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1. Introduction 

The Covid-19 pandemic has underlined how much society depends on the pace of 

scientific research and how effective science can be.  The speed with which Covid-19 

vaccines were developed and their high performance surpassed even the most optimistic 

expectations.  This is especially the case for those based on the new designer mRNA 

technology which enabled the identification of a vaccine with high efficacy in less than 

three months after sequencing of the virus and holds huge promise for the future of 

vaccines and medicine more broadly.1     

We draw on this exceptional moment for science to reflect on an important and 

pressing theme.  Is the government funding system sufficiently supportive of the science 

needed for key breakthroughs, such as mRNA -based drugs?   If the science needed for such 

breakthroughs requires risk-taking, particularly in its early phases, does our system of 

science funding encourage sufficient risk taking to induce scientists to explore 

transformative research paths?   

In this contribution, we discuss risk-taking and the funding of risky science.  We 

start in Section 2 by describing problems faced by Katalin Karikó, a scientist who did 

pioneering-research related to mRNA-based drugs.  In section 3 we briefly describe 

measures developed to distinguish risky from non-risky research and the extent to which 

the citation footprint of risky research differs from that of non-risky research.  We then  

review empirical work concerning the funding of risky research which suggests that 

funding is biased against risky research.   Section 4 provides a framework for thinking 

about why funding agencies may eschew funding risky research.  We focus first on how 

factors within the research system, such as pressure to show results in a short time period 

                                                        

1 https://www.nature.com/articles/d41586-021-00019-w. Accessed March 4, 2021. 

https://www.nature.com/articles/d41586-021-00019-w
https://www.nature.com/articles/d41586-021-00019-w
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and the widespread use of bibliometrics, contribute to risk aversion.   We then focus on 

three key players affecting research funding and the role the three play in determining the 

amount of risky research that is undertaken:  (1) funding agencies, (2) panelists and (3) 

principal investigators. Section 5 closes with a discussion of interventions that government 

agencies and universities could do if they wish to increase the amount of risk that they 

fund.    

 

2.  mRNA-design: difficulties encountered advancing a risky agenda     

We begin our journey by describing the development of designer messenger RNA 

(mRNA), the breakthrough technology used by Pfizer-BioNTech and Moderna to develop 

the first two vaccines against Covid 19 to obtain FDA approval in the US and EMA approval 

in the EU.    

The mRNA is a protein-coding-single-stranded molecule, produced by cells during 

the transcription process, when the genes encoded in DNA are copied into the molecule of 

RNA.  The discovery of mRNA was reported in Nature in May of 1961, a result of scientists’ 

search concerning the synthesis of proteins coded in DNA.  The path to synthesize mRNA in 

a test tube was made possible in 1984 when Paul Krieg and Doug Melton, scientists at 

Harvard, identified that by using SP6 RNA polymerase functional mRNA can be produced in 

vitro. By 1990, a group of scientists demonstrated that injection of synthetic, in vitro 

transcribed mRNA into animals led to expression of the encoded protein (Wolff et al. 1990). 

Soon, the scientific world realized that this system could potentially be used to turn human 

bodies into medicine-making factories and treat a variety of diseases, ranging from 

infection, to cancer to rare diseases and possibly mend such things as damaged heart tissue 

(Sahin, Karikó, and Türeci 2014).  But, at the time, mRNA was not the only conceivable way 

to introduce protein expression into cells: other nucleic acid-based technologies were 

under investigation.  Moreover, there remained two critical problems that needed to be 

addressed.   In vitro-transcribed mRNA, when delivered to animals, could either be 

destroyed by the body as the body fielded an immune response before reaching its target, 
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or worse yet, cause serious side effects (Sahin et al. 2014).  No one knew how to make 

mRNA effective in humans despite years of interest on the part of scientists.    

Katalin Karikó was determined, by all accounts, on finding a way to make synthetic 

mRNA non-inflammatory applicable to treat human diseases.   Born and educated in 

Hungary, she came to the US in 1985, first as a postdoctoral fellow to Temple University, 

then to USUHS.  In 1989, she moved to a faculty position at the Medical School of the 

University of Pennsylvania.2   She submitted more than 20 grants, initially for smaller sums, 

to the University of Pennsylvania and the American Heart Association, then for larger sums 

to NIH. 3 As hard as she tried, she repeatedly failed to get funding for her research.  “Every 

night I was working: grant, grant, grant,” recounts Karikó. “And it came back always no, no, 

no.”4 Her inability to support her research on grants eventually resulted in her being taken 

off her faculty position by the university.  In 1995 she accepted a non-faculty position, that 

she describes as “more like a post-doc position” at the University of Pennsylvania without 

any prospect of advancing.5  

Two years later, Drew Weissman, an MD PhD immunologist, moved from NIH 

(where he had worked with Anthony Fauci) to the University of Pennsylvania.   The same 

year, Karikó and Weissman met at the school’s photo copying machine.  While chatting 

informally, they recognized that they shared an interest in developing a synthetic mRNA 

vaccine against HIV.    They realized the potential of combining their biochemistry, 

molecular biology and immunology expertise and decided to begin working together.    At 

the time, Karikó was focused on mRNA-based therapy for treating cerebral diseases and 

strokes.   With Weissman, Karikó switched focus to mRNA-based vaccines.  Weissman 

supported the early-stage work partly on one of his existing NIH grants, which had no 

                                                        

2 For a summary of Karikó’s early career see https://www.wired.co.uk/article/mrna-coronavirus-vaccine-
pfizer-biontech 
3 Emails from Kariko to coauthors, March 17, 2021 and March 18, 2021. 
4 https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-
leading-technology-in-the-covid-vaccine-race/. Accessed March 4, 2021 
5 Correspondence with Kariko and https://www.ae-info.org/ae/Member/Karik%C3%B3_Katalin for Karikó’s 
CV. 

 

https://www.wired.co.uk/article/mrna-coronavirus-vaccine-pfizer-biontech
https://www.wired.co.uk/article/mrna-coronavirus-vaccine-pfizer-biontech
https://www.wired.co.uk/article/mrna-coronavirus-vaccine-pfizer-biontech
https://www.wired.co.uk/article/mrna-coronavirus-vaccine-pfizer-biontech
https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/
https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/
https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/
https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/
https://www.ae-info.org/ae/Member/Karik%C3%B3_Katalin
https://www.ae-info.org/ae/Member/Karik%C3%B3_Katalin
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direct connection to mRNA research. 6   Their breakthrough occurred when they recognized 

that uridine was the nucleoside in the mRNA that provoked the human immune system.  

They discovered that, when replacing uridine with pseudouridine, another naturally 

occurring nucleoside in the mRNA, it could enter into cells without alerting the RNA 

sensors.  Their research was eventually published in Immunity in 2005, after being rejected 

by several leading journals.7  Karikó was the first author, Weissman the senior author.   It 

eventually became a highly cited paper, receiving to date more than 1000 Google-Scholar 

citations, although it took until 2015 to reach its first 500 citations.   As a result of their 

joint work, the two filed and obtained patents that were assigned to the University of 

Pennsylvania.   These patents, in line with the Bayh-Dole act, acknowledge NIH grants, 

including those started before the foundational mRNA patent applications were filed.  The 

patents were licensed exclusively to CellScript by the University of Pennsylvania. CellScript 

sublicensed the University’s patent to the German-based firm BioNTech, incorporated in 

2008, and US-based Moderna, incorporated in 2010. The subsequent development of the 

mRNA-based drugs was conducted by these companies with equity investments, but also 

with a large involvement of public money.8 

  Despite the 2005 discovery, the two found funding for mRNA research difficult to 

obtain.  According to Weissman “We both started writing grants.  We didn’t get most of 

them.  People were not interested in mRNA.  The people who reviewed the grants said 

mRNA will not be a good therapeutic, so don’t bother.”9  Weismann, however,  continued to 

receive funding from NIH, some, but not all of it, for mRNA research; Karikó continued to 

have difficulty getting funding.10   A 2007 R01 application that Karikó submitted to NINDS 

                                                        

6 The grant was for the Role of gp-340 in HIV Infection and Transmissions. 
7 Gina Kolata, “Kati Kariko Helped Shield the World from the Coronavirus,” New York Times, April 8, 2021. 
https://www.nytimes.com/2021/04/08/health/coronavirus-mrna-kariko.html.   
8 E.g.  in 2013 DARPA awarded Moderna a grant for up to $25M for developing mRNA-based therapeutics  
https://investors.modernatx.com/news-releases/news-release-details/darpa-awards-moderna-
therapeutics-grant-25-million-develop. Accessed March 4, 2021. 
9 Gina Kolata, “Kati Kariko Helped Shield the World from the Coronavirus,” New York Times, April 8, 2021. 
https://www.nytimes.com/2021/04/08/health/coronavirus-mrna-kariko.html.   
10 Drew Weissman appears as the principal investigator on a total of 10 projects funded by the National 
Institutes of Health (NIH) between 1998 and 2021. 
https://reporter.nih.gov/search/OHy6bdrppUaRJWqIwDoUfQ/projects.   

https://www.nytimes.com/2021/04/08/health/coronavirus-mrna-kariko.html
https://investors.modernatx.com/news-releases/news-release-details/darpa-awards-moderna-therapeutics-grant-25-million-develop
https://investors.modernatx.com/news-releases/news-release-details/darpa-awards-moderna-therapeutics-grant-25-million-develop
https://investors.modernatx.com/news-releases/news-release-details/darpa-awards-moderna-therapeutics-grant-25-million-develop
https://investors.modernatx.com/news-releases/news-release-details/darpa-awards-moderna-therapeutics-grant-25-million-develop
https://www.nytimes.com/2021/04/08/health/coronavirus-mrna-kariko.html
https://www.nytimes.com/2021/04/08/health/coronavirus-mrna-kariko.html
https://reporter.nih.gov/search/OHy6bdrppUaRJWqIwDoUfQ/projects
https://reporter.nih.gov/search/OHy6bdrppUaRJWqIwDoUfQ/projects
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at NIH, for example, was not discussed at the study section meeting, having been judged by 

reviewers to be in the lower half of the applications. The proposal focused on the anti-

inflammatory effects of neurotropics in ischemia stroke. Two reviewers described the 

proposed work as “novel,” the third described the proposal as suffering from a “relative 

lack of novelty.”  Other comments from reviewers included statements such as 

“Preliminary data should be provided to support that the proposed experiments can be 

carried out,” “insufficient preliminary data” and work related to one of the aims “seems 

very preliminary and, there is high likelihood, that these experiments, especially in vivo, 

will not work.”11  A 2012 application, joint with Drew Weismann, with the goal of 

developing “a new therapeutic approach to treat ischemic brain injury by delivering 

specific mRNAs” was scored but neither it nor the resubmission received a sufficiently 

strong score to be funded.  Concerns included “preliminary data presented are insufficient 

to suggest that this approach is worthy of in-depth evaluation in a stroke model” and that 

the first aim of the study was “largely descriptive.” 12 

In 2006 Karikó and Weissman founded the company RNARx, with the intention of 

using mRNA to treat anemia. Karikó was the CEO of the company from 2006 to 2013.  In 

her role, she applied-for and received one STTR grant from NIH.13    In 2013, Karikó became 

the senior vice president at BioNTech.       

We have no way of knowing what would have played out in terms of research 

outcomes if Karikó’s early applications for funding had not been turned down or if she had 

gotten research support from the University of Pennsylvanian in the early period.  Perhaps 

mRNA-based vaccines would have been available for Swine Flu in 2009.   But without the 

casual meeting with Weissman at the photo copy machine, she could also have given-up 

                                                        

11Reviews provided to the authors by Karikó March 18, 2021/ 
12 The application was for the continuation of an R01 that Karikó “inherited” from Frank Welsh when he 
retired.  Concerns included “preliminary data presented are insufficient to suggest that this approach is 
worthy of in-depth evaluation in a stroke model” and that the first aim of the study was “largely descriptive.” 
13 Katalin Karikó was the principal investigator of an STTR award project funded by the NIH between 2007 
and 2011: https://www.sbir.gov/sbirsearch/detail/294077; https://grantome.com/grant/NIH/R42-
HL087688-02;  
. 

https://en.wikipedia.org/wiki/BioNTech
https://en.wikipedia.org/wiki/BioNTech
https://www.sbir.gov/sbirsearch/detail/294077
https://www.sbir.gov/sbirsearch/detail/294077
https://grantome.com/grant/NIH/R42-HL087688-02
https://grantome.com/grant/NIH/R42-HL087688-02
https://grantome.com/grant/NIH/R42-HL087688-02
https://grantome.com/grant/NIH/R42-HL087688-02
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researching a way to make designer mRNA technology effective for drug development in 

humans. What we do know is that her early proposals were not funded and that the 

University of Pennsylvania moved her out of her soft-money faculty position. This could 

reflect a failure to address the problem of the immune system response, which was 

facilitated later on by her collaboration with Weissman.  It could also reflect risk aversion 

on the part of review panels, that considered the area too risky to be “fundable” at the time, 

especially since Karikò had, at that time, few publications and citations, few preliminary 

results and no prior record of funding. More generally, the example tells us that the early-

funding of designer mRNA research, now considered a promise of future medicine, was 

difficult.  

Karikó is not the only scientist to hear  “no, no, no.”   Similar anecdotal evidence is 

not difficult to find.  A researcher at a top research institution in the US, in speaking of 

NASA and NSF, said their “programs are not very adventurous.” And “what I experienced 

was that I couldn’t get any new idea or anything I was really excited about funded by NSF.  

It never worked…the feedback is ‘well this is too new:  we don’t know whether it’s going to 

work.”  (Franzoni and Stephan 2021).  James Rothman, the day after he shared the Nobel 

Prize in Medicine or Physiology in 2013 told an interviewer that “he was grateful he started 

work in the early 1970s when the federal government was willing to take much bigger 

risks in handing out funding to young scientists.”  Rothman went on to say “I had five years 

of failure, really, before I had the first initial sign of success.  And I’d like to think that that 

kind of support existed today, but I think there’s less of it.  And it’s actually becoming a 

pressing national issue, if not an international issue.”  (Harris 2013).   

3. Risk aversion in science funding:  A review of empirical evidence      

Concerns that the selection of grant proposals is overly conservative has been 

growing in recent years.   Commentators on science policy have long lamented that science 

funders are too conservative and risk averse and skimp on supporting breakthrough 

research (e.g. Laudel 2017; Mazzacato 2015; Viner, Powell, and Green 2004). Funding 

agencies are accused of placing too much emphasis on the downside of avoiding failure and 

too little emphasis on the upside potential of supporting truly courageous ideas (Azoulay, 
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Graff Zivin, and Manso 2012; Nicholson and Ioannidis 2012).   But do we have more than 

anecdotal evidence on risk bias by science funding agencies? Do we have any science of 

science funding insights on this?   

Although research in the area is limited, a handful of recent empirical works have 

begun to address the topic. The results support the view of risk aversion in funding.  Before 

we review this evidence, it is important to note that risk remains an ill-defined concept 

(Althaus 2005; Aven 2011; Hansson 2018). Moreover, it is difficult to measure.  Here we 

follow Franzoni and Stephan  (2021) and use the term risk in its speculative meaning, in the 

sense that risk refers to uncertainty concerning the outcomes of research, where the 

outcomes vary predominantly in the spectrum of gains and potentially lead to exceptional 

results, but also to no results.14 We preface the literature review with ways to measuring 

risky research.  

Measures of risky research 

Empirically identifying risky research is challenging.  Most researchers who study 

risk depend on partial measures that look at the degree to which research results deviate 

from past results and/or the building blocks upon which the research is based.   Foster and 

colleagues (2015) adopt the first approach and distinguish between three types of papers 

based on the chemical relationships described in the work.  Research that makes a jump 

explores previously unexplored chemical relationships -jumping beyond current 

knowledge.  Such research arguably is more likely to fail but, if the research succeeds, is 

more likely to make a breakthrough.  Research that explores relationships between 

previously studied entities, is subdivided into research that tests a new relationship, not 

published before, or research that repeats an analysis of a previously studied relationship.  

Foster and colleagues (2015) find that “jump” papers reporting highly innovative chemical 

combinations receive 52% more citations on average than “repeat” papers reporting 

known combinations, while “new” papers reporting moderately-innovative combinations 

                                                        

14 We do not use the term risk in the preventive meaning, to mean the possibility of a negative event (e.g., a 
loss or harm), a use that is common in the Risk Analysis literature. 
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enjoy 30% more citations than those reporting known combinations. Their findings 

suggest that taking the risk associated with “jump” and “new” research makes it more likely 

to achieve high impact.   But they also find this research is more likely to “fail.”  The authors 

thus find that the citation distribution associated with jump papers and new papers has a 

higher mean value and a higher variance than that of repeat papers, characteristics that we 

expect in risky research, suggesting their measure correlates with risk.  The additional 

rewards associated with jump papers are, however, relatively small and may not 

compensate sufficiently for the possibility of failing, suggesting higher expected returns of a 

safer research path.  (Foster et al. 2015: 886).15 

Wang et al (2017) view scientific research as a combinatorial process and  measure 

novelty in science by examining whether a published paper makes first time ever 

combinations of scientific knowledge components as proxied by referenced journals, 

accounting for the difficulty of making such combinations.  Almost all new combinations 

made by novel papers cross subject categories.    While recognizing that novelty is but one 

dimension of “risk,” they show that novel papers have patterns consistent with risky 

research of a higher mean and higher variance in citation performance. They have a higher 

probability of becoming a highly cited paper, but at the same time also a higher probability 

to be a no/low cited paper.     Wang et al (2017) also find strong evidence that novel 

research takes more time to be top-cited (Figure 1) and that it is published in journals 

having a lower impact as measured by the Journal Impact Factor.   These findings suggest 

that bibliometric indicators based on short-term citation counts and Journal Impact 

Factors, may be biased against risky, novel research.  Another finding is that  the high 

impact enjoyed by highly novel papers comes from citations outside the field in which the 

article is published (Figure 2).  They show that citations to novel papers are more likely to 

come from a broader set of disciplines and from disciplines that are more distant from their 

“home” field, suggestive that novel research has a tendency to both be best appreciated and 

to spark applications well beyond the disciplinary boundaries.     

                                                        

15 ”.   They also find that papers based on repeat strategies were six times more likely to be published than 
those that used new or jump strategies during the period 1983-2008. 
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Figure 1  Delayed Recognition: Novel papers take more time to be cited 

 

 

Figure 2  Trans-disciplinary impact over time 

 

Source:  Wang et al (2017) 

Assessing bias in funding risky research 

Using their novelty measure,  Veugelers, Stephan and Wang (2021) examine 

whether the ERC, the most important funding agency of the EU, set up in 2007 with the 

explicit aim to fund “high gain/high risk” research,  is biased against novelty.   They find 

that applicants to the ERC Starting Grant program with a history of highly novel 

publications are significantly less likely to receive funding than those without such a 

history.  The major penalty for novelty comes during stage one, when panel members 
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screen a large number of applications based on a short summary of the proposed research 

and a CV listing the candidate’s main publications.  The finding is consistent with the use of 

bibliometric indicators in grant selection as a source of bias against risky research.  

In an experiment conducted at the Harvard Medical School, Boudreau and coauthors 

(2014) find that more novel research proposals, as measured by the percent of keywords 

not previously used, receive more negative evaluations during peer-review. The result is 

driven by proposals with particularly high levels of novelty.  Their preferred explanation 

for this finding rests on bounded rationality of reviewers.  To quote the authors: “experts 

extrapolating beyond the knowledge frontier to comprehend novel proposals are prone to 

systematic errors, misconstruing novel work.  This implies that, rather than receiving 

unbiased assessments (with zero mean errors), novel proposals are discounted relative to 

their true merit, quality and potential.” (Boudreau et al. 2014: 2779).  Lanöe (2019), using a 

measure of novelty, finds evidence that funding decisions made by French National 

Research Agency are biased against risk-taking.  Wagner and Alexander (2013) evaluate 

the SGER NSF program designed to support high risk, high reward research that ran from 

1990 to 2006.  Funding decisions were made entirely by program officers with no external 

review.  The authors find that program officers routinely used but a small percent of 

available funds.  The authors interpret the findings as suggesting that either officers were 

averse to funding risky research, despite the number of funded proposals that had 

transformative results or, that risk taking was not rewarded within NSF. Packalen and 

Bhattacharya (2018), using the vintage of ideas embodied in a paper as a proxy for novelty, 

find that NIH’s propensity to fund projects that build on the most recent vintage of 

advances has declined over the last several decades.  

Although the evidence discussed above is preliminary, it suggests that risky 

research is disfavored in the competition for funding. This seems the case not only when 

the funding is directed to ‘standard’ science, but even when a deliberate goal of the funding 

agency is to support high-risk, high gain, as in the case of the ERC.  

Assuming that the preliminary evidence is correct, why do funding agencies eschew 

supporting risky research and thus possibly miss the opportunities of funding 
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breakthroughs?  Is this a conscious or unconscious choice, implanted in their modes of 

operating?  And what can be done to encourage risk taking among funders? These are the 

questions we explore further in the next sections.   

4. Why would funding agencies eschew supporting risky research? 

To the best of our knowledge there is no research that directly addresses why the 

portfolio of funding agencies may be light on risky research.  Moreover, there may be 

multiple factors that concur to play a role.  In lack of research that informs on clear causes, 

we can only formulate a set of hypotheses.  In this section we provide an overview of 

hypotheses that deserve more scrutiny in the future. We start with hypotheses that arise 

from outside the funding agencies and relate to the broader research system. We then 

discuss how these translate into a set of incentives and opportunities that could induce 

funding agencies to eschew supporting risky research and instead fund “safe” research at 

different levels of analysis. We consider three such levels: i) The funding agencies, ii) the 

panels in charge of selecting research (composed by panelists and research officers), and 

iii) the principle investigators who provide the supply of research by submitting grant 

proposals. Figure 3 provides a summary of the hypotheses.   

 

 Bias against risky research in the broader research system  

Calls for more accountability when using public funds and the trend towards more 

and regular evaluations of policy programs put increasing pressure on publicly funded 

science institutions to show results, especially to show results which are aligned with 

political cycles.   Shorter windows for results already bias against basic research programs 

in general; witness the heated discussions on the share of overall public R&D budgets for 

bottom-up basic research programs like ERC, NSF and NIH, compared to more applied and 

closer to market programs.   But even within basic research programs, the pressure to 

show results quickly may discourage publicly funded agencies from funding more risky 

research.   A major factor is the length of time it takes risky research to have an impact: 

novel breakthroughs typically take a long time to materialize.   As shown in Figure 1, Wang 
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et al (2017) find that the big impact for novel research requires a longer time window than 

for non-novel research.  For the first three years after publication, the probability that a 

highly novel paper is among the top 1% of cited papers is below that of non-novel papers; 

but beyond these three years, highly novel papers start accumulating a lead and 15 years 

after publication, novel papers are nearly twice as likely to be in in the top 1% of highly 

cited papers.  This longer time window for big impact means that it takes the community a 

longer time to learn about new approaches and switch from its established research paths 

to adopt approaches.  Funding agencies, in an effort to maintain or expand funding, may 

feel that they cannot afford to wait for risky research to show its impact and opt instead to 

fund safer research that has measurable effects in the near term.  

An important factor for discouraging risky research may be the general lack of 

tolerance for failure and the meager rewards for those that take uncertain paths within the 

science system.  As hiring, promotion and funding decisions are important conditions to 

engage in research and as reputation is a key reward to doing science, a lower inclination of 

researchers to engage in risky research can be traced back to biases against risk in the 

science system in general.  

Universities routinely make crucial career decisions, such as hiring, mid-year 

review, tenure and promotion.  When these career evaluations are made using bibliometric 

indicators with relatively short-time windows (like journal impact factors or short 

windows for calculating citations), to measure research “quality”,   they can discourage 

risky research,  as these measures appear to be biased against risk taking (Stephan, 

Veugelers, and Wang 2017).   

Career status and progression is not only an important reward for scientists 

themselves, it is also an element that goes into the track record and reputation that funding 

agencies and their panels consider as part of the applicant's profile.  Any bias against risk in 

career decisions may thus have indirect effects on funding decisions, which may in turn 

affect career progression negatively when a candidate’s productivity in acquiring external 

funding is a crucial factor in determining career progression, as the story of Karikò 

illustrated.   
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The large number of researchers in the US on “soft money” positions, i.e. on 

positions where salary is funded from grants that the researcher is responsible for 

obtaining, also encourages the submission of proposals with little risk.  If their research is 

not deemed fundable or comes up empty handed, the university can cut its losses and hire 

another individual into the position.  It is notable that soft money positions have been on 

the rise in recent years.  In the US, for example, the majority of basic medical faculty are 

hired in soft money positions and are responsible for bringing in most of their own salary 

(Stephan 2012).  Soft-money positions also are common outside of medical institutions.  

Stephan documents that during the years when the NIH budget doubled, the majority of 

new hires were made into soft money positions (Stephan 2007). Soft money positions not 

only transfer risk to the faculty; they also discourage risk taking on the part of the faculty 

given the importance of continued funding.  

Beyond affecting career progression and funding decisions, track record matters 

more generally as it affects a scientist’s reputation and recognition.   Although by no means 

the only reward to doing science, peer recognition and reputation are key drivers of 

scientists’ choices  (Merton 1957; Stephan and Levin 1992).16    With peer recognition and 

reputation biased against risky research, scientists may be less prone to choose risky 

research paths.    This is however not obvious; examples of scientists who have taken a 

risky course receiving a Nobel Prize, for example, are readily available 17 and there is 

research suggesting that prestigious prizes can encourage risk taking (Rzhetsky et al. 2015) 

4.1 Principal investigators 

The “lack of risky proposals” hypothesis  

When Story Landis was Director of NINDS at NIH, she noticed that the amount of 

support the institute provided for what it classified as “basic-basic” research was declining, 

compared to what it was spending on “basic-disease” and applied research. Finding this 

                                                        

16  Rewards also include the satisfaction derived from puzzle solving, and financial gain that often accompanies a 

successful research career (Stephan 2012; Stephan and Levin 1992). Cohen, Sauermann and Stephan (2020) also 

show that scientists are strongly motivated by an interest in contributing to society. 
17 Jim Allison, who shared the Nobel Prize for immunotherapy for cancer in 2018 is but one case in point.  
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disconcerting, the Institute set out to investigate why.  Somewhat to their surprise, they 

found that the amount of dollars researchers requested to do “basic-basic” research had 

declined by 21%.   Landis, when asked why she thought the decline was occurring replied: 

“My concern is that the decrease in the number of basic/basic applications reflects the 

perception that NINDS is only interested in disease-oriented research.”18  Basic research is 

not, of course, the same thing as risky research but the two are arguably close cousins.  The 

example may suggest that researchers, anticipating that risky proposals have a difficult 

time at review, may simply refrain from conceiving and submitting risky research 

proposals.  This is difficult to test, given a lack of data on proposals. But it is a plausible 

hypothesis. Some evidence consistent with a lack in supply of risky proposals is reported in 

Veugelers, Stephan & Wang (2021). They find that non-funded junior ERC applicants who 

fail in the second stage have significantly lower likelihood of producing novel papers after 

being rejected, compared to the successful ones.  The evidence is consistent with rejected 

applicants learning that risk is not rewarded. Faced with the pressures to (re-) apply for 

funding, they adjust their research portfolio accordingly away from risky research, 

something which the successful applicants are “freed” from doing.   

Overall, the reward-premium awarded by the science system for doing risky-

research, compared to that of doing not-so-risky research, appears insufficient to 

encourage risk taking.  The findings from Foster and colleagues (2015) reported supra,  

suggest that taking the risk associated with “jump” and “new” research makes it more likely 

to achieve high impact.  But the additional rewards in terms of extra citations they find are 

relatively small and may not compensate sufficiently for the possibility of failing in terms of 

not getting published and its negative impact on the researcher’s careers.   Their results 

thus suggest that returns may be higher for following a safer research path.  Stephan 

(2019) has called this the “quad” effect, referring to the fact that competitive female figure 

skaters attempt fewer quadruple jumps, arguably because the incremental score they can 

earn for completing a quad, compared to successfully completing a triple jump, is 

insufficient to compensate for the risk of failing to complete the quad jump.  For male figure 

                                                        

18 https://blog.ninds.nih.gov/2014/03/27/back-to-basics/. Accessed March 30, 2021. 

https://blog.ninds.nih.gov/2014/03/27/back-to-basics/
https://blog.ninds.nih.gov/2014/03/27/back-to-basics/
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skaters, scoring is different: the incremental score is larger and provides sufficient 

incentive to attempt the quad.  The work of Uzzi et al. (2013) is consistent with the findings 

of Foster et al. (2015), and shows that “[t]he highest-impact science is primarily grounded 

in exceptional conventional combinations of prior work yet simultaneously features an 

intrusion of unusual combinations”, suggesting that a risky approach when embedded in a 

more standard conventional approach can escape better the citation premium bias.  Stated 

differently, a little bit of risk adds spice to the research; but conventionality is the dominant 

characteristic of highly cited papers.19 

The “Loss aversion by principal investigators” hypothesis 

The preferences of scientists for the level of risk involved in the projects they wish 

to pursue may not only reflect biases against risk in the reward structure of science, as 

discussed supra, but also loss aversion on the part of scientists.  Behavioral psychology has 

shown that humans are generally loss-averse. They over-estimate the magnitude of 

perspective losses and under-estimate the magnitude of perspective gains (Kahneman and 

Tversky 1979; Tversky and Kahneman 1991). It may not be implausible to expect that 

scientists are no exception to the rule. 

4.2 Research agencies  

Lack of a portfolio approach hypothesis 

A common approach taken by investors to stabilize the volatility of outcomes is to 

include in the same portfolio stocks that have uncorrelated outcomes, or that have 

outcomes that are negatively correlated, i.e. when one loses, the other gains. In finance, 

where the investors normally want to maximize the overall return of the portfolio and are 

risk-averse, a portfolio approach enables purchasing more risky stocks than when the 

investor buys stocks “one by one” without reference to what is in her portfolio.  The “one-

by-one” practice is frowned upon in the investment literature, given that the choice of a 

                                                        

19 Papers characterized as having high medium conventionality coupled with a high tail “novelty” have a hit rate in 

the top 5 percent 9.2 times out of 100. 
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stock whose outcomes are highly correlated to those already in the portfolio may expose 

the investor to extreme gains, but also extreme losses, foregoing any advantages from using 

the portfolio to diversify away the risk.   

The same logic holds to some extent for funding agencies.    Agencies generally 

review proposals one by one, rank them in descending order of overall aggregated score, 

and then distribute funds according to the score until the budget is exhausted.20  This “one 

by one” approach may arguably restrict the level of risk agencies take.  To the extent that 

they are risk averse, the “one by one” approach only aggravates the risk-taking problem.  

 

The “interdisciplinary bias” hypothesis    

Review panels are often designed by funding agencies to be discipline-based.  This, 

for example, is generally the case at NSF, and ERC.  The latter for instance operates with 25-

panels which are mostly discipline focused. It follows that investigators who want to 

propose research involving multiple disciplines often must make hard choices concerning 

which is the most appropriate panel to consider their proposal.  It also means that their 

proposal may face obstacles at review that disciplinary-focused proposals do not face.  

Bromham, Dinnage and Hua (2016) studied more than 18 thousand proposals submitted to 

the Australian Research Council Discovery Program. They found that the probability of 

receiving funding decreased as the degree of interdisciplinarity of the proposal increased.21  

Banal-Estanol and colleagues (2019) studied the success rate of teams of co-investigators 

that sought funding at the UK Engineering and Physical Sciences Research Council. They 

showed that team-members with interdisciplinary backgrounds (i.e. who had balanced 

shares of publications in different fields) were penalized, even if those who were eventually 

funded were more successful ex-post.   

                                                        

20 At some agencies, such as NSF, program officers have some leeway in making decisions, but this is not 
common. 
21 The study uses the Interdisciplinary Distance (IDD), a measure that takes into account the fields indicated 
as pertinent to the proposal by the principle investigator and the distance between the fields, based on the 
relative frequency with which the fields co-occur throughout the entire sample.  
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A penalty directed at interdisciplinary research may work against funding risky 

science, because, as noted supra, papers of high novelty are often interdisciplinary.   

Moreover, Wang et al (2016) also find that novel work that is highly cited is more likely to 

garner citations from outside, not from within its own field, suggesting that the research is 

appreciated more by others than by colleagues.    

Peer review protocols conceal uncertainty hypothesis 

Peer review opinions, especially for risky proposals, involve forecasting research 

outcomes in conditions of uncertainty (Knight 1921; Nelson 1959). However, protocols 

commonly used to elicit experts’ opinions arguably provide little room for uncertainty, 

usually requiring reviewers to provide a single score on a numeric ordinal scale to 

represent a criterion. For example, the ERC requires a single score to rate the “ground-

breaking nature and potential impact of the research project”. Given the uncertainty of 

future outcomes, the request of a single-point estimate score can conceptually be thought 

of as the median value of the possible outcome distribution envisaged by the reviewer. 

Whereas in peer review of ‘standard’ science, the provision of a single point-estimate may 

be seen as a necessary time-saving compromise, in evaluations of risky research, the 

outcomes of interest can be expected to be in the tails and a single-point estimate may have 

little meaning. Furthermore, uncertainty regarding the outcomes is the key piece of 

information in this case (Morgan 2014; Morgan and Henrion 1990). It seems plausible that 

similar practices that demand experts to express a score that conceals, rather than 

represents uncertainty, may induce poor judgments.22  

 

Practices that stress reviewers’ agreement may disfavor risky science hypothesis 

                                                        

22 The scholars of expert elicitation have elaborated and tested a number of techniques which are common 
used in drug-approval, risk analysis, climate-change forecasting, and other areas where uncertainty is key and 
expert opinions are the only way to collect information (Morgan and Henrion 1990). 
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It is customary in grant peer review to collect several expert opinions about each 

proposal before taking a decision. The underling idea is that aggregation23 of a larger 

number of opinions improves accuracy (Kaplan, Lacetera, and Kaplan 2008; Snell 2015), 

because random errors likely cancel each-other out when averaging results (Larrick and 

Soll 2006).  This would especially be important for risky proposals, which are more difficult 

to evaluate, hence more exposed to imprecisions and misjudgments.  

The efficacy of this approach relies on two assumptions. First, that a large number of 

independent reviewers are available. Second, that the mechanisms for aggregating multiple 

views are unbiased towards risk. In practice, however, both assumptions are problematic. 

The costs of the review process (Ismail, Farrands, and Wooding 2008) and the 

unwillingness of reviewers constrain the number of opinions that can be collected (e.g., the 

NIH advices 4 reviews for each proposal. ERC panels solicit between 3 and 10 external 

reviews, but only for proposals that are short-listed to go to the second-stage of 

evaluation). Moreover, reviewers may not be independent and instead have correlated 

errors (biases), because they share the same background knowledge or beliefs (Clemen and 

Winkler 1999; Ottaviani and Sorensen 2015).  

 Another critical point when moving from multiple opinions to a single aggregated 

opinion and to a final deliberation (e.g., binary choice to fund or not)24 relates to whether 

methods and rules used in the decision are unbiased towards risk. Prior studies of peer 

review have evidenced low levels of agreement among reviewers even in the evaluation of 

‘standard’ proposals (Pier et al. 2018). Risky proposals probably spark even greater 

disagreement, given the larger uncertainty involved.  Current practices at NIH and ERC use 

behavioral aggregation, i.e. consensus meetings, during which multiple views are confronted 

and disagreement resolved with discussion (Lamont 2009). However, behavioral 

                                                        

23 The term aggregation (Bolger and Rowe 2015; List 2012) means the combination of multiple opinions. 
Aggregation can be computed with rules or algorithms (e.g., average, quantile average, ..) or can be done 
behaviorally, with a consensus meeting (Hora et al. 2013; Martini and Sprenger 2018).   
  
24 Deliberation, i.e. the binary choice to fund or not, can be directly dependent on the aggregation method or 
involve additional rules (e.g., aggregation with arithmetic average and deliberation in descending order of 
aggregated score until budget saturation.) 
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aggregation is exposed to groupthink (Cooke 1991; Lamont 2009) and may lead people to 

herd away from the truth, following influential opinions (Banerjee 1992; Mengel 2019).  

Consistent with the findings from Della Vigna and Pope (2020) that academics 

overestimate the accuracy of beliefs of highly-cited scholars, this may lead to a herding on 

their beliefs.  Furthermore, the requirement of consensus may arguably induce a bias 

against risky research. Assuming that risky proposals lead to outcomes in the ‘tails’ of the 

distribution, i.e., either “hits” of “flops” (Azoulay, Graff Zivin, and Manso 2011), it is 

plausible that the related opinions would also be polarized. If this is the case, methods of 

aggregation and deliberation that do imply consensus may be systematically biased against 

risk-taking (Linton 2016). Alternative methods that do not imply consensus exist or are 

conceivable, such as gold cards, or lotteries among those above a given threshold (Fang and 

Casadevall 2016; Gross and Bergstrom 2019; Roumbanis 2019), but their limited use has 

not to date enabled analyses. 

4.3 Panelists and research officers 

The “insurance agent” hypothesis 

Many agencies and panels are acutely aware that the future of their program 

depends upon supporting researchers who do not come up “empty-handed.”  They may 

look at the opportunity cost of funding more risky research and compare it with benefits 

from funding safer research. These concerns may be magnified by the size of the grant.  It is 

one thing to place $200,000 on a project that may come up empty handed.  It is entirely 

another to place $2M.   

 Such concerns can lead panels to place considerable emphasis on “what can go 

wrong” rather than “what can go right” during the review process. One of the “what can go 

wrong” concerns is that the proposed research cannot be accomplished.  This concern 

undoubtedly fuels the heavy emphasis at many funding agencies on strong “preliminary 

findings” or, at some agencies, contingency plans, as part of the proposal.   In so doing, the 

implicit requirement is that research be de-risked before it is funded. In this way, the panel 

supports research with little down-side risk, funding sure bets rather than research that is 

not a sure-bet but may have considerable up-side potential.  
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The “bibliometric screening and workload” hypothesis 

Scientists and agencies collectively invest a huge amount of time in peer review. For 

example, the NIH evaluates approximately 80,000 applications annually, engaging over 

2,000 reviewers per years and has more than 150 standing Study Sections.25  The ERC 

averages 15 members on each of its 25 separate panels. The average panel member for the 

Starting Grants looks at 137 proposals per call; for Advanced Grants, 83 proposals.26  

Given the heavy workload, it is not surprising that reviewers and panel members 

may seek ways to rapidly screen proposals, especially on a first pass.  One of the easiest 

way to do so is to focus on the publishing record of the scientist proposing the research by 

examining readily available measures of citations to papers and the Impact Factor in which 

the paper is published on platforms such as Google Scholar and Scopus.  Such was not 

always the case:  as late as the early 1990s the only way to count citations was to 

laboriously look in the volumes published by the Institute of Scientific Information, which 

were usually only available in the panel member’s institutional library.  

Does a heavy focus on bibliometrics affect the panel’s decision when it comes to 

supporting risky research? The work by Wang, Veugelers and Stephan (2017) suggests that 

the answer could be yes:  they find that novel research is systematically less likely to be 

published in high Impact Factor journals.27  Such a bibliometric bias against novel research 

can lead panels to select against individuals with a history of novel (risky) research, 

especially when the applicant is young and has a short history of citations—which, as noted 

                                                        

25 https://grants.nih.gov/grants/peerreview22713webv2.pdf. Accessed January 2, 2021For Study Sections 
see https://public.csr.nih.gov/StudySections/StandingStudySections. Accessed January 2, 2021. 
26 Average for 2008-2013. 
27 The fact that these impact factors are calculated using relatively short citation windows, coupled with the 
supra mentioned finding of Wang et al (2017) that it takes a longer time window for novel research to 
become highly cited may explain why journal editors, striving for good scores on their impact factor, may be 
biased against novel research.   

https://grants.nih.gov/grants/peerreview22713webv2.pdf
https://grants.nih.gov/grants/peerreview22713webv2.pdf
https://public.csr.nih.gov/StudySections/StandingStudySections
https://public.csr.nih.gov/StudySections/StandingStudySections
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above, are biased against novelty. More generally, a focus on bibliometrics shifts the basis 

of decisions away from the substance of the proposal to an easily accessible metric. 

How workload affects the selection of novel R&D projects has not been studied for 

public funding agencies; it has, however, been studied in R&D departments of for-profit 

firms.  The authors of one study find that a high panel workload reduces the panel’s 

preference for novel research (Criscuolo et al. 2017).   

 

 “Risk-biased panel members” hypothesis  

Reviewers are often selected based on the excellent expertise of their research 

profile.  Selection of top/senior experts specialized in the exact same niche area of the 

proposal are typically assumed to be best choice for reviewers.   But are top experts also 

the best reviewers for assessing risky research proposals?  Which kind of reviewers are 

needed for an unbiased assessment of risky research?  Does it require experience with 

risky research to be more willing to take risks in evaluating the proposals of others?    

Unfortunately, we lack specific knowledge illuminating which kind of reviewer’s 

expertise is best suited at assessing risky research, both in terms of willingness to take 

risks and in terms of capacity to accurately assess risk.  Only a handful of studies have 

looked at reviewers’ characteristics and related preferences for funding research 

proposals.  Boudreau and colleagues (2014), look at the intellectual distance between the 

background of the reviewers and the research being proposed. They find that novel 

proposals were evaluated less favorably than non-novel ones, but this was not explained by 

the degree of intellectual proximity of the evaluator.   Li (2017) studies NIH evaluations 

and finds that proposals which were related to the research of the panelist were scored 

more favorably than those unrelated. DellaVigna and Pope (2018) study the accuracy of 

reviewers when predicting the outcomes of experiments in behavioral social sciences. They 

find that scholars with expertise in an area were not more accurate than scholars who were 

not experts. More senior scholars, and academics with more citations were also no more 

accurate.  In conclusion, the limited evidence available suggests that reviewers who are 
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expert in the niche area are not more accurate in assessing research proposals. They may 

be more prone to fund research in their area, but they may not be more inclined to fund 

novel research in the area.  This is a particularly worrisome result, given the preference for 

reviewers who are seen as top specialist.    

 

 

Figure 3  Incentives and opportunities of risky research: A summary.  
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5. Possible ways to encourage risk taking to advance breakthrough 

research in science:  Suggestions for Science Funders 

Society needs scientific breakthroughs to tackle many of the challenges it faces.  

Because many of the paths to such breakthroughs are risky, its science system and 

particularly its public science funding system, need to ensure that risk taking is encouraged 

or, at a minimum, that the system is not biased against risky research.  The previous 

sections have made clear that we cannot take for granted that this is the case.  The findings 

and hypotheses that we have explored also suggest possible ways for moving forward.      

The Karikó -Weissman mRNA case already provides some initial thoughts regarding 

ways to promote risky research.   Their early joint work appears to have been partially 

supported on a grant Weissman obtained that did not directly relate to designer mRNA. 

Such a “backburner” strategy is not uncommon in science. Scientists regularly employ 

funding obtained to support another research objective, particularly in the very early 

exploratory stages of the other research, when it is still highly risky and without enough 

preliminary findings to apply for dedicated funding.   

The mRNA example also shows the importance luck plays in pathbreaking research:  

if they had not met at the copy machine, Karikó and Weissman might never have formed 

the collaboration that led to mRNA vaccines.   The probability that such lucky encounters 

occur, can be at least partly “engineered”.     A work environment enabling more open 

serendipitous encounters has the potential of leading to more risky research built on new 

unprecedented connections of knowledge pieces.   The example also underlines the 

importance of taking an interdisciplinary approach:  Karikó was trained as a biochemist, 

Weissman as an immunologist, a powerful combination to address the critical bottleneck 

for mRNA to be effective and safe in humans.  An open environment enabling cross-

disciplinary connections could thus already take away an important impediment for risky 

research.   Moving the example from the mRNA novel scientific insights supported in part 

by NIH funding, into the development of mRNA-based vaccines for the market, supported 
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in part by SBIR funding, DARPA, and eventually BARDA and Warp Speed, shows the 

importance of staging the funding of the new approaches.  

We conclude with suggestions of ways to encourage risk taking (or at a minimum 

avoid a bias against risk) in science, combining insights from the Karikó-Weissman mRNA 

research with insights from the admittedly limited evidence and research on risk avoidance 

as it relates to science funding reviewed in the previous sections.  As discussed supra, 

discouraging risk needs to be addressed within the entire science system: it cannot be 

solved by an individual program or funding agency.  It requires a holistic perspective on the 

science enterprise, activating not only funders and their reviewers, but also universities 

and research centers, journal editors and their reviewers and, last but not least, 

researchers themselves.     Without ignoring the holistic perspective, we nevertheless focus 

the discussion on suggestions for science funders if they would like to augment their 

support for risky research.  Where appropriate, we suggest further research and 

experiments designed with the goal of advancing our knowledge of ways to promote risk 

taking in science. 

Deemphasize bibliometrics 

Funding agencies, in order to advance innovation, could insist on multiple ways to 

assess applicants’ research record, avoiding an overly focused use of bibliometrics.  They 

could refrain from asking or inferring that grant applicants provide short-term citation 

counts, and indicators based on short term windows, such as JIFs and Top field cited 

articles.  They could instruct panels to abstain from discussing such indicators in reviews 

or at a very minimum instruct panels of the potential biases which using such indicators 

entails.   

 Diversity in panel composition   

Funders could balance panel composition with a sufficiently large number of panel 

members holding diverse and independent perspectives.   They could avoid a panel design 

which is narrowly disciplinary focused, as thus runs the danger of underappreciating the 

out-of-field broader impact from risky research. This is a more complicated task than 
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selecting on the basis of top expertise in the field as a main panel selection criterium, as is 

commonly done and which runs the danger of wrongly relying on the assumed superior 

assessment of experts regarding possible outcomes.   More importantly, much could be 

learned concerning the causal impact of panel composition on risky research selection by 

using random control design to run experiments on panel composition. 

Allow for disagreement    

Alternatives to the commonly used consensus or average procedures should be 

considered.    Aggregation/deliberation rules could be adapted to the nature of the science 

that the grant aims at sponsoring. Because more risky research is more prone to extreme 

outcomes, it matters not only to have reviewers willing to take risk, but also an accurate 

assessment of these extreme outcomes and their probability of occurrence.  This requires a 

large enough number of sufficiently uncorrelated risk-unbiased opinions.   In addition, the 

evidence that risky research may lead to more polarized views, warns against aggregation 

methods that rely on consensus (e.g., behavioral aggregation), or that assumes 

distributions of opinions according to a bell-shape (e.g., arithmetic average).  To learn more 

about alternative methods that do not imply consensus, experiments with such alternative 

procedures could be conducted, using random trials so that we can properly evaluate their 

impact on the selection of risky research.   

Portfolio approach 

The ‘one by one’ approach typically used in panels works against selecting risky 

proposals.  At a minimum, panels need to think about correlation among the proposals they 

are funding.  One sure sign of high correlation in terms of low risk is requiring that all 

successful proposals have convincing preliminary findings.  More generally, a portfolio 

approach to address risk aversion could require panels to put in different baskets highly 

risky and moderately risky proposals and provide a way to choose proposals from each.  In 

practice such a portfolio approach could be quite challenging to implement for research 

projects.  First, portfolio theory requires that the research paths be sufficiently 

uncorrelated.  This may not hold within panels that are focused on specific subdisciplines 

that share risk factors.    Correlation between research paths, in and of itself, can be hard to 
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determine, particularly when covering vastly different goals across different fields and with 

different research approaches.  Second, there is the question of fairness:  in building a 

portfolio approach some proposals may have to be eliminated in an effort to balance or de-

risk the portfolio. 

Staging 

An approach to de-risking, commonly used for funding entrepreneurial projects in 

the Venture Capital industry, where it is referred to as  the ‘spray and pray’ strategy 

(Lerner and Nanda 2020), is to fund in stages, where increasingly larger amounts of 

funding are allocated, depending on whether interim milestones are being met.   Funding in 

stages can be combined to include a portfolio approach28.   

Although this strategy is used by DARPA,29 the SBIR program and was recently 

introduced into similar EIC program in the EU, it is used less frequently among most 

science funding agencies.   Can such a staging approach also be used by science funding 

agencies allowing them to take more risk?   Interim evaluation is especially useful when 

initial estimates are unreliable, but can be quickly updated and when investments can start 

at small scale but can be quickly scaled up (Vilkkumaa et al. 2015). It is thus especially 

suitable for research that can make substantial steps forwards in a relatively short period 

of time and does not require large fixed-costs to be started (Ewens, Nanda, and Rhodes-

Kropf 2018).30  Some research fields meet these conditions, but the conditions are more the 

exception than the norm in the natural sciences, where the share of research that requires 

expensive equipment and substantial effort is large (Stephan 2010).  

Loose-play early stage ideas  

In the mRNA example, it was crucial that Weissman could use some of the funding 

he had already obtained to support early stage risky joint research with Karikó.   Other 

                                                        

28 Veugelers and Zachmann (2020), for example, proposed a combination of a staging and portfolio approach 
to fund vaccines projects and calculated what such an approach would cost to society to obtain a desired 
number of vaccines at the end. 
29 https://fas.org/sgp/crs/natsec/R45088.pdf Accessed August 30, 2020. 
30 In the VC industry, this has largely favored IT and digital companies. 

https://fas.org/sgp/crs/natsec/R45088.pdf
https://fas.org/sgp/crs/natsec/R45088.pdf
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researchers often do the same.  But a necessary condition to doing so requires that the PI 

have existing funding that can be redirected.  If these are funds obtained from regular 

science funding programs, this raises the question of selection bias in terms of who obtains 

such funding.   Researchers with a track record in novel research may be biased against. 

Also, early career researchers do not have access to such funds; others, such as Karikó, 

have tried to get funding but have not succeeded.   And even for those who have such 

funding, the rules of engagement may not allow use funds for other than the research 

described in the proposal.    

Going beyond the “backburner” option, could dedicated loose-play funding for early 

stage risky explorations be operationalized? One approach is to have early stage funding 

readily and quickly available to researchers at their home institution. The California 

Institute of Technology, by way of example, had such a program whereby faculty could 

submit a short proposal to the Vice Provost for Research and get a decision in a matter of 

days.  Funds ranged from $25,000 to $250,000 a year for a period of two years.  The idea 

was to give faculty the wherewithal to engage in early-stage risky research that, given 

apparent risk aversion of granting agencies, was deemed not yet ready for submission. If 

the initial findings looked promising, and produced enough preliminary data, the faculty 

could then submit a full grant proposal.  Other institutions, like ETH Zurich, provide 

generous base research funding to all their chairs which they can deploy for research at 

their own initiative.   

Such dedicated programs for early stage risky research require resources, which 

institutions often do not have or they do not want to redirect away from their normal 

programs. One way to provide institutions with the financial means for such funding 

schemes would be for federal funders to shift a trench of resources to local institutions 

with the goal of encouraging risk taking.   Dedicated loose-play programs have a number of 

pluses:  it decreases the amount of effort that goes into preparation of fully-fledged 

proposals, it is reasonably easy to administer, and it has the potential of “de-risking” a 

research agenda before it goes up for formal evaluation at a granting agency.  It also has 

downsides. It could, for example, promote favoritism at the local level.  It requires 

willingness and capacity to support risky projects at the local level, or at least no bias 
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against risky projects, something which may not be present, as argued supra. It also 

involves a willingness to provide salary support to applicants, especially applicants in soft 

money positions.  A primary reason Karikó was turned down for the $10,000 Merck starter 

grant, administered by the University of Pennsylvania, that she applied for in 1991, was a 

request for salary support.  The rejection letter singled this out, citing one reviewer who 

said that “the most substantial weakness is the use of the entire award for faculty salary 

support.”31   Politically, shifting funds from federal agencies to universities for such 

programs also involves granting agencies ceding some control to local institutions.32 

Funding researchers rather than projects and for longer periods of time  

   Programs that fund researchers rather than projects for longer periods of time 

allow researchers to engage in more risky research.  It gives the scope and time to 

researchers to redirect their research in case of failure.  The example that readily comes to 

mind is The Howard Hughes Medical Institute (HHMI) that funds successful applicants for 

seven years, rather than for three to five years, as is common for most other funding 

organizations, where selection is based more on the applicant and his longer-term research 

strategy rather than a specific research project.  HHMI, moreover, does not demand early 

results nor does it penalize researchers for early failure. Azoulay et al (2011) compare the 

research output of HHMI investigators to a group of similarly accomplished NIH 

investigators using propensity scoring.  They find that HHMI investigators use more novel 

keywords and produce more hits and more flops, compared to the NIH investigators.  

Although it is not clear whether these results depend upon the longer duration of grants 

and the practice of HHMI to not demand early results nor penalize researchers for early 

failure or other variables, the results suggest that these practices encourage risk taking.   

 

 

                                                        

31 Letter to Karikó dated April 29, 1991. 
32 NIH already does this by awarding training grants to institutions to administer. In the early years of NIH, 
candidates for training awards were selected at NIH. 
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Targeting science funding to risky breakthrough missions  

In the Karikó -Weissman case, the vexing problem of immune response was a well-

known scientific challenge, impeding the promising mRNA technology to be used as a 

modality for treating humans.  As such, it could have been turned into a “mission” with 

dedicated funding.    While the science funding system was either unable or unwilling to 

identify such a “mission” in the early research stages of mRNA research,  a more “mission” 

oriented approach was followed in later stages, first when DARPA awarded Moderna up to 

$24.6 million in 2013 “to research and develop its messenger RNA therapeutics™” after 

having already awarded the company a “seedling” grant of .7 million to begin work on the 

project.33 Subsequently, when the search for corona-virus vaccines became more pressing 

and BARDA and WarpSpeed entered the picture, a more targeted approach for funding 

their development was used.     

DARPA is frequently heralded for its successes in funding  mission-oriented high-

risk, high‑reward research.  Azoulay, Fuchs et al (2019) identify the organizational 

flexibility and autonomy given to program directors as key success elements of the DARPA 

model. Individual discretion by the program officer, designing and selecting projects from 

across the distribution of reviewer scores, is seen as an antidote to the risk bias DARPA’s  

peer reviewers hold.   Autonomy of the program officers goes together with accountability 

with clear targets.   Key is attracting program staff who are more like risk-taking, idea-

driven entrepreneurs than administrators.   

Can the DARPA model be replicated for avoiding the risk bias in funding basic 

research?   Azoulay, Fuchs et al (2019) identify as DARPAble domains mission motivated 

research on nascent technologies within an inefficient innovation system.  Given that the 

missions must be clearly identifiable, associated with quantifiable goals and trackable 

progress metrics, the authors deem the DARPA model not appropriate for funding basic 

research.  The focus of basic research  on improving our understanding is not a clearly 

                                                        

33 https://investors.modernatx.com/news-releases/news-release-details/darpa-awards-moderna-
therapeutics-grant-25-million-develop 



 

31 
 

defined mission.  This is not to say that DARPA does not fund early stages of research, as 

specific scientific challenges may need to be met before the technology can progress.   But 

because fundamental understanding is not in itself a goal of DARPA, it is not designed for 

basic research per se.   While DARPA may not be a general model for funding basic 

research, it may nevertheless be inspirational for specific scientific challenges for which 

goals can be clearly defined.       

Prizes 

An alternative to a grants approach is to create prizes to encourage path-breaking 

research (e.g. Williams 2010, 2012)34.   Although such prizes for risky breakthroughs can 

incentivize research, they shift the risk onto the shoulders of the researchers, given that 

prizes are only awarded conditional upon success.  It may thus only incentivize researchers 

who are risk lovers, who have high (perhaps too high) estimates of their probability of 

success and have access to resources.     

 

To conclude, science funding agencies should be encouraged to pave the way for 

promoting risk taking in scientific research, given that breakthrough research is often 

perceived as risky.  The way forward is neither safe, nor is it clearly defined.  It is a “risky” 

road, as it is not clear which paths will work and which will not. Perhaps the most 

important contribution funding agencies can make would be to support research which 

builds knowledge on the design of funding programs and reviewing practices related to 

risky proposals that have the potential of delivering breakthroughs.   This support could 

entail not only financing such research, but also granting access to data and being the 

gardens where experiments can be conducted. 

   

 

                                                        

34 https://www.nsf.gov/sbe/sosp/tech/williams.pdf   
https://drive.google.com/file/d/17bthRCWoDcW4LfzukdhjFKINr1vkLWaz/view 

https://www.nsf.gov/sbe/sosp/tech/williams.pdf
https://www.nsf.gov/sbe/sosp/tech/williams.pdf
https://drive.google.com/file/d/17bthRCWoDcW4LfzukdhjFKINr1vkLWaz/view
https://drive.google.com/file/d/17bthRCWoDcW4LfzukdhjFKINr1vkLWaz/view
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