,

zt+h (δ)− zt+h = Θh,·1δ + Γ0 [f (xt+h (δ))− f (xt+h)]

+Γ1 [f (xt+h−1 (δ))− f (xt+h−1)] + . . .+ Γh [f (xt (δ))− f (xt)] . (8)

We rely on equation (8) to evaluate the two sample paths of the outcome variables yt+h corre-

sponding to the sequences of shocks ε∞ (δ) and ε∞. This yields

yt+h (δ)− yt+h = Θh,21δ + Γ0,21 [f (xt+h (δ))− f (xt+h)] + . . .+ Γh,21 [f (xt (δ))− f (xt)] ,

where the last h+1 terms reflect the contribution of the nonlinearities to the IRF. These terms depend

on the differences f (xt+h (δ))−f (xt+h), which are random functions of the path of xt up to time t+h.
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Our approach is to integrate out this randomness, by defining IRFh,δ as the unconditional expectation

of yt+h (δ)−yt+h. The next proposition formalizes this result and describes an algorithm for evaluating

Aj,δ = E (f (xt+j (δ)))−E (f (xt+j)), where xt+j (δ) is written as a function of {xt+j , . . . , xt} and the

model parameters.

Proposition 3.1 Under Assumptions 1, 2, and 3, for any h = 0, 1, 2, . . . ,H,

IRFh,δ = Θh,21δ + Γ0,21Ah,δ + Γ1,21Ah−1,δ + . . .+ Γh,21A0,δ,

where

Aj,δ = E (f (xt+j (δ)))− E (f (xt+j)) .

The following steps can be used to calculate xt+j (δ) as a function of {xt+j , . . . , xt} for j = 0, 1, . . . , h:

i) For j = 0, set xt (δ) = xt + δ and A0,δ = E (f (xt + δ)− f (xt)) .

ii) For j = 1, 2, . . . , h, let

xt+j (δ) = xt+j + Θj,11δ + Γ1,11 [f (xt+j−1 (δ))− f (xt+j−1)] + . . .+ Γj,11 [f (xt (δ))− f (xt)]

≡ gj,δ
(
xt+j , xt+j−1, . . . , xt;βj

)
,

where gj,δ
(
·, βj

)
is implicitly defined by this recursion and βj = (Θ1,11, . . . ,Θj,11,Γ1,11, . . . ,Γj,11)′ .

iii) For j = 1, 2, . . . , h, let

Aj,δ = E
(
f
(
gj,δ

(
xt+j , xt+j−1, . . . , xt;βj

)))
− E (f (xt+j)) .

As Proposition 3.1 shows, computing the IRF at horizon h involves evaluating h + 1 expectation

terms Aj,δ for j = 0, 1, . . . , h. Each of these evaluations requires computing xt+j (δ), where xt+j (δ) is

the value of the variable x at time t+j in the perturbed version of the model. For j = 0 , xt (δ) = xt+δ

as given by step (i). For j > 0, we use step (ii) to obtain xt+j (δ) recursively. This defines xt+j (δ) as

an implicit function gj,δ
(
xt+j , . . . , xt;βj

)
of the random variables (xt+j , . . . , xt), the magnitude of the

shock δ and βj , a vector of parameters that depend continuously on the structural parameters θ. In

particular, we can show that βj = (Θ1,11, . . . ,Θj,11,Γ1,11, . . . ,Γj,11)′.

To illustrate the algorithm described in Proposition 3.1, suppose we want to evaluate IRFh,δ for

h = 1. This requires evaluating the terms A0,δ and A1,δ. By step (i),

xt (δ) = xt + δ and A0,δ = E (f (xt + δ)− f (xt)) ,
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where the expectation is with respect to the marginal distribution of xt. To obtain A1,δ, we use step

(ii) with j = 1 to write

xt+1 (δ) = xt+1 + Θ1,11δ + Γ1,11 [f (xt + δ)− f (xt)] ≡ g1,δ (xt+1, xt;β1) ,

where xt (δ) = xt + δ from step (i) and β1 = (Θ1,11,Γ1,11)′. This implies that

A1,δ = E (f (g1,δ (xt+1, xt;β1))− f (xt+1)) ,

where the expectation is with respect to the joint distribution of (xt+1, xt). We can proceed in this

manner to compute IRFh,δ for any value of h. As we increase h, more terms Aj,δ need to be computed

since IRFh ,δ requires Aj,δ for j = 0, 1, . . . , h. The functions gj,δ that implicitly define xt+j (δ) as a

function of the observables {xt+j , xt+j−1, . . . , xt} can be computed recursively as we did for j = 1.

Note that the computation of gj,δ and hence of Aj,δ can be simplified in two special cases of our

model. One is when xt = ε1t, in which case xt+h (δ) = xt+h for all h 6= 0 since ε1s (δ) = ε1s for all

s 6= t. In this case, A0,δ = E (f (xt + δ)− f (xt)), as in step (i) above, but Aj,δ = 0 for all j 6= 0. We

will consider a bivariate version of this special case in Section 5 to illustrate the properties of local

projections in our framework. Another special case where the computation of Aj,δ is simplified is when

xt is an exogenous strictly stationary AR (p) process. In this case, B11 (L) 6= 0 but B12 (L) = 0, which

implies that Γ11 (L) = 0. Thus, step (ii) simplifies to

xt+j (δ) = xt+j + Θj,11δ,

showing that xt+j (δ) is a function of xt+j and βj ≡ Θj,11, the jth coeffi cient of the lag polynomial

Θ11 (L).

The closed-form expressions for the IRF given by Proposition 3.1 can be evaluated in practice by

replacing the unknown parameters with consistent estimates. This yields a novel “plug-in”estimator

of the IRF which can be used as an alternative to the MCI approach proposed by Kilian and Vigfusson

(2011a) for fully recursive models. Note in particular that the iterative algorithm in Proposition 3.1

does not require any simulations, contrary to the MCI method, making this approach computationally

attractive. To estimate the Aj,δ terms, we only need to evaluate the sample average of the difference

f
(
gj,δ

(
xt+j , xt+j−1, . . . , xt; β̂j

))
−f (xt+j) at each horizon j = 1, 2, . . . , h, where β̂j is an estimator of

βj . More importantly, whereas the MCI approach is feasible only in the special case of fully recursive

models, the plug-in estimator can be used without taking a stand on the identification of ε2t.

When xt is i.i.d., there is no difference between the unconditional IRF and the IRF conditional on

Ωt−1 as in Definition 2. This equivalence breaks down when xt depends on lags of xt or yt. Although it

is feasible to obtain the closed-form solutions for the conditional IRF in the latter case, these analytical
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expressions are specific to the functional form of f(xt) and require imposing further restrictions on

the model, in particular in the form of assumptions about the distribution of the error term ε1t, as

illustrated in Appendix B.

4 Estimation of the IRF

The closed-form expressions for IRFh,δ obtained in Proposition 3.1 show that the IRF depends on two

sets of coeffi cients: those from the first column of Θ (L) given by

Θ·1 (L) = Ψ (L)

(
1
B21

0

)
,

where Ψ (L) = (In −A (L)L)−1, and those from

Γ (L) = Ψ (L)

(
0

G21 (L)

)
.

Thus, in order to identify IRFh,δ we need to identify the parameters in Ψ (L), G21 (L) and B21
0 .

When the model is fully recursive (i.e. B0,22 is lower triangular with 1’s along the main diagonal),

OLS estimation of each equation of the structural model yields consistent estimates of θ, the structural

parameters entering B0, B (L) and C (L). These in turn imply consistent estimates of the parameters

in Ψ (L) , G21 (L) and B21
0 . Full identification of the structural model, however, is not required to

identify the dynamic responses of yt to a shock in ε1t. The only shock we need to identify is ε1t. This

only requires B0 to be block recursive. Under this partial identification scheme, we can rely on the

pseudo-reduced form equation for zt to identify IRFh,δ, as shown next.

Recall our pseudo-reduced form model (5):

zt = k +A (L) zt−1 +G (L) f (xt) + ut,

where G (L) =
(
0, G21 (L)′

)′
and A (L) = A1 + A2L+ . . .+ ApL

p−1. In the following, let Ai,1· denote

the 1× n vector containing the first row of Ai, and let Ai,2· denote the n1 × n matrix containing the

remaining rows of Ai. With this notation, we can write A (L) as

A (L) =

(
A1· (L)
A2· (L)

)
=

(
A1,1· +A2,1·L+ . . .+Ap,1·Lp−1

A1,2· +A2,2·L+ . . .+Ap,2·Lp−1

)
.

The pseudo-reduced form model then is
xt = k1 +A1· (L) zt−1 + u1t

yt = k2 +A2· (L) zt−1 +G21 (L) f (xt) + u2t,
(9)

where

ut = B−1
0 εt =

(
1 0
B21

0 B22
0

)(
ε1t

ε2t

)
=

(
ε1t

B21
0 ε1t +B22

0 ε2t

)
.
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Since u1t = ε1t, u1t is independent of zt−1 and its lags, and A1· (L) can be estimated by OLS. However,

the presence of nonlinearities in the second block of equations implies that f (xt) is correlated with

u2t. Hence, when G21 (L) 6= 0, OLS estimation of (9) will not yield consistent estimates, except for

the first equation.

The source of the endogeneity is the presence of ε1t in u2t. Suppose for a moment that we could

observe ε1t. Then we could effectively remove this source of endogeneity by including ε1t as an

additional control in the equations for yt. This can be seen from rewriting (9) as
xt = k1 +A1· (L) zt−1 + ε1t

yt = k2 +A2· (L) zt−1 +G21 (L) f (xt) +B21
0 ε1t + u∗2t,

(10)

where u∗2t ≡ B22
0 ε2t. Since by Assumption 1 u∗2t is orthogonal to all the regressors in the equation for

yt (including ε1t), the regression of yt on a constant, zt−1, f (xt), their lags, and ε1t would provide

consistent estimates of A2· (L), G21 (L) and B21
0 . This together with A1· (L) would identify A (L), and

therefore Ψ (L), implying that all the parameters required for identifying IRFh,δ could be consistently

estimated.

In practice, we do not observe ε1t, but we can estimate ε1t from the first equation in (10). Replacing

ε1t with ε̂1t before applying OLS to the second equation amounts to using a control function approach

(e.g. Wooldridge 2010, p. 268-269). For this purpose, we introduce the following notation. First, we

write the first equation of (10) as

xt = π′1w1t + ε1t,

where w1t =
(
1, Z ′t−1

)′ is d1 × 1 with Zt−1 =
(
z′t−1, . . . , z

′
t−p
)′
, d1 = 1 + np, and

π1 =
(
k1, A

′
1,1·, . . . , A

′
p,1·
)′
.

Furthermore, let Ft = (f (xt) , f (xt−1) , . . . , f (xt−p))
′ denote a (p+ 1)×1 vector containing the current

and lagged values of the nonlinear function f (xt). Let w2t = (w′1t, F
′
t , ε1t)

′ be a d2×1 vector containing

the regressors in the second equation of (10), including the unobserved error ε1t (implying that d2 =

d1 + p+ 2). Similarly, let

Π′2
n1×d2

=
(
k2 A1,2· · · · Ap,2· G0,21 · · · Gp,21 B21

0

)
.

Then the second equation of (10) can be expressed as

yt = Π′2w2t + u∗2t,

and the system of equations (10) can be compactly written as

xt = π′1w1t + ε1t,

yt = Π′2w2t + u∗2t,
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where the orthogonality conditions

E (w1tε1t) = 0 and E
(
u∗2tw

′
2t

)
= 0,

hold by Assumption 1. This implies that

π1
d1×1

=
(
E
(
w1tw

′
1t

))−1
E (w1txt) and Π2

d2×n1
=
(
E
(
w2tw

′
2t

))−1
E
(
w2ty

′
t

)
exist, provided the inverse of Σw1 = E (w1tw

′
1t) and Σw2 = E (w2tw

′
2t) exists. This suggests estimating

π1 and Π2 by OLS. However, since w2t depends on ε1t, we do not observe w2t. Our strategy is to

replace w2t with ŵ2t = (w′1t, F
′
t , ε̂1t)

′, where ε̂1t = xt − π̂′1w1t. This introduces a generated regressor

problem in the estimation of Π2, which affects inference but not the consistency of the estimator.5

Algorithm for the IRF plug-in estimator in the general structural model

i) Regress xt onto w1t=
(
1, Z ′t−1

)′, where Zt−1 =
(
z′t−1, . . . , z

′
t−p
)′
. Collect the estimated parameters

in π̂1 =
(
k̂1, Â

′
1,1·, . . . , Â

′
p,1·

)
and let ε̂1t = xt − π̂′1w1t.

ii) Regress yt onto ŵ2t= (w′1t, F
′
t , ε̂1t)

′ and collect the estimated parameters in π̂2 = vec
(

Π̂2

)
, where

Π̂′2
n1×d2

=
(
k̂2 Â1,2· · · · Âp,2· Ĝ0,21 · · · Ĝp,21 B̂21

0

)
.

iii) Use π̂ =
(
π̂′1, π̂

′
2

)′ to compute
Ψ̂ (L) =

(
In − Â (L)L

)−1
= In + Ψ̂1L+ Ψ̂2L

2 + . . .+ Ψ̂hL
h + . . . ,

where

Â (L) = Â1 + Â2L
2 + . . .+ ÂpL

p−1,

implying that

Ψ̂0 = In, Ψ̂1 = Ψ̂0Â1, Ψ̂2 = Ψ̂1Â1 + Ψ̂0Â2, . . . , and

Ψ̂h = Ψ̂h−1Â1 + . . .+ Ψ̂h−pÂp , for any h ≥ p.

Then compute

Θ̂·1 (L) = Ψ̂ (L)

(
1

B̂21
0

)
≡
(

Θ̂11 (L)

Θ̂21 (L)

)
and Γ̂ (L) = Ψ̂ (L)

(
0

Ĝ21 (L)

)
≡
(

Γ̂11 (L)

Γ̂21 (L)

)
.

5Our analysis does not take into account the possibility that xt may also be estimated, as recently discussed in
Breitung and Brüggemann (2020). Of course, xt need not be a generated regressor. For example, the Kilian (2008)
measure of exogenous OPEC oil supply shocks does not rely on regression analysis. Nor do measures of expectation
shifts computed as changes in futures prices around policy announcement dates (see Piazzesi and Swanson 2008).
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iv) Set

Â0,δ =
1

T

T∑
t=1

(f (xt + δ)− f (xt)) ,

and for j = 1, . . . , h, let

Âj,δ =
1

T − j

T−j∑
t=1

f
(
gj,δ

(
xt+j , xt+j−1, . . . , xt; β̂j

))
− 1

T

T∑
t=1

f (xt) ,

where gj,δ
(
·; β̂j

)
is defined by the recursion in step ii) of Proposition 3.1 with

β̂j =
(

Θ̂1,11, . . . , Θ̂j,11, Γ̂1,11, . . . , Γ̂j,11

)′
.

v) Set

IRFPlug−inh,δ = Θ̂h,21δ + Γ̂0,21Âh,δ + Γ̂1,21Âh−1,δ + . . .+ Γ̂h,21Â0,δ.

To summarize, in steps i) and ii) we construct the OLS estimator of π = (π′1, π
′
2). Step iii) uses

π̂ to construct estimates of the coeffi cients Θ·1 (L) and Γ (L), which enter the formula of the IRF.

Step iv) computes an estimator of Aj,δ ≡ E [f (xt+j (δ))− f (xt+j)] as a function of the data and the

estimates obtained in step iii). For instance, for j = 1,

Â1,δ =
1

T − 1

T−1∑
t=1

f
(
g1,δ

(
xt+1, , xt; θ̂

))
− 1

T

T∑
t=1

f (xt) ,

where

g1,δ

(
xt+1, xt; β̂1

)
= xt+1 + Θ̂1,11δ + Γ̂1,11 [f (xt + δ)− f (xt)] .

Step v) evaluates the population expression for the IRF at the estimated parameter values.

We conclude this section by proving the consistency of the plug-in IRF estimator. The following

additional assumptions jointly with Assumptions 1-3 are suffi cient to establish this result.

Assumption 4. suptE |xt|4 <∞ and suptE |f (xt)|4 <∞.

Assumption 5. Σw1 = E (w1tw
′
1t) and Σw2 ≡ E (w2tw

′
2t) are positive definite.

Assumption 6. The function f is continuous and is such that for each j = 1, . . . , h,

∣∣f (gj,δ (xt+j , . . . , xt;βj))∣∣ < bj (xt+j , . . . , xt)

where βj lies in a compact space and E |bj (xt+j , . . . , xt)| <∞.

Theorem 4.1 Under Assumptions 1 through 6, IRFPlug−inh,δ
P−→ IRFh,δ as T →∞.
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The proof of Theorem 4.1 follows from Lemma A.1 and A.2 in the Appendix. Lemma A.1 estab-

lishes the consistency of π̂ for π. This result follows under Assumptions 1-5 by standard arguments

that rely on laws of large numbers for stationary ergodic processes. The consistency of Θ̂h,21, Θ̂j,11,

Γ̂j,11 and Γ̂j,21 follows from the consistency of π̂ given that these estimators are continuous functions

of π̂. Note that we do not need to identify the structural parameters θ to prove the consistency of the

IRF. Indeed, the structural equations for yt are not identified unless we put further restrictions (such

as a triangular structure) on B22
0 . Hence, ε2t is not identified in this model. This is the sense in which

the model is only partially identified (see Kilian and Lütkepohl 2017). However, the structural shock

of interest, ε1t, is identified and this is suffi cient to identify π and hence the IRF through the control

function approach described above.

Assumption 6 serves to show that Âj,δ is a consistent estimator of Aj,δ for j = 1, . . . , h (cf. Lemma

A.2). This assumption ensures that we can apply a uniform law of large numbers for stationary ergodic

data. The continuity assumption covers the empirically motivated examples in Section 2.3, but does

not cover, for example, threshold dynamics of the form xl arg e
t = xt1 (|xt| > κσ), where κ denotes a

multiple of the standard deviation σ of xt, typically set to 1 or 2, as discussed in Goldberg (1988),

Davis and Kilian (2011) and Alsalman and Herrera (2015).

5 Can local projections identify the IRF?

The main goal of this section is to investigate the ability of local projections to identify the uncondi-

tional IRF in our framework. To do so, we focus on a bivariate version of our model where xt = ε1t.

Our main result is that even in this simplified model, the conventional LP approach fails to identify

the population IRF when there are nonlinearities. However, we show that it is possible to modify the

LP approach for this simple model in order to recover the nonlinear IRF. We establish the consistency

of this modified LP estimator of the IRF when xt = ε1t. We show that this result does not extend to

situations when xt is serially correlated.

In order to develop intuition, consider a simplified version of our model with b1 = 0, b2 = b,

B0,21 = β, B21 (L) = 0, B22 (L) = ρ, and C21 (L) = c. Thus,
xt = ε1t,

yt = b+ βxt + ρyt−1 + cf (xt) + ε2t.
(11)

In this special case,

IRFh,δ = βρhδ + cρhE (f (xt + δ)− E (f (xt)))︸ ︷︷ ︸
=A0,δ

,
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such that Θh,21 ≡ βρh and Γh,21 ≡ cρh. The value of yt+h is

yt+h = b+ βxt+h + ρyt+h−1 + cf(xt+h) + ε2t+h,

which we can write as

yt+h = kh + βρhxt + cρhf (xt) + ρh+1yt−1 + ut+h, (12)

where kh = µ
(
1− ρh+1

)
and ut+h is a function of {ε1t+h, . . . , ε1t+1, f (ε1t+h) , . . . , f (ε1t+1) , ε2t+h, . . . , ε2t+1, ε2t} .

If c = 0, expression (12) can be written as

yt+h = kh + πx,hxt + πy,hyt−1 + ut+h, (13)

where πx,h = Θh,21 and

E (ut+h) = E (xtut+h) = E (yt−1ut+h) = 0,

using the fact that ε1t and ε2t are mutually uncorrelated sequences of i.i.d. zero mean random variables.

This implies the usual result that we can recover the IRF at lag h by setting IRFh,δ = πx,h, where πx,h

is the slope coeffi cient associated with xt in the regression of yt+h onto xt and yt−1 (and a constant).

When c 6= 0, this result no longer holds. In this case, one may still use an LP regression to obtain

Θh,21 and Γh,21, but one needs to add an estimate of A0,δ ≡ E [f (xt + δ)− f (xt)] . The LP regression

is

yt+h = πc,h + πx,hxt + πf,hf (xt) + πy,hyt−1 + vt+h, (14)

where πx,h = βρh ≡ Θh,21, πf,h = cρh ≡ Γh,21 and πy,h = ρh+1. The error term vt+h has mean zero

and satisfies the orthogonality conditions E (xtvt+h) = E (f (xt) vt+h) = E (yt−1vt+h) = 0 given that

vt+h only depends on {ε1s, f (ε1s)− E (f (ε1s)) : s = t+ 1, . . . , t+ h} and {ε2s : s = t, . . . , t+ h} and

given that these shocks are independent of xt = ε1t and f (xt) as well as of yt−1.
6

Equation (14) is the local projection equation we need to estimate to recover IRFh,δ when c 6= 0.

The coeffi cients πx,h and πf,h associated with xt and f (xt), respectively, are equal to Θh,21 and

Γh,21. Estimates of these coeffi cients together with an estimate of A0,δ can be used to estimate

IRFh,δ = Θh,21 + Γh,21A0,δ.

As the next proposition shows, these results generalize to the bivariate version of model (1) where

xt = ε1t and B21 (L)L, B22 (L)L and C21 (L) are general pth order polynomials in L.

6Note that we redefine the error term of the LP regression as vt+h = ut+h −E (ut+h). The reason is that E (ut+h) is
not necessarily zero because E (f (xt)) = E (f (ε1t)) may not be zero (even though E (ε1t) = 0). This transformation is
without loss of generality since we include a constant in the LP regression.
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Proposition 5.1 Assume Assumptions 1, 2 and 3 hold with n1 = 1, and b1 = B11 (L) = B12 (L) = 0.

Then, for h = 0, 1, 2, . . . , we have that

yt+h = πc,h + πx,hxt + πx,h (L)xt−1 + πf,hf (xt) + πf,h (L) f (xt−1) + πy,h (L) yt−1 + vt+h

where

πx,h = Θh,21 and πf,h = Γh,21,

and vt+h is mean zero and is orthogonal to all the regressors.

Proposition 5.1 implies that the coeffi cients associated with xt and f (xt) in the regression of yt+h

on w′2t =
(

1 Z ′t−1 F ′t xt
)′
are equal to πx,h = Θh,21 and πf,h = Γh,21. These coeffi cients are

required to compute IRFh,δ in Proposition 3.1.

The algorithm for constructing this modified LP estimator is:

Algorithm for estimating IRF based on LPs when xt is i.i.d.

i) For each h, regress yt+h onto w′2t =
(

1 Z ′t−1 F ′t xt
)′
and let π̂x,h and π̂f,h denote the slope

coeffi cients associated with xt and f (xt), respectively.

ii) Obtain an estimate of A0,δ ≡ E [f (xt + δ)− f (xt)] as

Â0,δ =
1

T

T∑
t=1

(f (xt + δ)− f (xt)) .

iii) Set

IRFLPh,δ = π̂x,hδ + π̂f,hÂδ.

The modified LP estimator IRFLPh,δ is an alternative to the plug-in estimator IRF
Plug−in
h,δ given

in Section 4 when xt = ε1t. The modified LP estimator generates estimates of πx,h = Θh,21 and

πf,h = Γh,21 by running a regression of yt+h onto w2t for each horizon h, whereas the plug-in estimator

obtains these coeffi cients by iterating on the OLS estimator from the regression of yt onto w2t. Both

estimators rely on Â0,δ, the sample average of A0,δ, to obtain the final estimate of the IRF.

Remark 1 The modified LP estimator described here differs from the LP estimator used in existing

studies that allow for nonlinear transformations of xt (e.g., Tenreyro and Thwaites 2016, Barnichon

et al. 2020). Consider the example of f(xt) = x+
t . The conventional approach has been to fit local

projections,

yt+h = πc,h + πx,hxt + πf,hx
+
t + vt+h, (15)
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or, equivalently,

yt+h = πc,h + πx+,hx
+
t + πx−,hx

−
t + vt+h, (16)

for h = 0, 1, 2, . . . ,H, where, for simplicity, we have dropped all lagged regressors. Then the sequences{
πx+,h

}H
h=0

and
{
πx−,h

}H
h=0

have been interpreted as the response functions with respect to a positive

and a negative ε1t shock of size δ = 1 and δ = −1, respectively. Our analysis shows that this approach

does not recover the population unconditional response functions even asymptotically.

Remark 2 The coeffi cients πx+,h and πx−,h in the standard LP regression (16) can be re-interpreted

as capturing a conditional version of the IRF at horizon h, where we condition on xt = ε1t ≥ 0 and

δ = 1 and xt = ε1t < 0 and δ = −1, respectively. To see this, let xt ≥ 0 and perturb it by δ = 1. In

this case, it follows that

yt+h (1)− yt+h = Θh,21δ + Γh,21(f (xt + 1)− f (xt))︸ ︷︷ ︸
=1

= Θh,21 + Γh,21 = πx+,h,

where πx+,h = E (yt+h (1)− yt+h|xt ≥ 0) . This result does not necessarily apply to other specifications

of f(xt), however, and does not apply when xt is serially correlated.7

We can establish the consistency of IRFLPh,δ (as well as IRFPlug−inh,δ ) in the bivariate case with

B12 (L) = 0 under a set of more primitive conditions than those used in Theorem 4.1, if we replace

Assumption 2 by the following assumption.

Assumption 2′

(i) B12 (L) = 0 and the roots of 1−B11 (L)L = 0 and 1−B22 (L)L = 0 are all outside the unit circle.

(ii) The function f is nonperiodic and bounded on compact subsets of R such that |f (x)| ≤M |x|γ1

for some γ1 ∈ R, for all |x| > x0, for some x0 > 0 and M <∞.

(iii) The i.i.d. random variables ε1t and ε2t have continuous probability density functions that are

strictly positive on R such that E
(
|ε1t|max(1,γ1+γ2)

)
<∞ for some γ2 > 0.

When B12 (L) = 0, zt given by (1) is a special case of the nonlinear bivariate ARX model studied

by Masry and Tjøstheim (1997). Assumptions 2′(ii) and 2′(iii) correspond to their Assumptions 3(b)

and 3(c) respectively. It can be shown that Assumption 2′(i) suffi ces for their Assumption 3.3(c).

Thus, under Assumption 2′, we can appeal to Masry and Tjøstheim (1997)’s Lemma 3.1 to conclude

7A similar conditional interpretation of LP coeffi cients when xt is serially correlated would require conditioning on
the sign of future values of xt (e.g. xt ≥ 0 and xt+1 ≥ 0 for h = 1 if xt = φxt−1 + ε1t) and would further require taking
a stand on the sign of the dynamic coeffi cients driving xt (e.g. assume that φ > 0 in the AR(1) example).
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that zt is stationary and strongly mixing with exponentially decaying coeffi cients. Note that part (ii)

of Assumption 2′ allows f to grow at most at a polynomial rate, where γ1 denotes the polynomial

degree. This covers the empirically motivated examples discussed previously, but excludes other

nonlinear functions whose growth rate is larger than the polynomial rate such as the exponential

function. There is a trade-off between how fast f (xt) can grow as a function of xt (as dictated by γ1)

and the number of finite moments of ε1t, as required by Assumption 2′ (iii).

Theorem 5.1 Under Assumptions 1, 2′, 3, 4 and 5 with b1 = B11 (L) = B12 (L) = 0, as T →∞,

IRFPlug−inh,δ
P−→ IRFh ,δ and IRFLPh,δ

P−→ IRFh ,δ,

for any h = 0, 1, . . . and fixed δ.

Note that we do not require Assumption 6 to prove Theorem 5.1 since we do not need to estimate

Aj,δ for j > 0. The only nonlinear term that appears in the IRF is A0,δ ≡ E (f (xt + δ)− f (xt)),

which we estimate as the sample average of f (xt + δ) − f (xt). Since xt is i.i.d., the consistency of

Â0,δ follows by a standard law of large numbers for i.i.d. data. An application of the uniform law of

large numbers is not required, thus dispensing with Assumption 6.

A natural question is whether we can use the modified LP approach to obtain an estimate of

IRFh,δ when xt is serially correlated. The answer is no. To explain this result, we again consider a

simplified version of our model, where now
xt = b1 + φxt−1 + ε1t,

yt = b2 + βxt + ρyt−1 + cf (xt) + ε2t.

Given Proposition 3.1, we can show that

IRFh,δ = Θh,21 + Γ0,21Ah,δ + Γ1,21Ah−1,δ + . . .+ Γh,21A0,δ,

whereΘh,21 = β
(
φh + ρφh−1 + . . .+ ρh−1φ+ ρh

)
, Γh,21 = cρh andAh,δ = E

[
f
(
xt+h + φhδ

)
− f (xt+h)

]
,

where the expression for Ah,δ follows from the fact that xt+h (δ) = xt+h + φhδ. We can write

yt+h = µ+ β (1− ρL)−1 xt+h + c (1− ρL)−1 f (xt+h) + (1− ρL)−1 ε2t+h,

where µ = b2 (1− ρ)−1 and xt = φxt−1 + ε1t. Suppose first c = 0. We can decompose yt+h as

yt+h = µ
(

1− ρh+1
)

+ βρhxt + ρh+1yt−1 + β
(
xt+h + ρxt+h−1 + . . .+ ρh−1xt+1

)
+
(
ε2t+h + ρε2t+h−1 + . . .+ ρh−1ε2t+1 + ρhε2t

)
.
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For any h ≥ 0, we can write

xt+h = πx,c + φhxt +
(
φh−1ε1t+1 + . . .+ ε1t+h

)
,

with πx,c = b1
(
1 + φ+ . . .+ φh−1

)
. This implies that

yt+h = πc,h + β
(
φh + ρφh−1 + . . .+ ρh−1φ+ ρh

)
︸ ︷︷ ︸

=Θh,21

xt + ρh+1yt−1

+β
(
φh−1ε1t+1 + . . .+ ε1t+h

)
+ βρ

(
φh−2ε1t+1 + . . .+ ε1t+h−1

)
+ . . .+ βρh−1ε1t+1

+
(
ε2t+h + ρε2t+h−1 + . . .+ ρh−1ε2t+1 + ρhε2t

)
,

for some constant πc,h. This equation can be written as

yt+h = πc,h + Θh,21xt + ρh+1yt−1 + ut+h,

where ut+h is implicitly defined by the equation above and is a linear combination of εt+1 = (ε1t+1, ε2t+1)′

through εt+h = (ε1t+h, ε2t+h)′ as well as ε2t. Hence, E (xtut+h) = E (yt−1ut+h) = 0. Thus, we can

recover Θh,21 from a local projection given by the regression of yt+h onto xt and yt−1.

Now, suppose that c 6= 0. Then, a similar argument implies the following decomposition for yt+h:

yt+h = πc,h + Θh,21xt + ρh+1yt−1 + cρh︸︷︷︸
=Γh,21

f (xt) + vt+h, (17)

where the error term now contains f (xt+j) for j > 0 and is given by

vt+h = ut+h + c
[
f (xt+h) + ρf (xt+h−1) + . . .+ ρh−1f (xt+1)

]
.

While this error can be transformed to have mean zero (by subtracting µf = Ef (xt+j) from each

f (xt+j)), it is not orthogonal to the regressors in (17) when xt is serially correlated. The reason is

that each xt+j can be written as a function of xt and {ε1t+j , . . . , ε1t+1}, implying that f (xt+j) is

correlated with xt and f (xt) as well as yt−1. As a result, this equation is not a local projection and

cannot be used to identify Θh,21 nor Γh,21. Moreover, these are not the only coeffi cients needed to

obtain IRFh,δ when xt is serially correlated. We also need the Γj,21 terms for j = 0, . . . , h− 1, which

are missing from (17)). One might consider including f (xt+h) , . . . , f (xt+1) as additional regressors

in (17) in order to capture all the required coeffi cients, as in

yt+h = πc,h+Θh,21xt+ρ
h+1yt−1+ cρh︸︷︷︸

=Γh,21

f (xt)+ c︸︷︷︸
=Γ0,21

f (xt+h)+ cρ︸︷︷︸
=Γ1,21

f (xt+h−1)+. . .+ cρh−1︸ ︷︷ ︸
=Γh−1,21

f (xt+1)+ut+h,

However, ut+h would now be correlated with f (xt+j) for j > 0. 8

8 If the nonlinear term were f(ε1t) rather than f(xt) these complications would not arise because perturbing ε1t by
δ would only have an effect in the impact period. This means that we would effectively be back in the special case of
xt = ε1t. The only difference would be that we would need to estimate the residual by regressing xt on lags of xt and yt.
We are not aware of any applications of this specification in empirical work. One reason is that the underlying economic
arguments often dictate a nonlinearity in observables rather than shocks.
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6 Simulation evidence

In this section, we compare the finite-sample accuracy of the plug-in estimator with that of the Monte

Carlo integration (MCI) estimator and the modified LP estimator, where applicable. The evaluation

criteria are the bias, variance and mean squared error (MSE) of the impulse response estimators. We

also examine the robustness of the plug-in estimator to dynamic model misspecification and illustrate

the convergence of the plug-in estimator in block recursive models.

6.1 Baseline simulation design

We consider three special cases of model (1). DGP 1 restricts xt to an observed i.i.d. shock:
xt = ε1t,

yt = 0.5yt−1 + 0.5xt + 0.3xt−1 − 0.4 max (0, xt) + 0.3 max (0, xt−1) + ε2t,
. (18)

In DGP 2, xt is instead follows an exogenous AR(1) process:
xt = 0.5xt−1 + ε1t,

yt = 0.5yt−1 + 0.5xt + 0.3xt−1 − 0.4 max (0, xt) + 0.3 max (0, xt−1) + ε2t,
. (19)

DGP 3 treats xt as predetermined with respect to yt:
xt = 0.3xt−1 + 0.2yt−1 + ε1t,

yt = 0.5yt−1 + 0.5xt + 0.3xt−1 − 0.4 max (0, xt) + 0.2 max (0, xt−1) + ε2t

. (20)

In all DGPs, the intercept has been normalized to 0 in population and the population innovations

are mutually independent and distributed N(0, 1). Results for DGPs with other parameter values are

qualitatively similar and hence are not reported.

The number of Monte Carlo trials is 10, 000. For each draw from the DGP, we estimate the

unconditional impulse response function of yt+h, h = 0, 1, ...,H to a shock in ε1t of magnitude δ.

For expository purposes, we set δ = 1. Very similar results are obtained for other choices of δ. The

MCI method is implemented as the average value of the conditional response functions over 1, 000

randomly drawn histories, where each conditional response function is based on 1, 000 draws. The

plug-in method and LP method are implemented as discussed in Sections 4 and 5. The lag order

for all local projections is set to one, consistent with the assumption of a known lag order of p = 1

in the DGP. For expository purposes, we focus on samples of length T = 240, corresponding to 20

years of monthly data or 60 years of quarterly data. Very similar results are obtained for T = 120,

corresponding to ten years of monthly data (or 30 years of quarterly data) and T = 480, corresponding

to 40 years of monthly data. The complete results for all combinations of T ∈ {120, 240, 480} and

δ ∈ {−2,−1, 1, 2} are reported in the online appendix.
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6.2 Baseline simulation results

The first row of Figure 1 shows that when the modified LP estimator is applicable, it tends to be less

accurate in finite samples than the plug-in estimator or the MCI estimator. Although the modified

LP estimator has about the same bias as the plug-in estimator, it has much higher variance and hence

a higher MSE. The performance of the plug-in estimator and the MCI estimator is virtually identical,

as expected for this DGP. In the second row of Figure 1, the bias and variance of the MCI and plug-in

estimators again tends to be almost the same. Only for much smaller T , is there any evidence that

these estimators are not effectively identical. Finally, for the unrestricted DGP in the third row, the

plug-in estimator has slightly higher variance than the MCI estimator and slightly lower bias at short

horizons. As a practical matter, these differences are negligible. Thus, in fully recursive models, there

is little to choose between the plug-in estimator and the MCI estimator based on their finite-sample

accuracy.

The plug-in estimator, however, is substantially less computationally demanding. It typically

reduces the computational cost by 98% or more, which is a significant improvement when conducting

bootstrap inference or when constructing critical values under the null of symmetric response functions.

For example, when estimating the variance of the impulse response estimator by bootstrap, as required

for tests of the symmetry of the response functions, the computation time for any of the models

considered in Figure 1 drops from about one hour to under one minute. When allowing for six lags in

the regression model, the computation time drops from close to four hours to about one minute.

6.3 Robustness to dynamic misspecification

We have assumed so far that the regression model is dynamically correctly specified. One of the

perceived advantages of the conventional linear LP estimator compared to linear VAR models is

its potential greater robustness to dynamic misspecification (Plagborg-Møller and Wolf 2021). This

argument does not extend to our analysis, however, because the modified LP estimator assumes

knowledge of the correct lag order much like the plug-in estimator.

In Figure 2, we examine how robust the ranking of these two estimators is to underfitting the DGP.

We consider an empirically representative DGP, where xt = ε1t and yt depends on the current value

and six lag of xt and max (xt, 0) as well as six lags of its own. Details of this DGP can be found in

the online appendix. The regression models are based on p ∈ {4, 5, 6}. Since p = 6 in population, the

estimated model is dynamically misspecified when its lag order is p < 6. The number of Monte Carlo

trials is 10, 000, and, for expository purposes, we set T = 240 and δ = 1 as in Figure 1.

Figure 2 illustrates that there is no bias-variance trade-off between the modified LP estimator and
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the plug-in estimator in our context. Even when underfitting by two lags, the plug-in estimator tends

to have lower MSE than the modified LP estimator. Underfitting increases the bias, but lowers the

variance of the plug-in estimator, as expected. For the modified LP estimator, there is no systematic

change in the bias, but underfitting lowers the variance of the impulse responses. Figure 2 shows that,

in finite samples, a modest degree of underfitting may lower the MSE of both estimators. The reason

is that the increase in the variance from estimating population parameters at longer lags outweighs

the reduction in the bias when these parameters are close to zero, as is typically the case when yt is

expressed as a growth rate in applied work.

6.4 Higher-dimensional block recursive models

In higher-dimensional block recursive models, there are no alternative estimators to compare the plug-

in estimator to, but we can illustrate the convergence of the plug-in estimator, as T → ∞. For

expository purposes, we consider DGPs of the form

B0zt = B1zt−1 + C0f (xt) + C1f (xt−1) + εt,

where εt is generated as a 3 × 1 vector of independent standard normal innovations and f (xt) =

max(0, xt) or f (xt) = x3
t , respectively. DGP 4 treats xt as an i.i.d. shock, DGP 5 allows xt to

be serially correlated, and DGP 6 only assumes that xt is predetermined with respect to yt. The

parameter values are

B0 =

 1 0 0
−0.45 1 −0.3
−0.05 0.1 1

 , C0 =

 0
−0.2
0.08

 , C1 =

 0
−0.1
0.2

 ,

and

B1 =

 0 0 0
0.15 0.17 −0.18
−0.08 0.03 0.6

 for DGP 4, B1 =

 −0.13 0 0
0.15 0.17 −0.18
−0.08 0.03 0.6

 for DGP 5,

and B1 =

 −0.13 0.05 −0.01
0.15 0.17 −0.18
−0.08 0.03 0.6

 for DGP 6.

Figures 3 and 4 show the MSE of the impulse response estimator based on 10,000 draws from each

DGP for T ∈ {120, 240, 480, 960}. The plots illustrate that in all cases the pointwise MSE of the

response estimates declines, as T increases.

7 Empirical application

There has been much interest in possible nonlinearities in the response of U.S. macroeconomic ag-

gregates to monetary policy shocks (e.g., Cover 1992, Tenreyro and Thwaites 2016, Barnichon and
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Matthes 2018). Our empirical application is motivated by the work of Tenreyro and Thwaites (2016)

who employed a conventional LP estimator to examine the evidence for a nonlinear response of real

GDP, inflation and the federal funds rate to an exogenous monetary policy shock. Their narrative

measure of exogenous monetary policy shocks is similar to the Romer and Romer (2004) series.

The empirical model is given by the four-variable system of equations (1) where zt =
(
xt it yt πt

)′
,

xt is the narrative measure of U.S. monetary policy shocks, it is the federal funds rate, yt is real GDP,

and πt is CPI inflation. The estimation period is 1969:Q1-2007:Q4. We follow Tenreyro and Thwaites

in setting p = 1 and log-linearly detrending real GDP. Inflation and the federal funds rate are expressed

in differences. Unlike Tenreyro and Thwaites’(2016) model, our model is block recursive. Since we

are only interested in the responses to the monetary policy shock, the block recursive nature of B0 and

the assumption that C11 (L) = 0 suffi ce to identify these responses without having to take a stand on

the identification of the remaining shocks. Two key questions raised in Tenreyro and Thwaites (2016)

are whether large monetary policy shocks are disproportionately more powerful than small shocks

and whether positive shocks have larger effects than negative shocks. They address the first question

by defining f(xt) = x3
t and the second question by allowing for separate coeffi cients for positive xt

and negative xt, which is algebraically equivalent to defining f(xt) = max(0, xt) in our model. For

expository purposes, we set δ = 1.

Figure 5 reports the responses allowing for these nonlinearities. It shows that for both specifications

of f (xt) an unexpected exogenous monetary tightening causes the federal funds rate to spike, followed

by a gradual decline. Real GDP experiences a sustained, but temporary decline with a delay of about

two quarters. Inflation shows a hump-shaped response, but that response is negligible relative to

the variation in the federal funds rate. For comparison, we also include the responses based on the

corresponding model excluding f (xt). As Figure 5 illustrates, the inclusion of f (xt) = max(0, xt)

makes little difference for the responses of inflation and of the federal funds rate, but greatly reduces

the economically implausible positive short-run response in real GDP associated with an unexpected

monetary tightening in the model that does not allow for asymmetric responses. The inclusion of

f (xt) = x3
t , in contrast, does not make much of a difference.

8 Conclusion

The paper has focused on the identification and consistent estimation of impulse responses functions

in linear structural dynamic models with nonlinearly transformed regressors. We introduced a compu-

tationally effi cient control function approach to estimating the population responses to a given shock

without taking a stand on how the remainder of the model is identified. We provided suffi cient condi-
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tions for the asymptotic validity of this estimator that cover many of the model specifications currently

in use in applied work. We contrasted our approach with local projection and Monte Carlo integration

estimators.

An obvious next step would be to provide formal justification for the construction of bootstrap

confidence intervals for these response functions and the use of bootstrap critical values in testing

restrictions on the response functions. Another interesting question for future research would be the

development of impulse response estimators for more general nonlinear models. One example is models

with state dependence where the effect of a shock, for example, may depend on whether the economy is

in recession or not. Another example is models with smooth threshold effects. Such nonlinear models

are inherently different from the models studied in the current paper in that the regression models

themselves are nonlinear in the parameters.
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A Appendix: Proofs

Proof of Proposition 3.1. We can write (7) as(
xt
yt

)
= µ+ Θ·1 (L) ε1t + Θ·2 (L) ε2t + Γ (L) f (xt) , (21)

where

Θ0,·1 =

(
1
B21

0

)
, Θ0,·2 =

(
0
B22

0

)
and Γ0 =

(
0

B21
0 C0,21

)
.

To see this, note that Ψ (L) = In + Ψ1L+ Ψ2L
2 + . . . , implying that

Θ (L) = B−1
0 + Ψ1B

−1
0 L+ Ψ2B

−1
0 L2 + . . . ≡ Θ0 + Θ1L+ Θ2L

2 + . . . .

Hence,

Θ0 = B−1
0 =

(
1 0
B21

0 B22
0

)
≡
(

Θ0,·1 Θ0,·2
)
.

Similarly, we can write

Γ (L) = Γ0 + Γ1L+ Γ2L
2 + . . . ,

where in particular

Γ0 = B−1
0 C0 =

(
1 0
B21

0 B22
0

)(
0

C0,21

)
=

(
0

B21
0 C0,21

)
≡
(

Γ0,11

Γ0,21

)
The form of Θ0 and Γ0 implies that xt does not depend on the current value of ε2t (because Θ0,12 = 0)

nor does it depend on f (xt) (since Γ0,1 = 0). However, it may depend on past values of ε2t and f (xt).

Equation (21) and our definition of the shock sequences then imply

zt+h (δ)− zt+h = Θh,·1δ + Γ0 [f (xt+h (δ))− f (xt+h)] + . . .+ Γh [f (xt (δ))− f (xt)] , (22)

which describes a system of equations. The first equation is

xt+h (δ)− xt+h = Θh,11δ + Γ0,11︸︷︷︸
=0

[f (xt+h (δ))− f (xt+h)] + . . .+ Γh,11 [f (xt (δ))− f (xt)]

= Θh,11δ + Γ1,11 [f (xt+h−1 (δ))− f (xt+h−1)] + . . .+ Γh,11 [f (xt (δ))− f (xt)] ,

where we have used the fact that Γ0,11 = 0 due to our restrictions on B0 and C0. The remaining

equations of the system are given by

yt+h (δ)− yt+h = Θh,21δ + Γ0,21 [f (xt+h (δ))− f (xt+h)] + . . .+ Γh,21 [f (xt (δ))− f (xt)] .

This implies

IRFh,δ = Θh,21δ + Γ0,21E [f (xt+h (δ))− f (xt+h)]︸ ︷︷ ︸
≡Ah,δ

+ . . .+ Γh,21E [f (xt (δ))− f (xt)]︸ ︷︷ ︸
≡A0,δ

.

Next, we provide two lemmas that are instrumental in proving Theorem 4.1.
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Lemma A.1 Under Assumptions 1-5, π̂ − π P−→ 0.

Proof. We first show the consistency of π̂ =
(
π̂′1, π̂

′
2

)′ towards π. The proof that
π̂1 − π1 =

 1

T

T∑
t=1+p

w1tw
′
1t

−1

1

T

T∑
t=1+p

w1tε1t

converges to 0 follows from standard arguments since {w1tw
′
1t} is stationary and ergodic (which follows

from Assumption 2). This implies that 1
T

∑T
t=1+pw1tw

′
1t

P−→ Σw1 > 0 (given Assumptions 4 and 5).

Similarly, we can show 1
T

∑T
t=1+pw1tε1t

P−→ E (w1tε1t) = 0, where the orthogonality conditions can be

verified under Assumption 1. In particular, w1t depends on Zt−1 = (zt−1, . . . , zt−p), where zt = (xt, y
′
t)
′,

which is only a function of lags of εt = (ε1t, ε2t) and their nonlinear transforms. Assumption 1 then

implies that E (w1tε1t) = 0, delivering the result. To establish the consistency of π̂2 towards π2, let

Π∗2
d2×n1

=

 1

T

T∑
t=1+p

w2tw
′
2t

−1

1

T

T∑
t=1+p

w2ty
′
t ≡

[
π∗2,1, . . . , π

∗
2,n1

]
,

and note that the consistency ofΠ∗2 towardsΠ2 follows from the orthogonality conditions E (u∗2tw
′
2t) = 0

provided Σw2 ≡ E (w2tw
′
2t) is nonsingular (which holds under Assumption 5). Next we show that

replacing ŵ2t with w2t is asymptotically valid. We consider

Π̂2 = [π̂2,1, . . . , π̂2,n1 ] =

 1

T

T∑
t=1+p

ŵ2tŵ
′
2t

−1

1

T

T∑
t=1+p

ŵ2ty
′
t,

where ŵ2t = w2t +Rt, with

Rt =

(
0

ε̂1t − ε1t

)
and ε̂1t − ε1t = −w′1t (π̂1 − π1) .

We can write

Π̂2 −Π∗2 = ζ1 + ζ2,

ζ1 =


 1

T

T∑
t=1+p

ŵ2tŵ
′
2t

−1

−

 1

T

T∑
t=1+p

w2tw
′
2t

−1 1

T

T∑
t=1+p

ŵ2ty
′
t,

ζ2 =

 1

T

T∑
t=1+p

w2tw
′
2t

−1

1

T

T∑
t=1+p

(ŵ2t − w2t) y
′
t.

Next we show that ζ1 = oP (1) and ζ2 = oP (1). Starting with ζ1, note that

1

T

T∑
t=1+p

ŵ2tŵ
′
2t =

1

T

T∑
t=1+p

w2tw
′
2t +

1

T

T∑
t=1+p

w2tR
′
t +

1

T

T∑
t=1+p

Rtw
′
2t +

1

T

T∑
t=1+p

RtR
′
t. (23)
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The first term on the RHS of (23) converges to Σw2 , which is positive definite by assumption, so it

suffi ces to show that the last three terms converge in probability to zero. Take for instance the second

term:

1

T

T∑
t=1+p

w2tR
′
t =

1

T

T∑
t=1+p

w2t

(
0′ ε̂1t − ε1t

)
=
(

0′ 1
T

∑T
t=1+pw2t (ε̂1t − ε1t)

)
,

We need to show that

1

T

T∑
t=1+p

w2t (ε̂1t − ε1t) = − 1

T

T∑
t=1+p

w2tw
′
1t (π̂1 − π1) = oP (1) .

This follows provided π̂1 − π1 = oP (1) and 1
T

∑T
t=1w2tw

′
1t →P Σw1w2 . Similarly, we can write

1

T

T∑
t=1+p

RtR
′
t =

1

T

T∑
t=1+p

(
0

ε̂1t − ε1t

)(
0′ ε̂1t − ε1t

)
=

(
0 0

0 1
T

∑T
t=1+p (ε̂1t − ε1t)

2

)
,

where
1

T

T∑
t=1+p

(ε̂1t − ε1t)
2 = (π̂1 − π1)′

1

T

T∑
t=1+p

w1tw
′
1t (π̂1 − π1) = oP (1) .

Thus,
(

1
T

∑T
t=1+p ŵ2tŵ

′
2t

)−1
−
(

1
T

∑T
t=1+pw2tw

′
2t

)−1
= oP (1). To conclude that ζ1 = oP (1), it suffi ces

that 1
T

∑T
t=1+p ŵ2ty

′
t = OP (1). To see this result, write

1

T

T∑
t=1

ŵ2ty
′
t =

1

T

T∑
t=1

w2ty
′
t +

1

T

T∑
t=1

(ŵ2t − w2t) y
′
t =

1

T

T∑
t=1

w2ty
′
t +

1

T

T∑
t=1

Rty
′
t,

and note that the first term on the RHS is OP (1) whereas the second term is oP (1). The proof that

ζ2 = oP (1) follows from similar arguments. This completes the proof of the consistency of Π̂2 towards

Π2.

Lemma A.2 Under Assumptions 1-6, Âj,δ −Aj,δ
P−→ 0 for j = 0, 1, . . . , h.

Proof. For each j = 1, . . . , h, we can write Âj,δ −Aj,δ = I1 + I2, where

I1 =
1

T − h

T−h∑
t=1

(
f
(
gj,δ

(
xt+j , xt+j−1, . . . , xt; β̂j

))
− Ef

(
gj,δ

(
xt+j , xt+j−1, . . . , xt;βj

)))
and

I2 =
1

T

T∑
t=1

(f (xt+j)− Ef (xt+j)) .

Under Assumptions 2 and 3, by a standard law of large numbers for stationary ergodic processes,

I2 = oP (1). To show that I1 = oP (1), we first apply a uniform law of large numbers for stationary

ergodic processes. Specifically, we verify conditions (i) through (iii) of Theorem 4.1 of Wooldridge
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(1994, p. 2651). By Assumption 6, βj is in a compact set, thus verifying his condition (i). Since

gj,δ
(
xt+j , xt+j−1, . . . , xt;βj

)
is a continuous functions of βj , it suffi ces to assume that f is a continu-

ous function to conclude that f
(
gj,δ

(
xt+j , xt+j−1, . . . , xt;βj

))
is continuous in βj , which verifies his

condition (ii). Finally, the dominance condition (iii) holds under our Assumption 6. The desired result

then follows from Lemma A.1 of Wooldridge (1994), given the consistency of π̂ for π and the fact that

the estimators Θ̂·1 (L) and Γ̂ (L) are continuous functions of π̂.

Proof of Theorem 5.1. The proof is omitted as it follows standard arguments.

Proof of Proposition 5.1. We prove the result for h ≥ p. The proof for 0 ≤ h < p is similar,

but requires some adjustments. In order to simplify the notation, we rewrite the second equation of

the bivariate structural model with xt = ε1t as

yt = k2 + β0xt + β (L)xt−1 + ρ (L) yt−1 + c (L) f (xt) + ε2t.

This implies that

yt = µ+ θ (L)xt + γ(L)f (xt) + ψ (L) ε2t,

where

ψ(L) = (1− ρ (L)L)−1 = (1 + ψ1L+ ψ2L
2 + ....),

θ (L) = ψ (L) (β0 + β (L)L) = θ0 + θ1L+ θ2L
2 + ..., and

γ (L) = ψ (L) c (L) = γ0 + γ1L+ γ2L
2 + ....,

which yields

yt+h = µ+ θ(L)xt+h + γ(L)f (xt+h) + ψ (L) ε2t+h.

Note that with this notation, θ (L) = Θ21 (L) and γ (L) = Γ21 (L). Given the definition of θ (L), we

have that

θ(L)xt+h = ψ (L)
(
β0 + β1L+ . . .+ βpL

p
)
xt+h = ψ (L)β0xt+h+ψ (L)β1xt+h−1+. . .+ψ (L)βpxt+h−p.

We can further decompose each of the terms above using the definition of ψ (L) . This yields

θ(L)xt+h =
(
β0ψh + β1ψh−1 + . . .+ βpψh−p

)︸ ︷︷ ︸
=θh

xt + u1,t+h + u2,t+h,

where θh ≡ Θh,21, and

u1,t+h ≡ β0

{
1 + ψ1L+ . . .+ ψh−1L

h−1
}
xt+h︸ ︷︷ ︸

={xt+h,...,xt+1}

+ β1

{
1 + ψ1L+ . . .+ ψh−2L

h−2
}
xt+h−1︸ ︷︷ ︸

={xt+h−1,...,xt+1}

+ . . .

+βp

{
1 + ψ1L+ . . .+ ψh−p−1L

h−p−1
}
xt+h−p︸ ︷︷ ︸

={xt+h−p,...,xt+1}

33



is a (linear) function only of future values of x, {xt+1, . . . , xt+h}.9 Note that because xt = ε1t, which

is assumed to be i.i.d., we have that E (u1,t+h) = 0. In addition, u1,t+h is orthogonal to xt, f (xt),

their lags as well as lags of yt. Instead, the term u2,t+h is defined as

u2,t+h = β0

{
ψh+1L

h+1 + ψh+2L
h+2 + . . .

}
xt+h + β1

{
ψhL

h + ψh+1L
h+1 + . . .

}
xt+h−1 + . . .

+βp

{
ψh−p+1L

h−p+1 + . . .
}
xt+h−p

and is a function only of past values of x. We can rewrite u2,t+h as

u2,t+h = ψh+1

{
β0 + β1L+ . . .+ βpL

p
}︸ ︷︷ ︸

=β0+β(L)

xt−1 +
(
β1ψh + β2ψh−1 + . . .+ βpψh−p+1

)︸ ︷︷ ︸
≡πx,1,h

xt−1

+ . . .

+ψh+p

{
β0 + β1L+ . . .+ βpL

p
}︸ ︷︷ ︸

=β0+β(L)

xt−p︸︷︷︸
=Lp−1xt−1

+
(
βpψh

)︸ ︷︷ ︸
≡πx,p,h

xt−p

+ψh+p+1

{
β0 + β1L+ . . .+ βpL

p
}
xt−p−1 + . . .

= πx,1,hxt−1 + . . .+ πx,p,hxt−p︸ ︷︷ ︸
=πx(L)xt−1

+
(
ψh+1 + ψh+2L+ . . .

)
(β0 + β (L))xt−1.

Assembling these results yields

θ(L)xt+h = πx,hxt + πx,h (L)xt−1 +
(
ψh+1 + ψh+2L+ . . .

)
(β0 + β (L))xt−1 + u1,t+h,

where πx,h = θh ≡ Θh,21 and

πx,h (L) = πx,1,h + πx,2,hL+ . . .+ πx,p,hL
p−1.

Proceeding the same way, we have that

γ(L)f (xt+h) = πf,hf (xt) + πf,h (L) f (xt−1) +
(
ψh+1 + ψh+2L+ . . .

)
γ (L) f (xt−1) + w1,t+h,

where πf,h = γh ≡ Γh,21, πf (L) = πf,1,h + . . .+ πf,p,hL
p−1, and

w1,t+h ≡ γ0

{
1 + ψ1L+ . . .+ ψh−1L

h−1
}
f (xt+h)︸ ︷︷ ︸

={f(xt+h),...,f(xt+1)}

+ γ1

{
1 + ψ1L+ . . .+ ψh−2L

h−2
}
f (xt+h−1)︸ ︷︷ ︸

={f(xt+h−1),...,f(xt+1)}

+ . . .+ γp

{
1 + ψ1L+ . . .+ ψh−p−1L

h−p−1
}
f (xt+h−p)︸ ︷︷ ︸

={f(xt+h−p),...,f(xt+1)}

,

and it can be shown that

w2,t+h = πf,1,hf (xt−1) + . . .+ πf,p,hf (xt−p) +
(
ψh+1 + ψh+2L+ . . .

)
γ (L) f (xt−1) .

9Henceforth, and in order to simplify the notation, we will use {zt+1, . . . , zt+h} to denote a linear combination of the
variables inside the curly brackets.
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Because E (f (xt)) 6= 0, for any t (due to the nonlinearity of f), E (w1h) 6= 0, so we need to add and

subtract πc,h ≡ E (w1h) from the equation that defines yt+h. Hence, we can write

yt+h = πc,h + θhxt + γhf (xt) + πx,h (L)xt−1 + πf,h (L) f (xt−1) + at+h + vt+h,

where

at+h =
(
ψh+1 + ψh+2L+ . . .

)
((β0 + β (L))xt−1 + γ (L) f (xt−1) + ε2t−1)︸ ︷︷ ︸ =

=ρ(L)yt−1

(
ψh+1 + ψh+2L+ . . .

)
ρ (L) yt−1

and

vt+h = ψhε2t + u1,t+h + (w1,t+h − E (w1,t+h)) + {ε1t+h, . . . , ε2t+1} .

It can be shown that vt+h has mean zero and is orthogonal to xt, f (xt) and their lags using the proper-

ties of the structural errors ε1t and ε2t. To complete the proof, we show that at+h ≡
(
ψh+1 + ψh+2L+ . . .

)
ρ (L) yt−1

can be written as a linear function of yt−1, . . . , yt−p. This follows from proving that
(
ψh+1 + ψh+2L+ . . .

)
ρ (L)

is a lag polynomial of order p− 1 using the definition of ψh. To show this, recall that for any h ≥ p,

ψh = ψh−1ρ1 + ψh−2ρ2 + . . .+ ψh−pρp. Thus,(
ψh+1 + ψh+2L+ . . .

) (
1− ρ1L− . . .− ρpLp

)
= ψh+1 − ρ1ψh+1L− . . .− ρpψh+1L

p + ψh+2L− ρ1ψh+2L
2 − . . .− ρpψh+2L

p+1

+ . . .+ ψh+pL
p−1 − ρ1ψh+pL

p − . . .− ρpψh+pL
2p−1 + . . .

= ψh+1︸ ︷︷ ︸
≡πy,1,h

+
(
ψh+2 − ρ1ψh+1

)︸ ︷︷ ︸
≡πy,2,h 6=0

L+
(
ψh+3 − ρ1ψh+2 − ρ2ψh+1

)︸ ︷︷ ︸
≡πy,3,h 6=0

L2

+ . . .+
(
ψh+p − ρ1ψh+p−1 − . . .− ρp−1ψh+1

)︸ ︷︷ ︸
=ρpψh≡πy,p,h 6=0

Lp−1 +
(
ψh+p+1 − ρ1ψh+p − . . .− ρpψh+1

)︸ ︷︷ ︸
=0

Lp + . . .

= πy,1,h + πy,2,hL+ . . .+ πy,p,hL
p−1.

This concludes the proof.
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B Appendix: Conditional impulse response functions

For illustrative purposes, consider the simplified model
xt = b1 + φxt−1 + ε1t,

yt = b2 + βxt + ρyt−1 + cf (xt) + ε2t,

and the conditional IRF

IRFh,δ (Ωt−1) = E (yt+h (δ)− yt+h|Ωt−1) ,

where h = 0, 1, 2, . . . ,H and Ωt−1 = {xt−1, yt−1, . . .}. For this model,

yt+h (δ)− yt+h = Θh,21δ + Γ0,21

[
f
(
xt+h + φhδ

)
− f (xt+h)

]
+ . . .+ Γh,21 [f (xt + δ)− f (xt)] ,

where Θh,21 = β
(
φh + ρφh−1 + . . .+ ρh

)
, Γh,21 = cρh. To obtain the conditional IRF, we need to

evaluate the expected value of f
(
xt+j + φjδ

)
− f (xt+j), conditionally on Ωt−1. We obtain

IRFh,δ (Ωt−1) = Θh,21δ + Γ0,21Ch,δ + . . .+ Γh,21Ch,δ,

where now

Cj,δ ≡ E
[
f
(
xt+j + φjδ

)
− f (xt+j) |Ωt−1

]
for j ≥ 0.

We can characterize analytically the nonlinear terms Cj,δ, if we are willing to impose further assump-

tions on f(xt) and on the conditional distribution of xt+j given Ωt−1. Consider for instance the case

where f (xt) = max (xt, 0) and suppose we care about h = 0. Then

C0,δ = E [f (xt + δ)− f (xt) |Ωt−1] = E [f (xt + δ)− f (xt) |xt−1] ,

where Ωt−1 = {xt−1} since xt = b1 + φxt−1 + ε1t. If we assume in addition that ε1t|xt−1 ∼ N
(
0, σ2

)
,

then standard derivations imply that

C0,δ =

[
Φ

(
b1
σ

+
φ

σ
xt−1 +

δ

σ

)
− Φ

(
b1
σ

+
φ

σ
xt−1

)]
(b1 + φxt−1) + δΦ

(
b1
σ

+
φ

σ
xt−1 +

δ

σ

)
+σ

[
φf

(
b1
σ

+
φ

σ
xt−1 +

δ

σ

)
− φf

(
b1
σ

+
φ

σ
xt−1

)]
,

where φf and Φ denote the pdf and cdf of a standard normal distribution.10 This example illustrates

that the conditional IRF at horizon h = 0 is a complicated nonlinear function of xt−1 which depends

on the distribution of ε1t.11

10These derivations are similar to those used to analyze the Tobit regression model.
11A similar approach in a different context has been taken by Mavroeidis (2020) who considers a model in which yt

depends on xt and f (xt) = max(xt, 0), where xt is latent. Mavroeidis derives the conditional response of yt+h to xt
under the maintained assumption of Gaussian errors.
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Although the derivations above could be extended to horizons h > 0, it is clear that the validity

of a plug-in estimate of the conditional IRFs based on the resulting analytical expressions would

depend on strong parametric assumptions on ε1t and on the functional form of f(xt). If the model

is fully recursive, our recommendation would be to rely on the Monte Carlo integration approach for

constructing the conditional responses, which does not require restricting the distribution of ε1t. This

approach is not possible under the weaker assumption of a block recursive model, because the MCI

approach requires an estimate of the full structural model.
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Figure 1: The Accuracy of Alternative Impulse Response Estimators, T = 240
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Figure 2: Accuracy of Alternative Impulse Response Estimators Under Dynamic Misspecification,
T = 240
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Figure 3: MSE Convergence of the Plug-in Estimator, f(xt) = max(0, xt)
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Figure 4: MSE Convergence of the Plug-in Estimator, f(xt) = x3
t
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Figure 5: The Effect of an Unexpected U.S. Monetary Tightening When f(xt) = max(0, xt) (Upper
Panel) and f(xt) = x3

t (Lower Panel)
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