Trade and Informality in the Presence of Labor Market Frictions and Regulations

Rafael Dix-Carneiro
Duke University
Pinelopi Goldberg
Yale University
Costas Meghir
Yale University
Gabriel Ulyssea
University College London

NBER Summer Institute DEV
July 27th 2021

Introduction

- Informality is a major feature of labor markets in developing countries.
- It represents a substantial share of the labor force in developing countries. In South America: 35\% (Chile) to 80\% (Peru) - Perry et al (2007).
- Broadly speaking informality reflects an attempt to bypass taxes, regulations and bureaucratic complications associated with formal firms.
- Informal sector jobs widely considered as low quality.

Introduction: Trade and Informality

- Shifts into/out of informality and unemployment are important margins of adjustment to trade (e.g. McCaig and Pavcnik, 2017; Dix-Carneiro and Kovak, 2019).
- Dix-Carneiro and Kovak (2019): Presence of a large informal sector acted as a buffer to trade-displaced workers.
- Labor market effects of trade depend on stringency of labor market regulations (Ponczek and Ulyssea, 2021).

Introduction

- Given recent empirical results (based on Diff-in-Diffs), studying the labor market and welfare effects of globalization in a model of trade with informality, unemployment and regulations is a first order question.
- Aggregate effects
- Welfare analysis
- Trade models typically abstract from informality, we fill this gap.

Informality

Definitions:
(i) Informal firms: those that do not register with tax authorities, invisible to the government.
(ii) Informal workers: not covered by labor regulations (no formal contract, "sem carteira assinada").

Potential Consequences:

- Tax avoidance, hindering the provision of public goods.
- Misallocation of resources.
- Informal workers: no unemployment insurance, no employer social security contributions.
- No job stability.
- However, informality may provide de facto flexibility for firms and workers to cope with adverse shocks.

Our approach

We develop an equilibrium model that builds on Cosar, Guner and Tybout (2016) and features:

- Heterogeneous firms choose to operate in the informal sector (but can be caught) or in the formal sector (and are subject to regulations).
- Search and matching frictions in the labor market.
- Rich institutional setting:
- Government imposes minimum wages; firing costs; payroll and value added taxes; import tariffs.
- Taxes and labor market regulations are imperfectly enforced by the government \rightarrow informality.
- International trade: (a) firms export subject to fixed export costs and variable trade costs (as in Melitz). (b) Imports affect ALL firms in the economy through aggregate demand and input-output links.

Our approach

- We estimate the model using several data sources from Brazil
- ECINF / Economia Informal Urbana - "Informality Survey"
- RAIS / All formal sector firms and workers - Admin Data
- SECEX - Customs data
- PIA, PAS, PAC - Firm-level Surveys
- PME - Household Survey, worker level
- We use the estimated model to perform counterfactual simulations to understand and quantify the effects of trade in the presence of a large informal sector.

Five Facts on Formal and Informal Firms in Brazil

- Fact 1: (a) Brazil has a large informal sector (48\% of employment). (b) Transitions from Unemployment to Informal are more than twice as likely than transitions from Unemployment to Formal.
- Fact 2: The probability that a firm is informal declines sharply with its employment size.
- Fact 3: Informal firms are, on average, less productive than formal firms.
- Fact 4: The average informal worker is paid lower wages than the average formal worker.
- Fact 5: Firm-level labor turnover tends to decline with firm-level employment size. However, conditional on size, exporters tend to have higher turnover.

Fact 5: Turnover, Firm Size and Export Status

Table: Turnover, Firm Size and Export Status

	Dep. Variable: Turnover $_{i}$	
	C sector	S sector
Intercept	0.741	0.645
	(0.008)	(0.003)
$\log \left(\ell_{i}\right)$	-0.126	-0.096
	(0.003)	(0.002)
Exporter $_{i}$ (Dummy)	0.071	
	(0.019)	147,936
Observations	20,342	

Data Sources: 2003 and 2004 RAIS and 2003 SECEX. Turnover of firm i between 2003 and 2004 measured as Turnover $_{i}=\frac{\left|\ell_{i, 2204}-\ell_{i, 2003}\right|}{0.5 \times\left(\ell_{i, 2004}+\ell_{i, 2003}\right)}$. Standard errors in parentheses.

The Model

- Economy is populated by homogeneous, infinitely-lived workers-consumers with utility

$$
\begin{gathered}
U=\sum_{t=1}^{\infty} \frac{C_{t}^{\zeta} S_{t}^{1-\zeta}}{(1+r)^{t}} \\
C_{t}=\left(\int_{0}^{N_{C t}} C_{t}(n)^{\frac{\sigma_{C}-1}{\sigma_{C}}} d n\right)^{\frac{\sigma_{C}}{\sigma_{C}-1}} \\
S_{t}=\left(\int_{0}^{N_{S t}} S_{t}(n)^{\frac{\sigma_{S}-1}{\sigma_{S}}} d n\right)^{\frac{\sigma_{S}}{\sigma_{S}-1}}
\end{gathered}
$$

- $C=$ Manufacturing / tradable
- $S=$ Services / non-tradable

The Model

- Sector $k \in\{C, S\}$ goods are produced by heterogeneous firms, which produce a unique variety using labor ℓ and intermediate ι_{k} inputs:

$$
q=z \ell^{\delta_{k}} \iota_{k}^{1-\delta_{k}} ; \quad \iota_{k}=i m_{C}^{\lambda_{k}} i m_{S}^{1-\lambda_{k}}
$$

- $i m_{C}$ and $i m_{S}$ are CES aggregates of tradables and non-tradables.
- Intermediate inputs play a key role in transmitting changes in trade openness to the entire economy
- Firm's productivity follows a $\operatorname{AR}(1)$ process:

$$
\ln z^{\prime}=\rho_{k} \ln z+\epsilon_{k}^{z}, \quad k=C, S
$$

Timing: Incumbents

- Similar timing for entrants + Free entry.

Profit functions

- Formal firms:

$$
\pi_{k f}\left(z, \ell, \ell^{\prime}\right)=\left(1-\tau_{y}\right) V A_{k}\left(z, \ell^{\prime}\right)-C_{k f}\left(z, \ell, \ell^{\prime}\right)-\bar{c}_{k}
$$

- Variable costs:
$C_{k f}\left(z, \ell, \ell^{\prime}\right)= \begin{cases}\left(1+\tau_{w}\right) \max \left\{w_{k f}\left(z, \ell^{\prime}\right), \underline{w}\right\} \ell^{\prime}+H_{k f}\left(\ell, \ell^{\prime}\right) & \text { if } \ell^{\prime}>\ell \\ \left(1+\tau_{w}\right) \max \left\{w_{k f}\left(z, \ell^{\prime}\right), \underline{w}\right\} \ell^{\prime}+\kappa\left(\ell-\ell^{\prime}\right) & \text { if } \ell^{\prime} \leq \ell\end{cases}$
- Wage bill is bounded below by the minimum wage
- Expanding firms pay hiring costs
- Contracting firms pay firing costs

Profit functions

- Informal firms:

$$
\begin{gathered}
\pi_{k i}\left(z, \ell, \ell^{\prime}\right)=V A_{k}\left(z, \ell^{\prime}\right)-K^{i n f}\left(z, \ell^{\prime}\right)-C_{k i}\left(z, \ell, \ell^{\prime}\right)-\bar{c}_{k}, \\
C_{k i}\left(z, \ell, \ell^{\prime}\right)= \begin{cases}w_{k i}\left(z, \ell^{\prime}\right) \ell^{\prime}+H_{k i}\left(\ell, \ell^{\prime}\right) & \text { if } \ell^{\prime}>\ell \\
w_{k i}\left(z, \ell^{\prime}\right) \ell^{\prime} & \text { if } \ell^{\prime} \leq \ell,\end{cases}
\end{gathered}
$$

- No minimum wage, No firing costs and No taxes

Revenues and Value Added

- Monopolistic Competition + Intermediate Input Usage \Rightarrow Value Added of firm with productivity z and employment ℓ :

$$
V A_{k}(z, \ell)=\Theta_{k} \Psi_{k}\left(z \ell^{\delta_{k}}\right)^{\Lambda_{k}}
$$

- Demand shifter Ψ_{k} depends on both P_{C} and P_{S} (intermediates) and aggregate income.

Hiring costs

- Cost of expanding from ℓ to ℓ^{\prime} workers

$$
\begin{aligned}
H_{k j}\left(\ell, \ell^{\prime}\right) & =\left(\mu_{k j}^{v}\right)^{-\gamma_{k 1}} \times\left(\frac{h_{k}}{\gamma_{k 1}}\right) \times\left(\frac{\ell^{\prime}-\ell}{\ell^{\gamma_{k 2}}}\right)^{\gamma_{k 1}} \\
\mu_{k j}^{v} & =\text { Prob. of filling a vacancy in } k, j
\end{aligned}
$$

- Nature of hiring costs is important to generate:
- Fact 5: firm-level turnover declines with firm size.
- Wage dispersion across firms.

Search and Matching

- Workers are matched to firms/vacancies radomly (random matching).
- Wage are determined by Nash bargaining.
- Search frictions \Rightarrow informal/unproductive firms are able to keep workers at lower wages (as long as they are above the worker's reservation wage).

Open Economy

- Small open economy model: aggregate conditions abroad are fixed + set of imported goods is fixed.
- Manufacturing (C) sector firms choose how much to export given foreign demand. Need to pay fixed cost f_{x} to export.
- Export decision

$$
\mathcal{I}_{C}^{x}\left(z, \ell^{\prime}\right)= \begin{cases}1 & \text { if } V A_{C}^{\times}\left(z, \ell^{\prime}\right)-f_{x}>V A_{C}^{d}\left(z, \ell^{\prime}\right), \text { Export } \\ 0 & \text { otherwise }\end{cases}
$$

- Itermediate inputs / IO linkages \Rightarrow Direct transmission of trade shocks to S and informal sector firms.

Open Economy

- Value Added Domestic Producers:

$$
V A_{C}^{d}(z, \ell)=\Theta_{C} \Psi_{C}\left(z \ell^{\delta} C\right)^{\wedge_{C}}
$$

- Value Added Exporters:

$$
V A_{C}^{x}(z, \ell)=\left(\exp \left(d_{F}\right)\right)^{\frac{\sigma_{C}}{\sigma_{C}-1} \wedge_{C}} \times V A_{C}^{d}(z, \ell)
$$

- Trade costs / tariffs affect domestic demand shifters Ψ_{C} (for formal and informal firms) and foreign demand d_{F}.
- But also Ψ_{S}.

Equilibrium

- Firms act optimally and make entry, exit decisions and post vacancies.
- Free entry.
- Wages solve bargaining problem between workers and the firm.
- Labor markets clear.
- Goods markets clear.
- Steady state: distribution of firms, number of firms, number of workers in each sector are stable.

Mechanisms

- Several mechanisms, pushing effects of trade in different directions.
- Melitz-type effects / Productivity thresholds
- $\tau_{a}, \tau_{c} \downarrow \Rightarrow$ demand for purely domestic firms \downarrow, but \uparrow for exporters.
- Least productive formal firms exit, replaced by informal firms $\Rightarrow \uparrow$ informality.
- Least productive informal firms exit $\Rightarrow \downarrow$ informality.
- Cheaper intermediates $\Rightarrow \uparrow$ worker productivity
- Most productive informal firms grow and formalize $\Rightarrow \downarrow$ informality.
- Higher income and demand $\Rightarrow \uparrow$ entry low productivity informal firms $\Rightarrow \uparrow$ informality.

Mechanisms

- Channels linking trade to unemployment have implications for the relative size of the informal sector. Transitions $U \rightarrow I$ twice as likely as transitions $U \rightarrow F$.
- Turnover at exporters is larger, conditional on size.
- Lower trade barriers reallocate resources toward exporters, who also become more sensitive to idiosyncratic shocks ($d_{F} \uparrow$)
- \uparrow Turnover in C, increasing unemployment.

Estimation Strategy

We use Indirect Inference to estimate 27 parameters using 84 data moments and auxiliary model coefficients.

Figure: Trade and Informality

- In C : reduction in demand for purely-domestic firms \Rightarrow low-productivity formal firms \rightarrow informality, but also low-productivity informal firms exit.
- In S : increased income and demand propelled by C sector \Rightarrow entry of low-productivity informal firms, but also formalization of high-productivity informal firms.

Figure: Trade, Unemployment and Welfare

- $\tau_{c} \downarrow \Rightarrow$ resources reallocated toward larger firms (both in C and S) \Rightarrow less turnover as larger firms tend to be more stable.
- However, resources reallocated towards exporters, and $d_{F} \uparrow \Rightarrow$ more turnover.
- \uparrow turnover associated with \uparrow unemployment.

Figure: Trade and Aggregate TFP

- Trade drives highly unproductive informal C sector firms out of the market, freeing up resources to be reallocated to more productive formal ones.
- In $S: \tau_{c} \downarrow \Rightarrow$ unproductive informal firms enter. Mitigates productivity gain in the formal S.

Figure: Trade and the Std. Dev. of log-Wages Across Workers in the C sector

- $\tau_{c} \downarrow \Rightarrow$ Wage inequality \uparrow in the formal C sector. Wage exporter premium \uparrow.
- Consistent with Cosar et al (2016), Helpman et al (2017).
- However, inequality within the informal sector $\downarrow+$ between-sector differences \downarrow

Figure: Negative Productivity Shocks, Informality, Unemployment and Welfare

- Aggregate negative productivity shock:
- Benchmark: Informality \uparrow, but unemployment does NOT increase.
- Informality repressed: muted informality response, unemployment increases.
- Informal sector: "unemployment buffer", but not "welfare buffer".

Conclusions

- Important to carefully model both the informal sector and the non-tradable sector to obtain an accurate and comprehensive picture of the effects of trade in developing countries.
- Our model is consistent with empirical patterns in the literature, based on Diff-in-Diff's:
- Trade openness leads to declines in informality in the tradable sector (McCaig and Pavcnik, 2018)
- Informal sector acts an "employment buffer" in face of negative shocks (Dix-Carneiro and Kovak, 2019)
- But new insights that cannot be obtained with Diff-in-Diff's:
- Trade openness leads to ambiguous effects in aggregate informality.
- Informal sector does not act as a "welfare buffer" in face of negative shocks.

Conclusions

- Repressing informality increases productivity at the expense of welfare, whereas trade leads to the same productivity gains and also increases welfare.
- Trade increases wage inequality in the formal tradable sector, but this effect is reversed when we include the informal sector in the analysis.
- The effect of trade on productivity is understated if the informal sector is left out.
- Large welfare gains from trade, robust to different scenarios in which informality is either completely or partially repressed.

Fact 1: Informality and Transitions

Table: Employment Shares and Transition Rates

		Transition Rates From Unemp.
Informal Tradable (Ci)	0.059	0.064
Formal Tradable $(C f)$	0.106	0.050
Informal Non-Tradable (Si)	0.351	0.389
Formal Non-Tradable (Sf)	0.334	0.161
Unemployment	0.150	0.336
Share of Informal Employment		0.482
Transition Rate from Unemp.		
\quad to Informal Employment		0.453
\quad to Formal Employment		0.211
\quad Ratio		
Data source: 2003 PME.		

Fact 2: Informality Status by Firm Size

Table: Firm-Level Informality Status vs. Firm-Level Employment

	Dep. Variable: Informal Status Indicator	
	C sector	S sector
Intercept	1.135	1.130
	(0.028)	(0.012)
ℓ_{i}	-0.179	-0.204
	(0.025)	(0.009)
Observations	1,194	7,273

Data source: 2003 ECINF. Standard errors in parentheses.

Facts 3 and 4: Productivity and Wages

Table: Firm-Level log-Revenue per Worker and log-Wages vs. log-Employment

	A. Dep. Variable: $\log \left(\right.$ Revenue $\left._{i} / \ell_{i}\right)$				B. Dep. Variable: $\log \left(\right.$ wage $\left._{i}\right)$			
Sector Firm Type	Cf	Sf	Ci	Si	Cf	Sf	Ci	Si
Intercept	$\begin{aligned} & 10.118 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 10.004 \\ & (0.005) \end{aligned}$	$\begin{gathered} 8.391 \\ (0.037) \end{gathered}$	$\begin{gathered} 8.825 \\ (0.015) \end{gathered}$	$\begin{gathered} 8.509 \\ (0.006) \end{gathered}$	$\begin{gathered} 8.436 \\ (0.002) \end{gathered}$	$\begin{gathered} 8.013 \\ (0.033) \end{gathered}$	$\begin{gathered} 8.417 \\ (0.014) \end{gathered}$
$\log \left(\ell_{i}\right)$	$\begin{gathered} 0.000 \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.128 \\ & (0.003) \end{aligned}$	$\begin{gathered} 0.342 \\ (0.114) \end{gathered}$	$\begin{gathered} 0.321 \\ (0.050) \end{gathered}$	$\begin{gathered} 0.117 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.105 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.292 \\ (0.103) \end{gathered}$	$\begin{gathered} 0.231 \\ (0.048) \end{gathered}$
$E^{\text {Exporter }}{ }_{i}$	$\begin{gathered} 1.462 \\ (0.021) \end{gathered}$				$\begin{gathered} 0.462 \\ (0.014) \end{gathered}$			
Observations	16,986	43,861	1,070	6,202	20,075	145,981	1,071	6,205
Dataset	$\begin{aligned} & \text { PIA + } \\ & \text { SECEX } \end{aligned}$	PAS + PAC	ECINF	ECINF	RAIS + SECEX	RAIS	ECINF	ECINF

Standard errors in parentheses.

Firms' value functions

$$
\begin{aligned}
& V_{k f}(z, \ell)=\left(1-\alpha_{k f}\right) \max \left\{0, \max _{\ell^{\prime}}\left\{\pi_{k f}\left(z, \ell, \ell^{\prime}\right)+\frac{1}{1+r} E_{z^{\prime} \mid z} V_{k f}\left(z^{\prime}, \ell^{\prime}\right)\right\}\right\} \\
& V_{k i}(z, \ell)=\left(1-\alpha_{k i}\right) \max \left\{\begin{array}{c}
0, \max _{\ell^{\prime}}\left\{\pi_{k i}\left(z, \ell, \ell^{\prime}\right)+\frac{1}{1+r} E_{z^{\prime} \mid z} V_{k i}\left(z^{\prime}, \ell^{\prime}\right)\right\}, \\
\max _{\ell^{\prime}}\left\{\pi_{k f}\left(z, \ell, \ell^{\prime}\right)+\frac{1}{1+r} E_{z^{\prime} \mid z} V_{k f}\left(z^{\prime}, \ell^{\prime}\right)\right\}
\end{array}\right\} .
\end{aligned}
$$

Entry value functions

Value of entry into sector k / formal status j :

$$
V_{k j}^{e}(z)=\max _{\ell^{\prime}}\left\{\pi_{k j}\left(z, 1, \ell^{\prime}\right)+\frac{1}{1+r} E_{z^{\prime} \mid z} V_{k j}\left(z^{\prime}, \ell^{\prime}\right)\right\}
$$

Expected value of entry into sector k, before drawing z is given by:

$$
V_{k}^{e}=E_{z} \max \left\{V_{k i}^{e}(z), V_{k f}^{e}(z), 0\right\}
$$

Free entry leads to:

$$
V_{k}^{e}=c_{e, k} .
$$

Entry

- Mass M_{k} of entrants into sector k pay an entry cost $c_{e, k}$, and draw z from the ergodic distribution of productivities.

Revenues and Value Added

- Revenues under Monopolistic Competition:

$$
R_{k}(q)=\left(\frac{X_{k}}{P_{k}^{1-\sigma_{k}}}\right)^{\frac{1}{\sigma_{k}}} q^{\frac{\sigma_{k}-1}{\sigma_{k}}}
$$

- Expenditure on tradables: $X_{C}=\zeta I+X_{C}^{\text {int }}$, and
- Expenditure on non-tradables: $X_{S}=(1-\zeta) I+X_{S}^{\text {int }}+E_{S}$.
- $X_{k}^{\text {int }}$ is expenditure on intermediates and E_{S} expenditures on nontradables to cover entry, hiring and export costs.
- Value added: $V A_{k}(z, \ell)=\Theta_{k} \Psi_{k}\left(z \ell^{\delta_{k}}\right)^{\Lambda_{k}}$

Search and Matching

- To expand (in expectation) from ℓ to ℓ^{\prime} firms post vacancies
- Firm vacancies and the number of unemployed workers determine the number of matches that will occur through the matching function.
- Total number of matches in the economy:

$$
\begin{gathered}
m\left(v_{C f}, v_{C i}, v_{S f}, v_{S i}, L_{u}\right)=\phi \widetilde{v}^{\xi} L_{u}^{1-\xi} \\
\widetilde{v}=v_{C f}+v_{C i}+v_{S f}+v_{S i}
\end{gathered}
$$

- Matches in each sector are proportional to the relative number of vacancies they post

$$
m_{k j}=\frac{v_{k j}}{\widetilde{v}} m\left(v_{C f}, v_{C i}, v_{S f}, v_{S i}, L_{u}\right)
$$

Search and Matching

- Probability of filling a vacancy in $k[$ sector]-j[formal status]:

$$
\mu_{k j}^{v} \equiv \frac{m_{k j}}{v_{k j}}=\phi\left(\frac{L_{u}}{\widetilde{v}}\right)^{1-\xi}=\mu^{v}
$$

- Probability of unemployed worker find a job in k [sector]-j[formal status]:

$$
\mu_{k j}^{e} \equiv \frac{m_{k j}}{L_{u}}=\frac{v_{k j}}{\widetilde{v}}\left(\frac{\phi}{\left(\mu^{v}\right)^{\xi}}\right)^{\frac{1}{1-\xi}}
$$

Wage Determination

- Wages are driven by a Nash bargain between workers and firms (collective bargaining) $-\beta$ is the bargaining power of the union/workers

$$
S_{k f}^{u}\left(z, \ell^{\prime}\right)=\beta\left(S_{k f}^{e}\left(z, \ell^{\prime}\right)+S_{k f}^{u}\left(z, \ell^{\prime}\right)\right)
$$

- The total surplus of the match accounts for the option value of employment: the surplus depends both on the flow of wages and profits today and on the value of preserving an employment relationship.
- Similar problem for informal firms.

Surplus Functions

$$
\begin{gathered}
S_{k f}^{e}\left(z, \ell^{\prime}\right)=\left(1-\tau_{y}\right) V A_{k}\left(z, \ell^{\prime}\right)-\left(1+\tau_{w}\right) w_{k f}\left(z, \ell^{\prime}\right) \ell^{\prime}+\frac{1}{1+r} E_{z^{\prime} \mid z} V_{k f}\left(z^{\prime}, \ell^{\prime}\right) \\
S_{k f}^{u}\left(z, \ell^{\prime}\right)=\left[w_{k f}\left(z, \ell^{\prime}\right)+\frac{1}{1+r} J_{k f}^{e}\left(z, \ell^{\prime}\right)-\left(b+b^{u}+\frac{1}{1+r} J^{u}\right)\right] \ell^{\prime}
\end{gathered}
$$

Wage functions

- The solution to union wages in the formal sector take the form

$$
\begin{aligned}
w_{k f}^{u}\left(z, \ell^{\prime}\right) & =\frac{1-\beta}{1+\beta \tau_{w}}\left(b+b^{u}+\frac{1}{1+r} J^{u}\right) \\
& +\frac{\beta\left(1-\tau_{y}\right)}{1+\beta \tau_{w}} \frac{V A_{k}\left(z, \ell^{\prime}\right)}{\ell^{\prime}} \\
& +\frac{1}{1+r}\left(\frac{\beta}{1+\beta \tau_{w}} E_{z^{\prime} \mid z} \frac{V_{k f}\left(z^{\prime}, \ell^{\prime}\right)}{\ell^{\prime}}-\frac{(1-\beta)}{1+\beta \tau_{w}} J_{k f}^{e}\left(z, \ell^{\prime}\right)\right)
\end{aligned}
$$

- Formal firms will not offer below reservation wage or below the minimum wage:

$$
w_{k f}\left(z, \ell^{\prime}\right)=\max \left\{w_{k f}^{u}\left(z, \ell^{\prime}\right), w_{k f}^{r e s}\left(z, \ell^{\prime}\right), \underline{w}\right\}
$$

- There is an analogous bargaining solution for the informal sector, but minimum wages play no direct role

$$
w_{k i}\left(z, \ell^{\prime}\right)=\max \left\{w_{k i}^{u}\left(z, \ell^{\prime}\right), w_{k i}^{r e s}\left(z, \ell^{\prime}\right)\right\}
$$

Value Added, Domestic Firms

$$
\begin{gathered}
V A_{k}(z, \ell)=\Theta_{k} \Psi_{k}\left(z \ell^{\delta_{k}}\right)^{\Lambda_{k}} \\
\Psi_{k} \equiv\left(P_{k}^{m}\right)^{-\left(1-\delta_{k}\right) \Lambda_{k}}\left(\exp \left(d_{H, k}\right)\right)^{\frac{\sigma_{k}}{\sigma_{k}-1} \Lambda_{k}} \\
P_{k}^{m} \equiv \frac{P_{C}^{\lambda_{k}} P_{S}^{1-\lambda_{k}}}{\lambda_{k}^{\lambda_{k}}\left(1-\lambda_{k}\right)^{1-\lambda_{k}}}, \\
d_{H, k}=\log \left(\left(\frac{X_{k}}{P_{k}}\right)^{\frac{1}{\sigma_{k}}}\right)
\end{gathered}
$$

Fixed Parameters

Table: Fixed Parameters

Parameter	Description	Value
τ_{c}	Iceberg Trade Cost	2.50
ζ	Share of final expend. on C	0.283
λ_{c}	Prod. Function	0.645
λ_{S}	Prod. Function	0.291
r	Interest rate	0.08
τ_{y}	Value Added Tax	0.293
τ_{w}	Payroll Tax	0.375
$\tau_{a}-1$	Import Tariff	0.12
κ	Firing Costs (in R\$)	$1,956.7$
\underline{w}	Min. Wage (in R\$)	2,880
b_{u}	Unemployment Benefit	1,644
ξ	Matching Function	0.5
ϕ	Matching Function	0.576
β	Workers' Bargaining Weight	0.5

Estimates

Table: Parameter Estimates

Parameter	Description	$k=C$	$k=S$
\widetilde{a}_{k}	Cost of Informality, Intercept	0.161	0.373
\widetilde{b}_{k}	Cost of Informality, Convexity	0.131	0.013
h_{k}	Hiring Cost, Level	559.7	$2,348.9$
γ_{k}^{1}	Hiring Cost, Convexity	2.067	4.896
γ_{k}^{2}	Hiring Cost, Scale Economies	0.139	0.192
σ_{k}	Elasticity of Substitution	5.321	3.281
ρ_{k}	Productivity AR(1) Process, Pers. Coeff.	0.978	0.977
σ_{k}^{z}	Productivity AR(1) Process, Var. of Shock	0.199	0.296
α_{k}	Exogenous Exit Probability	0.067	0.063
\bar{c}_{k}	Fixed Cost of Operation	23.071	27.047
δ_{k}	Labor Share in Production	0.266	0.54
c_{k}^{e}	Entry Cost	$5,332.2$	$2,067.1$
f_{x}	Fixed Cost of Exporting	$55,856.9$	
b	Utility Value of Unemployment	$-8,662.5$	
$\left(D_{F}^{*}\right)^{\frac{1}{\sigma_{C}}}$	Foreign Demand Shifter	969.2	

Table: Effects of Increasing the Cost of Informality

	Benchmark	Stricter Enforcement	No Informality
Unemployment Rate	0.183	0.184	0.326
Share Emp. Ci	0.081	0.050	0
Share Emp. Cf	0.100	0.124	0.201
Share Emp. S_{i}	0.417	0.313	0
Share Emp. Sf	0.402	0.514	0.799
Share Informal Emp.	0.498	0.362	0
$N_{C}=N_{C f}+N_{C i}$	1	0.813	0.268
$N_{S}=N_{S f}+N_{S i}$	1	1.137	0.574
Aggregate TFP C	1	1.085	1.317
Real V.A. per worker C	1	0.988	0.856
Aggregate TFP S	1	0.993	1.397
Real V.A. per worker S	1	0.940	0.987
P_{C}^{m}	1	1.030	1.061
P_{S}^{m}	1	1.013	1.027
Real Income	1	0.950	0.787
Real Income 2	1	0.938	0.541

Model Fit

Table: Employment Shares and Transition Rates from Unemployment

Moment	Dataset	Model	Data
Share of Employment Ci	PME	0.067	0.059
Share of Employment Cf	PME	0.083	0.106
Share of Employment Si	PME	0.360	0.351
Share of Employment Sf	PME	0.315	0.334
Share Unemployment	PME	0.176	0.150
Share Informal Workers (Conditional on Working)	PME	0.518	0.482
Trans. Rate from Unemp. to Ci	PME	0.062	0.064
Trans. Rate from Unemp. to Cf	PME	0.051	0.050
Trans. Rate from Unemp. to Si	PME	0.383	0.389
Trans. Rate from Unemp. to Sf	PME	0.167	0.161
Trans. Rate from Unemp. to Unemp	PME	0.336	0.336
Ratio Trans. to Informal job / Trans. To Formal job	PME	2.042	2.146

Model Fit

Table: Turnover-Related Moments and Auxiliary Models

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Exit Rate	RAIS	0.091	0.103	0.089	0.125
Average Firm-level Turnover	RAIS	0.231	0.505	0.198	0.525
Corr $\left(\ell_{t+1}, \ell_{t}\right)$	RAIS	0.947	0.929	0.942	0.914
Exit $_{i}=\alpha+\beta \log \left(\ell_{i}\right)$					
Intercept	RAIS	0.154	0.188	0.137	0.185
log $\left(\ell_{i}\right)$	RAIS	-0.028	-0.045	-0.040	-0.049
Turnover $_{i}=\alpha+\beta \log \left(\ell_{i}\right)+\gamma$ Exporter $_{i}$					
Intercept	RAIS	0.435	0.741	0.315	0.645
log $\left(\ell_{i}\right)$	RAIS	-0.095	-0.126	-0.097	-0.096
Exporter $_{i}$	RAIS	0.071	0.071		
Turnover $_{i}=\alpha+\beta \log \left(\ell_{i}\right)+\gamma$ Exporter $_{i}$, Conditional on Expansions					
Intercept	RAIS	0.410	0.692	0.278	0.690
log $\left(\ell_{i}\right)$	RAIS	-0.105	-0.138	-0.098	-0.150
Exporter $_{i}$	RAIS	0.119	0.116		
Turnover $_{i}=\alpha+\beta \log \left(\ell_{i}\right)+\gamma$ Exporter $_{i}$, Conditional on Contractions					
Intercept	RAIS	0.456	0.744	0.335	0.624
log $\left(\ell_{i}\right)$	RAIS	-0.077	-0.101	-0.064	-0.064
Exporter $_{i}$	RAIS	0.056	0.056		

Model Fit

Table: Firm-Size Distribution

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Avg. Firm-Level log-Emp.	RAIS	2.249	1.918	1.213	1.237
Std Dev log-Emp	RAIS	0.915	1.416	0.685	1.175
Avg. Exporter log-Emp.	RAIS+SECEX	3.555	4.014		

- Back

Model Fit

Table: Trade-Related Moments

	Dataset	Model	Data
Fraction of Exporters	RAIS + SECEX	0.129	0.073
Total Exports / (Total Manuf. Rev.)	SECEX + IBGE	0.133	0.134

Model Fit

Table: Formal-Sector Wages

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Avg. $\log -$ Wages	RAIS	8.635	8.769	8.413	8.567
$\log \left(w_{i}\right)=\alpha+\beta \log \left(\ell_{i}\right)+\gamma$ Exporter $_{i}$					
Intercept	RAIS	8.301	8.509	8.288	8.436
$\log \left(\ell_{i}\right)$	RAIS	0.117	0.117	0.103	0.105
Exporter $_{i}$	RAIS	0.542	0.462		

Model Fit

Table: Formal-Sector Revenues

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Avg. log-Revenues	IBGE	12.652	12.726	10.898	10.814
Std. Dev. log-Revenues	IBGE	1.278	1.874	0.916	1.440
Corr $^{\left(R_{2}\right.}$, Rev $\left._{t+1}\right)$	IBGE	0.727	0.929	0.630	0.845
Rev $_{i}=\alpha+\beta \log \left(\ell_{i}\right)+$ Exporter $_{i}$					
Intercept	IBGE	9.995	10.118	9.500	10.004
$\log \left(\ell_{i}\right)$	IBGE	1.149	1.000	1.152	0.872
Exporter $_{i}$	IBGE	0.561	1.462		

Model Fit

Table: Informal Sector Moments and Auxiliary Moments

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Average log-Employment	ECINF	0.189	0.105	0.244	0.097
Std. Dev. log-Employment	ECINF	0.316	0.303	0.355	0.274
Avg. log-Revenue	ECINF	9.596	8.531	9.253	8.953
Avg. log-Wages	ECINF	7.825	8.043	7.660	8.440
Informal $i_{i}=\alpha+\beta \ell_{i}$					
Intercept	ECINF	1.308	1.135	1.212	1.130
ℓ_{i}	ECINF	-0.179	-0.179	-0.202	-0.204

Figure: Costs of Informality: Benchmark and Stricter Enforcement

Notes: $p_{C_{i}}(\ell)$ and $p_{S_{i}}(\ell)$ are plotted against ℓ under the benchmark case and under the stricter enforcement policy.

Figure: Negative Productivity Shocks and Aggregate TFP

