Research Funding and Collaboration

Ben Davies (Stanford) Jason Gush (Royal Society of NZ) Shaun Hendy (Auckland) Adam Jaffe (Brandeis and NBER)

> NBER Summer Institute July 22, 2021

Overview

- Growing incidence/importance of co-authorship (e.g., Wuchty et al., 2007)
 ⇒ Growing interest in team formation mechanisms
- We study one potential mechanism: research funding contests
 - Shared idea creation, development
 - Screening opportunities
 - Proposal outcome signals idea quality
- In our data:
 - Researchers with more successful proposals tended to have more co-authors
 - Pairs who co-submitted during previous ten years were more likely to co-author
 - Accounting for publication lag suggests causal effect of funding on subsequent co-authorship

Data

- Scopus publication records on New Zealand (NZ) researchers and international co-authors, 1996–2018
 - 7.8 million publications (mainly articles, conf. proceedings)
 - 7.1 million author IDs
- Applications to Marsden Fund (premier funding source for basic research in NZ), 2000–2018
 - 18,811 "first round" proposals
 - * 22% advanced to second round of Marsden selection process
 - * 10% funded
 - 16,401 unique applicants (57% NZ-based)
- Linked set of 13,193 author-applicant pairs (hereafter "researchers")

Co-authorship network

- Linked data define time-varying co-authorship network
 - Nodes are researchers
 - Edges join pairs who co-authored during previous 10 years
- · Captures birth and decay of active collaborations over time
- Next slide:
 - partition node set by latest round \in {none, first, second, funded} of Marsden process reached during previous ten years
 - compare mean degree (= # co-authors) of researchers in each part

Part - No proposals - - First round ···· Second round ·-· Funded

Mean co-authorship network degree by latest round reached (as % of potential neighbors in network)

Empirical strategy

• We estimate

$$Pr(coauth_{ijt} = 1) = logit^{-1} (x_{ijt}\beta + u_{ijt}),$$

where

- $coauth_{ijt} = 1$ iff researchers *i* and *j* co-author in year *t*
- x_{ijt} is a vector of pair $\{i, j\}$'s characteristics in year t
- β is a vector of coefficients to be estimated
- *u_{ijt}* is an error term
- x_{ijt} contains
 - Proposal outcome dummies (e.g., co-funded in prev. 10 years)
 - Covariates intended to capture
 - * assortative preferences (# prev. co-authors, # citations)
 - * intellectual match quality (ASJC field overlaps)
- Observations are researcher pairs in a given year

Logistic regression estimates

Dependent variable. Co-authored in year ((coauthijt)								
Lag between dep. and indep. variables (years)								
	One		Two	Three	Four			
	(1)	(2)	(3)	(4)	(5)			
Co-submitted	0.248***	0.715***	0.324***	0.046	-0.173			
	(0.017)	(0.057)	(0.066)	(0.078)	(0.097)			
Co-adv. to 2nd round	0.137***	-0.087	-0.218	-0.141	-0.128			
	(0.029)	(0.099)	(0.114)	(0.132)	(0.159)			
Co-funded	0.631***	0.086	0.268	0.501**	0.635***			
	(0.031)	(0.125)	(0.137)	(0.157)	(0.191)			
Covariates		Yes	Yes	Yes	Yes			
Pair and year FEs		Yes	Yes	Yes	Yes			
Observations	247,110	124,619	97,450	73,263	51,841			
Researcher pairs	46,052	19,091	16,620	14,060	11,408			
Years	9	9	8	7	6			

Standard errors in parentheses (***p < 0.001, **p < 0.01, *p < 0.05)

Dependent variable: Co suthered in vert (a + a + b)

Summary

- Do research funding contests promote co-authorship?
 - Our evidence from NZ's premier contest suggests "yes"
- Econometrically:
 - More successful pairs more likely to co-author
 - Controlling for covariates and FEs restricts co-authorship rate gains to submitting proposals
 - Allowing for publication lags shifts gains to funding receipt
- Funding appears to have causal impact on subsequent co-authorship
- But can't distinguish whether funding "effect" represents
 - benefit of having more resources to pursue research ideas
 - benefits associated with signal/prestige of winning Marsden grant

See NBER w27916 for more details

Thanks for listening!

Dependent variable: Co-authored in year t (coauth_{ijt})

	Lag between dep. and indep. variables (years)					
	One	Two	Three	Four		
	(2)	(3)	(4)	(5)		
Proposal dummies	Yes	Yes	Yes	Yes		
Prior co-authorship	-2.193***	-1.902***	-1.612***	-1.155***		
	(0.031)	(0.034)	(0.041)	(0.054)		
Log mean degree	0.944***	0.703***	0.383***	0.313***		
	(0.044)	(0.048)	(0.053)	(0.063)		
Log diff. in degrees	-0.016	-0.001	0.035	0.006		
	(0.017)	(0.019)	(0.022)	(0.027)		
Log mean citation impact	0.184***	0.279***	0.302***	0.457***		
	(0.042)	(0.047)	(0.054)	(0.065)		
Log diff. in citation impacts	0.014	-0.019	-0.014	-0.024		
	(0.014)	(0.015)	(0.017)	(0.020)		
Pair and year FEs	Yes	Yes	Yes	Yes		
Observations	124,619	97,450	73,263	51,841		

Standard errors in parentheses (*** p < 0.001, ** p < 0.01, *p < 0.05)