Setbacks, Shutdowns, and Overruns

Felix Zhiyu Feng ¹ Curtis R. Taylor ² Mark M. Westerfield ¹ Feifan Zhang ² NBER Organizations: April 2021

- 1. University of Washington
- 2. Duke University

Sydney Opera House, 10 years late and more than 14 times over budget

Berlin's Brandenburg Airport, scheduled to open 2012 and budget for 2.8b euro; complete in 2020, costing nearly 8b

Boeing 787 Dreamliner program, 3 years late and double its estimated cost

"setbacks are a near-universal, and universally costly, experience . . . large capital projects are typically 20 months late, and 80% over the original authorized budget." Billante (2017)

South Carolina's V.C. Summer nuclear power plant. Cancelled in 2017 after costing \$9b

The FBI VCF project. Cancelled after 5 years and cost \$170m

"According to a 2017 report from the Project Management Institute, 14% of IT projects fail... Of the projects that didn't fail outright, 31% didn't meet their goals, 43% exceeded their initial budgets, and 49% were late"

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

IT PROJECTS: MAJOR SUCCESSES AND EPIC FAILURES

FAILURE The FBI Virtual Case File

The Bureau spent five years and \$170 million on an IT infrastructure modernization, but abandoned it by 2005. A lack of network management or archiving systems potentially put sensitive data at risk.

Baseline

Projects and Setbacks in Practice: Common Features

- Projects require *resources* (labor, equipment, materials) to develop and *time* to complete.
- The final product is contractually verifiable (a building that is habitable, a machine that runs; a software program that works).
- But the state of progress prior to completion is only observed by the contractor.
- Development is subject to setbacks, which arise naturally but randomly (i.e., not due to negligence or malfeasance).
 - Construction \rightarrow Adverse site conditions.
 - Software application \rightarrow Incompatibility of off-the-shelf packages.
 - Research paper \rightarrow Missing or corrupted data.

- The contractor (A) has limited liability and can:
 - 1. Shirk: diverting resources for personal benefit (hire friends and family, spend on perquisites, work on other projects).
 - 2. Mis-report the state of the project: claim false setbacks or delay disclosing real ones.
- The problem for the sponsor (**P**): design an optimal contract that deters shirking & induces truthful & timely reporting.
- **The solution**: use two instruments: a time budget (stochastic deadline) and a reward for completion.

Some Possible Contracting Options

- Offer payment for completion, but no deadline.
 Problem: absent discounting, A will report false setbacks and shirk forever.
- Offer payment for completion, and a *hard* deadline.
 Problem: a late-stage setback will make completion infeasible and induce A to 'shirk out the clock.'
- 3. Offer payment for completion, a hard deadline, and severance for a reported late-stage setback.

Problem: A will truthfully report a late-stage setback, but the project will be canceled for sure in this case.

 Offer payment for completion and randomize between cancellation and extension if a late-stage setback is reported.
 Optimal! A will truthfully report a late-stage setback and the project will be completed with positive probability.

- **Overruns** (in terms of time and budget): may need to fund the project after granting multiple extensions.
- **Shutdowns**: project may be canceled even after running arbitrarily long.
- Cost-plus-award-fee contract: cost-reimbursement + a fixed payment upon completion + a variable reward (for early completion).
- The role of commitment: if commitment to randomization probabilities is not possible, P optimally commits *more* time and resources to the project, even though it is less valuable to her.

Related Literature

- Optimal project management and deadlines: Green and Taylor (2016), Madsen (2020), Mayer (2020), Sinander and Curello (2020), etc.
 - A Poisson event (breakthrough, failure, permanent change of state, etc.) privately observed by A.
 - Core problem: how long should P wait before taking actions in the absence of the reported event?
- Main differences with our paper:
 - 1. A's private information (the progress) is *persistent*.
 - 2. Potentially infinitely many reported (true or false) Poisson events (the setbacks).

- **P** hires **A** to develop a project.
- Both parties risk-neutral, but A has limited liability.
- Continuous time, infinite horizon, no discounting.
- Common knowledge that project completion requires accumulated progress of duration \bar{X} .
- **P** gets *R* from a complete project and 0 from an incomplete one.

Model (2/2)

- If A works (a_t = 1), progress X_t accumulates over time, but setbacks are discovered via a Poisson process N_t at rate λ, resetting X_t = 0.
- If A shirks (a_t = 0), progress remains stationary at X_t, no advancement and no setbacks.
- $dX_t = a_t(dt X_t dN_t); a_t \in \{0, 1\}.$
- Project requires flow investment c to advance, but A can privately divert this (a_t = 0) and get flow benefit b < c.
- Progress and setbacks observable only to A, but completion is verifiable.

Sample Path (Full Effort)

A Sample Path of Progress under Full Effort

Sample Path (Shirking)

Sample Path (Shirking and Misreporting)

Full and Asymmetric Info

If progress were observable and the project run until completed,
 P would expect:

$$\begin{split} F^{\mathsf{FB}} &= \int_{0}^{\bar{X}} \lambda e^{-\lambda X} (-cX + F^{\mathsf{FB}}) \, dX + e^{-\lambda \bar{X}} (R - c\bar{X}) \\ &= R - \frac{c}{\lambda} \left(e^{\lambda \bar{X}} - 1 \right) \end{split}$$

- If $F^{\mathsf{FB}} > 0$, then:
 - It is optimal to start the project.
 - It is never optimal to stop the project before completion.
- Under asymmetric info, a stronger assumption is needed:

$$F^{\mathsf{FB}} > \frac{b}{\lambda} \left(e^{\lambda \bar{X}} - 1 \right) \equiv K_0$$

- A can be fired w/o payment if he is *detected* shirking or lying.
 - i.e., spend \bar{X} time w/o delivering the product or reporting a setback.

Contract

- C Specifies a termination time τ , terminal payment K_{τ} , and any intermediate payment C_t .
- Given C, A maximizes expected compensation plus private benefits from shirking:

$$W_t = E\left[\int_t^\tau b(1-a_s)ds + \int_t^\tau dC_s + K_\tau\right]$$

- W_t : **A**'s continuation utility.
- P maximizes expected payoff from project completion minus compensation and operating cost:

$$F_t = E\left[-\int_t^\tau c ds + R_\tau - \int_t^\tau dC_s - K_\tau\right] \;,$$

- ${\mathcal C}$ is incentive compatible if ${\boldsymbol A}$ never shirks or lies.
- C is optimal if it is incentive compatible and maximizes F_t .

A's Continuation utility

- LEMMA 1: C is optimal only if no intermediate payments, $dC_t = 0.$
- With no intermediate payments, the evolution of W_t can be written as:

$$dW_t = \underbrace{\lambda J_t dt}_{\text{progress}} - \underbrace{J_t dN_t}_{\text{setback}}$$

• *J_t*: the size of **A**'s utility jump down when a setback occurs.

$$-J_t \ge b\Delta + \int_0^\Delta \lambda J_{t+s} ds - J_{t+\Delta}, \quad \forall \Delta \in (0, \bar{X} - X_t).$$
 (NPS)

- NPS comes from comparing two paths following a setback:
 - 1. [Work, LHS] Report the setback immediately, and continue working.
 - 2. [Shirk, RHS] Postpone reporting the setback and shirk for time $\delta \leq \bar{X} X_t$. Then report a (bigger) setback & resume working.
- We show that binding NPS:
 - corresponds to an ODE with solution $J_t(X) = \frac{b}{\lambda}(e^{\lambda X} 1)$, $\forall t$,
 - implies A also prefers not to report false setbacks,
 - and is optimal!

Optimal Contract: A Time Budget

- time budget (S_t) is critical for the implementation of an optimal contract.
 - A time budget is a stochastic deadline that either counts down deterministically or jumps up or down randomly (with zero mean).
 - A time budget creates a random stopping time τ when the contract is terminated (upon completion or cancellation)

Proposition 1

The optimal contract has the following properties:

- (i) Implemented with a time budget such that $bS_0 = W_0$ and **A** is terminated if $S_t = 0$ and no delivery.
- (ii) If $S_{t-} < \bar{X}$ and a setback is reported, then S_t is set to either 0 with probability 1 p or \bar{X} with probability p where $p = \frac{S_{t-}}{\bar{X}}$
- (iii) If **A** delivers the project he receives reward $K_{\tau} = K_0 + bS_{\tau}$

Initial Value of the Project

- P(S): probability that the project is completed given $X_t = 0$.
 - P(S) is increasing and concave.
 - P(S) has kinks at multiples of \bar{X} .
 - $P(S) \to 1 \text{ as } S \to \infty.$

Proposition 2 *P*'s valuation of time budget S when X = 0 is

$$F(S,0) = P(S)F^{\mathsf{FB}} - bS$$

• Bigger $S \implies$ higher completion probability P(S), but higher agency rents bS.

Relaxing Commitment

- Suppose randomization by **P** or **A** is possible but not verifiable.
- Consider a mixed-strategy equilibrium when setbacks are reported for $S_{t-} < \bar{X}$:
 - P randomizes between extension or cancellation just as under commitment,
 - When receiving an extension, **A** randomizes between working or shirking until $S_t = 0$.
- Setback at S_{t-} < X
 <p>, A gets same expected payoff, but P's expected payoff is zero!
- So P's value is lower for all S compared with commitment, but she optimally responds by setting initial S₀ higher.
 - **P** increases S_0 to raise the prob. of completion before $S_t < \bar{X}$.
 - To mitigate lack of commitment, P doubles down on the part of the contract she *can* commit to.

Conclusion

- Agency frictions are indemic to project management.
 - Sponsors seldom possess the ability to assess progress or to observe the occurance of setbacks.
 - Contractors can obtain rents by manipulating the timing and veracity of reported setbacks.
- We study optimal project management in such a setting.
 - Optimal mechanism: a time budget and a linear terminal payment corresponding to a cost-plus-award-fee contract.
 - Mishaps reported near the end of the allotted schedule either result in project cancellation or minimally feasible extension.
 - Probability of cancellation is higher for later reported setbacks.
 Although overruns & cancellations are commonly viewed as failures, we argue that they are necessary features of optimal project management.