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Abstract

I show that oligopsony power of firms over their input suppliers could either in-
crease or decrease their technology adoption, depending on the direction of tech-
nical change and the technology’s Hicks-neutral effects. I illustrate this in an
empirical application that features oligopsonistic labor markets and a large tech-
nology shock: the introduction of mechanical coal cutters in the 19th century
[llinois coal mining industry. By estimating a model of coal production and labor
supply using rich mine-level data, I find that the returns to cutting machine adop-
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1 Introduction

There is increasing empirical evidence for the existence of oligopsony power across various industries,
countries, and types of factor markets.! When studying the welfare consequences of such oligopsony
power, prior research has typically assumed that oligopsony power does not affect firms’ technology
choices. In contrast to this stands a large literature that studies the effects of imperfect product market
competition on innovation incentives.? This paper fills this gap by examining how oligopsony power
affects innovation. The focus of the paper lies on the adoption of new technologies, rather than on
their invention, and on process innovations, which affect the cost side of production, rather than on
product innovations, which shift the product demand curve.

I start the analysis with a theoretical model of a firm that produces a homogeneous good using
two homogeneous inputs, and faces log-linear upward-sloping input supply curves. The firm is both
a monopolist downstream and a monopsonist upstream, and hence sets the price of each input at a
markdown below its marginal revenue product. I consider the introduction of a new technology that
could have factor-biased effects, by changing the marginal rate of technical substitution, and/or could
change Hicks-neutral productivity. A first key result is that the relative change in profits following
technology adoption weakly increases with the markdown over the input towards which the technol-
ogy is biased, but falls with the markdown over the other input. The intuition behind this result is that
adopting a technology is more profitable if it increases demand for the factor of which the input price
markdown is the highest, because that is the factor from which the firm extracts the highest surplus. A
second key result is that technology adoption increases with the price markdown of the input towards
which the technology is biased. The net effect of the price markdown of the other input on technology
adoption depends on the relative size of the rotation and shift of the production isoquant.

Given that the effect of oligopsony power on technology adoption has an ambiguous sign, and to
quantify its size, I turn to an empirical application. I study how the mechanization of the Illinois
coal mining industry between 1884 and 1894 was affected by oligopsony power on the market for
coal miners. There are three reasons why this provides an interesting setting to study the relationship
between oligopsony power and innovation. Firstly, 19th century Illinois coal mining towns are a
textbook example of classical oligopsony power, as local labor markets were isolated and highly
concentrated due to prohibitive commuting distances between towns. Up to 1898, wages were set
unilaterally by firms, without collective bargaining with labor unions. Secondly, the introduction of
coal cutting machines in the U.S. in 1882, which started the transition from manual to mechanical
mining, provides a large technological shock. The data set tracks the usage of these cutting machines
over time, together with input and output quantities, wages and coal prices, all at the mine level.

Thirdly, bituminous coal firms are single-product firms producing a nearly homogeneous product,

ISee literature reviews by Ashenfelter et al. (2010) and Manning (2011), and recent papers by, among others, Naidu et al.
(2016); Berger et al. (2019); Rubens (2020); Morlacco (2017); Lamadon et al. (2019); Kroft et al. (2020).

2Examples include, among many others, Schumpeter (1942), Aghion, Bloom, Blundell, Griffith, and Howitt (2005) and
Igami and Uetake (2017).



which facilitates the empirical analysis.

The central counterfactual question of the paper is how changes in labor market competition would
have affected cutting machine adoption.®> In order to answer this question, I construct an empirical
model of input supply and demand in the coal mining industry, which has three components. First,
I specify a production function for coal with three factors: skilled miners who cut coal, low-skilled
other workers who did a variety of tasks such as driving mules and sorting coal, and capital, in the
form of cutting machines. I rely on a Cobb-Douglas production function in both labor types, but
with output elasticities that are a function of cutting machine usage, and that vary flexibly across

firms and over time.*

This is crucial because anecdotal historical evidence strongly suggests that
cutting machines were not Hicks-neutral, but biased towards unskilled workers, similarly to many
other technologies throughout the 19th century (James & Skinner, 1985; Mokyr, 1990; Goldin &
Katz, 2009). Second, I specify a coal demand model in which coal firms compete along the same
railroad in a static Cournot game, assuming their output is undifferentiated given their location. The
production function and coal demand model jointly determine the demand for all inputs. Thirdly,
the supply for each labor type is modelled as a log-linear supply curve of which both the supply
elasticity and vary flexibly across firms and over time. I assume that firms are homogeneous from
the employees’ point of view, and model labor market competition as a static Cournot employment-
setting game. The capital market is assumed to be perfectly competitive, with perfectly elastic supply
of cutting machines. In contrast to the theoretical model, which has monopsonistic labor markets, the
empirical model features oligopsonistic labor markets, as most labor markets contained multiple coal
firms.’

I estimate the production model with firm-level data on output and input quantities, and rely both
on the profit maximization assumption and on input timing assumptions for identification. I find
that cutting machines were unskill-biased, which confirms contemporaneous anecdotal evidence, and
increased Hicks-neutral productivity.® The coal demand model is used using market-level price and
quantity data, and is identified by exploiting geological variation in the thickness of coal seams as cost
shifters that are excluded from consumer utility. Finally, the labor supply model is estimated using
labor-market level data on wages and employment, and is identified using seasonal weather variation,
which shifts labor demand but is assumed not to shift labor supply.” The labor supply estimates reveal
a moderate degree of oligopsony power over skilled workers, but no oligopsony power over unskilled

workers.?

3Such changes in competition could be due to competition policy, or to technological change that change labor supply
elasticity, such as improved mobility infrastructure that expands the employment choice set of workers.

“In other words, I allow for the technology to change both 3 and A in Y = AHPL*~#, and I allow for unobserved
variation across firms and time in both A and 5.

>The empirical model collapses to the theory model when assuming that labor market shares become one, meaning that
every firm is its own market.

®With the aforementioned production function Y = AH?L*~#, cutting machines lowered 3 and increased A.

"Evidence motivating this assumption is discussed in the paper.

8Miner skills, such as building mine roofs or knowing how thick pillars should be in order to avoid collapse, were not
easily transferable to other industries. This explains why coal mines enjoyed some wage-setting power over their skilled



I combine the estimated labor supply and demand model to find the equilibrium, which is a func-
tion of labor market structure. Using the estimated model, I conduct the counterfactual exercise of
how changes in labor market structure would affect the returns to, and adoption of, new technolo-
gies. I carry out this exercise both for the actual production technology, cutting machines, and for
two counterfactual technologies: one that is skill-biased, such as mining locomotives, and another
one that is unskill-biased without Hicks-neutral productivity effect, meaning that it only rotates but
does not shift the production isoquant. I find that increasing labor market competition would increase
the returns to cutting machine adoption: moving from one to ten employers per labor market would
increase the average return to cutting machine adoption by 16%. The usage rate of cutting machines
would, however, barely change with changing labor market competition. If the technology would
have been skill-biased rather than unskilled-biased, changes in labor market competition would have
very different effects. Moving from one to ten firms per labor market would now decrease the aver-
age return to machine adoption by 5%, and technology usage would drop by 50%. Finally, if cutting
machines would have been purely unskill-biased, without any Hicks-neutral effect, the same increase
in labor market competition would increase the returns to cutting machine adoption by 7% and in-
crease machine usage by 23%. Hence, both the direction and Hicks-neutral productivity effects of the
technology are crucial determinants of the size and direction of how labor market competition affects
technology adoption.

Although the empirical setting of the paper is historical, the model has important current-day impli-
cations. For instance, it sheds new light on how oligopsony power on labor markets affects automation
incentives. Although technologies were mostly unskill-biased throughout the 19th century, they have
been skill-biased throughout the last part of the 20th century.” Hence, the effects of oligopsony power
over low- and high-skilled workers on automation incentives may have inverted between the 19th and
20th century. Moreover, oligopsony power over high- and low-skill workers affects automation incen-
tives differently. Knowing both the direction of technical change and the relative wage markdowns
for different types of workers is therefore crucial to determine how oligopsonistic labor markets affect
technological change today. Especially the latter is a mostly open empirical question: the labor liter-
ature has mainly focused on oligopsony power over low-skilled workers, such as Card and Krueger
(1994), for instance due to a lack of outside options of workers (Schubert, Stansbury, & Taska, 2020).
Non-compete clauses are, however, most frequent among high-skilled jobs in the U.S. (Starr et al.,
2020). The model also has implications beyond the study of labor markets. Energy-saving production
technologies are another example of directed technological change. If energy-intensive manufactur-
ing firms have some local market power on energy markets, the model can be used to understand how
such market power affects the incentives to adopt technologies that are more energy-efficient.

By examining the effect of oligopsony power on directed technological change, this paper con-

laborers, but not over their unskilled laborers, who could switch to other jobs at a lower financial loss.

90r, or at least, hollowing out the center of the skill and income distribution Autor et al. (2006); Goos and Manning
(2007); Goos et al. (2014). (Katz & Margo, 2014) argue this also held for technical change during the second industrial
revolution.



tributes to four different sets of literature. First, it fits within a large literature that studies the relation-
ship between competition and innovation (Schumpeter, 1942; Aghion et al., 2005; Collard-Wexler &
De Loecker, 2015; Hashmi & Van Biesebroeck, 2016; Igami & Uetake, 2017). Whereas this liter-
ature studies the effects of product market power on innovation, the focus of this paper lies on the
innovation effects of input market power. In their study of tomato harvesters, Just and Chern (1980)
examine how oligopsony power of buyers affects technology adoption of their suppliers, and the same
holds for Huang and Sexton (1996), Kohler and Rammer (2012), and Parra and Marshall (2021). In
contrast, [ focus on technology adoption by the buyers who exert oligopsony power. Inderst and Wey
(2003) and Loertscher and Marx (2020) equally study investment and buyer power, but in bilateral
oligopoly, rather than oligopsony. They also do not consider directed technological change. Finally,
Goolsbee and Syverson (2019) find that monopsony power over tenure-track faculty induces univer-
sities to substitute these workers for adjunct faculty members. In contrast to their paper, I endogenize
the choice of the production technology.'”

Secondly, this paper builds on a large literature on directed technological change and factor bias. I
contrast with the seminal models of directed technical change such as Autor et al. (2003); Acemoglu
(2002, 2003) and Antras (2004), I do not focus on the invention of new technologies, but take the
arrival of a new technology as exogenous, and examine differences in the adoption of new technolo-
gies between firms. Another important difference is that I allow input prices to be endogenous from
the point of view of individual firms, meaning that labor supply functions are upward-sloping to the
firms. By relaxing the assumption that input prices are exogenous to individual firms, I also contribute
to the literature on production function identification with non-Hicks-neutral technical change, such
as Doraszelski and Jaumandreu (2017), and Demirer (2020). However, I impose stronger assump-
tions on the substitution elasticity between production inputs and on the transition process of output
elasticities and Hicks-neutral productivity. This paper is also related to contemporaneous work by
Haanwinckel (2018) and Lindner et al. (2019), who examine the effects of skill-biased technologies
on skill demand and wage inequality with imperfectly competitive labor markets. This paper is dis-
tinct from these papers by allowing for factor-biased technology choices that are endogenous to the
degree of oligopsony power on factor markets.

Thirdly, this paper relates to the literature on the welfare effects of market power in general
(De Loecker et al., 2020; Edmond et al., 2018), and of oligopsony power in particular (Manning,
2013; Berger et al., 2019; Morlacco, 2017). I contribute to this literature by showing that the adoption
of new technologies is endogenous to the degree of oligopsony power, and hence also productivity
growth. This is an additional channel through which (input) market power shapes aggregate outcomes
and, ultimately, welfare. A subset of this literature focuses on the productivity consequences of mar-
ket power through its effects on allocative efficiency (Harberger, 1954; Asker et al., 2019). This paper

is complementary to these approaches: oligopsony affects aggregate productivity not only through

10Whereas Goolsbee and Syverson (2019) only allow for changes along the production isoquant, keeping the isoquant
fixed, I allow for both changes along the isoquant and changes of the isoquant itself, due to technological change.



reallocation, but also by affecting technology choices, which in term determine productive efficiency.

Finally, this paper contributes to a literature on labor market power during the industrial revolution.
In his ‘induced innovation’ hypothesis, Hicks (1932) posited that labor-saving technological change
is more likely if wages are high, because cost savings are then higher as well. This theory has been
forwarded as a reason why Britain was the first country to experience an industrial revolution (Allen,
2009)!!, and has been studied empirically by Hanlon (2015) and Dechezleprétre, Hémous, Olsen, and
Zanella (2019). However, the induced innovation hypothesis has been critized by Salter (1966) and
Acemoglu (2002) because the notion ‘expensive input’ does make sense if factor prices are equal to
marginal products. I solve this logical inconsistency by allowing for a wedge between factor prices
and marginal products, and find that the relevant metric to understand innovation incentives is not
which factor has the highest price, but which factor has the highest wedge between its price and
marginal product. I also contribute to a body of work on oligopsony power during the late 19th
century. Naidu and Yuchtman (2017) provides evidence of oligopsony power in 19th century U.S.
labor markets and its relationship with labor market institutions. Boal (1995) estimates inverse miner
supply functions in the context of West Virginian coal mines from 1897-1932, but uses aggregate data,
a different labor supply identification strategy, and assumes exogenous production technologies.

The remainder of this paper is structured as follows: Section 2 contains the theoretical model, Sec-
tion 3 the industry background, Section 4 the empirical model, its estimation, and the counterfactuals,

and Section 5 concludes.

2 Theory

2.1 Primitives
A Production

Consider a firm f that produces () units of a homogeneous product using two variable inputs, of
which the quantities are denoted H; and L;. Production is given by a Cobb-Douglas function, in
Equation (1a). The output elasticity of input V' € {H, L} at firm f is denoted 3. Scale returns are
parametrized as v = B}l + ﬁ}’, which is below, above or equal to one if returns to scale are decreasing,
increasing, and constant. Total factor productivity is denoted {2;. Firms can use a technology Ky &
{0, 1}, which has a common fixed cost ®.
BR(Ky) By (Ky)

Qp=H L0 (Ky) (la)
I let both the output elasticities and the Hicks—neu}bral productivity residual be a function of technology
usage. I call the technology K ‘H-biased’ if % > 0, because K then increases the marginal rate

"'This hypothesis that has in turn been critized by, among others, Humphries (2013).



of technical substitution of H for L, keeping factor proportions constant.!?

. o 0Bt . . Ot . .
biased’” technology if % < 0. The technology is ‘neutral’ if a%j; = 0, and ‘directed’ otherwise.

It is possible that the technology changes only Hicks-neutral productivity Q;(K), only the output

Conversely, K is an ‘L-

elasticities ﬁ}’(K 7), or both. I assume that the technology does not change the returns to scale.

Using a Cobb-Douglas production function with technology-specific output elasticities departs
from the canonical models on technical change, which usually rely on a constant elasticity of sub-
stitution (CES) production function. Although imposing a Cobb-Douglas elasticity between different
types of workers is clearly a strong assumption, I allow for directed technical change by making the
output elasticities a function of technology usage, and also allow for flexible variation in output elas-
ticities across both firms and time in the empirical application. The main benefit of the Cobb-Douglas
function is that it allows analytically expressing the market equilibrium even when labor supply func-
tions are upward-sloping to the individual firms.

B Input markets

Assume firm f is a monopsonist that belongs to exactly one market for each input. Input prices are
WJ’} and W} Each firm faces its own inverse supply functions, one for each input, as in Equation (1b).
The firm-level inverse supply elasticity, which is identical to the market-level supply elasticity due to
the monopsony assumption, is given by (1/)’]} — 1) for input H, and by (1/); — 1) for input L. Defining
1" this way gives it the interpretation of being the ratio of the marginal product of an input v over
its price. A value of one implies that the input price is equal to its marginal product. I assume that

the supply function for each input is weakly increasing in the input price, meaning that w}l > 1and
Pl > 1.

h h1
Wh = Hﬂf

(1b)
Wh= L

C Output market

Output is sold at a price P;. The firm is a monopolist on the output market, and faces a log-linear
demand curve with inverse elasticity 7, in Equation (Ic). I assume that the demand curve is either

horizontal or downward-sloping, which implies that < 0.

Pf = Q? (10)

IZMRTShl =

SRS
|
B3

=



2.2 Behavior and equilibrium
A Behavior

Variable profits are defined as [1; = PrQ s — W]’}H 1 — WL, while total profits are Hﬁ?t =1;—-®Ky.
I assume that firms choose the variable input quantities // and L that maximize the objective function
(1d), taking the technology K as given. The parameters x} € [1,%}] and p}y € [1,}] measure the
actual markdowns of each input price charged by the firm. Given that the firm is a monopsonist on
the market for H, the profit-maximizing markdown is equal to the inverse supply elasticity, ,u? = w?,
and similarly for the other input. The labor market equilibrium then lies in the point M in Figure
1b. The lower bound of the markdown, u? = 1, implies that the price of H is equal to the marginal
product of H, which corresponds to the competitive equilibrium on the market for /. In Figure 1a,
this equilibrium is depicted by the point C'. The markdowns /,L’} and ulf are ‘reduced-form’ parameters
for the degree of market power on each factor market. With a monopsonistic labor market, it might
seem strange that firms would ever set markdown different from the profit-maximizing markdown
,u?% = 1/)5}.13 Different types of labor market structure and competition imply, however, lower profit-
maximizing markdowns. For instance, in the empirical model in Section 4, the difference between
the actual markdown and the inverse input supply elasticity will be micro-founded by replacing the
monopsony assumption by an oligopsonistic Cournot model of the labor market, in which markdowns

are a function of labor market shares.

WiHg  WiLppy

1d
o m (1d)

P —

Solving the first order conditions to the optimization problem 1d results in the input demand functions

in Equation (le):

PrQy B} (1+1n)

Hf — W e
= — PrQyBY (1+4n)
pos T

By rewriting equation (le), the parameters " and ‘markdown ratio’ of the marginal product of

an input over its price. Denote the marginal product of input suppliers H as M R}l = m%ﬁf}”) =
B?PfQ #(1 4+ n). The ‘markdown ratio’ is the extent to which the marginal product of H exceeds its

price, which is equal to the parameter 1.

MR,
wy
13(Goolsbee & Syverson, 2019) also distinguish the actual markdown from the maximum markdown, which is the inverse

input supply elasticity.

= € [1, 4}




B Equilibrium

The supply and demand for goods is given by Equations (1a) and (Ic), supply and demand for inputs
by Equations (1b) and (le). Solving this system of equations yields the equilibrium expression for

output Q% in Equation (2a), at which both the goods and input markets are in equilibrium.

1
BEQ+n)  ph(1+n)

i (2a)

o [<6?(;;n))i<ﬁ}(2;rn))ﬁ9f 1

The equilibrium goods price, input prices, and input quantities are functions of this equilibrium
quantity. Equilibrium revenue is equal to Q}(H”). Equilibrium variable profits 11} are equal to the
Br+n) (V—B}‘)(Hn)),

1 1y ’

product of equilibrium revenues Q}(H") and the variable profit margin (1 —

B+ (V—ﬁ?)(Hn))

* * (1
I = Q1 +n>(1 _ l (2b)
oy oy
variable profit margin
Figure 1: Monopsony power and technology choice
(a) Competitive markdown: " = 1 (b) Monopsonistic markdown: ;" = )"
o mct w ;- Mc*
Supply" Supply"
MR"
MR M,
MRZ MR
MR MR
H H




2.3 The returns to technology adoption

With the equilibrium expressions at hand, I now considering how the effects of technology usage K

on variable profits I1.

A Relative profit return

I start by examining the relative profit returns to technology adoption, %

changes in profits, this ratio is approximated by the log of variable profits log(II). Theorem 1 says

. For small

that the markdown of an input price increases the relative returns to a technology that is biased towards

that input, but decreases the relative returns to a technology that is biased towards the other input.

Theorem 1 Consider a firm f that faces log-linear input supply and product demand curves (5)-
(6), a production function (1a) with weakly decreasing returns to scale, v < 1, and is a monopolist
on its output market. Then, the price markdown of an input weakly increases the relative variable
profit return to a technology that is biased towards that input, but weakly decreases the returns to a

technology that is biased towards the other input.

ol [ > 2 >

Fr 1z, o dly)) f=1{
0Ky | < oK | <
Proof: see Appendix B.1.

The intuition behind this result becomes clear from Figure 1. If the markdown ratio p is one,
meaning that wages are equal to marginal products, in Figure 1(a), no profit is made from H and L.
Hence, a technology that is biased towards L has no effect on variable profits, because these are zero to
begin with.!'* If the profit-maximizing markdown is charged, p* = 1", which corresponds to Figure
1(b), the firm derives profits from the wedge between the marginal product and price of input H.
Adopting the L-biased technology leads to lower usage of H, and hence lower profits extracted from
H. In other words, the higher the input price markdown, the larger the loss in profits if a technology
reduces usage of this input. This may seem counter-intuitive: in general, monopsony power leads to
firms pushing down the usage of an input in order to decrease its equilibrium price, a point also made
by Goolsbee and Syverson (2019). However, that is a movement along the input demand curve. |
consider shifts of the input demand curve due to technological change.

B Absolute profit return

Theorem 1 explained how markdowns affect the relative change in variable profits in response to
technology adoption. However, in order to understand technology adoption, we need to know the

4“With imperfect competition downstream, the technology can still increase profits.



effects of markdowns on the absolute change in total profits after machine adoption, II(K = 1) —
II(K = 0) — ®. Before doing so, I need an intermediate result: Lemma 1 says that variable profits
increase with markdowns.

Lemma 1 Variable profits increase with the markdown over any input: E—}’f > 0Vv € {h,l}

Proof: see Appendix B.2
I start with examining the absolute change in variable profits, in expression (3). To understand
the effect of markdowns on technology adoption, we need to know the sign of the left hand side of

Equation (3). ;2 (53)-

8 8Hf 8 8111(1_[]0) 8Hf é?Hf
= II — I 3
au;z(aKf) a;ﬂ;( 0K ) T ©)
N ~ / vv
A B C

Theorem 2 says that effect of a markdown on absolute technology returns is positive if the effect on
relative technology returns is positive, and ambiguous if the effect on relative technology returns is

negative.

Theorem 2 The markdown of an input price increases the absolute return to a technology that is
biased towards that input. It can increase or decrease the absolute return to a technology that is

biased towards the other input.

The proof is as follows. Consider the effect of an input price markdown for input /1, ,u?. Variable
profits II; are assumed to be positive, IT; > 0, otherwise the firm would not operate. From Lemma
1, the term B is positive, B > 0. The term C' is assumed to be positive, C' > 0: if adopting the
technology would decrease variable profits, firms would never adopt it. From Theorem 1, we know
that A > 0 if the technology K is H-biased, and that A < 0 if it is L-biased. Hence, if technology
K is H-biased, then the input price markdown of I always increases its absolute effect on variable
profits, because the entire right-hand side is positive. If, on the other hand, technology K is L-
biased, the effect of markdowns on the absolute profit return from K is ambiguous, as term A is
negative. Whether the markdown increases or decreases the absolute return to technology adoption
then depends on the relative size of the term A, which is negative and the product of terms B and C,
which is positive.

The intuition behind Theorem 2 is as follows. There are two reasons why the result in Theorem

1 will not necessarily translate to the absolute profit difference. First, the higher markdowns are, the
m(K=1)—n(K=0)
w(K=0)

', still considering an L-biased technology K, the absolute profit change 7(K = 1) — m(K = 0)

lower variable profits. Even if the relative profit change increases with the markdown

might be lower with a lower markdown as the baseline profit level 7(K = 0) is lower to begin with.

Secondly, if the technology lowers /3", this reduces the relative demand for H compared to L, as can

10



be seen from the input demand function (1e). However, if the technology also increases Hicks-neutral
productivity €2, it could be that the firm ends up using more of input H after adopting the technology.
In that case, a higher markdown over H could increase the absolute profit return from the technology.

C Hicks-neutral vs. factor-biased technology effects

Suppose the markdown decreases the relative return to technology adoption. Which factors then
determine whether the effect of the markdown on the absolute return to adoption will be negative or
positive? Lemma 3 says that the Hicks-neutral productivity effect is crucial, as was already explained

in the intuition above.

Lemma 2 The higher the effect of a technology on Hicks-neutral productivity, the more likely that

markdowns increase the absolute return to technology adoption.

Proof: see Appendix B.3

Now consider the limiting case of a neutral technology that only increases Hicks-neutral productiv-
ity €2 but not the output elasticities 5. Lemma 2 says that the markdown on any input market increases

the absolute return from such a technology.

Lemma 3 The absolute profit effect of a technology that weakly increases Hicks-neutral productivity
but does not change the output elasticity of any input then weakly increases with monopsony power

on either input market.
B > 2 >
8Kf 8Kf < aM?aKf <

Proof: see Appendix B.4.

The intuition here is as follows. An increase in Hicks-neutral productivity results in higher equilib-
rium output produced by the firm. The higher the degree of monopsony power a firm has, the higher
profits are, and hence the higher the change in the profit level due to an increase in productivity.

D Illustration using the calibrated model

I carry out a calibration exercise to illustrate the results above. I let the degree of scale returns be v =
0.9, draw the output elasticity 3" from a uniform distribution on the interval [0,v], with 1000 draws. I
let the market-level inverse input supply elasticities be 1" = 1) = 3, which means that a monopsonist
pays each of its input suppliers a third of their marginal product. I consider the relative and absolute
variable profit effect of a technology at ten different markdowns on the interval p € [1,4"]. T set

the inverse demand elasticity to n = —%. I consider four technologies. In Figure 2a, the technology

11



reduces the output elasticity of A by half, and is hence L-biased, but it does not change Hicks-neutral
productivity {2;. A second technology, in Figure 2b, doubles Hicks-neutral productivity, but does not
change the output elasticity f: Q(K = 1) = 2Q(K = 0). A third technology, in Figure 2¢c, both
halves ( and doubles €). A final technology, in Figure 2d, has the same effect on (3 as technology (¢),
but triples Hicks-neutral productivity: Q(K = 1) = 3Q(K = 0).

Figure 2: Returns to an L-biased technology: calibration
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For technology (a), moving from a competitive to a monopsonistic markdown lowers the relative
return to technology adoption from 11% to 0%, in line with Theorem 1. The absolute return drops
from 0.04 units to O units, but as explained by theorem 2, this effect could go in the other direction
depending on the parametrization of the model. For technology (b), which only changes Hicks-neutral
productivity, the relative returns to technology adoption do not change with the markdown, in line with

Theorem 1, and the absolute returns to adoption increase with the markdown. Lemma 3 says that is
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is true more in general. Technologies (c) and (d) both decrease the output elasticity of H, but also
increase Hicks-neutral productivity, by respectively 100% and 200%. For technology (c), the absolute
returns to technology adoption still fall with the markdown, but for technology (d), higher markdowns
lead to higher returns to innovation. This is a result of Lemma 2: for technology (c), the Hicks-neutral
productivity effect is too small to dominate the factor-biased effect of the technology, and markdowns
decrease returns to innovation, whereas the Hicks-neutral effect dominates for technology (d), making

markdowns increase the absolute return to innovation.

3 Coal mining in Illinois (1884-1902)

There are three reasons to complement the theoretical results in the previous section with empirical
analysis. First, following Theorems 1 and 2, the effect of markdowns on the returns to innovation
depend on the directed and Hicks-neutral productivity effects of the technology, and on which input
market the firm has monopsony power. Knowing these primitives requires some empirical analysis.
Secondly, in case the technology is biased towards the input over which the firm has monopsony
power, we know from Theorem 2 that markdowns increase the incentives to adopt that technology.
However, in order to know not just the direction but also the size of this effect, estimating a model
of input supply and demand is needed. Finally, if the technology is biased away from the input over
which the firm has monopsony power, we do not even know the sign of the effect of markdowns on
technology adoption incentives. In that case, empirical analysis is needed to both know the direction
and size of this effect.

As an empirical application, I study the adoption of coal cutting machines in the Illinois coal mining
industry between 1884 and 1902. This is an interesting setting because it features isolated labor
markets in the form of mining towns, which are likely to feature some oligopsony power, with a large
factor-biased technological innovation due to the invention of coal cutting machines. Before jumping

into the empirical model, I discuss the most important industry characteristics and the data sources.

3.1 Industry background
A Extraction process

The coal extraction process consisted of three consecutive steps. First, the coal seam had to be ac-
cessed, which usually required either a vertical ‘shaft’, a diagonal ‘slope’ or a horizontal ‘drift’,
depending on the geography of the mine. As large parts of Illinois are flat, 60% of the mines were
‘shaft’ mines.'> Second, upon reaching the seam, the coal wall was ‘undercut’, traditionally manu-
ally using picks, but from 1882 onward also with coal cutting machines. The mechanization of the

cutting process is considered to be the most significant technological change during this time period

SLess than 2% of the mines were surface mines that did not require any digging.
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(Fishback, 1992).1¢ Third, coal had to be transported back to the surface and sorted from impurities.
The hauling was done using mules or underground locomotives. Over 90% of output was hauled us-
ing locomotives. Mines used two types of intermediate inputs. First, black powder was used to blast
the coal wall. This was purchased by the miners, not by the firm. Secondly, coal itself was used to

power steam engines, electricity generators, and air compressors.'’

B Technological change: the coal cutting machine

The first mechanical coal cutter in the U.S.A. was invented by J.W. Harrisson in 1877, but it was
merely a prototype.'® The Harrisson patent was acquired and adapted by Chicago industrialist George
Whitcomb, whose ‘Improved Harrison Cutting Machine’ was released in 1882, of which the patent
is pictured in Figure A3a. An illustration of how the coal cutting machine was used is in Figure
A3b. Ninety percent of the cutting machines in the dataset are of this type. The spatial diffusion of
cutting machines is shown in Figure Al. As shown in Figure 3, the share of mines using a coal cutting
machine increased from below 2% to 9% between 1884 and 1902. Mechanized mines were larger:
their share of output increased from 7 to 30% over this same time period. The mechanization of the
hauling process, which replaced mules by underground locomotives, was another source of technical
change. This was largely accomplished in Illinois: the share of output mined in locomotive mines

was above 90%.

C Occupations

Coal mining involved a wide variety of different tasks. The inspector report from 1890 reports wages
at the occupation-level, and this subdivision is reported in Appendix Table A1 for the 20 occupations
with the highest employment shares, together covering 97% of employment. Three out of five workers
were miners, who did the actual coal cutting. This required a significant amount of skill: in order to
determine the thickness of the pillars, miners had to trade off lower output with the risk of collapse.
The other 40% of workers did a variety of tasks such as clearing the mine of debris (‘laborers’),
hauling coal to the surface using locomotives or mules (‘drivers’ and ‘mule tenders’), loading coal
onto the mine carts (‘loaders’), opening doors and elevators (‘trappers’), etc. The skills required
to carry out these tasks were usually less complex than those of the miners, and were moreover

not specific to coal mining: tending mules or loading carts are general-purpose tasks, in contrast to

16Two techniques existed to cut the coal: nine out of ten mines used a ‘rooms and pillars’ technique in which miners
excavated everything except pillars, which were left to sustain the roof. The other mines used so-called ‘longwall’
techniques in which miners temporarily constructed an artificial roof and allowed the room to collapse in a controlled
way.

17A fraction of the mine’s coal output was re-used as an energy input. I only observe reused coal inputs in 1902, and the
fraction of output that was re-used as an input was on average 5%, and 0% for the median mine. As I do not observe
this variable in all years, I do not take it into account in the model.

18Simultaneously, prototypes of mechanical coal cutting machines were invented in Northern England in the late 1870s
(Reid, 1876; Ackermann, 1902).
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Figure 3: Cutting machine adoption
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Notes: This graph plots the share of Illinois coal mines using at least one cutting
machine (solid line, left axis) and the share of output produced by mines with at least
one cutting machine (dashed line, right axis) over time.

undercutting coal walls."

Difference in industry-specific skills are reflected in daily wages: miners earned an average daily
wage of $2.3, which was higher than any other employees except for ‘pit bosses’ (middle managers),
and ‘roadmen’, who maintained and repaired mine tracks, but these two categories of workers repre-
sent barely 2% of the workforce. The higher wages of miners cannot be explained as a risk premium,
because nearly all other occupations worked below the surface as well, and were hence subject to the
same risks of mine collapse or flooding.

The biennial mine-level data set I will rely on for the model classifies workers into two types:

miners and all other employees. Henceforth, I will call miners ‘skilled labor’, and other workers
‘unskilled labor’.

D Labor markets

Skilled workers received a piece rate per ton of coal mined, whereas unskilled workers were paid
a daily wage.”® Converting the piece rates to daily wages, the net salary of skilled labor was on
average 23% higher compared to unskilled labor. ‘Net salary’ means net of material costs and other
work-related expenses. At some of the mines, ‘wage screens’ were used, which means that skilled
workers were paid only based on their output of large coal pieces, rather than on their total output.
This introduces some measurement error in labor costs. However, the data set reports the usage of

wage screens in 1898, and shows that they were used in merely 4 out of 52 counties, at mines that

1“Some unskilled workers eventually became skilled, such as boys who started out as trappers but became miners at an
older age. I abstract from such dynamic considerations on the labor supply side in the model.

20piece rates were an incentive scheme in a setting with moral hazard, as permanent miner supervision would be very
costly.
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jointly represented merely 2.3% of employment.?!

Rural Illinois was, and still is, sparsely populated: the median and average population sizes of the
towns in the dataset was 1067 and 3090 inhabitants, and on average a third of the population were coal
miners. Considering that women and children under the age of 12 did not work in the mines, almost
the entire working population was employed in coal mining in most villages. Of all the villages, 50%
had just one coal mine, and another 30% had two or three. Two thirds of all employees worked in a
village with three or less coal mines. Although most of the villages in the data set were connected by
railroad, these were exclusively used for freight: passenger lines only operated between major cities
(Fishback, 1992). Given that the average village was 7.4 miles apart from the closest other village,
and that skilled workers had to bring their own supplies to the mine, commuting between villages
was not an option, and the mining towns can be considered as isolated local labor markets. Most
roads were unpaved and automobiles not yet introduced. In order to switch employers, miners had to
migrate to another town.??

First attempts to unionize the Illinois coal miners started around 1860, without much success
(Boal, 2017). Unionism was countered by employers in various ways, for instance by including
non-membership of a labor union as a requirement in labor contracts. These so-called ‘yellow-dog’
contracts were criminalized in Illinois in 1893, with fines of $100 USD, which was equivalent to
on average six monthly miner wages. (Fishback, Holmes, & Allen, 2009). In 1886, 15% of mine
workers in Illinois were member of a trade union. The first succesful labor union in Illinois was the
United Mine Workers of America, founded in 1890. A major strike in 1897-1898 had important con-
sequences: wages were raised and working hours reduced to a maximum of eight hours per day. Even
more importantly, wages were determined during annual wage negotiations between the unions and a
state-wide representation of employers after 1898, which took place in January (Bloch, 1922).Wage-
setting was therefore done by each mine independently until 1898, and through collective bargaining
afterwards. There was no minimum wage law. In contrast to other states, the mines in the data set did
not pay for company housing of the miners (Lord, 1883, 75), which would otherwise be a labor cost

in addition to miner wages.

E Coal markets

Coal was sold at the mine gate, and there was no vertical integration with post-sales coal treatment,
such as coking. On average 93% of the mines’ coal output was either sold to railroad firms or trans-
ported by train to final markets. The remaining 7% was sold to local consumers. The main coal
destination markets for Illinois mines were St. Louis and, to a lesser extent, Chicago, which was
supplied with cheaper coal from fields in Ohio, Pennsylvania, and West Virginia using lake steamers

(Graebner, 1974). Railway firms were also major coal consumers. Historical evidence points to in-

2INevertheless, I test the robustness of the results for the non-inclusion of counties in which wage screens were used in
Appendix C.4.
22S0me more evidence supporting the isolated mining towns assumption is in Appendix C.3.
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tense competition on coal markets during the last two decades of the 19th century, before the large
consolidation wave in the early 1900s (Graebner, 1974). Nevertheless, there was still a consider-
able transportation cost of coal, which makes that coal markets were likely not entirely integrated.
There are large differences in the coal price across Illinois: in 1886, for instance, it varied between
90 cents/short ton at the 10th percentile of the price distribution to 2 dollars/short ton at the 90th

percentile, and this price dispersion slightly increased over time.

3.2 Data

I observe every bituminous coal mine in Illinois between 1884 and 1902 at two-year intervals, which
results in 8356 observations. The data are obtained from the Biennial Report of the Inspector of Mines
of Illinois. The dataset covers all mines, of which the yearly number fluctuated between 683 and 919.
I observe the name of the mine, the mine owner, yearly coal extraction, average employee counts for
both skilled and unskilled workers, days worked, and a dummy for cutting machine usage in every
two-year period. Materials are measured as the total number of powder kegs used in a given year.
Other technical characteristics are observed for a subset of years, such as dummies for the usage of
various other technologies (locomotives, ventilators, longwall machines), and technical characteristics
such as mine depth and the mine entrance type (shaft, drift, slope, surface). Not all of these variables
are used in the analysis, given that some of these are observed in a small subset of years.

I observe the average piece rate for skilled labor throughout the year and the daily wage for un-
skilled labor from 1888-1896. Skilled wages and employment are separately reported for the summer
and winter months between 1884 and 1894. For some years I observe additional variables such as
mine capacities, the value of the total capital stock and a break-up of coal sales by destination. Wages
and employee skill types are not observed in 1896. I deflate all monetary variables using historical
CPI estimates from Hoover (1960). The reported monetary values are all in 1884 U.S. dollars.

In addition to the main biennial dataset, I use different other datasets. First, the inspection re-
port from 1890 contains monthly data on wages and employment for both types of workers, and of
production quantities are given for a sample of 11 mines that covers 15% of skilled and 9% of un-
skilled workers. Second, monthly free-of-board bituminous coal prices in the harbor of New York
are collected for the years 1890-1900 from the NBER Macrohistory Database (National Bureau of
Economic Research, n.d.). Third, town- and county-level information from the 1880 and 1900 popu-
lation census and the censuses of agriculture and manufacturing are collected as well. Fourth, I collect
information on coal cutting machine costs from Brown (1889). I refer to appendix A for more details

regarding the data sources and cleaning procedures.

3.3 Key facts

Fact 1 Output and labor productivity increased, but skilled wages stagnated until 1898.
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The Illinois coal mining industry grew rapidly during the last two decades of the 19th century. Annual
output, in Figure 4a, tripled from 10 to 30 megaton between 1884 and 1902. This was both due to an
increase in the average mine size and to an increase in the number of mines from 700 to 900. Daily
output per worker, in Figure 4b, increased from 2 to 3.3 tons for hand mines, and from 2.3 to 4.1 tons
for machine mines.?* Until 1898, this growth in output and productivity did not translate into higher
wages: the daily wage of skilled labor remained around $ 1.8 until 1898, as can be seen in Figure 4c.
After the large strikes in 1897-1898 and the introduction of centralized wage bargaining, wages rose.
Coal prices per ton fell from $1.2 to $0.9 between 1884-1898, after which they increased again.

Fact 2 Mechanized mines used less skilled per unskilled worker.

As was shown in Figure 4b, output per worker was higher in machine mines. The composition of
labor was also different: in Figure 4d, I plot the ratio of the total number of skilled labor-days over
the number of unskilled worker-days in per year. Mines without cutting machines used between 3
and 4 skilled labor-days per unskilled labor-days throughout the sample period, compared to 2 to 3
skilled labor-day per unskilled worker-day for machine mines. In every year, except 1894, machine
mines used less skilled per unskilled worker. The skilled-unskilled labor ratio was on average 16.5%
lower for machine mines compared to hand mines, and between 11% and 22% lower at a certainty
of 90%. However, this difference is not necessarily a causal effect of cutting machines on skill-
augmenting productivity: mines with higher productivity levels were probably more likely to adopt
cutting machines. For the causal effects of cutting machines on total factor and factor-augmenting
productivity levels, I refer to the empirical model in the next section. Anecdotal evidence suggests
that cutting machines led to the substitution of skilled for unskilled workers. In his 1888 report, the

[llinois Coal Mines Inspector asserts:

“Herein lies the chief value of the [cutting] machine to the mine owner. It relieves
him for the most part of skilled labor [...] it opens to him the whole labor market from
which to recruit his forces.” (Lord, 1888, 340)

Along the same lines, the State Inpector of Mines of Illinois wrote:

“The mining machine is in fact the natural enemy of the coal miner; it destroys the
value of his skill and experience, and reduces him to the rank of a common laborer.”
(Lord, 1888, 339)

Fact 3 Skilled labor wages varied seasonally, unskilled labor wages did not.

Coal demand was seasonal: during the cold winter months, energy demand increased compared
to the warm summer months. As can be seen in Figure 5a, which plots average monthly skilled

23This series is adjusted for the reduction of hours per working day in 1898, as explained in Appendix A.
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Figure 4: Aggregate quantities and prices
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Notes: Panel (a) plots average output per mine-year and total mine output in Illinois
over time. Panel (b) plots the ratio of total output over total days worked at mines
that used cutting machines (‘machine mines’) and mines that did not (‘hand mines’).
Panel (c) reports the aggregate skilled labor daily wage, defined as the total wage bill
spend on skilled labor over the total number of skilled labor-days, and the aggregate
price, defined as total revenue over total output, in the Illinois coal mining industry.
The reduction in working hours in 1898 is taken into account. The coal price per ton
is the mine-gate price. Panel (d) plots the ratio of total skilled worker-days over total
unskilled worker-days at hand and machine mines. 1890 is omitted for machine mines
in 1890 due to employment being unobserved for most machine mines in that year.

labor-days in 1890, skilled employment follows the coal demand cycle.>* From August to February,
employment is high, as coal for the cold winter months is extracted. Given that transporting coal to
the final market took some time, coal demand already increased around August. Panel 5b shows that

skilled wages followed this coal demand cycle: during summer, skilled wages fell compared to the

24This monthly data is based on a sample of mines selected by the Illinois Bureau of Labor Statistics across 5 counties in
1890, which covers 16% of skilled employment and 9% of unskilled employment.
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other months. There is a lag between the wage and employment cycle of around a month, which might
be due to the fact that wages are paid with a lag. In contrast unskilled worker wages did not co-vary
with product and labor demand throughout the year.?> Panel 5c also shows this by plotting monthly
wages for both skilled and unskilled workers against the monthly number of worker-days of each
type at the mine-month level throughout 1890. Skilled wages were positively correlated with monthly
skilled employment, whereas the unskilled worker wage-employment schedule is flat. Moreover, there
was a large variation in skilled wages across mines and months, but very little variation in unskilled
wages

Skilled workers were paid piece rates, whereas unskilled workers were paid daily rates. If skilled
workers were more productive during months of peak demand, this could be the reason that skilled
wages co-vary with employment, rather than other explanations, such as monopsony power. However,
as can be seen in Figure 5d, this is not the case. During the winter months, output per skilled worker-
day was on average 2.53 ton, whereas it was 2.61 ton during summer. There is also a significant
difference in skilled labor piece rates (wage per ton mined) between summer and winter: the wage
per ton earned by a skiller worker was on average $0.780 during summer and $0.817 during winter,
so it was 4.7% higher during the winter. This difference is significantly large than zero: the difference

between summer and winter piece rates lies between 0.026 and 0.049 with a probability of 90%.

4 Empirical model

4.1 Model

In this section, I model labor demand and supply in the coal mining industry by implementing an
empirical version of the model in Section 2 with a concrete model of competition on both input and
product markets. This serves as an input to the counterfactual exercise of understanding the effects of

monopsony power on innovation in section 4.4.

A Coal extraction

Let f index firms and ¢ bi-yearly intervals. Biennial coal extraction is () s; tons, the amount of skilled
labor (in days worked) is H;, and unskilled labor-days is Uy,. Cutting machine usage is denoted
K € {0,1}. The model is written at the level of the firms f, which are observed in the data. The
production function in logs is given by Equation (4a), denoting logarithms of variables in lowercases.
I use a Cobb-Douglas production function in both labor types, but allow for the output elasticity
of skilled labor [y, to vary flexibly across mines and years. The scale parameter v is equal to the

sum of the output elasticities of skilled and unskilled workers, and is assumed to be a constant. The

25 As for coal prices, FOB coal prices in the Harbor of New York did not seem to fluctuate between months, but mine-gate
coal prices in Illinois might have fluctuated. I have no data on monthly coal prices in Illinois.
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Figure 5: Seasonality in employment and wages
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skilled worker per month during 1890.

Hicks-neutral productivity residual in logs is denoted w ;.

qre = Brihpe + (v — Bl + wp

(4a)

Besides labor, mines also use cutting machines, the usage of which is indicated by a dummy variable

Ky € {0,1}. Both the output elasticity of skilled workers [, and the productivity residual wy,

are assumed to be AR(1) processes, Equations (4b) and (4c), with serial correlations ¢” and o*.

This specification does not allow for some forms of cost dynamics in which current productivity is a

function of the total amount of output produced in the pas

t.26

Both the output elasticity and Hicks-

26] refer to Appendix C.2 for a motivation and discussion of this assumption.
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neutral productivity level are assumed to be linear functions of current machine usage K4 and a
vector of other control variables X ;. I include a linear time trend, a constant, and the quantity of
black powder used to this controls vector: both Hicks-neutral productivity and the output elasticity
of workers could differ depending on how much black powder was used to blast the coal veins.
The effects of using cutting machines on the output elasticity of skilled labor is parametrized by the
coefficient o, their effect on Hicks-neutral productivity is a*. The residual shocks to the skilled labor
output elasticity and Hicks-neutral productivity are denoted ’y?t and 77,. By using these parametric
specifications, I assume that there is no heterogeneity across mines or time in the Hicks-neutral and

factor-biased effects of cutting machines.

B = OéﬁKft + UﬁXft + Pﬁﬂft—l + V?t (4b)
Wre = Oéwat + O'wat —+ prUft_l + ’)/;rut (40)

Although the assumption of unitary substitution between both inputs in the Cobb-Douglas model is
strong, and goes against the canonical models in the labor literature, the model does better than usual
Cobb-Douglas formulations in empirical work by allowing for unobserved heterogeneity in output
elasticities of inputs across mines and time, and by allowing these output elasticities to be conditional
on technology usage, which is crucial when studying non-Hicks neutral technological change.

I assume mines do not face a binding capacity constraint. This is consistent with the data: in 1898,
the only year for which capacities are observed, merely 1.4% of the mines operated at full capacity,
and they were responsible for 1.1% of industry sales. The entire distribution of capacity utilization
rates is shown in Figure A2.

B Coal demand

In contrast to the general model in Section 2, most coal firms were not monopolists on the coal market.

Coal is assumed to be a homogeneous product.?” Each firm operates on a single coal market, indexed
— Qyt
— Qme
defined in Section 4.2. The market-level coal demand curve is given by Equation (5), with a market-

by m with a market share s‘}t and market-level output Q,,; = > fem () s+. Coal markets will be
level mine-gate coal price P,,;, an inverse demand elasticity 7, and a residual (,,; which reflects
differences in coal prices across markets due to variation in local demand conditions, transport costs,

etc. In the baseline model, I assume that all markets face the same coal demand elasticity.

Pmt = (th)"] eXp(Cmt) (5)

?TThere is some differentiation between coal types in terms of heat rates and ash content, but all mines in the data set
produce bituminous coal, which is assumed to be a homogeneous product.
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C Input supply

Each firm operates on exactly one labor market n with skilled and unskilled labor market shares s?t
and sift. More information on how labor markets are defined is in Section 4.2. Skilled labor in a

market n earns a daily wage W, unskilled labor earns a daily wage W!,. I convert the piece rates

nt’
paid to skilled workers into daily wages in order to be comparable to the unskilled worker wages.
Firms are assumed not to wage-discriminate in terms of skilled labor piece rates. Mine-employee-
level wage data from the 1890 report show indeed that there was very little heterogeneity in both

piece rates and daily Wages across miners within firms at a certain point in time A firm f has an input

market share s/, = f - on the market for H and input market share s, = - on the market for L,

= Hn = L
with market-level employment Hy =) fem Hpand Ly = ) fem L. The market-level supply
curve for both types of workers is given by equation (6). The inverse wage elasticity of skilled labor is

oWy _ o,
ho— = o ‘1;{[;;; oL ‘LIT + 1. The error terms &"
n

variation in wages across markets that cannot be explained by market size, which includes the outside

+ 1 and for unskilled workers as !,

h., €L explains

options available to the workers in each market.

ho_
qult = Hntw"t 1eXp(§Zt)

(6)
ijt = Lnt%rl eXP(flzt)

Figure 5d revealed that unskilled worker wages were much less dispersed compared to skilled wages,
and did not change in response to seasonal labor demand shocks. Therefore, I assume that unskilled
labor supply is perfectly elastic, meaning that ¢!, = 1Vf. There are, of course, other possible ex-
planations for the fact that wages did not react to labor demand shocks, such as behavioral reasons,
as shown in (Kaur, 2019). The key thing to note here is, however, that monthly wage profiles were
only flat for unskilled labor, not for skilled labor. Although wage contracts differed between skilled
and unskilled labor because skilled labor received a piece rate rather than a daily wage, both of these
contracts were limited to monthly durations or less; it is hence not the case that unskilled wages did
not respond to seasonal demand shocks because they were pre-negotiated for the entire year. In con-

trast, I allow for the elasticity of skilled labor supply, to be above one. Although the log-linearity

nt’
of Equation (6) imposes a strong functional form assumption, I allow the slope 1", to vary flexibly
across markets and time, as local labor market conditions vary. I assume that cutting machines K are
sold on competitive markets, and that their prices are exogenous to each individual mine.

I assume that employers are homogeneous ‘products’ from the point of view of the workers: when
choosing which firm to work for within a town, miners only care about the wage rate, not about other
firm characteristics. The motivation for this assumption is that there is very little dispersion in wages
within towns in a given year: town and year dummies explain 86% of the variation in skilled wages.

I do not formally model how employees gather their skills, and whether employees can move from
being unskilled to skilled worker types. I do assume that firms cannot invest to turn unskilled workers

into skilled workers - this would imply a dynamic input demand problem that does not fit the static
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input demand conditions that are outlined below.

D Firm behavior

Using the terminology of Ackerberg et al. (2015), I assume that skilled and unskilled workers are both
variable and static inputs. They are variable because they can be flexibly adjusted: as shown earlier,
employment was adjusted throughout the year on a monthly basis, and wages were determined in
short-term contracts until 1898.2% Both labor types are also static because current labor choices do
not affect future profits, i.e. there are no hiring or firing costs. Cutting machines are, in contrast,
a fixed input. Firms need to make their cutting machine adoption decision one period in advance.
Let the capital accumulation equation be given by the following equation, with machine acquisitions
being denoted as Ay,_; € {0,1}. Depreciation 6 € {0, 1} takes the value of either zero or one. If
there is no depreciation, meaning that ) = 1, mines can only acquire a cutting machine if they do not
already own one, and such an acquisition is permanent. If 6 = 0, machines fully depreciate within

two years, and firms re-make the capital adoption decision every time period.
Kft = 6Kft_1 +Aft—1(1 _5Kft—1) (7)

Cutting machines have both a common fixed cost component ®, which is the capital cost of ac-
quiring the machine, and a common variable cost component ¥, due to the usage of electricity.
Mine-level variable profits are denoted 11, = Py Q¢ — Wf;tH ft — meL ft — WkrK #¢. Other inter-
mediate input expenditure is not part of the mine’s profit function, as these inputs were purchased and
brought by the miners. I assume zero sunk costs of cutting machine usage, as the adoption model will
be static. Hence, total mine profits are defined as [T} =TI, — ® K.

I assume that firms make their input decisions in two phases. At time ¢ — 1, before the productivity
residuals wy; and w?t are observed, firms simultaneously choose their cutting machine usage for the
next period, Ky,. At time ¢, after the productivity residuals wy; and w?t are observed, firms simultane-
ously choose their optimal amounts of both labor types conditional on their capital technology, which
was chosen earlier.

The second stage of the decision problem, the labor demand problem, is given by Equation (8).
Taking capital usage as given, each mine f independently chooses the amount of skilled and unskilled
labor that maximizes its current variable profits. By choosing the amount used of both labor types,
firms also choose their output Q) 7.

max (II7;) ®)

Hyy,Lyy

In the first stage, firms choose their capital investment Ay, € {0, 1} that maximizes discounted total

profits, with a common discount factor §. In the application, I will assume full depreciation of capital

28 As explained further below, I will only consider the period 1884-1894 when estimating the structural model.
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within two years, meaning that § = 0, in order to keep the cutting machine adoption problem static.
This means that firms re-choose their capital stock in every two-year period, and do so by maximizing
the profits in the next period.

max [T, + B, ) (07111, ©)
e r=2

E Equilibrium

By solving the first order conditions for the profit maximization problem in (8), the equilibrium ex-
pressions for all endogeneous static variables (Q, P, H, L, W" W') can be solved for. These equilib-
rium expressions can be found in Appendix B.5. The skilled labor wage markdown charged by the
firm is equal to 1 + s/, (¢, — 1):

nt
a(Pthft)
Hyy

Wh =1+ ( gzt_l)s?t
mt

The markdown parameter ;i; from the theoretical model hence corresponds to the markdown 1 +
(Yh, — l)sljﬁt in the empirical model. If the labor market share of the firm is equal to one, the ac-
tual markdown is equal to the monopsonistic markdown ¢",. If the firm is atomistically small, the
markdown goes toward 1 in the limit, meaning that skilled laborers earn their marginal product of

labor.

4.2 Identification and estimation

I now turn to the identification and estimation of the model. Five latent variables need to be identified:

the entire distribution of output elasticities of skilled labor ﬁ}‘t, in Equation (4a), the market-level

h
mt?

inverse elasticity of skilled labor supply v, in Equation (6), the inverse elasticity of coal demand
7, in Equation (5), and the effect of cutting machines on the output elasticity of skilled labor and
on Hicks-neutral productivity, in Equations (4b-4c). Although the model is specified at the firm-bi-
year level, the dataset comes at the mine-bi-year level. I aggregate all the relevant variables from
the mine- to the firm-level.”’ I restrict the panel to the time period 1884-1894 when estimating the
model and conducting the counterfactual exercises, because wage and price data are missing in 1896,
and because annual collective bargaining over wages between unions and coal firms was instituted in

1898, which does not fit the unilateral oligopsony framework of the model.

2Details on how I aggregate to the firm-level are in Appendix A.2.
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A Labor supply

Identification I start with the identification of the skilled labor supply function. Taking the loga-

rithm of Equation (6) for skilled labor, and denoting logs as lowercases, gives equation (10).
Why = (Y = Dwe + & (10)

The supply elasticity 1", cannot be recovered by simply regressing skilled labor wages on employ-
ment because of the latent outside options £",. Mines in labor markets with an unattractive outside
option £ can offer a lower wage to attract the same number of skilled laborers. In order to identify
the slope of the skilled labor supply curve, a shock to labor demand that is excluded from skilled
labor utility is necessary. I rely on the seasonal character of coal demand as a source of labor demand
variation. As explained in section 3.1, coal demand rises during the fall and winter due to low tem-
peratures. Denote skilled employment in town n during winter and summer months as ¥V and
HSUM | and the corresponding daily skilled wages as WhWIN ang wisvM

nt nt
. . hWIN h,SUM
during winter and summer are &,,; and &,,;

h,WIN _ +~h,SUM
nt

. The supply residuals
. T assume that the outside option £” is the same

during winters and summers: §,,;

. Under these assumptions, the slope of the skilled
labor supply curve can then be calculated using equation (11):

wh,WIN wh,SUJ\/]
h _ Ynt - Wnt
nt — AWIN _ hSUM +1 (11)
nt nt

The main argument in favor of these two assumptions is that the monthly wage profile of unskilled
workers did not fluctuate between the different seasons, as shown in Figure 5. It could be that outside
options varied seasonally, for instance due to increased agricultural labor demand during the harvest
season. This would, however, be consistent with higher wages during the summer, while lower sum-
mer wages are observed. Also, we would expect unskilled labor wages to fluctuate seasonally as well,
which they did to a much lesser extent than skilled labor wages. Working conditions, such as mine
safety, could vary seasonally, but were less easily adjustable than wages. Anecdotal sources mention
that most skilled workers were (partially) unemployed during the summer months in Northern Illinois
coalfields (Joyce, 2009), which is consistent with increased monopsony power over these workers

during the summer.

Labor market definition Workers did not own cars yet, and railroads were only used for freight
cargo except between large cities. Miners could hence only work in their own mining town or com-
mute by foot to another town. Of the 448 towns reported in the data set, 75% were located more
than 3 miles in a straight line from their closest mining town (town with at least one mine), and the
average town was 5.6 miles away from the closest mining town. Given that miners had to bring their
own equipment to the mines and that until 1898, they often worked 10 hours per day, it seems safe to
assume that any town further than 3 miles apart is not a viable commuting option, as it would imply
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2h30 of daily commuting time by foot.*° In order to ensure isolated labor markets, I merge the towns
that are closer than 3 miles from each other.>' This results in 350 labor markets that lied on average
6.4 miles from the closest other town.

Estimation I calculate the slope of the skilled labor supply curve for each town using equation (11).
Skilled wages are reported separately for winters and summers between 1884-1894.32 The reported
wage rates are piece rates, in wages per ton. Equation (11) was, however, written using daily wages
per worker and days of employment, because workers care only about their daily wage, not their wage
per ton of coal mined. I transform the piece rates that are observed in the data into daily wages by
multiplying by the ton of coal mined per skilled labor-day at each mine. Next, I aggregate employment
and daily wages to the town-year-level in order to estimate the town-level inverse skilled labor supply
elasticity using Equation (11). This results in a skilled labor supply elasticity that can flexibly vary

both across towns and over time.

B Coal demand

Identification Taking logarithms of the coal demand function (5) results in p,.; = NGt + Emt-
As firms with attractive features &,,;, such as a convenient location, will set higher coal prices, this
equation cannot be identified by regressing coal prices on quantities. I rely on the thickness of the coal
vein as a cost shifter: whereas the vein thickness affects the marginal cost of mining, consumers do
not care about it as it does not affect coal characteristics. Vein thickness was the result of geological
variation, and hence plausibly exogenous to coal firms conditional on their location.

Coal market definition Coal firms either sold their output locally near the mine, or sold it to railroad
firms who either transported it to final markets, or used it themselves to power their locomotives. I
define coal markets m as follows. If a mining town was not located on a railroad line, I infer that coal
was sold locally, and define the coal market similarly to labor markets, being the town unless towns
are located less than 3 miles from each other. If towns were connected to the railroad network, I let
the railroad line be the market: as railroad firms were the main coal buyers, coal firms presumably
competed against each other on the same railroad line, but did not compete against coal firms operating
on different railroad lines.** Defining coal markets in this way results in 249 coal markets, of which

26 railroad lines and 223 local markets. Coal firms on markets not connected to the railroad network

30Taking a 10% sample of the town pairs to google maps shows that 3 miles of bird’s eye distance corresponds on average
to 3.9 miles by today’s roads, and 77 minutes of walking (without equipment) one-way.

3More information is in Appendix A.2

32Summer and winter skilled employment is reported only up to 1890. However, the maximum number of workers is
reported next to the average in 1892 and 1894. For these two years, [ assume that the maximum number of employees
coincides with the amount of workers during winter, and that the average number of workers throughout the year is a
simple average between the summer and winter employment averages. This allows me to back out summer and winter
worker averages for 1892 and 1894 as well.

3 Details are in Appendix A.2.
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have an average coal market share of 38%, compared to 5.8% for firms selling through the railroad

network.

Estimation I estimate Equation (5) in logs by 2SLS using the log average vein thickness in the town
and the log average mine depth in each year as instruments for the total coal quantity sold. I include
the distance to Chicago and St. Louis, a dummy of whether a town was located on a railroad and
whether it was located on a crossing of railroads, and a linear time trend as observable market-specific
coal demand shifters. I define coal markets at the county-level: towns are too small for defining the
coal market, as they were connected through the freight railroad system. On the other hand, I cannot

assume too large coal markets, as there was a non-trivial transportation cost.>*

C Output elasticities of labor

Identification Both labor inputs were assumed to be variable, static inputs. Working out the input
demand conditions from Equation (8), the output elasticity of skilled labor is equal to the product of

its revenue share, its wage markdown, and its coal price markup.

ho_ Wy?tHft(( Zt - 1)5?t +1)
I Pt Q (1 + ns%,)

(12)

The output elasticity of unskilled labor is then known up to the scale returns constant v: B}t =v— ﬁ?t.
Relying on the first order conditions from the labor demand problem to identify the output elasticities
of skilled and unskilled labor follows Hall (1988); Foster et al. (2008); Hsieh and Klenow (2009),
with the difference that I allow for endogenous input prices. This approach has the benefit of not
having to identify the production function, and of allowing for flexible heterogeneity in the output
elasticities of skilled labor across mines and time, in contrast to ‘input inversion’ approaches that rely
on a scalar, Hicks-neutral productivity residual. However, this comes at the cost of having to impose
a fixed parameter for the degree of returns to scale. The assumption that coal markets are perfectly
competitive can be relaxed.

Estimation The full distribution of output elasticities of skilled and unskilled labor across mines
and time can be readily computed from Equation (12) given that the revenue share of skilled labor
is observed, and that the inverse skilled labor elasticity w}bt was estimated earlier. However, doing
so requires a calibration of the degree of scale returns v. I assume that there are decreasing returns

to scale in coal mining extraction, because of three reasons. First, nearly all the mines produced far

30nly controlling for the state and year dummies explains merely 4% of coal price variation, whereas controlling for
county dummies increases this explanatory power to an R? of 0.70.

31n principle, flexible markup variation can be allowed for by comparing cost share variation to revenue share variation.
However, in this application, unskilled labor costs are unobserved, which rules out this approach. In Appendix C.1, I
use an alternative production model which allows for market power on coal markets, but at the cost of allowing for less
heterogeneity in the output elasticities across mines.
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below their full capacity, despite coal markets being perfectly competitive. If there would be constant
or increasing returns to scale and perfect competition downstream, mines without monopsony power
on labor markets should produce at full capacity. Whereas half of the mines have a horizontal skilled
labor supply function, and hence no monopsony power, merely 2% of mines produce at full capacity,
and 90% of mines us less than four fifths of their capacity. Second, the monthly production data,
which were discussed in Section 3, show that aggregate output per worker and output are negatively
correlated across months within a year. Output per worker was 3% lower during winters compared
to summers. This is consistent with decreasing returns to scale, as output was higher during winter.
Third, in Appendix C.1, I specify an extension to the model in which I estimate degree of returns to
scale while imposing more structure on the distribution of output elasticities of inputs across mines,
which yields an estimated scale parameter 0.908. I calibrate the scale parameter to be v = 0.9, but
conduct robustness checks with different values for v in Appendix C.4.

D Factor-biased and Hicks-neutral effects of cutting machines

Identification Finally, the effects of cutting machines on both the output elasticity of skilled labor
and on Hicks-neutral productivity, Equations (4b) and (4c), need to be identified. Simply regressing
the output elasticity of skilled labor 6}; or Hicks-neutral productivity {27, on cutting machine usage
is subject to simultaneity bias, as both Hicks-neutral and factor-augmenting productivity affect input
demand, an argument also made by Doraszelski and Jaumandreu (2017). I follow the production
function identification literature by relying on timing assumptions to identify the cutting machine
effects 4 and (5 (Olley & Pakes, 1996; Ackerberg et al., 2015). Following Blundell and Bond (2000)
I take p-differences of Equation (4c), such that the skilled labor productivity shock can be written
as %ét = o’ (Ky — pP K1) + 0P (X — pPXyi-1), and the Hicks-neutral productivity shock as
Vi = a(Kyp — p* K1) + 0¥(Xp — p*Xype—1). Given that cutting machines are assumed to be a
dynamic and fixed input, I assume that mines decide on cutting machine usage prior to the realization
of both productivity shocks 7]1% and %2%’ which allows to identify the coefficients (3, p, and c by
imposing that current and lagged capital usage are orthogonal to vfft and 7,. As both labor inputs
and black powder are variable inputs, they are chosen after the productivity shocks fyﬁt and vy, are

observed, but their lagged values are orthogonal these shocks. Hence, the moment conditions are:

Kt Kt

K Kp
E[fy?t(pﬁ,&ﬁ,aﬂ)] X1 ] =0 E |75 (0", o 0%)] | Xpiq ] =0

Pyey hyi 1

lft—l lft—l

Estimation I estimate Equations (4b) and (4c) using GMM with the moment conditions above. In

the vector of controls X, I include a constant, a linear time trend, and the logarithm of the number of
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powder kegs used by the firm, adding one within the logarithm to include mines that did not use any

powder at all.

E Fixed costs of cutting machines

As mentioned before, I assume a discount rate of 6 = 0, which implies that machines fully depreciate
after two years, in order to make the adoption problem static. I assume fixed machine costs ¢ are
common across firms and time, and estimate ¢ by matching the average observed machine usage
rate to the predicted machine usage rate under this fixed cost. I re-estimate fixed costs in every

bootstrapping iteration.

F Bootstrapping

The entire estimation procedure that has been described in this section happens sequentially. First,
I estimate the firm-bi-year-level inverse skilled labor supply elasticities %Z’?t' Next, I estimate the
market-level coal demand elasticity . Thirdly, I estimate the mine-level output elasticities 6}3, which
requires knowledge of both w;}t and 7). Fourthly, I estimate the transition equations for the output elas-
ticity of skilled labor 8 and for Hicks-neutral productivity, w, in order to obtain the cutting machine
effects o® and o®. Finally, I estimate the level of fixed machine costs ®. In order to obtain the correct
standard errors, I block-bootstrap this entire estimation procedure while resampling within firms over

time, with 200 iterations.

4.3 Results

A summary of the key model estimates are in Table 1.3® The skilled labor supply estimates are in
Table 1a. The number of observations is 1,116 because the skilled wage markdown is estimated at
the labor market-bi-yearly level on the subset of the panel for which seasonal wages are observed
(1884-1894). The mean town-level inverse skilled labor supply elasticity ", is 1.164, which implies
that a monopsonist would set the marginal product of skilled laborers at 16.4% above their wage. A
duopsonist with 50% market share would set the marginal product at 8.2% above the skilled wage.
The average inverse skilled labor supply elasticity lies between 1.136 and 1.177 with a probability of
90%.

The coal demand elasticities are in Table 1b. The number of observations is lower, at 484, because
there are less coal markets than labor markets and because vein thickness (the instrument) is not ob-
served in 1888 and 1890. The inverse demand elasticity is -0.263, so an increase in county-level coal
output of 10% results in a drop in the county-level coal price by 2.6%. The inverse demand elasticity

36] refer to Appendix Table A4 for the full list of coefficient estimates.

37 Appendix C.3 discusses how the markdown estimates are correlated with town and county characteristics. The distri-
bution of firm-level markdown ratios, as opposed to the market-level skilled labor supply elasticity, is plotted in Figure
Ada.
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Table 1: Model estimates

(a) Miner supply (town-level) Estimate CIOS CI95
Inverse elasticity of miner supply Pl 1.164 1.136 1.177
Observations 1116

(b) Coal demand (county-level)

Coal demand elasticity i -0.263 -0.307 -0.233
Observations 484
R-squared 202

(c) Output elasticities

Output elasticity of miners (avg.) Bh 0.688 0.654 0.714
Observations 3723

(d) Factor-biased productivity transition

1(Cutting machine) ol -0.132 -0.189 -0.008
Observations 1133
R-squared .006

(e) Hicks-neutral productivity transition

1(Cutting machine) o 0.249 -0.163 0.425
Observations 1050
R-squared 238

(f) Fixed machine costs

Fixed machine cost (USD) P 8234.753 0.000 39735.496

Notes: Panel (a) reports the estimates of the labor supply function, Equation (11). Panel (b) reports the estimates of the
coal demand function, Equation (5). Panel (c) reports the output elasticity of skilled labor, using Equation (12). Panels
(d)-(e) report the estimated transition equations for the output elasticity of skilled labor and for Hicks-neutral
productivity, Equations (4b)-(4c). Panel (f) reports estimates fixed cutting machine costs. Standard errors are
block-bootstrapped with 250 iterations.

lies between -0.307 and -0.233 with a probability of 90%. The remaining coefficient estimates are

in Table A4. The first-stage regression of the coal quantity on vein thickness has an F-statistic of

51.3. Coal demand is higher in markets that are connected to the railroad network and located on
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railroad crossings, and decreases with the distance to both St. Louis and Chicago. The distribution of
firm-level markup ratios is plotted in Figure A4a.

Table 1c contains the estimated output elasticities of skilled and unskilled labor. The number of
observations is 3,723, given that these output elasticities are estimated at the firm-bi-yearly level.
The output elasticity of skilled labor is on average 0.688, and lies between 0.654 and 0.714 with a
probability of 90%. The average output elasticity of unskilled labor is, mechanically, 0.222. The
distribution of output elasticities across firms and time is plotted in Figure A4b.

The factor-biased effects of cutting machines are in Table 1d. Although this model is estimated
at the firm-year level too, the number of observations is lower, at 1133, because lagged values of all
variables are needed. The output elasticity of skilled labor is estimated to fall by 0.163 units due to
the usage of cutting machines, which is a relative drop of 24% on average. This effect lies between
-0.189 and -0.008 with a probability of 90%, and is thus significantly negative at the 95% confidence
level. The findings that cutting machines were unskill-biased is consistent with the anecdotal historical
evidence presented earlier, in Section 3. The effect of cutting machines on Hicks-neutral productivity
is in Table le. The point estimate implies that cutting machines increased Hicks-neutral productivity
by 28%, but this effect is very imprecisely estimated: cutting machines could have lowered Hicks-
neutral productivity by 16% or increased it by 53%, all within a probability of 90%.

Finally, the fixed machine cost is in Table 1f, and is estimated to be $8235, which is 3.1% higher
than the yearly profit of the average firm.

4.4 Counterfactuals
A Computation of the equilibrium

Let X € {Q,H,L,W", W' P,II,1I*} be an endogenous variable in the model. I denote X (s%,)
as the equilibrium value of variable X for usage of the technology K € {0, 1} and for a certain labor
market share s?t. The equilibrium values for all endogenous variables X can be computed using the
expressions in Section B.5. For instance, Q}t(s?t = 0.5) denotes the equilibrium output of firm f in
year ¢ when using cutting machines, and having a labor market share of 50%, and can be computed
using Equation (13a).

In order to compute the equilibrium values of all endogenous variables X, I need to know the
values of the output elasticity of skilled labor and the Hicks-neutral productivity level both when
using cutting machines and when not doing so, S (K) and Qp (K ). If the mine does not use
cutting machines, I calculate the counterfactual output elasticity if it would use cutting machines as
ﬁ?t(K p=1)=p }Lﬁ—ﬁl, using Equation (4b). Similarly if the mine is already using cutting machines,
the counterfactual output elasticity when not doing is B}lt(K =0)= B}lt — 1. The counterfactual
Hicks-neutral productivity levels are computed in the same way.

The market-level demand shifter (,,; is computed as the residual of the coal demand function.
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Similarly, the labor supply residual £, is the residual of the estimated labor supply function (6):

h __ Wh

nt (Hft)w -1

Sh
ft
B Labor market competition and technology usage

Using the equilibrium variables X ﬁ(s’}t), I examine how three key outcomes of interest change in

function of labor market competition s?t First, I am interested in the variable profit return to ma-

I}, (s,) 11

chine usage, O e . Secondly, I calculate capital usage in the absence of fixed machine costs,
Ft5ft

T[T}, (sh,) — %, (s%,)]. This is an interesting metric because it tells us how much of the machine
would be used 1f machine costs would be variable, rather than fixed. Thirdly, I calculate equilibrium
machine usage as Z[I1},(s},) — I13,(s},) — ®]. The key counterfactual exercise of the paper is how
these three metrics change in function of the level of labor market competition, as measured by the
labor market share s',.

A number of assumptions need to be explained at this point. First, the labor supply and coal
demand residuals £",, €., .+ are assumed to be invariant to both labor market structure and machine
usage: both labor market structure and machine usage are assumed to affect worker and consumer
preferences only through equilibrium wages and prices, but not directly. Secondly, I assume that
unskilled worker characteristics, which are equal to unskilled worker wages, are the same across
mines in a given year £/, = ¢! This assumption is motivated by the evidence in Figure 5c, which
showed that there is very little cross-sectional variation in unskilled wages. The residual £! is equal to
the daily unskilled wage, which is unobserved. However, it can be backed out under the assumption
of competitive unskilled labor markets. Writing out Equation (12) for both unskilled and skilled labor
gives a system of equations (the variable input demand first order conditions) that can be solved for
unskilled wages. The resulting unskilled wage expression is W}, = g; ! Pthif L(h, — 1)sh,. 1 take
the yearly average of this imputed wage to be the unskilled wage W}, which is equal to the unskilled
labor supply residual &!. Thirdly, when considering the effects of changing labor market structure on
machine returns and machine usage, I do not let coal market structure vary simultaneously: the focus
is to isolate the effects of labor market competition on technology returns and adoption, rather than
the joint effect of labor and product market competition on these outcomes. Finally, fixed machine

costs ® are assumed to be invariant to the level of labor and product market competition.

C Counterfactual technologies

In order to understand how the directed and Hicks-neutral effects of technologies shape the relation-
ship between labor market competition and technology adoption, I carry out the counterfactual exer-
cise from the previous section under three different technologies. Firstly, I consider the actual technol-

ogy, the cutting machine, which was both unskill-biased and Hicks-neutral productivity-enhancing:
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%i; < 0 and g—% > (. Secondly, I consider a skill-biased technology, such as hauling locomotives,

. oB" . . . .
for which ‘;LK > 0 and g—g > 0. I consider a technology with the exact opposite effect as cutting

machines, meaning that its skilled labor output elasticity 5 is equal to 5'(K = 1) = (K = 0) and

B'(K = 0) = B(K = 1). Finally, I do the same analysis for a counterfactual technology that would

el
oK

the fixed cost that rationalizes observed machine usage for every counterfactual technology.

only be unskill-biased but not increase Hicks-neutral productivity, < 0Oand 3—2 = 0. I re-estimate

D Results

Unskill-biased technology The results of the counterfactual exercise for cutting machines, the skill-

biased technology, is in Figure 6. In line with theorem 1, the variable profit return of cutting machines

(K=1)-TI(K=0)
TI(K=0)

machine increases variable profits by 19.2% on average under monopsonistic labor markets, this return

increases with the number of firms in the labor market. Whereas adopting a cutting

is 20.0% under a symmetric duopsony, and 22.2% if there are 10 equally-sized firms on each labor
market. Table 2 shows the bootstrapped confidence intervals on this change. The increase in returns
to mechanization is statistically significant: when moving from 1 to 10 firms per labor market, the
90% confidence interval for the change in the cutting machine return is [0.2,3.7].

Although the average relative returns to mechanization would increase with labor market com-
petition, machine usage would barely change: it would increase by 0.1 p.p., and this change is not
significantly different from zero. Theorem 2 already said that the effect of skilled labor market compe-
tition on the absolute returns to technology adoption are ambiguous for an unskill-biased technology.
A part of the explanation for this is that increasing labor market competition decreases profits, even if
it increases the relative profit difference between using and not using technology. In order to recover
fixed costs of technology usage, some degree of profitability is needed. A second reason for the zero
net effect of competition on technology adoption is that cutting machines increase total factor produc-
tivity. Even if cutting machines decrease the usage of skilled workers relatively to unskilled workers,
the absolute change in skilled labor demand is much less negative because cutting machines increase

Hicks-neutral productivity.

Skill-biased technology Next, consider a technology that is biased towards skilled labor, such as
the mining locomotive. As is shown in Figure 6b, increasing skilled labor market competition would
now decrease, rather than increase, the returns to such a technology. This is in line with theorem
1: increased competition for skilled labor decreases the markdown extracted from skilled workers,
which decreases the incentive to adopt a technology that switches input usage towards these workers.
The average return to the skill-biased technology drops from 137% to 130% on average when moving
from a monopsonistic labor market to one with ten equally-size employers per market. As shown in
Table 2, the usage rate of a skill-biased technology would drop from 3.0% to 1.6% when moving from
1 to 10 firms per labor market, a relative of nearly 50%. This decrease in adoption of a skill-biased
technology has a 90% confidence interval of [-0.8 p.p.,-1.7 p.p.] and is hence statistically significant.
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Figure 6: Counterfactuals

(a) Unskill-biased technology
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(c) Unskill-biased technology without Hicks-neutral productivity effect
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Unskill-biased technology without Hicks-neutral productivity effect Finally, suppose cutting
machines would only change the output elasticity of skilled labor, but not Hicks-neutral productiv-
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Table 2: Counterfactuals: confidence intervals

(a) Unskill-biased technology 1 firm 10 firms Dif. CIO05 CI95
Avg. relative return to technology 0.192 0.222 0.031 0.002 0.043
Avg. technology usage 0.040 0.041 0.001 -0.010 0.010
(b) Skill-biased technology 1 firm 10 firms Dif. CIO05 CI95
Avg. relative return to technology 1.367 1.301 -0.065 -0.111 -0.002
Avg. technology usage 0.030 0.016 -0.014 -0.017 -0.008
(c) Purely unskill-biased technology 1 firm 10 firms Dif. CIOS5 CI95
Avg. relative return to technology -0.283 -0.263 0.020 0.002 0.025
Avg. technology usage 0.022 0.027 0.005 0.001 0.008

ity. The relative returns from adoption would now be negative on average, but would increase from
-0.283% to -0.263% on average when moving from 1 to 10 firms per labor market. As shown in
Figure 6¢, machine usage now increases with labor market competition, from 2.2% to 2.7% of firms,
and this increase is significantly above zero. The more positive effect of labor market competition
on machine usage compared to the baseline scenario is consistent with Lemma 2, and is due to the
fact that without Hicks-neutral productivity change, skilled labor usage always falls when the output
elasticity of skilled labor falls. Firms are less willing to adopt a technology that reduces their usage
of skilled labor if their markdown earned over skilled labor is higher. Table 2 shows that the increase
in relative returns to machine adoption is significantly positive, as is the change in cutting machine

usage.

Sizing the results The counterfactual analysis shows that changes in labor market structure had little
effects on cutting machine adoption, due to the fact that the factor-biased and Hicks-neutral effects
of these machines counteract each other, and due to high fixed costs. However, under a different
direction of technical change and/or different Hicks-neutral productivity changes, labor market power
would have much larger effects on technology returns and adoption. This is remarkable given that the
degree of oligopsony power inferred from the model is quite modest. The average firm sets wages at
3.5% below the marginal product of labor, and even under a pure monopsony, this markdown would

be merely 14%. The current literature on oligopsony power usually finds much higher markdowns.
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For instance, Azar et al. (2017) find a median markdown of 17%.?® With higher markdown levels, the
effects of oligopsony power on technology usage would be even more pronounced.

Adoption vs. invention Throughout the paper, I took the invention of new technologies, and their
directionality, as given, and investigated how the adoption of such technologies varied with the degree
of oligopsony power. Given that invention is likely impacted by the demand for new technologies, it is
conceivable that labor market power does not only affect the usage of new technologies, but also their
invention. The direction of newly invented technologies could hence be endogenous to the (aggregate)
degree of oligopsony power on the various input markets, which would be an extension of Acemoglu

(2002) and its ensuing literature to a setting with oligopsonistic input markets.

E Current-day implications

Although the application in this paper is historical, the results have several important current-day
implications. The model shows that in order to understand the effects of oligopsony power on tech-
nological change today, one needs to know (i) the direction of technological change, and (ii) the
relative degrees of monopsony/oligopsony power over different types of inputs. These two primitives
will most likely differ between industries. Across the board, the consensus seems that automation
has been mainly skill-biased throughout the last couple of decades. If firms mainly exert market
power over unskilled workers, then such market power is reducing the returns to automation. Little
is known, however, about the relative degrees of oligopsony power across the skill and income dis-
tribution. Moreover, the model is not restricted to the study of labor markets and automation. Many
technologies today are energy-saving. The model could potentially also be used to understand how
oligopsony power on energy markets, which could exist locally by large energy-intensive industries,

affects the incentives to adopt energy-saving technologies.

5 Conclusion

In this paper, I investigate how oligopsony power by firms affects the adoption of new production
technologies. Using a theoretical model of log-linear labor supply and labor demand, I show that
oligopsony power could either increase or decrease technological change, depending on the direction
of technical change and its Hicks-neutral productivity effects. In an application, I implement an em-
pirical version of this model to understand how oligopsony power over skilled coal miners affected the
mechanization of the late 19th century Illinois coal mining industry. I find that the returns to unskill-
biased technologies, such as cutting machines, increased with labor market competition, whereas the
returns to skill-biased technologies, such as underground locomotives, decreased with labor market

3 These higher markdown estimates are likely the consequence of differentiation between firms and jobs from the worker’s
point of view.
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competition. In terms of technology usage, I find that changes in labor market competition had lim-
ited effects on cutting machine adoption. If cutting machines would have been purely unskill-biased,
without changing Hicks-neutral productivity, their adoption would have increased with increased la-
bor market competition. In contrast, increased labor market competition would have decreased the
adoption of skill-biased technologies. These findings show that in order to understand the conse-
quences of oligopsony power on technological change and productivity growth, it is crucial to know
the direction of technological change and the relative magnitude of oligopsony power on the various
factor markets. Both of these are likely to differ between markets, industries, and even firms.
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Appendices

A Data

A.1 Sources

Mine Inspector Reports The main data source is the biennial report of the Bureau of Labor Statis-
tics of Illinois between 1884-1902 (Lord, 1884, 1886, 1888, 1890, 1892; Schilling, 1894, 1896; Ross,
1898, 1900, 1902).

Each report contains a list of all mines in each county, and reports the name of the mine owner,
which I take to be the firm, the town nearest the mine, and a selection of variables which varies across
the volumes. An overview of all variables (including unused ones), and the years in which they are
observed, is in Tables A8 and A9. Output quantities, the number of miners and other employees,
mine-gate coal prices, and information about the usage of cutting machines are reported in every
volume. Miner wages and the number of days worked are reported in every volume except 1896. The
other variables, which includes information about the mine type, hauling technology, other technical
characteristics, and other inputs, are reported in a subset of years.

Census of Population, Agriculture, and Manufacturing I use the 1880 population census to have
information on county population sizes, demographic compositions, and areas. I also observe the
county-level capital stock and employment in manufacturing industries from the 1880 census of man-

ufacturing, and the number of farms and improved farmland area from the 1880 census of agriculture.

Monthly data In 1888, I observe monthly production data for a selection of 11 mines in Illinois,
across 6 counties. I observe the monthly number of days worked and number of skilled and unskilled
workers. I also observe the net earnings for all skilled and unskilled workers per mine per month,
and the number of tons mined per worker per month. This allows me to compute the daily earnings
of skilled and unskilled workers per month. I also obtain monthly coal price in the harbor of New
York City from the Federal Reserve Economic Data: the Wholesale Price of Bituminous Coal, George
Creek, F.O.B. New York Harbor for New York, NY, Dollars per Short Ton.>

A.2 Data cleaning

Employment In every year, except for 1896, workers are divided in two categories, ‘miners’ and
‘other employees’. In 1896, the distinction is made between ‘underground workers’ and ‘above-
ground workers’, which is not the same distinction: all miners were underground workers, but some

underground workers were not miners (e.g. doorboys, mule drivers, etc.). The employment data are

3 Accessed through https://fred.stlouisfed.org
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hence unobserved in 1896. From 1888-1896, boys are reported as a separate working category. Given
that miners (cutters) were adults, I include these boys into the ‘other employee’ category.

The number of days worked is observed for all years. The average number of other employees per
mine throughout the year is observed in every year bar 1896; in 1898 it is subdivided into underground
other workers and above-ground other workers, which I add up into a single category.

The quantity of skilled and unskilled labor is calculated by multiplying the number of days worked
with the average number of workers in each category throughout the year. Up to and including 1890,
the average number of miners is reported separately for winters and summers. I calculate the average
number of workers during the year by taking the simple average of summers and winters. If mines
closed down during winters or, more likely, summers, I calculate the annual amount of labor-days by
multiplying the average number of workers during the observed season with the total number of days
worked during the year.

Wages Only miner wages are consistently reported over time at the mine level. The piece rate for
miners is reported. Up to 1894, miner wages per ton of coal are reported separately for summers and
winters. [ weight these seasonal piece rates wages using the number of workers employed in each
season for the years 1884-1890. In 1892 and 1894, seasonal employment is not reported, so I take
simple averages of the seasonal wage rates. In 1896, wages are unobserved. From 1898 onwards,
wages are reported at a yearly level, because wages were negotiated biennally after the large strikes of
1897-1898. For these years, wages are reported separately for hand and machine miners. In the mines
that employed both hand and machine miners, I take the average of these two piece rates, weighted
by the amount of coal cut by hand and cutting machines.

Output The total amount of coal mined is reported in every year, in short tons (2000 1bs). Up to
and including 1890, the total quantity of coal extraction is reported, without distinguishing different
sizes of coal pieces. After 1890, coal output is reported separately between ‘lump’ coal (large pieces)

and smaller pieces, which I sum in order to ensure consistency in the output definition.

Coal prices Prices are normally given on average for all coal sizes, except in 1894 and 1896, where
they are only given for ‘lump’ coal (the larger chunks of coal). I take the lump price to be the average
coal price for all coal sizes in these two years. There does not seem to be any discontinuity in the time
series of average or median prices between 1892-1894 or 1896-1898 after doing this, which I see as

evidence for this assumption.

Cutting machine usage Between 1884 and 1890, the number of cutting machines used in each mine
is observed. In between 1892 and 1896, a dummy is observed for whether coal was mined by hand,
using cutting machines, or both. I categorize mines using both hand mining and cutting machines as

mines using cutting machines. In 1898, I infer cutting machine usage by looking at which mines paid
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"machine wages’ and "hand wages’ (or both). In 1888, the number of cutting machines is reported by
type of cutting machine as well. Finally, in 1900 and 1902, the output cut by machines and by hand
is reported separately for each mine, on the basis of which I again know which mines used cutting

machines, and which did not.

Deflators [ deflate all monetary variables using the consumer price index from the Handbook of
Labor Statistics of the U.S. Department of Labor, as reported by the Minneapolis Federal Reserve
Bank website.*

Hours worked In 1898, eight-hour days were enforced by law, which means that the ‘number of
days’ measure changes in unit between 1898 and 1900. As the inspector report from 1886 shows that
ten-hour days were the standard, I multiply the number of working days after 1898 by 80% in order
to ensure consistency in the meaning of a ‘workday’, i.e. to ensure that in terms of total number of

hours worked, the labor quantity definition does not change after 1898.

Mine and firm identifiers The raw dataset reports mine names, which are not necessarily consistent
over time. Based on the mine names, it is often possible to infer the firm name as well, in the case
of multi-mine firms. For instance, the Illinois Valley Coal Company No. 1 and Illinois Valley Coal
Company No. 2 mines clearly belong to the same company. For single-mine firms, the operator
is usually mentioned as the mine name, (e.g. ‘Floyd Bussard’). For the multi-mine firms, mine
names were made consistent over time as much as possible. For the individual mine operators, it is
impossible to link mines over time when the operator changes. There will hence be a lot of false exits

and entries. The dataset is hence not very suitable for panel-data analysis when used at the mine-level.

Town identifiers and labor market definitions The raw data report town names. I link these names
to geographical coordinates using Google Maps. I calculate the shortest distance between every town
in the data. For towns that are located less than 3 miles from each other, I merge them and assign them
randomly the coordinates of either of the two mines. This reduces the number of towns in the dataset

from 448 to 350. The resulting labor markets lie at least 3 miles from the nearest labor market.

Coal market definitions Using the 1883 Inspector Report, I link every coal mining town to a rail-
road line, if any. Some towns are located at the intersection of multiple lines, in which case I assign
the town to the first line mentioned. I make a dummy variable that indicates whether a railroad is
located on a crossroad of multiple railroad lines. Towns not located on railroads are assumed to be
isolated coal markets. For the connected towns, the market is defined as the railroad line on which

they are located, of which there are 26. Given that data from 1883 is used, expansion of the railroad

“Ohttps://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-price-index- 1 800-
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network after 1883 is not taken into account. However, the Illinois railroad network was already very
dense by 1883.

Aggregation from mine- to firm-level I aggregate labor from the mine-bi-year- to firm-bi-year
level by taking sums of the number of labor-days and labor expenses for both types of workers, both
per year and per season. I calculate the wage rates for both types per workers by dividing firm-level
labor expenditure on the firm-level number of labor-days. I also sum powder usage, coal output and
revenue to the firm-level and calculate the firm-level coal price by dividing total firm revenue by total
firm output. I aggregate mine depth and vein thickness by taking averages across the different mines
of the same firm. I define the cutting machine dummy at the firm-level as the presence of at least one
cutting machine in one of the mines owned by the firm. I define ‘firm’ as the combination of the firm
name in the dataset and its town (the merged towns that are used to define labor markets), as firms are

assumed to optimize input usage on a town-by-town basis.
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B Theory

B.1 Proof of theorem 1

To prove: gjégé; >0

Proof: Omit subscripts f for simplicity. Denote 3 = 3". Assume i = 0, without loss of generality.
I let the firm be a monopsonist on market L, st = 1 and consider the effect of changes in the market
share s”. The proof is analogous when keeping s" = 1 and considering variation in s'. To simplify
notation, denote y = 1 + s"(¢)" — 1): 1 examine the sign of 3 éﬂz , which is the same as the sign of
88 h(a B)h Using Equations (2b)-(2a), variable profits are given by:

Boo v—B s TEwH B (v—p)
= [(5)* QU e e (1= 2
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withl <y <ohgh > 1 > 1,v<1,0< 3 <.

Define 7 = In(Il). I prove that 3 zph(ay/z’h > (. Variable profits are weakly positive due to the

economic restrictions on the parameter values. Given that IT > 0, and that 7 (.) is twice differentiable,

02(m) *(I)
dphdy —0(:’805’1 > 0.

The effect of monopsony power on profits is equal to:
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Working this out delivers the following expression, which is weakly positive given that 1! > 1,
v <1,andy < o™
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(
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B.2 Proof of lemma 1

.o
To prove: out > 0.
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Proof: Taking the first derivative of variable profits with respect to the markdown p"* (analogously
for i!) gives:
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This last expression is weakly positive because p"* < ™. U

B.3 Proof of lemma 2

gt (u—/a;:)<1+n)>

Proof: Denote the variable profit margin as m; = (1 " o
f f
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Under the assumptions made, the variable profit margin m is positive. It is easy to see that Hicks-
oQ .
, WJ{ > (. Hence, the higher the effect of the technology on
11y

Hicks-neutral productivity %, the higher its effect on profits ng. From Equation (3), it follows that

neutral productivity increases output

a higher increase in profits due technology adoption also increases the effect of the markdown on this
profit increase.

B.4 Proof of lemma 3

. 0210y
To prove: PR, >0

Proof:

o Q g v—p
ool )

0 O, QB  0Q1 B v-p
oio0) = T oual T )

Working this out gives:

o on. QB[ Wh—w—%F)
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Opt 0" Qu\ pph(1 — 5 — “5°)
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The numerator of this expression is weakly positive, because p < Y B <wv,and PP > 1,9 > 1.
The denominator is weakly positive (strictly positive if < 1 or ® > 0 or ¢! > 0), because of the

same reason.

B.5 Equilibrium expressions for empirical model

The equilibrium output of a mine f at time ¢ is denoted Q)},. It can be solved for by computing
the first order conditions of the profit maximization problem, (8), and using Equations (4a), (5), and
(6), which are respectively the production, coal demand, and labor supply functions. The resulting
equilibrium output expression is in Equation (13a), which is the empirical analogue of Equation (2a)
with Cournot competition upstream and downstream. When assuming that the firm is a monopolist
and monopsonist (all market shares become one, and f = m = n), and there are no latent differences

between coal and labor markets (no £, = ", = (. = 1), Equation (13a) simplifies to Equation (2a).

. Bl (sl ) ne (1+3ft77>( ey 2 Tm
-1 T, + Dexp(E)

5ft<8ft) ne= "1+ Sfm)( ) exp((rt) Bft A )
< l ) nt th Uit Uit (133)
((ny = 1)sy +1) GXP( ‘)

The equilibrium coal price is P, = Q7" (ne. The equilibrium quantities of both labor types are then

given by Equation (13b):

1 ho

H* _ Bftht (1+Sft77)( %‘t )77 w,,’;t (Sh )w;nitl
ft (( mtil)sft“i’l)émt ft

4 (13b)

5ftht (1+Sft77)( )77 ’ w!mlt_l
L* = (Sl ) wnt
ft (L, 1)sft+l)§ ft
\

Substituting the equilibrium labor quantities from (13b) into the labor supply functions in (6) gives

p

the expression for equilibrium wages, Equation (13c).

w,,hht—l 1

e BRPRQ%,(14m) D h R
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Wi = ((( fitﬁ)sjl;iﬂ)slft) Une (exp(§,;)) e
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C Empirical analysis

C.1 Alternative production model

In the main text, I assumed that the scale parameter  was equal to 0.9 and imposed a homogeneous
goods Cournot model on the coal market to estimate markups. In this section, I use an alternative
model in which I estimate the scale parameter and do not impose a demand model on the coal market,

but which does not allow for unobserved heterogeneity in the output elasticities across firms and time.

Production In Equation (14), [ impose a Cobb-Douglas production function in skilled and unskilled
labor with each output elasticity shifting linearly with the usage of cutting machines, which is mea-

sured by the interaction effects 5"* and 3.
_ 4k I hk lk k
qpe = B Iyt + By + B hyi Kpe + B Kpe + 87K g + wyy (14)

I assume that cutting machines do not change the degree of returns to scale in both labor inputs,
which implies that 3% = —3'*. As usual, I rely on timing assumptions on the input demand problem
of the firm to identify the production function coefficients (Olley & Pakes, 1996; Ackerberg et al.,
2015). As in Blundell and Bond (2000), I assume that total factor productivity evolves following an
AR(1) process, with shock € f:

Wrp = pWyre—1 + €

I keep the assumptions from the baseline model that both labor types are static, variable inputs,
whereas cutting machines are a dynamic, fixed input. Hence, capital choices at time ¢ and any past
time period are orthogonal to the productivity shock e, at time ¢, while labor choices at time ¢ — 1
are orthogonal to productivity shocks at time ¢:

ho—1 t
Elenl{ loa o | =0

Ko 0=1

The markup u‘}t can be expressed as the ratio of the output elasticity of miners over the product of
1

its revenue share and markdown:*
h hk
q __ 6 + ﬂ Kft
ft Wk Hy, " h
PpQypy 7 ST

41 Alternatively, the markup could be estimated using unskilled labor as well, but unskilled labor costs are latent.
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Estimation As in the main text, I proceed by aggregating the data set to the town-year level, by
summing output and labor and by defining the capital dummy at the town-year level. The estimable
production function becomes Equation (15). I again denote towns as f, assuming that each town

consists of either one firm or by multiple firms that are perfectly colluding:
_ ph ! hk k
qjt = B"hje + B'lje + B (hje — L) Ko + B Kjy + wjt (15)

Similarly to the main text, I estimate the integrated model using a block-bootstrapping procedure that

resamples within towns, using 200 iterations.

Results The results of this alternative production model are in Table AS. Coal cutting machines are
still unskill-biased: the output elasticity miners is estimated to fall by 0.353 points when adopting a
cutting machine, coming from 0.687. In the baseline model, this was a smaller drop of 0.110 points,
down from 0.688. The scale parameter, v is equal to be 0.768, whereas it was assumed to be 0.9 in
the main text. Thus, the assumption of decreasing returns to scale is confirmed. The average markup
ratio p? is estimated at 1.126, which implies that the coal price is 12.6% above marginal costs. This
estiamate does not impose any model of competition on the coal market. In contrast, the homogeneous
goods Cournot model in the baseline model delivered an average markup ratio of 1.067, or a markup
of 6.7%, which is around half of the markup with the production model.

C.2 Cost dynamics

There are multiple sources of cost dynamics that would invalidate the productivity transition equation.
If it becomes increasingly costly to operate deeper mines, for instance, productivity would depend on
past cumulative output, as Aguirregabiria and Luengo (2017) find for copper mining. Such depen-
dence could also exist due to learning by doing, as in Benkard (2000), but productivity would then
increase with cumulative output, rather than fall. I test this by regressing the logarithms of the produc-
tivity residual wy, on log cumulative output. The estimated coefficients in Table A2. If not including
mine fixed effects, lagged cumulative output is associated with higher total factor productivity. This
could, however, be due to selection: more productive mines are more likely to have extracted and
sold more coal. Once I include mine fixed effects to track how productivity co-varies with cumulative
output within each mine over time, the coefficient on lagged cumulative output becomes small and

insignificant.

C.3 Inverse miner supply elasticity: correlations

Appendix Table A3 regresses the log town-level inverse miner supply elasticity /" on a number
of town and county characteristics. The town-level inverse supply elasticity is equal to the profit-

maximizing wage markdown of a monopsonist. Labor supply is more inelastic (implying higher
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wage markdowns) if the share of total coal employment over the town population is higher: in towns
that are coal mining towns with few outside work opportunities, miner supply is more inelastic. A
second regressor is the log of the ratio of the total farmed area in a county divided by the county’s
surface. Miner supply is more inelastic in areas with less farming (for instance, because of rugged
geography), presumably because there are less outside work opportunities to switch to. Thirdly, the
population share of African Americans in the county does not correlate significantly with the miner
supply elasticity. Fourthly, towns with a higher share of firms connected to the railroad network
have slightly more inelastic miner supply. This is in line with historical evidence that railroads were
not used to transport workers, and confirms the assumption of isolated mining towns.*? Finally, the
average wage in manufacturing industries in the same county does not correlate significantly with
the miner supply elasticity, which suggests that the outside option was mainly to work in agriculture,

rather than in manufacturing industries, which were in any case scarce in rural Illinois.

C.4 Robustness checks
A Alternative values for the scale returns parameter

In the baseline analysis, I calibrated the degree of returns to scale v to be 0.9, and motivated why
decreasing returns to scale is an appropriate assumption in the historical coal mining industry setting.
In this robustness check, I re-calibrate the returns parameter to be, alternatively, 0.85 and 0.95. The
results are in Figure AS and Figure AS for v = 0.85 and v = 0.95, respectively. The direction of all
counterfactual effects is the same as in the baseline analysis with v = 0.90. The size of the changes
in technology usage in response to variation in labor market structure increases with the degree of

returns to scale.

B Wage screens

The usage of wage screens cause measurement error in the data, because miners were not remunerated
on the total (reported) output at the mine, but based on a lower coal output that consisted only of larger
pieces of coal. In 1898, I observe which firms paid screened wages and which did not. As a robustness
check, I re-run the analysis while excluding counties for which at least one firm paid a screened wage
in 1898, which was the case for 13.9% of observations. The estimated counterfactuals for this selected
sample of firms is in Figure A7, and look very similar to those in the baseline analysis containing both
firms that pay screened wages and those that do not.

“1f mining towns would not be isolated due to workers commuting by train, being connected to the railroad network
should result in more elastic labor supply.
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Figure A1: Geographical spread of cutting machines

1884 1890

=0
=]

Notes:The dots represent mining towns, each of which can contain multiple mines.
Villages with squares contain at least one machine mine.
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Figure A2: Capacity utilization

Kernel density

T
0 2 4 6 8 1
Output/capacity

Hand = —— Machine

Notes: This graph plots the distribution of capacity utilization, defined as annual
mine output over annual mine capacity, across mines in 1898. A distinction is made
between hand mines, which did not use cutting machines, and machine mines, which
did.
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Figure A3: Harrison Cutting Machine

(a) Patent

{No Model.) 4 Shests—S8hoet 1.

J. W. HARRIBOR,
COAL MINING MACHINE.
No, 262,225, Patented Aug. 8, 1882,

|
I

Notes: U.S.A. patent of the 1882 Improved Harrison Coal Cutting Machine
(Whitcomb, 1882). This was the most frequently used coal cutting machine in the
data set.
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Figure A4: Distributions of latent variables

(a) Markdowns and markups
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Notes: Distribution of the inverse miner supply elasticity across mines between 1884-
1894. Each distribution censored at its S5th and 95th percentile.
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Figure AS: Counterfactuals with v = 0.85
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Figure A6: Counterfactuals with v = 0.95

(a) Unskill-biased technology
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Figure A7: Counterfactuals accounting for wage screens

(a) Unskill-biased technology
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Table A1: Occupations and wages

Daily wage (USD) Employment share (%)
Miner 2.267 61.5
Laborers 1.76 14.30
Drivers 1.83 591
Loaders 1.74 3.63
Trappers 0.80 1.86
Timbermen 2.02 1.68
Roadmen 2.36 1.46
Helpers 1.70 0.92
Brusher 2.06 0.75
Cagers 1.87 0.70
Engineer 2.11 0.61
Firemen 1.60 0.57
Entrymen 2.01 0.56
Pit boss 2.70 0.56
Carpenter 2.09 0.53
Blacksmith 2.08 0.46
Trimmers 1.50 0.36
Dumper 1.68 0.36
Mule tender 1.65 0.31
Weighmen 1.95 0.29

Notes: Occupation-level data for the top-20 occupations by employment share in the 1890 sample of 11 mines in

[llinois. The 20 occupations with highest employment shares together cover 97% of coal mining workers in the sample.
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Table A2: Cost dynamics

log(Output/(labor-days))

Estimate SE Estimate SE
log(Cum. output) 0.124 0.003 -0.011 0.017
Mine FE No Yes
Observations 3766 3766
R-squared .326 .810

Notes: Regression of log output per worker-day against log cumulative output (lagged by one time period) at the
mine-year level. Sample only includes mines for which lagged output is observed.
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Table A3: Markdown correlations

log(Markdown)
Estimate SE

log(Coal employment share) 0.022 0.004
log(Farmland/Total Area) -0.136 0.066
log(African Americans / Population) -0.001 0.004
Share of firms connected to railroad 0.029 0.010
log(Manufacturing wage) 0.021 0.022
Observations 876

R-squared 0.342

Notes: Regression of log miner wage markdown on mine and county characteristics. Standard errors clustered at the
county level.
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Table A4: Coal demand and production estimates: all coefficients

(a) Coal demand (county-level) log(Coal price)
Est. CIO5 CI95

log(Quantity) -0.263 -0.307 -0.233
1(Railroad connection) 0.433 0.330 0.599
I(Railroad crossing) 1.164 0.676 1.377
log(Dist. to St. Louis) -0.073 -0.152 -0.016
log(Dist. to Chicago) -0.287 -0.447 -0.144
Observations 484

F-stat 1st stage 513

R-squared 202

(b) Output elasticity transition

log(Output elasticity of skilled miners)

Est. CIO5 CI95
1(Cutting machine) -0.132 -0.189 -0.008
log(Materials) 0.012 -0.022 0.006
Year -0.011 -10.189 41.916
Constant 20.481 -0.014 0.023
Observations 1133
R-squared .006

(c) Hicks-neutral productivity transition

log(Hicks-neutral productivity)

Est. CI05 CI95
1(Cutting machine) 0.249 -0.163 0.425
log(Materials) 0.124 -0.270 0.142
Year -0.011
Constant -60.954 -0.209 0.201
Year -0.883 0.466
Observations 1050
R-squared 238

Notes:
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Table AS: Alternative production model

(a) Production function

log(Skilled labor) 0.687 0.574 1.509
log(Skilled labor/Unskilled labor)*1(Cutting machine) -0.353 -0.798 -0.240
log(Unskilled labor) 0.081 -0.433 0.430
1(Cutting machine) 0.551 0.433 1.088
Constant 1.950 -2.834 7.283
Observations

R-squared

(b) Markup and returns to scale

Returns to scale 0.768 0.577 1.424
Markup 1.126 0.946 2.487

Notes: Alternative production function that estimates markup and degrees to scale, as specified in Appendix C.1.

Standard errors are block-bootstrapped with 200 iterations.
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Table A6: Counterfactual with different returns to scale parameter v

v=10.85
(a) Competitive equilibrium Reality CF Dif. Dif. (5%) Dif (95%)
Returns to machine adoption 0.009 0.024 0.015 0.007 0.027
Cutting machine usage 0.051 0.057 0.006 -0.003 0.027
(b) Elastic labor supply Reality CF Dif. Dif. (5%) Dif (95%)
Returns to machine adoption 0.009 -0.012 -0.021 -0.041 -0.009
Cutting machine usage 0.051 0.054 0.002 -0.019 0.010

v=20.95
(a) Competitive equilibrium Reality CF Dif. Dif. (5%) Dif (95%)
Returns to machine adoption 0.000 0.015 0.015 0.006 0.027
Cutting machine usage 0.051 0.056 0.004 -0.003 0.034
(b) Elastic labor supply Reality CF Dif. Dif. (5%) Dif (95%)
Returns to machine adoption 0.000 -0.020 -0.021 -0.040 -0.009
Cutting machine usage 0.051 0.050 -0.001 -0.024 0.010

Notes: Same counterfactual exercise as in Table 2 but with scale return parameters v = 0.85 and v = 0.95.
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Table A7: Counterfactual dropping counties with screened wages.

(a) Competitive equilibrium Reality CF Dif. Dif. (5%) Dif (95%)
Returns to machine adoption -0.003 0.004 0.007 0.007 0.027
Cutting machine usage 0.040 0.050 0.011 -0.003 0.024

(b) Elastic labor supply Reality CF Dif. Dif. (5%) Dif (95%)
Returns to machine adoption -0.003 -0.021 -0.018 -0.041 -0.009
Cutting machine usage 0.040 0.032 -0.007 -0.025 0.008

Notes: Same counterfactual exercise as in Table 2 but dropping counties in which ‘wage screens’ were used.
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Table A8: All variables per year

Year

1884

"86

"88

90

92

94

96

98

00

02

Output quantities
Total

Lump

Mine run

Egg

Pea

Slack

Shipping or local mine
Shipping quantities

Input quantities

Miners, winter

Miners, summer

Miners, avg entire year
Miners, max entire year

Other employees

Other employees, underground
Other employees, above ground
Other employees winter

Other employees summer
Boys employed underground
Mules

Days worked

Kegs powder

Men killed

Men injured

Capital (in dollar)
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Table A9: All variables per year (cont.)

Year

1884

"86

"88

90

92

94

96

98

00

02

Output price
Price/ton at mine
Price/ton at mine, lump

Input prices

Miner piece rate (summer)
Miner piece rate (winter)
Miner piece rate (hand)
Miner piece rate (machines)
Piece rate dummy

Payment frequency
Net/gross wage

Oil price

Technicals

Type (drift, shaft, slope)
Hauling technology
Depth

Thickness

Geological seam type
Longwall or PR method
Number egress places
Ventilation type
New/old mine

# Acres

Mine capacity

Mined or blasted

Cutting machine usage
Cutting machine dummy

# Cutting machines

# Tons cut by machines

# Cutting machines, by type

ol

DR K] KX

X X X X

olle

PR KK KX

ol
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XK KX
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