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Abstract: We investigate how worker mobility influences the adoption of a new general-purpose 
technology (GPT). Using data from over 153,000 establishments between 2010 and 2018, we 
observe establishment decisions to adopt machine learning. Taking advantage of state-level 
changes to the enforceability of noncompete agreements as an exogenous shock to worker 
mobility, we find that changes that facilitate worker movements are associated with a significant 
decline in the likelihood of adoption. Moreover, the magnitude of establishment response 
depends upon characteristics of the establishment, the location in which it resides and its 
industry—in particular, establishment size and number of large establishments in the same 
industry-location and the level of experimentation with analytics technology. These results are 
consistent with the view that increases in worker mobility lead to greater risks for establishments 
that are contemplating adoption of a new GPT that involves significant downstream innovation. 
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How does labor mobility affect business adoption of a GPT? The 

case of machine learning 

 

INTRODUCTION 

Recent research has highlighted the potential benefits of adopting advanced analytics and data-

driven decision-making for the productivity of firms (e.g., Brynjolfsson and McElheran 2016; 

Brynjolfsson, Jin, and McElheran 2021; Tambe 2014; Wu, Hitt, and Lou 2020). However, it is 

well known that adoption of new IT systems such as advanced analytics requires complementary 

investments to achieve productivity gains (e.g., Bloom et al. 2012; Bresnahan et al. 2002; 

Brynjolfsson, Rock, and Syverson 2021). In particular, adoption of IT systems requires firms to 

invest in complementary business process innovation to adapt general-purpose systems to the 

idiosyncratic needs of firms (e.g., Bresnahan and Greenstein 1996). Implementing such 

complementary innovation requires significant human capital, both as part of the implementation 

process as well as part of changes to organizational processes, strategy, and structure that have 

been documented in the literature (see Brynjolfsson and Milgrom 2013 for a recent review).   

 An important way for firms to acquire the necessary human capital is by hiring workers 

from other firms. This type of human capital acquisition from other firms has been shown to 

have a significant impact on hiring firms’ productivity (Tambe and Hitt 2014; Wu et al. 2018), 

particularly for human capital related to new technologies (Tambe 2014). Hiring workers has 

also been highlighted as an important channel for human capital acquisition and knowledge 

transfer in the literature on IT spillovers (e.g., Chang and Gurbaxani 2012a, b; Cheng and Nault 

2007, 2012; Tambe and Hitt 2014). Thus, labor mobility across firms can facilitate the diffusion 
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of new technologies by acting as a conduit through which firms can obtain the human capital 

needed to deploy general-purpose IT systems. 

However, labor mobility across firms can also have negative effects on technology 

diffusion. In particular, the risk of workers leaving the firm, potentially with valuable 

knowledge, can depress incentives for firms to make investments in new technologies that will 

engender gains to worker skills, through either formal training or on-the-job learning. These risks 

are likely to be greatest among new general-purpose technologies (GPTs). This is because GPTs 

cannot be used productively without significant downstream innovation (Bresnahan and 

Trajtenberg 1995) and investments in worker knowledge, which in turn make workers 

particularly valuable to a firm’s competitors.  

We take a first look at examining the empirical salience of these competing effects of 

labor mobility on adoption of machine learning (ML). Following recent work, we will focus on 

ML as a prediction technology that is a particular subfield of artificial intelligence, which has 

been argued to be a new GPT (Cockburn et al. 2019; Goldfarb et al. 2020; Trajtenberg 2019). 

We use changes in state-level enforceability of noncompete agreements (NCAs) as a plausibly 

exogenous source of variation in labor mobility (Balasubramanian et al. 2020; Ewens and Marx 

2018; Marx et al. 2009).  In particular, we study how state-level changes in the strength of NCA 

enforceability between 2010 and 2018 influence the adoption of machine learning within firms 

over the same period. Our measure of machine learning adoption is based on data from over 

150,000 establishments with 50 or more employees in the Aberdeen Computer Intelligence 

database over this period. An important advantage of this database is that it includes 

establishments that vary significantly with respect to their size, industry, and location in ways 
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that influence the (net) benefits to technology adoption and the implications of NCA 

enforceability for their behavior.  

Using a two-period difference model, we find that increased labor mobility, as measured 

by a loosening of enforceability of NCAs, is associated with a 0.6 percentage point decline in the 

likelihood of machine learning adoption by establishments in our sample. Given an average 

adoption rate in 2018 of 9.7%, this translates to a roughly 6.2% decline in the likelihood of 

adoption on average. We probe and confirm the robustness of this result in a number of ways, 

including a variety of different controls, subsamples, and measurement strategies. We also 

explore a falsification exercise to an alternative technology—touchscreen tablets—that is likely 

to require less downstream innovation and so should be less sensitive to the potential risks of 

within-industry labor mobility. We find that changes in NCAs have no significant effect on this 

alternative technology.  

Motivated by prior research in economics and information systems, we then examine 

heterogeneity in our main results. The costs of adopting new technologies are higher in larger 

organizations, often requiring significant co-invention by users to adapt GPTs to idiosyncratic 

firm needs, processes, structures, and technologies (Bresnahan and Greenstein 1996; Forman et 

al. 2005; Ito 1995). Further, the potential risks of labor mobility to technology adoption are likely 

to be greater in larger regions and in those with a greater concentration of workers in the same 

industry (Forman et al. 2005; Greenwood et al. 2019; Tambe 2014). These facts suggest that the 

impact of labor mobility on ML adoption is likely to be greater for larger establishments and 

establishments that are in locations with a large number of establishments from the same 

industry. We further examine heterogeneity in our results based on industry-level differences in 

experimentation with analytics technology.  
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Our findings about the impact of labor mobility on technology adoption are consistent 

with these predictions. Establishments with more than 100 employees see a 0.9 percentage point 

decline in the likelihood of ML adoption when NCAs change in a way that benefits employees 

(or 7.4% of the average adoption rate in this set of establishments, and statistically significant at 

the 5% level), while those with fewer than 100 employees see no economically or statistically 

significant change. We also find that the effects of NCAs on technology adoption are greater in 

large urban areas; consistent with NCAs limiting mobility to a firm’s competitors, these results 

are explained by a stronger effect of NCAs when the focal establishment is in a location with a 

greater number of large establishments in its own industry. Together, our results add new 

empirical evidence about an understudied effect of labor mobility on the adoption of GPTs.  

THEORETICAL FRAMEWORK 

 In this section we describe the theoretical motivation behind our empirical tests. We 

begin by characterizing the nature of investments required to adopt (and receive benefits from 

adopting) ML technology. We then describe how the costs of these investments will be shaped 

by worker mobility and how they interact with establishment and local characteristics.  

Machine Learning and Business Process Innovation 

 As noted above, ML facilitates prediction of events in contexts where traditional 

algorithms perform poorly (e.g., Agrawal et al. 2018, 2019; Cockburn et al. 2019; Goldfarb et al. 

2020; Trajtenberg 2019). For example, in a business setting, ML can help predict why sales are 

down in a particular region and where attrition will occur within an organization (LePlante 

2020).  

The diffusion of ML technology in business has depended in part on upstream innovation 

in algorithms that have been documented in earlier work (Cockburn et al. 2019; Nilsson 2010). 
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However, as with all GPTs, it also requires downstream innovation that occurs through a 

combination of work in application firms (Bresnahan and Gambardella 1998; Rosenberg 1982) 

and by user firms themselves.  

Our focus in this paper is across a range of downstream industries and firm sizes, rather 

than on digital firms for whom ML technology is central to the product or service provided. In 

this setting, firms adopting ML have the option of either building tools themselves or adapting 

existing application software to unique circumstances. In earlier generations of general-purpose 

information technology, firms often adopted packaged software solutions and then engaged in 

complementary business process innovation to adapt such solutions to firm needs (Bresnahan 

and Greenstein 1996).  

Therefore, in our analysis we focus on the adoption of ML that has been incorporated into 

enterprise application software, specifically business analytics software, which facilitates 

organizational decision-making by identifying patterns in data (LePlante 2020). Sometimes 

known as augmented analytics, such incorporation of ML represents an advance over analytics 

software that incorporates descriptive visualization technologies and diagnostic tools such as 

online analytical processing (LePlante 2020). Although acquiring ML-enabled business 

application software—rather than building such software internally—will reduce some of the 

necessary human capital investments, applying ML to specific downstream applications will still 

require significant investments by downstream firms in the human capital of workers to adapt 

general-purpose algorithms to specific applications.  

In particular, knowledge of how to implement ML models must frequently be combined 

with domain knowledge (Tambe 2019), through some combination of formal training and on-

the-job learning. One example that sheds light on the nature of investments required by adopters 



 

7 
 

is a recent collaboration between C3 and 3M (Siegel and Makinen 2018). C3 used a combination 

of connected devices and advanced analytics enabled by ML. C3 worked in a variety of 

specialized industries, from mining to national defense, but it did not employ specialists in those 

domains. 3M deployed C3 to help 3M’s health care division build a new software system for 

hospitals and health care providers that used predictive analytics and ML for clinical 

documentation, computer-assisted coding, and health analytics. Employees at 3M who used the 

system trained on C3 at C3’s headquarters for several weeks, passed an exam, and then worked 

with a C3 team to build out the application over a 90-day period (Siegel and Makinen 2018). 

Thus, in this example, workers at 3M gained valuable industry- and domain-specific skills and 

knowledge as a result of these investments made by 3M during the implementation of C3.  

Mobility and Machine Learning Adoption 

As noted, significant investments are required to adapt ML-enabled enterprise software to 

business needs. In particular, ML adoption will require significant complementary human capital 

investments in the firm’s workers related to the functionality of ML and its application to 

business processes. Some of these investments will be firm- and industry-specific. In this 

subsection, we detail how the costs and benefits of these investments can depend on labor 

mobility, and in turn influence ML adoption.  

When employees move to a new employer, they are able to apply the experiences they 

have learned to new environments, lowering the implementation costs and increasing the 

productivity of investments in their new firms (Tambe 2014; Tambe and Hitt 2014; Wu et al. 

2018). However, at the same time, the possibility of employee movements out of a firm will 

increase the risks (to the firm) of making the necessary human capital investments by reducing 

future benefits (e.g., through the additional costs of training new workers). These latter risks may 
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loom particularly large for investment in GPTs like ML, when initial investments are particularly 

large and the stream of payoffs accrues only after significant periods of time (Brynjolfsson et al. 

2021).  

As a stylized example, consider a business establishment evaluating a potential 

investment in ML. As a result of such investment, workers will accumulate human capital that 

will increase their value to other firms. This, in turn, will increase their outside options for 

alternative wage offers from other firms in the same region.  

Reducing the costs of workers moving within a state (by loosening the legal 

enforceability of NCAs) will have competing effects on the likelihood of adoption across 

establishments within that state. First, a decline in the costs of mobility to the workers will 

increase the likelihood that workers who have accumulated human capital related to ML will 

move to other firms. These increased risks of workers leaving the establishment will decrease the 

establishment’s net benefits from making the investments necessary for ML adoption, other 

things equal. As noted, investments in ML produce a stream of payoffs over time. However, to 

obtain these benefits, firms require skilled workers who have been appropriately trained. If 

workers leave the firm after receiving training, the firm will need to train new workers to receive 

the benefits from AI adoption. If training costs are sufficiently high, this can reduce the benefits 

of making ML investments and dissuade adoption.  

However, if some establishments continue to make investments in ML, increased worker 

mobility will lower the costs of adoption and complementary investments for other firms in the 

same region. The reason is that IT workers tend to disproportionately change jobs within the 

same region (Neffke et al. 2017; Tambe and Hitt 2014). Workers who change jobs can share 

their experiences of deploying ML in their earlier firm. This is particularly true if they change 
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jobs within the same industry, because of the significant industry- and process-specific human 

capital that is necessary for deploying ML systems. In this way, increases in mobility could 

increase adoption in a region.  

In sum, increased worker mobility can increase or decrease the net benefits of adopting 

ML. The net effect of these two factors on the likelihood of ML adoption for a particular 

establishment can in turn depend upon other additional factors, related to characteristics of the 

establishment and its location.  

Establishment size. The benefits and costs to business process innovation enabled by 

adopting enterprise software systems, and consequently the impact of increasing worker 

mobility, vary with size. For several reasons, increases in worker mobility are likely to have a 

more negative effect on adoption behavior in large establishments. First, large plants are more 

likely to have related technological complements and more mature processes (Bresnahan and 

Greenstein 1996; Brynjolfsson and McElheran 2016) that will increase the value of adopting new 

enterprise software systems. However, integrating new systems within an installed base is also 

costlier and can delay adoption (Bresnahan and Greenstein 1996; Forman 2005). This deterrence 

is likely to be amplified by the risks associated with worker mobility. Second, to the extent 

process innovation reduces unit costs, its benefits will be proportional to the output of the firm 

(Klepper 1996). This in turn implies that any reduction in unit cost benefits due to higher worker 

mobility is also proportional to the output of the firm. Thus, in the presence of high worker 

mobility, this effect is likely to deter larger establishments from adopting. Third, business 

process innovation that is embedded within complex business processes (associated with large 

establishments) may be more difficult for competitors to replicate (Mata et al. 1995; Melville et 

al. 2004), further increasing the benefits to large establishments. However, some of these very 
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characteristics that make the benefits of IT adoption more valuable in large establishments make 

the risks of mobility highest to such establishments. Workers who are involved in ML adoption 

in large establishments will acquire more human capital than workers employed elsewhere, and 

this human capital will include a significant industry-specific component, making them 

particularly valuable to other firms in the same industry. This leads to a prediction that increases 

in worker mobility will have a more negative effect on adoption behavior in large 

establishments. 

Location size. The effects of worker mobility will similarly be magnified in large 

locations. In large locations, the outside options faced by workers who have accumulated ML-

related human capital are higher, depressing incentives to make investments in ML that will train 

workers. However, in large regions the benefits to firms that are seeking to hire workers who 

have obtained the requisite skills elsewhere will also be larger. Specifically, in large regions, the 

larger number of workers and firms will make matching between worker skills and employer 

needs easier, thus increasing the benefits to firms hiring workers from elsewhere.  

In particular, the effects of worker mobility will be larger in locations with more firms 

from the same industry. The implementation of ML requires a significant amount of industry- 

and process-specific knowledge. The experience of early adopters’ attempts to adapt general-

purpose systems to the unique needs of firms (Bresnahan and Greenstein 1996) can potentially 

be shared within firms in related industries. As a result, the training and on-the-job experience 

obtained by IT workers will be most valuable to firms within the same industry. Furthermore, 

restrictions related to NCAs apply only to movement of workers to competitors. So, any 

heterogeneity in the effects of NCAs are most likely to be dependent on the same-industry scale, 

and they will be less influenced by the scale of other industries in the same location. This leads 
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to the prediction that increases in worker mobility will have a more negative effect on adoption 

behavior when the establishment is in a location with a large number of establishments in the 

same industry.   

Industry experience with related technologies. We also explore heterogeneity in the 

effects of worker mobility based upon industry use of related technologies. In particular, we 

examine differences in industry-level experimentation with predictive analytics during our 

sample period, based upon measures reported in Brynjolfsson, Jin, and McElheran (2021). The 

outside option will be higher for workers in industries that are actively using predictive analytics, 

increasing the risks to making investments in ML that will train workers who may go to 

competing firms in the same industry. Industry-level differences may also capture establishment 

level differences in the net benefits to adoption, which may also influence sensitivity to changes 

in NCA on adoption behavior.  

MOBILITY AND NONCOMPETE AGREEMENTS 

The prior section established how changes in worker mobility can shape business process 

innovation related to ML and the adoption of ML. However, measuring the mobility of workers 

engaged in such business process innovation and estimating a causal relationship between their 

movement and adoption is difficult. First, public and private data available from the Census 

Bureau such as Quarterly Workforce Indicators (QWI) measure aggregate mobility within a 

region, but do not identify occupation (Balasubramanian et al. 2020), making it impossible to 

identify the set of workers engaged in business process innovation and their movements. 

Although private data sets employed in recent studies (Tambe 2014; Tambe and Hitt 2014; Wu 

et al. 2018) do identify occupation, identifying a causal relationship between their movements 

and adoption is difficult as the benefits and costs of local labor mobility will be correlated with 
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other local factors that influence the benefits of adoption. As a result, determining the impact of 

mobility on adoption requires an exogenous change to mobility across locations. In this study, 

we use plausibly exogenous state-level changes in the enforceability of NCAs to capture changes 

in the ease of worker mobility on adoption of ML.   

NCAs are agreements between employers and employees that restrict employees from 

joining or starting a competing firm for a period of time, commonly around one or two years, 

after they leave their employer. The intent of these agreements, where enforceable, is to protect 

valuable investments made by a firm that may spill out to its competitors through worker 

mobility, and thus eventually encourage such investments by firms. The enforceability of these 

agreements in the United States varies across states; while most states allow “reasonable” 

restrictions, they are mostly or completely unenforceable in three states (California, North 

Dakota, and Oklahoma). Importantly, the enforceability of these agreements has changed over 

time in a number of states, either through legislative action or through judgments in courts. 

We use changes in NCA enforceability as a measure of the state-level changes in the 

costs and benefits of labor mobility for several reasons. First, because they are shaped by legal 

and legislative changes, changes in the strength of NCAs are not likely to be correlated with IT 

investment. Second, NCAs are important restrictions that cover a significant proportion of the 

U.S. workforce. Starr (2019), using a survey of 11,000 workers, found that 38% workers had 

signed an NCA and that 19% were subject to an NCA by the time of the survey. Moreover, 

workers in knowledge-intensive positions are more likely to be subject to NCAs, such as workers 

in architecture, computers, and engineering (Starr 2019); CEOs (Garmaisse 2011); and inventors 

(Marx et al. 2009). Third, the enforceability of NCAs is a matter of state law (rather than federal 

law), which allows us to compare changes in adoption behavior in establishments that are in 
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states that altered NCA enforceability with the corresponding changes among establishments in 

states that did not alter NCA enforceability.  

Most importantly, existing studies across a range of settings have provided strong and 

compelling evidence that changes in the enforceability of NCAs influence worker mobility. 

Using U.S. patent data, Marx et al. (2009) show that strengthening the enforceability of NCAs 

reduces inventor mobility, particularly among those with firm-specific skills or in narrow 

technology fields. Balasubramanian et al. (2020), who looked at a recent ban on NCAs for 

technology workers in Hawaii, show that banning NCAs led to an 11% increase in mobility (and 

a 4% increase in new-hire wages) among technology workers (defined by industry) relative to 

other workers. Garmaise (2011) and Jeffers (2019) find a similar mobility-hindering effect 

among executives and knowledge workers, respectively. The latter study uses a similar set of 

legal changes as we adopt in this study and finds that following an increase in NCA 

enforceability, the total departure rate of employees drops by around 9%. Hence, we use changes 

in the legal enforceability of NCAs to proxy for changes in the ease of worker mobility. The next 

section provides further details on the specific changes considered.   

DATA 

Our primary source of data is the Aberdeen Computer Intelligence Technology Database 

(hereafter CI database). It contains information on establishment- and firm-level characteristics 

such as the number of employees, installations of IT software and hardware, and industry 

classification, among others. As one of the most comprehensive sources of micro-level IT 

investment, this dataset has been used by many researchers to study the adoption and economic 

implications of IT investments (e.g., Bloom et al. 2012; Bresnahan et al. 2002; Bresnahan and 

Greenstein 1996; Forman et al. 2005, 2012; Nagle 2019).   
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 Historically, the CI data were collected by interview teams that surveyed establishments 

throughout the calendar year. However, beginning in 2017 the data collection methodology 

changed to one based upon evidence of technology usage and topical queries recorded online. 

For example, one source indicates that data are captured from over 1,000 websites that host 

content concerning technologies, including job boards, forums, tutorials, and educational sites 

(Levy 2019). For example, if a user at a company lists experience with a technology on her 

resume, or if a user is active on a tutorial or user forum associated with a technology, this is 

considered evidence of usage of the technology at the organization. While the CI database 

includes information on evidence of both current and expected use of technologies, we use only 

evidence on current usage. In this way, the approach is similar to that used by recent authors to 

detect IT investment and use based on online employee resumes and job advertisements 

(Goldfarb et al 2019; Tambe and Hitt 2014; Tambe et al. 2019).  

Prior researchers have compared the set of establishments in the CI database that have 

more than 100 employees and demonstrated that it is broadly representative of the U.S. economy 

(Forman et al. 2002), with a slight oversampling of large establishments and technology-

intensive industries. We similarly compared our establishment-level sample to U.S. Census 

County Business Patterns (CBP) data and found it similar to the U.S. CBP in terms of industry 

and geography, though like prior versions of the database, it seems to have slightly oversampled 

large establishments (Table B1).  

The focus of our research is to understand how changes in the ease of mobility for 

workers, as proxied by changes to state-level enforceability of NCAs, influences the diffusion of 

ML technology among businesses. Thus, we require data on adoption of ML over time. Our 

decision regarding the sample period is shaped by several factors. First, since NCA changes 
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occur over a period of years, we must use a sample period that allows sufficient time for these 

changes to occur and for them to influence adoption. Similarly, our sample must end sufficiently 

late so that we can observe adoption of ML: for example, advanced data analytics enabled by 

ML entered the market starting only around 2015 (see, for example, Sallam et al. 2017). Third, 

as noted above, Aberdeen changed its data collection strategy recently, making the intervening 

years difficult to compare. Given these constraints, in our analysis we examine adoption over 

two distinct years, 2010 and 2018, studying the adoption decisions in 2018 from a base of zero 

(no adoption in 2010).  

Given our research design, we require establishments that appear both in 2010 and 2018 

in the data. We identify 686,878 such establishments. We exclude government, military, 

nonprofit organizations (including elementary and high school education and libraries), and 

agriculture because the relationship between ML adoption and labor mobility for these 

organizations is likely to be different than for nonfarm businesses.1 Prior research that has used 

establishment-level CI data to examine adoption and economic implications of frontier IT 

adoption has focused on larger establishments because of low rates of adoption of frontier IT 

among small establishments and also because of potential measurement error (e.g., Forman et al. 

2005, 2008, 2012). Following that research, we also exclude small establishments (fewer than 50 

employees) because of low adoption rates and the risk that we may be unable to correctly 

observe ML adoption given Aberdeen’s data collection methodology. The final baseline sample 

contains 306,208 establishment-year observations.  

Dependent Variable 

                                                 
1 The observations we excluded are: Public administration (SIC 90-99); Agriculture, forest, and fishing (SIC 01-09), 
Elementary and secondary schools (SIC 8211); Colleges and universities (8221), Junior Colleges and Technical 
Institutes (8222), and Libraries (8231); and some establishments affiliated with a county-, city-, or state-level 
government.  
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Machine Learning Analytic Software Adoption  

Our interest is primarily in understanding the implications of worker mobility on the downstream 

innovation required to deploy a GPT. Thus, to isolate the implications of this downstream 

innovation from other types of innovation that could occur when building new software, we 

focus our analysis on the adoption of packaged software that incorporates ML technology.  

Specifically, we measure ML adoption based on whether an establishment adopts 

enterprise data analytics software that incorporates ML technology. Analytics software 

incorporating ML functionality enables new applications by facilitating prediction (Agrawal et 

al. 2018, 2019). The adoption of such advanced analytic tools focused on predictive analysis is 

thus different from traditional data analytics tools that focus on descriptive analysis.   

We identify ML adoption based on the functionality of the software applications adopted 

by establishments. The CI data report the vendor and product name installed by the 

establishment. Based on intensive research on the functionality of the application packages, we 

identify 31 packages as incorporating ML technology. We create a dummy variable for ML 

adoption at the establishment level that is equal to 1 if the establishment has adopted one of these 

packages and 0 otherwise. The overall ML adoption rate in our sample is 9.7% in 2018. Details 

of our coding approach are provided in Appendix A.  

Independent Variables 

Changes in Noncompete Enforceability 

We identified 14 states that experienced a significant change in NCA enforceability based 

on the following four sources: (1) Ewens and Marx (2018), which provides a list of significant 

state-level changes used in their study period ending in 2014; (2) Beck Reed Riden LLP (2010, 

2013, 2019), which provides a state-by-state snapshot of key aspects of noncompete 
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enforceability such as whether they are permitted, whether there are any exemptions, etc.; (3) 

Malsberger et al. (2017), which contains the most comprehensive treatment available of 

noncompete enforceability; and (4) Jeffers (2019), which provides a list of nine state Supreme 

Court decisions between 2009 and 2013 that changed the enforceability of NCAs.  

As we assume that changes would take some time to show any effects on technology 

adoption, we focus on significant changes during the period 2010 to 2017, a window that ends 

one year prior to the end of our analysis sample. We reviewed each of the four sources 

independently to identify relevant state-level changes. We classified each potential change into 

two categories, those that favored employers and those that favored workers (details of each 

change are provided in the Appendix). We then compared across sources to confirm the direction 

and significance of each of the identified changes. In a few cases where there appeared to be 

contradictions among sources, we relied on Malsberger et al. (2017), given its comprehensive 

treatment. The state-level changes developed using this process are shown in Table 1. If a state 

had changes in both directions or was inconsistent in some other way, we treated it as no change 

in the baseline estimation and performed robustness checks.  

 
Other Controls 

 We include additional variables as controls to address potential heterogeneity in 

establishment-level, firm-level, and local factors that can influence adoption.  

Firm and Establishment Characteristics. The CI data include a range of information 

about the focal establishment and the firm that they belong to. Establishment size is measured 

using the number of employees; firm size is measured using the total number of establishments 

in the firm. Because of changes in measurement in these variables and since changes over time 

can be correlated with our dependent variable, we use the base-year values of these 
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characteristics and interact with a 2018 dummy to identify their effects on adoption. We do not 

include technology controls in our regressions because in the base year of our data the CI 

database did not survey a significant percentage of establishments (they surveyed only 57%) on 

their software installations. However, we estimated the robustness of our results to using this 

smaller sample with technology controls and found our results to be qualitatively similar.  

 Local characteristics. To control for the intensity with which establishments in other 

technology-intensive industries are collocated with the focal establishment, we collect county-

level high-tech industry employment data from the Quarterly Census of Employment and Wages 

(QCEW). We calculate the fraction of employment in high-tech industries at the county level. 

The definition of high-tech industries come from the U.S. Bureau of Labor Statistics.2 

Specifically, we identify the total employment in high-tech industries based on four-digit NAICS 

and compute a dummy to indicate whether the county ranks in the top quartile in the United 

States. 

  We also obtain information from the 2010 and 2018 American Community Survey to 

control for state-level demographic and economic factors that may affect IT adoption cost, 

including the percentages of the population that are aged 15 to 64, aged over 65, Black, and 

female. We also include controls for college or graduate school attendance rate among adults 

aged 18 to 24, the logarithm of state population, state GDP, and median household income. 

We also identify other state-level policies and laws that might affect the employment and 

labor flows among firms in the observed period. Based on this, our controls include: whether the 

state has adopted public policy, implied contract, and good-faith exceptions to at-will 

                                                 
2 https://www.bls.gov/opub/btn/volume-7/high-tech-industries-an-analysis-of-employment-wages-and-output.htm?view_full, 
Retrieved May 2020 
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employment (Autor et al. 2006); whether the state has adopted right-to-work laws (Starr et al. 

2018); and the state-level top corporate income tax rates (Seegert 2012).    

Table 2 presents descriptive statistics across the entire set of sample establishments, and 

Table 3 presents these results based on whether the state in which the establishment resides 

experienced a change in the strength of NCA enforceability during our sample period. All 

statistics use base year (2010) values.  

IDENTIFICATION STRATEGY  

Estimating Average NCA Effects on IT Adoption 

Our primary specification examines changes to establishment-level adoption decisions of 

ML technology between 2010 and 2018. Our baseline empirical model takes the following form: 

𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛௜௦௝ሺଵ଼ሻ െ 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛௜௦௝ሺଵ଴ሻ ൌ 𝛽଴  ൅  𝛽ଵ𝑁𝐶𝐴ୱ ൅ 𝛽ଶ𝑋௜௦௝ ൅  𝛽ଷ𝑍௜௦௝ ൅ 𝜀௜௦௝        ሺ1ሻ 

where 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛௜௦௝௧ is the binary variable equal to 1 if establishment 𝑖 in state 𝑠 from industry 𝑗 

adopts ML at time 𝑡, and 0 otherwise. ML software only became widely available in commercial 

software in 2015 (Sallam et al 2017), so 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛௜௦௝ሺଵ଴ሻ ൌ 0. 𝑋௜௦௝ is a vector of controls at the 

establishment level. 𝑍௜௦௝ is a vector of controls for local factors that influence the net benefits to 

IT adoption. Standard errors are robust and clustered at the state level. 

Our estimation equation can be obtained from an underlying adoption model P(𝑦௜௝௦௧
∗ ൐ 0ሻ 

ൌ 𝛽଴  ൅  𝛽ଵ𝑁𝐶𝐴ୱ୲ ൅ 𝛽ଶ𝑋௜௝௦௧ ൅  𝛽ଷ𝑍௜௦௧ ൅ 𝜔௜ ൅ 𝛾௝௧ ൅ 𝜀௜௝௦௧, where 𝑦∗ is some unobserved return 

function based on which firms decide to adopt. Here, the industry-year fixed effects control for 

time-varying factors at the industry level such as changes in output and input prices. Importantly, 

they include the price of the technology, which is very high initially so that there is no adoption 

in the first period. Taking the difference between the two periods (i.e.,𝑃ሺ𝑦௜௦ଵ଼
∗ ൐ 0ሻ െ 𝑃ሺ𝑦௜௦ଵ଴

∗ ൐

0ሻ), taking the linear approximation of the underlying latent variable model, and allowing for 
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slopes on 𝑋௜௦௝ and 𝑍௜௦௝ to be flexible by year gets our estimating equation. Using this approach 

differences out the establishment fixed effect 𝜔௜.   

Consistent with prior literature that has examined the implications of changes in NCA 

enforceability, in our baseline model, we code changes in NCA enforceability using three levels 

(e.g., Ewens and Marx 2018; Garmaise 2011; Jeffers 2019): 𝑁𝐶𝐴ୱ represents the changes in 

NCA enforceability in state 𝑠, which is coded as 1 for a decrease (favoring employees), 0 for no 

change, and –1 for an increase (favoring employers). 𝛽ଵ is our main coefficient of interest, which 

denotes the difference between the IT adoption rate in establishments that were exposed to a 

legal change in NCA enforceability relative to those located in a place without any NCA-related 

changes, after controlling for other factors. Specifically, if 𝛽ଵ is positive (negative), it indicates 

that a loosening in NCA enforceability, which favors workers, is associated with an increase 

(decrease) in the likelihood of ML adoption in 2018. As noted in Table 1, our changes to NCA 

enforceability occur over a period of time between 2011 and 2016. This approach reflects 

potential delays in the effects of NCA on worker mobility, and in turn how changes to worker 

mobility would influence firm adoption decisions.  

Our primary identification assumption is that there are no state- or local-level 

unobservables that are correlated with the incidence of changes in the strength of NCA 

enforceability and adoption of ML. In addition to controlling for a variety of state-level features, 

we probe the validity of this assumption in a number of ways. First, we estimate models that 

predict the likelihood of changes in NCA enforceability (Appendix Table B2) and find no 

correlation between common factors that we expect might be correlated with adoption and the 

likelihood of NCA enforceability. Second, we explore the effects of a pseudo-treatment analysis 

that randomly assigns NCA treatment to a similar-sized group of states as in the original 



 

21 
 

regression, and we find that this alternative measure has no effect on adoption. As a falsification 

exercise, we examine the implications of NCA-related changes on the adoption of another 

technology that diffused over the same period but for which industry-specific human capital 

investments are likely to be lower and for which NCA-related changes are likely to be less 

important (touchscreen tablets) and show that changes in NCA enforceability have no significant 

effect on the adoption of this alternative technology.  

We examine how the effects of NCA vary based upon the size of the establishment, the 

size of the local geographic region, the IT-intensity of the establishment’s industry, and the 

presence of large establishments in the same region. These additional tests will provide 

additional confidence in a causal interpretation of our results if they are consistent with the 

framework developed in the prior section. In particular, if our results are influenced by 

unobserved heterogeneity, then the source of unobserved heterogeneity must act in a way that is 

consistent with our predictions related to how establishment size, industry, and location interact 

with NCA changes to shape adoption.  

A common additional test in data such as ours would be to examine the effects of changes 

in NCA laws in periods prior to treatment. Several aspects of our data complicate the use of such 

an approach. First, as shown in Table 1, the overwhelming majority of our states make changes 

to NCA enforceability during or prior to 2015, the first year in which ML software is widely 

available in the marketplace (Sallam et al 2017). Only two states, Utah and Oregon, make 

changes to NCA enforceability later, in 2016. In this environment, any such “pretrend” test will 

have no power as no establishments will be at risk of adopting prior to the initiation of the policy 

change. Second, as noted earlier, there is a change in the data collection strategy in the CI 
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database in 2017, which further complicates any attempts to conduct a pretrend analysis through 

the use of panel data. 

RESULTS 

We first investigate whether changes in NCA enforceability are associated with a higher 

likelihood of ML adoption. We then investigate differences in our results based upon the 

establishment size and the characteristics of the location in which the establishment is situated. 

We then explore robustness with respect to sample and specification. We finally explore 

robustness to two separate falsification exercises.  

Baseline Results 

Baseline Results of NCA Effects on ML Adoption 

In Table 4, we present the baseline results, successively adding controls in each column 

so that column (6) presents the estimates from the two-period adoption model with the full set of 

controls as specified in equation (1). Our specifications include an extensive set of controls, 

including all of those listed in Panel A of Table 2. To conserve space, however, we include only 

a subset of control variables in our tables. The results in Table 4 show that changes in NCA 

enforceability in favor of workers have a negative effect on adoption. Based on the baseline 

specification in column (6), a decrease in NCA enforceability (a change favoring workers) is 

associated with a 0.6 percentage point decline in the likelihood of ML adoption, which translates 

into a 6.2% percentage decrease (the adoption rate in 2018 is 9.7%).  

 
Heterogeneous Effects of NCA on Adoption by Employment and Location Size 

Table 5 presents split-sample results that estimate different NCA coefficients for large 

establishments (with more than 100 employees) versus small establishments (50–100 

employees). We estimate separate regressions for the two groups to allow for unrestricted effects 
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of covariates in differently scaled firms. Column (1) shows that NCA enforceability changes 

have no statistically or economically significant effect on adoption behavior for establishments 

with fewer than 100 employees. In contrast, column (2) shows that the magnitude of the NCA 

enforceability effect is larger for establishments with more than 100 employees; these 

establishments experience a 0.9 percentage point decline in adoption when changes in NCA 

enforceability favor workers (which translates to a 12.2% decline when compared with an 

adoption rate of 7.4%), an effect that is statistically significant at the 5% level. A test, based on 

seemingly unrelated regressions (Zellner 1962), of the difference between the estimates in 

column (1) and (2) shows they are statistically different at the 10% level. Appendix Table B2 

examines the robustness of these results using additional establishment size categories. The 

results show that the negative effects of loosening NCA enforceability increase as the sample is 

increasingly restricted to establishments of larger size. For establishments with more than 800 

employees, the NCA coefficient suggests that weakening NCA enforceability in favor of workers 

is associated with a 3.6 percentage point decline in the likelihood of ML adoption (or a 16.3% 

change). In short, the effects of changes in NCA enforceability appear to be greater for large 

establishments, in line with our predictions.  

In Table 6, we compare the effects of changes in NCA enforceability for establishments 

located in large metropolitan statistical areas (MSAs, defined as populations over 1 million) with 

establishments in other locations. Column (1) shows that a change in NCA enforceability in 

favor of workers has a –0.8 percentage point effect on the likelihood of adoption for 

establishments located in large MSAs, which is statistically significant at the 5% level. This 

translates into a 7.1% decrease in the likelihood of adopting ML by establishments in those 

locations. In column (2), the coefficient of NCA enforceability changes in locations outside of a 
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major MSA is almost zero and neither statistically nor economically significant. These estimates 

in columns (1) and (2) are statistically different from one another at the 10% level.    

Table 6 provides evidence that the effects of changes in NCA enforceability is strongest 

for establishments located in large MSAs. However, our earlier discussion offers a sharper 

prediction: that the effects of NCA enforceability will be strongest in locations with a large 

number of large establishments in the same industry. These are the locations for which the risks 

of labor mobility to potential adopters of ML will be greatest. In Table 7 we explore this 

hypothesis in further detail, examining heterogeneity in our effects based on the number of large 

(more than 100 employees) establishments in the same four-digit SIC code and in the same 

MSA.  

The number of large same-industry establishments may be correlated with other local 

characteristics—in particular, whether the focal establishment is in a large MSA. Accordingly, 

we control for location in a large MSA in many of our specifications. Because we are seeking to 

separately discern the effects of multiple local characteristics—including location size as well as 

the number of small and large establishments in the focal establishment’s own industry—in this 

table we capture their simultaneous effects by using interaction terms rather than split samples.  

Columns (1) and (2) explore the effects of interacting our NCA variable with (log of) 

number of establishments in the same location and four-digit SIC, providing a baseline for the 

effects of an increasing number of same-industry establishments. Increases in the total number of 

establishments has no economically or statistically significant effects on the marginal effect of a 

change in NCA enforceability, whether or not the regression specification controls for location in 

a large MSA. Column (3) presents a similar specification using the number of small 
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establishments, and similarly shows that an increase in the number of small establishments 

similarly has no impact on the marginal effect of NCA enforceability.  

Columns (4)–(6) represent the regression results that show the implications of increases 

in the number of large establishments in the same industry-MSA, progressively adding controls 

for the number of small establishments in the industry-MSA and a large MSA dummy (and their 

respective interactions with our NCA variable). These results show that increases in the number 

of large establishments strengthen the effects of NCA changes on adoption. For example, the 

results in column (6) (row: NCA Post x Log number of large establishments by MSA-SIC4 

industry) suggest that a 10% increase in the number of large establishments will lead to an 

additional 3.1% decline in the likelihood of adoption when there is a change in NCA 

enforceability that favors workers. In short, the effects of NCA are stronger for establishments in 

locations where there are a large number of large establishments in the same industry-location. In 

Table B3 we show that all these results are robust to using an alternative threshold for large 

establishments (more than 50 employees).   

 In Table 8 we examine heterogeneity in the effects of NCA changes based upon the 

industry-level differences in the propensity to adopt predictive analytics technology. To do this, 

we identify lead user industries of predictive analytics based upon survey evidence of 

manufacturing establishments from the U.S. Census Bureau 2015 Management and Organization 

Practice Survey (MOPS) reported in Brynjolfsson, Jin, and McElheran (2021). We identify lead 

user industries as those that have average predictive analytics adoption greater than or equal that 

0.75, based upon Figure 2 in that paper. As shown in Table 8, this roughly divides our sample of 

manufacturing establishments in half. The advantage of this measure is that it provides an 

industry-level measure of adoption of a closely related technology; one disadvantage is that it is 
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available for manufacturing only. The evidence in table 8 shows that the effects of NCA changes 

on adoption are stronger in industries that are lead users of predictive analysis; establishments in 

other industry do not show statistically or economically significant changes in behavior in 

response to NCA. 

Robustness Checks 

A primary assumption necessary for identification of our model is that there are no 

unobservable factors that are changing over time in states experiencing NCA changes and that 

are simultaneously correlated with ML adoption. In our analyses in the prior section, we showed 

the robustness of our results to adding a variety of local controls. The robustness of our results to 

the addition of these controls suggests that the impact of unobservables would need to be large 

relative to observables to explain our results (Altonji et al. 2005). We probe this assumption 

further through additional analysis.  

First, we explore the impact of NCA changes on adoption of a different technology that 

requires fewer industry-specific downstream investments and so should be less influenced by 

changes in NCA. To do this, we explore the effects of NCA changes on the adoption of tablets 

(touchscreens) within enterprises. Adoption of tablets should require fewer industry-specific 

investments to be used productively (Zolas et al. 2020) and diffused among businesses around 

the same time as ML. Apple launched the first-generation iPad in 2010, so we can assume that 

adoption among enterprises is zero as we do for ML. Column (2) of Table 9 shows that changes 

in NCA enforceability has little effect on adoption of tablets, consistent with our expectations.  

We conduct a separate falsification exercise by examining the robustness of our results to 

randomization inference (Hess 2017). We follow Hess (2017) and randomly assign NCA-related 

treatment to a similar-sized group of states as that in our original regression, and collect 
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estimates using equation (1) from 500 replications. The two-sided p-value of the test was 0.022, 

which suggests that it is extremely unlikely that our observed treatment effect is purely due to 

random chance.  

We further probe whether state-level unobservables could influence our results by 

estimating a linear probability model to explain the factors influencing the likelihood of a change 

in NCA enforcement during our sample period. In Appendix Table B2 we run a descriptive 

regression of changes in NCA enforceability on state-level features such as population, GDP, 

and propensity that adult-aged workers are in the labor force, among others. These regressions 

show that the only variable that is consistently correlated with a change in NCA enforceability is 

the log of median household income. Therefore, we include this variable as a control in our 

regressions. In short, the results appear supportive of our identification assumption that there do 

not exist unobserved state-level factors that are correlated with NCA-related changes and ML 

adoption.  

We also explore the robustness of our results to changes in specification and alternative 

samples. Following prior literature (e.g., Ewens and Marx 2018; Garmaise 2011; Jeffers 2019), 

our baseline results impose symmetry on the effects of NCA enforceability changes on adoption, 

assuming that strengthening and weakening NCA enforceability will have effects that are of 

similar magnitude but opposite signs. In Appendix Table B4 we probe the validity of this 

assumption and include two separate treatment variables: one for changes favoring workers and 

another for changes favoring employers. The results are in general consistent with those shown 

in Tables 4–6, in both direction and magnitudes—the size of effects for strengthening and 

weakening NCA enforceability are quite similar in the entire sample and when splitting our 

estimates by location size. However, we do observe some asymmetry in effects when splitting 
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the sample by establishment size. In particular, for large establishments, the effects of NCA 

enforceability changes favoring employers are much larger (in absolute value) than for those 

favoring workers. The seemingly unrelated regressions (SUR) show that the two groups are 

statistically different in terms of the effects of NCA-related changes on ML adoption.  

We explore the robustness of our results for different samples. One potential concern in 

our establishment-level analysis is that firm decisions to adopt ML in multi-establishment firms 

may be insensitive to local labor market factors. This could be the case if adoption depends on 

human capital located elsewhere in the firm (Forman et al. 2008) or if decisions to adopt new 

technology are made elsewhere in the organization (McElheran 2014). While these factors would 

likely depress our estimates of the effects of NCA enforceability on local adoption, we probe 

their salience further by estimating our baseline model on standalone establishments. While this 

cuts our sample size almost in half, column (3) of Table 9 shows that the point estimates are 

almost identical to those in the baseline sample. The implied percentage change in adoption 

likelihood becomes more negative (–19.5%) since the adoption rate is lower among standalone 

establishments. In Table B5 we also show that the results in Table 5 are robust to the use of 

different size thresholds; it further shows that the marginal effect of changes in NCA 

enforceability are stronger for very large establishments than for the 100-plus employees 

threshold that we use in Table 5. 

As noted above, our identification of state-level changes to the enforceability of NCAs 

was based on recent research completed in law, finance, strategy, and economics. We probe the 

robustness of our results to changes for which there is some ambiguity in the direction of change. 

This occurred when, for example, changes to NCA enforceability within a state could affect 

workers both positively and negatively, or when there were multiple changes in a state during 
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our sample period. Appendix C describes these changes in more detail, and Table 10 re-estimates 

our models when we make changes to our coding of the changes in states for which there is some 

ambiguity. Table 10 shows that our results are robust to these changes.  

To examine whether our results are influenced disproportionately by changes in a specific 

state, we re-estimated the model in equation (1) excluding each of the states in the United States 

in turn. To examine whether our results are influenced by a specific industry, in Appendix Table 

B6 we estimate our results for manufacturing and non-manufacturing separately. We also re-

estimated the baseline model excluding one industry at a time (these results are available from 

the authors upon request). All of our results remain robust to these changes.  

DISCUSSION AND CONCLUSIONS 

In this paper we explore the implications of labor mobility for adoption of a frontier GPT. 

Prior research in the information systems literature has focused upon the implications of how 

labor mobility into firms can increase their productivity and the benefits to new IT investments 

(Tambe 2014; Tambe and Hitt 2014; Wu et al. 2018). We highlight a second mechanism through 

which the presence of labor mobility influences the benefits of new IT. Specifically, we provide 

a framework for demonstrating how the presence of labor mobility can reduce the (net) benefits 

from investing in a new GPT.  

We then bring this framework to the data by exploring business adoption of ML. Using 

exogenous changes in NCA enforceability as a shifter for labor mobility, we demonstrate that the 

likelihood of adopting ML will decline when NCA enforceability changes in a direction that will 

increase the incidence of labor mobility. These effects are strongest for establishments where the 

potential costs of worker mobility are highest; namely, larger establishments and those located in 

regions with many other large establishments from the same industry. In sum, by providing 
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evidence on how labor mobility can negatively influence the benefits to a new GPT, we further 

our understanding of this important mechanism for the diffusion of new GPTs and the value that 

firms obtain from them.  

Viewed from another perspective, our results also add to a literature that has explored 

how the benefits to new IT systems vary based on the size of the location (Dranove et al. 2014; 

Forman et al. 2005, 2012; Tambe 2014;). The contrast between these papers is informative in 

showing the additional nuance that our paper adds to the findings of this prior work. As was the 

case with this prior research, our work similarly suggests that adoption rates of a new technology 

are higher in large urban areas (see, for example, the Sizable MSA x Year results in Table 7), 

likely owing to the range of complementary assets that are available. However, the presence of 

many establishments from the same industry increases the risks of labor mobility. Viewed within 

the context of the urban economics literature, these results highlight a limitation through which 

Marshallian (same-industry) agglomeration economies can influence the benefits to new IT 

adoption. Viewed from a managerial perspective, our results point to potential risks for 

establishments that seek to invest in new IT and that are in locations with many other firms from 

the same industry.   

Our research also contributes to a small but growing literature that has recently examined 

the implications of NCA enforceability for firm outcomes such as investment in R&D (Conti 

2014), physical capital (Garmaise 2011; Jeffers 2019), and worker training (Starr 2019). While 

those papers similarly show that NCA enforceability can influence investment, we extend that 

literature by exploring a different and important context, viz. investments in early-stage GPTs. 

Perhaps closest to our context is Rock (2019). While not a primary focus of that paper, Rock 

(2019) does not find evidence that changes to NCA enforceability are associated with changes in 
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the number or wages of engineering employees in his sample of firms. This may be because his 

firm-level data use the location of the headquarters establishment to measure the implications of 

NCA changes. Moreover, changes in NCA enforceability are expected to directly affect the 

mobility of workers, not necessarily the equilibrium number of employees in a firm. In general, 

our focus on establishment-level data and the characteristics of the location in which the 

establishment resides allows a more direct measurement between NCA enforceability and 

outcomes and allows us to test hypotheses not investigated in prior research.  

As with other prior papers that have studied NCA enforceability, our paper also has 

policy implications, particularly with regard to adoption and diffusion of advanced technologies. 

Our results suggest that worker mobility affects the adoption and diffusion of GPTs that require 

significant investments in downstream innovation, especially during the early stages of the 

technology. Thus, our study offers another important dimension that policy makers must 

consider when evaluating the societal impact of NCA enforceability.  

We also advance recent research that has sought to better understand the factors 

influencing the diffusion of artificial intelligence and ML technology. Our approach of 

measuring ML adoption through the adoption of ML-enabled business applications software 

complements other approaches that use alternative data sources such as the job postings in 

Burning Glass or member profile information from LinkedIn (Goldfarb et al. 2020; Rock 2019) 

or through direct survey of the use of ML/AI through confidential Census data (Zolas et al. 

2020). Given the continuing policy interest in the diffusion of AI-related technologies among 

businesses (e.g., United States Executive Office of the President, 2016), our strategy for 

measuring ML adoption across a large sample of establishments is of independent interest. 

Further, while ML in many ways represents a transformative GPT (Cockburn et al. 2018; 
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Goldfarb et al. 2019; Trajtenberg 2019), our results, while we do not emphasize them, show that 

at least some of the factors influencing adoption bear similarities to other forms of IT, including 

the effects of establishment and firm size, industry, and location in which the organization is 

situated (Fichman 2000; Forman et al. 2005).    

Limitations 

Our results also have limitations that suggest avenues for future research. For one, we 

rely on a recent literature that has demonstrated how NCA enforceability influences worker 

mobility (Garmaise 2011; Marx et al. 2009)—in particular, recent work that has explored how 

recent changes to NCA enforceability influence mobility of technology and knowledge workers 

(Balasubramanian et al. 2020; Jeffers 2019). However, unlike some of the studies in that 

literature (e.g., Marx et al. 2009), we are unable to measure worker movements in our sample 

directly. Though this limits our ability to understand which workers may play a role in driving 

our results, in this regard, our study is similar to recent research that has explored the 

implications of NCA enforceability on firm-level outcomes such as R&D investment and 

investment in equipment (Conti 2014; Garmaise 2011; Jeffers 2019). Future research can 

potentially combine information on workers with information on ML adoption to develop a more 

fine-grained view of the impact of labor mobility.  

Although informative, our measurement of adoption also has some limitations. For 

example, we can capture a product’s adoption but know little about its intensity of usage. For 

example, we do not observe the number of users or the degree to which insights derived from 

ML influence business operations. If these quantities are differentially affected by labor mobility 

relative to adoption, then the insights that we can draw from our analysis will be limited. 
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Evaluating the impact of labor mobility on intensity of usage can be a fruitful avenue for future 

research.  

As noted, a critical assumption in our research is that there exist no unobserved state-

level factors that are changing in ways that are correlated with NCA enforceability changes and 

technology adoption. We have probed the credibility of this assumption through the exploration 

of different controls, subsamples, and measurement strategies and through falsification exercises. 

Our results have proven robust to all these changes, increasing confidence in the results and in 

our interpretation. However, we leave it to other work to further probe the robustness of our 

findings.  

Our research starts from the premise that investments in AI require complementary inputs 

to be deployed successfully. It seeks to unpack how mobility in these complementary human 

capital inputs shapes adoption of AI in the short run. In the long run, the implications of labor 

mobility may be different, as the number of adopters increases, the need for downstream 

innovation in the deployment of ML declines, and the value of the human capital accrued during 

new ML implementation decreases. One avenue for research would be to examine if the 

interplay between local labor market features and investment in ML is different in the short run 

than in the long run.  

More broadly, it is worthwhile noting that the focus of our paper is on how changes in 

labor mobility influence short run ML adoption decisions, not the implications of these decisions 

for labor demand. While it is possible that adoption of ML may lead to organizational changes 

that could reduce the demand for labor in the long run, we do not advance recent work that seeks 

to examine the labor demand implications of ML investments (e.g., Acemoglu and Restrepo 
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2018, 2019; Acemoglu et al 2010; Frey and Osbourne 2017; Felten, Raj, and Seamans 2018; 

Brynjolfsson, Mitchell, and Rock 2020). 

Our research has taken a first step toward understanding how labor mobility can depress 

incentives to invest in a new GPT. However, there remain many ways to build on these results. 

There are opportunities to study where workers of GPT adopters come from and move to, as well 

as to study how the patterns we have investigated evolve over time, just to name a couple. We 

hope our research encourages additional work in this important area.  
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      Table 1. Changes in NCA enforceability 

State Case/Code Effective Date 
/Decision Date 

Changes favoring employers (coded as -1) 

Arkansas Ark. Code 4-75-101 7/22/2015 

Colorado Lucht’s Concrete Pumping, Inc. v. Horner 5/31/2011 

Georgia Restrictive Covenants Act 5/1/2011 

Texas Marsh v. Cook 12/16/2011 

Virginia Assurance Data Inc. v. Malyevac 9/12/2013 

Wisconsin Runzheimer International v. Friedlen  4/30/2015 

Changes favoring workers (coded as 1) 

Hawaii         Haw. Rev. Stat. Sec. 480-4(d) 7/1/2015 

Kentucky Creech v. Brown 6/9/2014 

Montana Wrigg v. Junkermier, Clark, Campanella, 
Stevens 

11/22/2011 

New Hampshire N.H. Rev. Stat. Ann. Sec. 275-70 7/12/2012, 7/28/2014 

New York Brown & Brown v. Johnson 6/11/2015 

Oregon ORS 653.295 1/1/2016 

Pennsylvania Socko v. Mid-Atlantic Systems 11/18/2015 

South Carolina Poynter v. Century Builders 5/24/2010 

Utah Utah Codes 34-51-101 to 34-51-301 5/10/2016 
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Table 2. Descriptive statistics 

Variable Obs. Mean SD Min Max 

Panel A: Summary statistics of variables      

Machine learning adoption in 2018 153,104 0.097 0.297 0.000 1.000 

Log number of site employees  153,104 4.719 0.797 3.932 10.309 

Log number of sites in the enterprise 153,104 2.183 2.072 0.693 10.390 

Top quartile county high-tech employment fraction 153,104 0.751 0.433 0.000 1.000 

Dummy for having public policy exceptions to at-will employment 153,104 0.824 0.381 0.000 1.000 
Dummy for having implied contract exceptions to at-will 
employment 

153,104 0.784 0.412 0.000 1.000 

Dummy for having good-faith exceptions to at-will employment 153,104 0.244 0.429 0.000 1.000 

Right-to-work law 153,104 0.374 0.484 0.000 1.000 

Top corporate tax rate 153,104 6.755 2.719 0.000 12.000 

State log total employment in private sectors 153,104 15.145 0.860 12.510 16.484 

State log # of establishments in private sectors 153,104 12.473 0.903 9.964 14.103 

State log total wages in private sectors 153,104 25.882 0.942 23.155 27.367 

State log GDP 153,104 13.022 0.937 10.244 14.537 

State log population 153,104 16.021 0.897 13.244 17.435 

State percent age 65+ 153,104 0.131 0.017 0.077 0.173 

State percent age 15-64 153,104 0.671 0.012 0.641 0.746 

State percent Black 153,104 0.129 0.082 0.004 0.516 

State percent female 153,104 0.509 0.005 0.480 0.528 

State log medium household income 153,104 10.825 0.142 10.515 11.140 

State percent age 18-24 enrolled in college 153,104 0.433 0.043 0.275 0.573 

Panel B: Machine learning adoption by NCA group      

NCA changes favoring employers 26,960 0.109 0.312 0.00 1.00 

No change 100,669 0.096 0.295 0.00 1.00 

NCA changes favoring workers 25,475 0.089 0.285 0.00 1.00 

Note: Unless otherwise indicated, in Panel A all values are from 2010.  
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 Table 3. Mean comparison by NCA group  

Variable 
NCA change 

favoring 
employers (-1) 

No NCA 
change (0) 

NCA change 
favoring 

workers (1) 

Percent machine learning adoption in 2018 10.9% 9.6%  8.9% 

Log number of site employees 4.724 4.713 4.740 

Log number of sites in the enterprise 2.320 2.163 2.117 

Top quartile county high-tech employment fraction 0.739 0.757 0.739 

Dummy for having public policy exceptions to at-will employment 0.843 0.863 0.647 

Dummy for having implied contract exceptions to at-will employment 0.843 0.786 0.714 

Dummy for having good-faith exceptions to at-will employment 0.046 0.355 0.016 

Right-to-work law 0.759 0.333 0.130 

Top corporate tax rate 3.717 7.345 7.642 

State log total employment in private sectors 15.381 15.084 15.137 

State log # of establishments in private sectors 12.613 12.443 12.447 

State log total wages in private sectors 26.101 25.816 25.914 

State log GDP 13.248 12.959 13.032 

State log population 16.257 15.964 16.000 

State percent age 65+ 0.114 0.134 0.139 

State percent age 15-64 0.674 0.670 0.673 

State percent Black 0.148 0.125 0.125 

State percent female 0.506 0.509 0.511 

State log medium household income 10.817 10.828 10.821 

State percent age 18-24 enrolled in college 0.399 0.438 0.450 

Number of establishments 26,960 100,669 25,475 

Note: Unless otherwise indicated, all values are from 2010. We conducted one-way analysis of variance 
to compare the means across the three NCA groups, and all variables listed in the table are significantly 
different across the three groups. 
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Table 4. Baseline results of NCA effects on ML adoption 

  (1) (2) (3) (4) (5) (6) 

VARIABLES             

              
NCA(-1,0,1) x Post -0.008** -0.009** -0.004* -0.004** -0.003*** -0.006**  

(0.003) (0.003) (0.002) (0.002) (0.001) (0.002) 

Log number of site employees in 2010  
 

0.041*** 0.021*** 0.021*** 0.021*** 0.021*** 

x Year 
 

(0.002) (0.002) (0.002) (0.002) (0.002) 

Log number of sites in the enterprise in  
  

0.050*** 0.050*** 0.049*** 0.049*** 

2010 x Year 
  

(0.001) (0.001) (0.001) (0.001) 

Top quartile county high-tech  
   

0.016*** 0.016*** 0.016*** 

employment fraction x Year 
   

(0.001) (0.001) (0.001) 

Establishments 153,090 153,090 153,090 153,090 153,090 153,090 

R2 0.588 0.593 0.638 0.638 0.638 0.638 

Other laws N N N N Y Y 

Demographic controls N N N N N Y 

Economic controls N N N N N Y 
Notes: Columns 5 and 6 include controls for other laws, including a dummy for having public policy 
exceptions to at-will employment, a dummy for having implied contract exceptions to at-will employment, 
a dummy for having good-faith exceptions to at-will employment and right-to-work laws. Column 6 
includes demographic controls for state-level log population, percent age 65+, percent age 15-64, percent 
Black, log of medium household income, and percent age 18-24 enrolled in college. Robust standard 
errors clustered by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
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Table 5. Effects of NCA enforceability on ML adoption by establishment employment size 

 (1) (2) Test of differences (SUR) 

VARIABLES 
50–99 

employees 
100+ 

employees 
Chi-square p-value 

     
NCA(-1,0,1) x Post -0.002 -0.009** 3.262* 0.071 
 (0.002) (0.004)   
Log number of site employees in 2010 x Year 0.008* 0.028*** 14.890*** 0.000 
 (0.004) (0.003)   
Log number of sites in the enterprise in 2010  0.050*** 0.049*** 0.948 0.330 
x Year (0.001) (0.001)   
Top quartile county high-tech employment  0.013*** 0.017*** 2.067 0.151 
fraction x Year (0.001) (0.002)   
Establishments 78,082 74,974   
R2 0.637 0.644   

Mean adoption rate in 2018  0.0745 0.1210   
Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
 
 
 
 
 
Table 6. Heterogeneous effects of NCA enforceability on ML adoption by geographical location size 
 (1) (2) Test of differences (SUR)  

VARIABLES 
Sizable MSA 
(with over 1m 
population)  

Other 
locations 

Chi-square p-value 

     
NCA(-1,0,1) x Post -0.008** -0.000 3.680* 0.055 
 (0.003) (0.002)   
Log number of site employees in 2010 x Year 0.025*** 0.013*** 15.932*** 0.000 
 (0.003) (0.002)   
Log number of sites in the enterprise in 2010  0.051*** 0.046*** 20.744*** 0.000 
x Year (0.001) (0.001)   
Top quartile county high-tech employment  0.014*** 0.012*** 0.133 0.715 
fraction x Year (0.002) (0.002)   
Establishments 88,175 64,873   
R2 0.641 0.642   
Mean adoption rate in 2018 0.1093  0.0812   
Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
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Table 7. Heterogeneous effects of NCA on adoption by industry-location size  

  (1) (2) (3) (4) (5) (6) 
Location (MSA) heterogeneity  \ Sizable MSA   \ \ \ Sizable MSA  

Industry by location (MSA) heterogeneity 
Total 

establishments  
Total 

establishments  
Small 

establishments  
Large 

establishments  
Small & large 

establishments  
Small & large 

establishments  
              
NCA(-1,0,1) x Post -0.004* -0.003 -0.004* -0.003 -0.005** -0.004 

 (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) 
       

NCA Post x Log number of establishments by MSA-SIC4 industry -0.000 -0.000     
 (0.001) (0.001)     
       

Log number of establishments by MSA-SIC4 industry x Year 0.001 0.000     
 (0.001) (0.001)     

       

NCA Post x Log number of small establishments by MSA-SIC4 
industry 

  -0.000  0.001 0.001 
  (0.001)  (0.001) (0.001) 

       

Log number of small establishments by MSA-SIC4 industry x Year   0.001*  0.001 0.001 
   (0.001)  (0.001) (0.001) 

       

NCA Post x Log number of large establishments by MSA-SIC4 
industry 

-0.002* -0.003** -0.003** 
(0.001) (0.001) (0.001) 

       

Log number of large establishments by MSA-SIC4 industry x Year    0.001 -0.000 -0.001 
    (0.001) (0.002) (0.002) 

       

NCA Post x Sizable MSA (with over 1m population)  -0.003    -0.003 
  (0.004)    (0.004) 
       

Sizable MSA x Year  0.007***    0.008*** 
  (0.002)    (0.002) 
       

Establishments 153,090 153,090 153,090 153,090 153,090 153,090 
R2 0.638 0.638 0.638 0.638 0.638 0.638 

Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered by state are in parentheses. *** p < 0.01, 
** p < 0.05, * p < 0.1 
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Table 8. Heterogeneous effects of NCA enforceability on ML adoption by industry predictive analytics 
(PA) adoption intensity 
 (1) (2) Test of differences (SUR)  

VARIABLES 
Industry PA 

adoption 
rate >= 0.75 

Industry PA 
adoption rate 

< 0.75 
Chi-square p-value 

     
NCA(-1,0,1) x Post -0.009** 0.003 6.49** 0.0108 
 (0.004) (0.003)   
Log number of site employees in 2010 x Year 0.018*** 0.016*** 0.37 0.5455 
 (0.004) (0.003)   
Log number of sites in the enterprise in 2010  0.056*** 0.028*** 111.68*** 0.000 
x Year (0.002) (0.002)   
Top quartile county high-tech employment  0.011*** 0.001 3.51* 0.0611 
fraction x Year (0.005) (0.002)   
Establishments 36,840 33,916   
R2 0.633 0.589   
Mean adoption rate in 2018 0.1102 0.0403   
Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
 
 
 
Table 9. Additional robustness checks: Alternative technologies and standalone establishments 

 (1) (3) (2) 

VARIABLES Baseline – ML 
Adoption of 

tablets 

Standalone 
establishments 

– ML 
    
NCA(-1,0,1) x Post -0.006** -0.003 -0.006*** 
 (0.002) (0.003) (0.002) 
Log number of site employees in 2010 x Year 0.021*** 0.258*** 0.024*** 
 (0.002) (0.003) (0.001) 
Log number of sites in the enterprise in 2010 x Year 0.049*** 0.001*  
 (0.001) (0.001)  
Top quartile county high-tech employment fraction x 
year 

0.016*** 0.010*** 0.013*** 
 (0.001) (0.003) (0.001) 
Establishments 153,090 153,090 74,081 
R2 0.638 0.738 0.549 
Mean adoption rate in 2018 0.097 0.420 0.0308 
Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
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Table 10. Robustness checks: Alternative NCA measures 
  (1) (2) (3) (4) 

  NCA Measures 

Original 
measures 

AL = -1, 
(baseline 

=0) 

AL =1, 
(baseline 

=0) 

ID=-1, 
(baseline 

=0) 
      

NCA x Post -0.006** -0.005** -0.006** -0.005** 
 (0.002) (0.002) (0.002) (0.002) 

Log number of site employees in 2010 x Year 0.021*** 0.021*** 0.021*** 0.021*** 
 (0.002) (0.002) (0.002) (0.002) 
Log number of sites in the enterprise in 2010 x Year 0.049*** 0.049*** 0.049*** 0.049*** 
 (0.001) (0.001) (0.001) (0.001) 
Top quartile county high-tech employment fraction x 
Year 

0.016*** 0.016*** 0.016*** 0.016*** 
 (0.001) (0.001) (0.001) (0.001) 

Establishments 153,090 153,090 153,090 153,090 
R2 0.638 0.638 0.638 0.638 

  
 

(6) 
 

(7) 
 

(8) 
 

(5) 

  
 NCA Measures 

IL=1, 
(baseline 

=0) 

NV=1, 
(baseline 

=0) 

NY=0, 
(baseline 

=1) 

IL=-1, 
(baseline 

=0) 
     
NCA x Post -0.005** -0.006*** -0.004** -0.005** 
 (0.002) (0.002) (0.002) (0.002) 
Log number of site employees in 2010 x Year 0.021*** 0.021*** 0.021*** 0.021*** 
 (0.002) (0.002) (0.002) (0.002) 
Log number of sites in the enterprise in 2010 x Year 0.049*** 0.049*** 0.049*** 0.049*** 
 (0.001) (0.001) (0.001) (0.001) 
Top quartile county high-tech employment fraction x 
Year 

0.016*** 0.016*** 0.016*** 0.015*** 

 (0.001) (0.001) (0.001) (0.001) 
Establishments 153,090 153,090 153,090 153,090 
R2 0.638 0.638 0.638 0.638 
Notes: This table reports the effects of NCA changes using alternative NCA measures (descriptions are 
available in Appendix C). All regressions include controls listed for column (6) of Table 4. Robust 
standard errors clustered by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.



 

47 
 

 
APPENDIX 

 
Appendix A. Construction of the dependent variable—ML adoption 

Our process of identifying ML adoption in 2018 includes the following steps:  

 Match product name from CI data to vendor website: Our first step was to match the product 

name in the CI database with that which appears in the vendor’s website. Our goal was to 

identify whether the identified products incorporated ML functionality, according to the 

vendor’s product description on its website. There were several special cases that we needed 

to consider. In particular, some products in the database did not list the exact product name 

(for example, in some cases the product was listed as “BI”). In these cases, we identified the 

product from the vendor for which the primary functionality was business intelligence or data 

analytics and used that product. Some other products experienced name changes over time 

from the time when the data were created (2018) to when we identified the product details on 

the web (2019). These name changes could be due to product upgrades or mergers and 

acquisitions of vendors. We thus assumed that products with older names were upgraded by 

vendors to the latest versions, since tech vendors regularly end premier support of their older 

version products to promote upgrades to the latest version. After these adjustments for each 

vendor-product, we were able to identify the associated product description during our web 

search in 2019.  

 Identifying products with ML functionality: We searched product functionality from 

descriptions and product manuals on the vendor’s website and conducted string matching 

using ML keywords. Our keywords were motivated by a similar procedure to identify ML in 

other settings such as patents (see, e.g., Cockburn el al. 2019) and included ML, neural 

networks, reinforcement learning, unsupervised learning, and machine intelligence. We also 

confirmed that the keywords were used to describe product features and were not used as 

context in the product description or manual (e.g., an example of using keywords as context 

would be noting that new technologies like ML were changing business but not describing a 

specific functionality of the product).   
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Appendix B: Supplementary Tables 
  Table B1: Distributions of CI data vs. the U.S. Census County Business Patterns data, 2010 

 CI 2010 full 
CBP 2010 

full 
CI 

2010>100 
CBP 

2010 >100 

Number of establishments   4,370,901 7,403,197 273,072 171,632 

% MSA 85.2 93.8 91.8 95.2 

% > 100 employees / % > 500 employees given have 
100 employees 

6.2 2.3 16.2 13.9 

% Northeast 18.2 19.4 14.7 19.6 

% Midwest 21.4 21.9 24.3 23.9 

% South 37.7 35.2 23.9 35.6 

% West 22.7 23.5 37.0 20.9 

% Agriculture, Forestry, Fishing, and Hunting 
(NAICS = 11) 

0.7 0.3 0.4 0.1 

% Mining 
(NAICS = 21) 

0.4 0.4 1.8 0.6 

% Utilities 
(NAICS = 22) 

0.5 0.2 0.6 0.8 

% Construction 
(NAICS = 23) 

4.5 9.2 2.7 3.7 

% Manufacturing 
(NAICS = 31, 32, 33) 

6.7 4.1 12.9 13.8 

% Wholesale Trade 
(NAICS = 42) 

4.1 5.6 3.7 4.6 

% Retail Trade 
(NAICS = 44, 45) 

7.7 14.4 25.3 15.2 

% Transportation & Warehousing 
(NAICS = 48, 49) 

3.3 2.8 2.8 4.1 

% Media, Telecommunications, and Data Processing 
(NAICS = 51) 

3.0 1.8 2.9 3.4 

% Finance and Insurance 
(NAICS = 52) 

7.5 6.4 3.0 4.7 

% Real Estate and Rental and Leasing 
(NAICS = 53) 

2.7 4.7 0.9 1.0 

% Professional, Scientific, and Technical Services 
(NAICS = 54) 

10.0 11.5 8.3 5.9 

% Management of Companies and Enterprises 
(NAICS = 55) 

0.8 0.7 0.2 3.3 

% Administrative and Support and Waste Management 
and Remediation Services (NAICS = 56) 

5.3 5.2 3.0 9.3 

% Educational Services 
(NAICS = 61) 

6.1 1.2 8.0 2.8 

% Health Care and Social Assistance 
(NAICS = 62) 

23.8 11.0 10.0 17.0 

% Arts, Entertainment, and Recreation 
(NAICS = 71) 

1.0 1.7 1.1 2.1 

% Accommodation and Food Services 
(NAICS = 72) 

1.7 8.7 2.0 5.4 

% Other Services (except Public Administration) 
(NAICS = 81) 

4.1 9.8 4.7 2.2 

% Government 
(NAICS = 92) 

6.0 0.3 5.9 0.0 
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Table B2. Predicting changes in NCA enforceability 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 

NCA Enf. Up 
NCA changes favoring employers 

(NCAPost = –1) 

NCA Enf. Down 
 NCA changes favoring employers 

(NCAPost = 1) 
              
State Republicans to Democrats 
ratio  -0.040 -0.036  0.045 0.054 

  (0.084) (0.085)  (0.100) (0.100) 
State Labor Force (rate) 0.015 0.021 0.022 -0.036* -0.038 -0.035 

 (0.018) (0.019) (0.020) (0.021) (0.023) (0.023) 
State Unemployment (rate) -0.017 -0.027 -0.020 -0.057 -0.071 -0.057 

 (0.036) (0.038) (0.040) (0.043) (0.046) (0.048) 
Uniform Trade Secrets Act (UTSA)   -0.130   -0.287 

   (0.238)   (0.281) 
State log median household income -0.248 -0.148 -0.112 0.913* 1.349* 1.429** 

 (0.454) (0.569) (0.577) (0.542) (0.679) (0.683) 
State log population 0.131 0.417 0.479 0.374 0.844 0.980* 

 (0.243) (0.448) (0.465) (0.290) (0.534) (0.550) 
State log GDP -0.012 -0.283 -0.359 -0.400 -0.852 -1.021* 

 (0.251) (0.441) (0.467) (0.299) (0.527) (0.552) 
       

Observations 51 49 49 51 49 49 
R2 0.116 0.140 0.146 0.100 0.123 0.144 
Notes: Dependent variable NCA Enf. Up (Down) is an indicator variable equal to 1 if state experienced an increase 
(decrease) in NCA enforceability between 2010 and 2018. Washington, DC, and Nebraska are excluded when 
including controls of Republicans to Democrats ratio. 

 
 
 
Table B3.  Heterogeneous effects of NCA on adoption by industry-location size: Alternative threshold (50 
employees) for large vs. small establishments  

  (1) (2) (3) (4) 
VARIABLES        
          
NCA(-1,0,1) x Post -0.004* -0.003 -0.004* -0.003 

 (0.002) (0.002) (0.002) (0.002) 

NCA Post x Log number of small establishments by MSA-SIC4 industry 
-0.000  0.001 0.001 
(0.001)  (0.001) (0.001) 

Log number of small establishments by MSA-SIC4 industry x Year 0.001*  0.002 0.001 
 (0.001)  (0.001) (0.002) 

NCA Post x Log number of large establishments by MSA-SIC4 industry  -0.001 -0.002** -0.002** 
  (0.001) (0.001) (0.001) 

Log number of large establishments by MSA-SIC4 industry x Year  0.001 -0.001 -0.002 
  (0.001) (0.002) (0.002) 

NCA Post x Sizable MSA (with over 1m population)    -0.003 
    (0.004) 

Sizable MSA x Year    0.008*** 
    (0.002) 

Establishments 153,090 153,090 153,090 153,090 
R2 0.638 0.638 0.638 0.638 

Notes:  Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors 
clustered by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
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Table B4. Robustness checks: Asymmetric NCA coefficient  

  (1) (2) (3) (4) (5) 

  By employment size By location 

VARIABLES 
All 

Below 100 
employees 

Above 100 
employees 

Sizable MSA 
(with over 1m 
population) 

Other 
locations 

       

NCA changes favoring employers 0.005* -0.002 0.011** 0.010** -0.003 

 (0.003) (0.003) (0.004) (0.004) (0.003) 

NCA changes favoring workers -0.006** -0.005** -0.007 -0.006* -0.003 

 (0.003) (0.002) (0.005) (0.004) (0.003) 

Log number of site employees in 2010 x Year 0.021*** 0.008* 0.028*** 0.025*** 0.013*** 

 (0.002) (0.004) (0.003) (0.003) (0.002) 

Log number of sites in the enterprise in 2010  0.049*** 0.050*** 0.049*** 0.051*** 0.046*** 

x Year (0.001) (0.001) (0.001) (0.001) (0.001) 

Top quartile county high-tech employment fraction  0.016*** 0.013*** 0.017*** 0.014*** 0.012*** 

x Year (0.001) (0.001) (0.002) (0.002) (0.002) 

       

Establishments 153,090 78,082 74,974 88,175 64,873 

R2 0.638 0.637 0.644 0.641 0.642 
Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
 
 
 
Table B5. Robustness checks of effects of NCA enforceability by employment size 

  (1) (2) (3) (4) (5) 

VARIABLES 
All (50+ 

employees) 
100+ 

employees 
200+ 

employees 
400+ 

employees 
800+ 

employees 

            
NCA(-1,0,1) x Post -0.006** -0.009** -0.011* -0.023*** -0.036** 
 (0.002) (0.004) (0.006) (0.009) (0.017) 
Log number of site employees in 2010 x Year 0.021*** 0.028*** 0.030*** 0.027*** 0.035*** 
 (0.002) (0.003) (0.004) (0.006) (0.011) 
Log number of sites in the enterprise in 2010  0.049*** 0.049*** 0.048*** 0.048*** 0.044*** 
x Year (0.001) (0.001) (0.002) (0.003) (0.004) 

Top quartile county high-tech employment 
fraction x year 

0.016*** 0.017*** 0.017*** 0.022*** 0.042*** 

(0.001) (0.002) (0.004) (0.007) (0.011) 
      

Establishments 153,090 74,974 31,719 12,267 4,895 
R2 0.638 0.644 0.656 0.683 0.707 
Mean adoption rate in 2018 0.097 0.121 0.155 0.202 0.221 

Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 
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Table B6. Robustness checks: Manufacturing and non-manufacturing  
  (1) (2) 
VARIABLES Manufacturing  Non-manufacturing 
      
NCA(-1,0,1) x Post -0.005*** -0.006** 

 (0.001) (0.003) 
Log number of site employees in 2010 x Year 0.022*** 0.022*** 

 (0.003) (0.002) 
Log number of sites in the enterprise in 2010 x Year 0.047*** 0.050*** 

 (0.001) (0.001) 

Top quartile county high-tech employment fraction x 
Year 

0.005 0.019*** 
(0.003) (0.001) 

   
Establishments 37,059 116,031 
 R2 0.613 0.644 
Mean adoption rate in 2018  0.0772 0.1039 

Notes: All regressions include controls listed for column (6) of Table 4. Robust standard errors clustered 
by state are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Appendix C: NCA Enforceability Changes Considered Only in Robustness Checks 

Alabama (2016): Effective 1/1/2016, Ala. Code 8-1-193 was amended to permit judicial 

reformation of covenants overbroad as written (Malsberger et al. 2017, pp. 45, 1299). However, 

this was part of Ala. Code 8-1-190 to 8-1-197, which replaced the old Ala. Code 8-1-1. These 

codes seem to have some worker-favorable features such as consideration (Malsberger et al. 

2017, p. 1318) and presumptions of reasonableness (Malsberger et al. 2017, p. 1321). Moreover, 

it appears that judicial reformation was the norm prior to the repeal (Malsberger et al. 2017, p. 

1333). Given that the changes had features favorable and unfavorable to workers, we set the 

baseline to 0 and performed a robustness check with values –1 and +1. 

Idaho (2016) as favoring employers: In 2016, the Idaho legislature passed law HB 487, which 

adjusted Idaho’s noncompete laws to say that if a “key employee…is in breach of an agreement, 

a rebuttable presumption of irreparable harm has been established.” This effectively put the onus 

on the employee to prove they did not cause irreparable harm to the employer. However, shortly 

thereafter, and following some controversy, SB 1287 was introduced in 2018 to eliminate the 

language that was added through HB 487.3 Furthermore, there was a decision in 2008 that 

favored employers (Ewens and Marx 2018), the effects of which could have lingered in the early 

years of the sample. Hence, we set the baseline to 0 and considered a robustness check as the 

change favoring employers.   

Illinois (2011) as favoring employers: In Reliable Fire Equipment Co v. Arredondo, the state 

supreme court ruled that the enforceability of the employees’ covenant not to compete should be 

judged by the three-prong test of reasonableness, of which the employer’s legitimate business 

interest continues to be a part, and which looks to the totality of all of the circumstances, rather 

                                                 
3 https://idahofreedom.org/sb-1287-non-compete-contracts/, retrieved Oct. 28, 2019. 
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than focusing on named specific factors (Reliable Fire Equipment Co. v. Arredondo, 2011 IL 

111871). Thus, it possibly expanded the scope of legitimate business interest. In contrast to this, 

subsequently, in Fifield v. Premier Dealer Services, Inc., 2013 IL App (1st) 120327, the appellate 

court set a “bright line rule” that said a minimum of two years of continued employment is 

necessary to establish adequate consideration. However, this bright line rule does not appear to 

have been universally adopted. For instance, in R.J. O’Brien & Associates, LLC v. Williamson, 

the United States District Court for the Northern District of Illinois Eastern Division observed, 

“Indeed, some Illinois courts have adopted a two year bright line rule” but that “[o]ther courts, 

however, have rejected the two year bright line rule in favor of considering other factors in 

determining whether sufficient consideration was given to enforce a restrictive covenant.” 

Hence, we set the baseline to 0 and considered robustness checks as the change favoring 

employers and favoring workers.   

Nevada (2016) as favoring workers: In Golden Rd v. Islam, the state supreme court affirmed that 

if even one provision were invalid, the whole contract would be invalid. This would favor 

workers since employers would be hesitant to write overly broad contracts. However, this was 

superseded by Assembly Bill 276 (signed into law on 6/3/2017), which amended the law to allow 

courts to modify any unreasonable or overbroad restrictions.4 Hence, we set the baseline to 0 and 

considered a robustness check as the change favoring workers.   

New York (6/11/2015): In Brown & Brown v. Johnson, the court of appeals held that Florida law 

on restrictive covenants would violate New York public policy.5 It also dismissed an overbroad 

restriction that prohibited the worker from working with any of the employer’s customers, 

                                                 
4 https://www.jacksonlewis.com/publication/new-law-brings-changes-nevada-s-non-compete-law, retrieved Oct. 28, 
2019. 
5 https://law.justia.com/cases/new-york/court-of-appeals/2015/92.html, retrieved Oct. 28, 2019. 
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regardless of whether she had met them. Malsberger et al. (2017, p. 4063) note, “Following BDO 

Seidman [1999], and consistent with…Brown & Brown, NY courts have declined to partially 

enforce an overly broad noncompete provision.” Our research and inputs from lawyers suggest 

that the impact of Brown & Brown was mainly clarificatory and marginal. Hence, we also test for 

robustness to treating this state as a “no change.” 

 


