
Remotely Incorrect?

Accounting for Nonclassical Measurement in Satellite Data on Deforestation

Jennifer Alix-Garcia∗

Oregon State University

Daniel L. Millimet†

Southern Methodist University & IZA

April 5, 2021

Abstract

Research relying on remotely sensed data on land use and deforestation has exploded of late. Given the

advantages of satellite imagery, this clearly represents progress. However, researchers unfamiliar with the

collection process may overlook an important feature of the data: nonclassical measurement error. Here,

we detail the potential sources and nature of these errors, propose a solution for the case of a mismeasured,

binary measure of deforestation, and assess this solution using a Monte Carlo study. Finally, we evaluate

a conservation program in Mexico. Our analysis yields practical recommendations for researchers going

forward, as well as avenues for future research.
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1 Introduction

Deforestation is a local issue with global ramifications. The IPCC calculates emissions from agriculture,

forestry and land use to be just under one-quarter of total anthropogenic greenhouse gas emissions (IPCC

2019), and deforestation is associated with mass extinction, loss of watershed function, and other essential

ecosystem services (see also Alston et al. (2013)). Moreover, quantifying the existence of forest cover

and of deforestation “is necessary for carbon accounting efforts as well as for parameterizing global-scale

biogeochemical, hydrological, biodiversity, and climate models” (Hansen et al. 2010, p. 8650). However,

until recently, high-resolution, consistent annual data on the extent of and change in global forest coverage

was not available in a systematic way. Remotely sensed data obtained from satellite imagery has changed

this.

The increase in the number of satellites and growth in computer processing power over the past decade

has driven an explosion in the availability of data derived from remote sensing methods. Because satellites

operate where surveyors cannot, they can gather data from remote locations and at spatial resolutions

vastly superior to data reported at the regional or national level. Moreover, data collection by satellites

necessarily eliminates many sources of error, such as enumeration errors and response biases, that plague

traditional data collection procedures. Research on the extent and determinants of land use and land use

change has benefited significantly from the emergence of large scale classifications based upon satellite

imagery.1 The Global Forest Change dataset (Hansen et al. 2013) has over 3,500 citations since 2013, 34

of which appear in economics journals.

Citation counts such as these are evidence of the increasing ability of researchers to access and use

remote-sensing derived datasets without consulting the scientists who have created them. While low cost

data access has opened up the ability of researchers to examine a dizzying array of environmental issues,

information about the limitations of satellite data is often lost along the path between the download of

the data and its use in regression analysis. Although satellite-based measures circumvent many of the

complications that researchers are used to confronting with data collected on the ground, the absence

of familiar types of data error does not imply the absence of all error. Systematic mismeasurement in

remotely sensed measurements is likely present. This paper details the potential sources and nature of

these errors in the context of land use classifications, proposes a solution for a potentially misclassified,

remotely-sensed binary measure, and assesses this solution using a Monte Carlo study. Finally, we apply

1Other prominent examples of remotely sensed data include measures of nighttime light intensity, rainfall, temperature,
land use, pollution, population, marine health, and more. Within economics, over 150 economic studies have used nighttime
lights data since 2012 (Gibson 2020).
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our estimator to the evaluation of a conservation program in Mexico.

Addressing measurement error in statistical analysis is critical, but this is particularly the case when

assessing the determinants of land use or deforestation using remotely sensed data. The importance of

confronting measurement error in this case is attributable to the fact that the errors are not classical

(i.e., idiosyncratic and mean zero). Binary measures of deforestation or land use classifications derived

from satellite data suffer from nonclassical measurement error for two reasons. First, measurement error

in bounded variables, which include binary variables, must be nonclassical as the errors are necessarily

negatively correlated with the true value (Black et al. 2000). Second, geographic characteristics may

affect the accuracy of remotely sensed images and these same characteristics may also affect deforestation.

In particular, attributes such as weather, elevation, and slope are likely to be correlated with both the

availability and accuracy of satellite imagery that provides the inputs for creating land use classifications.

Because this error is nonclassical, the effects of ignoring it extend beyond a loss in precision; all coeffi-

cient estimates will be biased and inconsistent (Hausman 2001). Importantly, this includes the estimates

on otherwise exogenous covariates (including randomized treatments) if the coefficients are non-zero. This

holds regardless of the binary choice estimator being used (e.g., linear probability model, logit, probit, etc.)

Unfortunately, researchers are either unaware of this issue or to-date employ an ad hoc solution that, as

we show below, is unlikely to be effective. Specifically, some researchers augment their regression model

with covariates that are likely to be associated with the measurement error such as cloud cover, elevation,

or slope (e.g., Sims & Alix-Garcia 2017, Burgess et al. 2018, Herrera et al. 2019).

With this background in mind, we have two objectives in this paper. First, we describe how the con-

struction of land classification measures from optical satellite sensors can lead to nonclassical measurement

error. Moreover, we confirm the nonclassical nature of the errors in static measures of forest cover – even

when continuous – by making use of two satellite-based measures of forest cover for Mexico near the same

time period and based upon imagery from the same type of satellite. While access to a “true” measure of

forest derived on the ground would be ideal, such ground truthed data are unavailable (to our knowledge).

Nonetheless, we show that our two satellite measures are sufficient for our purposes. In particular, having

two measures allows us to assess their degree of divergence and the correlation between these divergences

and aspects of the environment. Under the null hypothesis that one or both measures suffer only from

classical measurement error, these divergences should not vary systematically with observed attributes.

This analysis leads to a few key takeaways. First, while the two binary measures for the presence of any

forest diverge for roughly 18% of the sample, the continuous measures of the proportion of forest coverage
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appear much more divergent. Although merely suggestive, researchers should be cautious when using

very granular remotely sensed data. Second, correlations between the differences in both the binary and

continuous measures and environmental attributes are statistically and economically significant, consistent

with the data suffering from nonclassical measurement error.

The second objective of the paper is to assess the performance of several binary choice estimators when

the outcome is mismeasured. Our preferred estimators are extensions of the misclassification binary choice

model proposed in Hausman et al. (1998). In particular, we consider two extensions. First, we allow

for the misclassification rates to depend on covariates as in Lewbel (2000). Here, the covariates capture

environmental attributes affecting the accuracy of satellite imagery. Second, we use the scobit family of

binary choice models, which nests the logit model as a special case (Nagler 1994).2 The scobit introduces

an additional shape parameter into the link function. This additional flexibility has proven useful when the

outcome is of the rare-events type (Goleţ 2014), which may be the case when the outcome is deforestation.

For comparison, we also consider alternative estimators that either ignore misclassification or augment

the set of covariates with environmental attributes affecting the accuracy of satellite imagery (referred to

as ad hoc estimators). When ignoring measurement error or pursuing this ad hoc strategy to “address”

measurement error, we also consider a linear probability model.

To investigate the practical performance of the estimators considered, we undertake a (limited) Monte

Carlo study and we re-visit the impact of a program of payments for ecosystem services on deforestation

in Mexico over the period 2001–2015. Our Monte Carlo design mimics the data in our application. The

simulations lead to three primary conclusions. First, not surprisingly, ignoring measurement error intro-

duces significant bias. Second, the ad hoc approach of including environmental attributes that may induce

measurement error in remotely sensed data as covariates is done in vain; the bias remains. Third, our

extensions of the Hausman et al. (1998) estimator perform quite well. In particular, the misclassification

logit model is preferred with non-rare events data. With rare events data, the misclassification scobit (with

a low value of the shape parameter) is preferred.

In our application, we also obtain three main findings. First, satellite measures vastly under capture the

true extent of deforestation. In our preferred specification, we find that half of all instances of deforestation

are missed. In other words, there is a high rate of false negatives. In contrast, the false positive rate is

essentially zero. Overall, we find about 17% of the observed reports are misclassified.

Second, ignoring misclassification can result in attenuation bias of the average marginal effects, al-

2New Stata commands, mclogit and mcre, are available at http://faculty.smu.edu/millimet/code.html.
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though the bias need not always be toward zero. In particular, our preferred estimator suggests that the

conservation program examined reduces the probability of deforestation by 1.4 percentage points on aver-

age. In comparison, the estimator most frequently used by researchers currently – what we refer to as the

ad hoc fixed effects linear probability model – produces an estimate that is attenuated by one-third and not

statistically different from zero at conventional levels. The average marginal effects are also significantly

attenuated for the other covariates in the model.

Finally, we find that cloud coverage and topography are important determinants of data accuracy

when it comes to remotely sensed measures of deforestation. Failure to model the impact of topography

on misclassification biases estimates of the direct effect of topography on deforestation as the direct effect

is conflated with the effect on misclassification. In our application, we find that the effect of land slope on

deforestation is significantly attenuated when misclassification is ignored.

In sum, our analysis leads to several recommendations for researchers interested in using remotely

sensed data, particularly related to land use and deforestation. Most importantly, researchers ought to

engage with remote sensing scientists to understand how the data are constructed and the nature of its

limitations. In addition, researchers should address the nonclassical measurement error in the data. When

the remotely sensed data is being used to construct a binary outcome, estimators based on Hausman et al.

(1998) offer a potential improvement over current practices, even in the case of rare events data.

That said, our analysis also points to several avenues in need of future research. First, we do not consider

solutions that might exploit the presence of two error-laden binary measures. While such data may give

rise to other estimation methods, multiple measures are typically unavailable to the researcher. This is

the case in our application as well. Second, we do not consider estimators that might exploit the spatial

nature of the data to overcome misclassification. Third, we do not consider nonclassical measurement error

in continuous, remotely sensed measures of forest cover or change.3 Finally, while we can speculate, we

cannot say how readily our insights generalize to analysis of other remotely sensed phenomena such as

nighttime lights, agricultural productivity, crop type, urbanization rates, population measures, etc.

Despite leaving these issues for future research, our current study offers both descriptive and method-

ological contributions. First, while there are now large numbers of papers using satellite-based measures of

various concepts, and at least two reviews focusing on the use of these measures in economics (Donaldson

& Storeygard 2016, Jain 2020), we are among the few papers to both document the potential sources

3The binary choice models we consider that address misclassification exploit nonlinearity of the link function for identifi-
cation. Because such nonlinearity is absent in regression models with continuous outcomes, additional information (such as
exclusion restrictions) are likely needed to obtain consistent estimates.

4



of measurement error as well as investigate possible solutions. Two exceptions to this are Gibson et al.

(2019) and Gibson (2020). Both papers examine nighttime lights data. The former broadly reviews the

two main data sources for nighttime lights measurement, describing the technical details of the sensors and

giving recommendations on how to best choose between sources, aggregate data, and understand output.

The latter establishes that early nighttime lights sources suffer from mean-reverting measurement error,

describes the sources of these errors, and establishes a protocol for improving the accuracy of the more

recent (VIIRS) dataset. By contrast, we focus more broadly on how processing and interpretation of raw

imagery can result in nonclassical error and propose estimation strategies that take this error into account.

On the methodological side, to our knowledge, ours is the first paper to consider an extended version of

the estimator in Hausman et al. (1998) and Lewbel (2000) that allows the misclassification rates to depend

on covariates applied to satellite data. We are also the first to propose combining misclassification with a

scobit model to address misclassification in rare events data.

The rest of the paper proceeds as follows. Section 2 provides an overview of how remotely sensed

data are constructed from satellite imagery and evidence of nonclassical measurement error in data on

forest cover in Mexico. Section 3 discusses the econometric problems arising from measurement error in a

binary outcome along with several potential solutions. Section 4 presents a (limited) Monte Carlo study to

evaluate the finite sample performance of various estimators. Section 5 illustrates the practical importance

of addressing measurement error in the context of the evaluation of a payments for ecosystem service

program in Mexico. Finally, Section 6 concludes.

2 Nonclassical Measurement Error in Satellite Data

2.1 Data Collection Process

Users of economic data are well-aware of measurement problems associated with survey outcomes

(Hausman 2001, Groves et al. 2011, Meyer et al. 2015) and economic aggregates from government agencies

(Mankiw & Shapiro 1986). However, it may not be obvious to many social scientists that measures derived

from optical, thermal, or radar sensors mounted on satellites can also have systematic sources of bias. To

fix ideas, it is useful to begin with a description of how information from satellites is converted into usable

static or dynamic data available to researchers. We use optical sensors as an example, but many of the

steps that we describe here generalize to other types. Optical sensors are used to measure reflected energy,

and come to the analyst as measurements of different “spectral bands” arranged in a grid (Kennedy et al.
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2009).

There are presently over 2,000 satellites orbiting Earth. Each satellite has different technical specifica-

tions, including sensor type, frequency of reporting, and spatial resolution (Union of Concerned Scientists

2020). For optically-derived information, which is frequently used to produce forest cover and land use

change classifications, the basic process for classifying a satellite image into data that can be used by re-

searchers entails (i) accessing images from their storage place in an archive, (ii) pre-processing the images

so that they can be entered into an image-classification system (manual, automated, or a hybrid), and (iii)

setting rules for translating the spatial and temporal trends in the satellite images into numerical data.

This assembly-line of tasks creates three broad categories of potential errors: errors due to technical

limitations of the sensors themselves, errors introduced in the pre-processing of images, and errors in the

algorithms used to translate images into usable data. Technical limitations can induce obvious challenges.

For example, the image might originate from a satellite with a spatial resolution of one kilometer (100

hectares), while the behavior of interest may operate at a scale of one hectare or less. Another example

of a technical limitation arises with the “scan line error” of the Landsat 7 satellite (see Figure A1 in

Appendix A). This error leaves swaths of the imagery blank. The missing swaths are then imputed by

either mosaicking (stitching together) multiple images from different time periods or directly imputing the

missing imagery using predictions based on available data.

Even absent technical limitations of the machinery itself, the raw images are frequently distorted due

to solar, atmospheric, and topographic features (Young et al. 2017). These distortions are ameliorated

by (often significant) pre-processing of the raw images. While these corrections are necessary, they can

introduce errors (Kennedy et al. 2009). Moreover, reduced visibility due to cloud cover may lead to errors

in the timing of changes on the ground. For example, instances of deforestation may register in the data

with a lag due to delays in the availability of cloud free images.

After collecting and pre-processing the raw images, these (now processed) images are translated into

numerical data, such as the presence of forest, using an algorithm. There are an infinite number of ways

to conduct this translation. For smaller areas, classification by visual inspection – comparing pixels from

one image to areas from a higher resolution image – is often possible. For larger areas, machine learning

methods based on pixel-by-pixel approaches and others, known as “object-based,” that use broader spatial

dimensions are typically employed (Li et al. 2014). The former are currently more common, and these

methods can be divided into two further groups: supervised and unsupervised. A supervised classification

involves using information from representative sites where information on the ground is known, and then
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leveraging this information to establish decision rules for classification of associated pixels. Unsupervised

classifications divide remote sensing images into classes based on clustering of image values, without sub-

stantial use of secondary data sources. Both of these approaches classify each pixel with one value. There

also exist methods that try to recognize potential heterogeneity within pixels and yield a classification for

each pixel that reflects the proportion in a given category. Newer object-based classifiers segment images

into objects (groups of pixels), and these segments provide the unit of classification. Recent approaches

also exploit the geographic information of adjacent pixels (for example, textural analysis) to aid with

classification (Li et al. 2014).

The classification processes used are algorithmic in nature. As such, accuracy is not assured and can

vary across algorithms. Furthermore, the accuracy of any given algorithm can vary across space and time

depending upon the underlying characteristics of the objects being classified. For example, it is well-known

by remote sensing experts, though not necessarily by users of the final output, that a data source widely-

used to measure deforestation is more accurate in temperate than in tropical forests (Hansen et al. 2013),

in areas of larger clearing (Burivalova et al. 2015), and in more homogeneous landscapes (Mitchard et al.

2015). Because the accuracy depends on the underlying phenomena being measured, the errors in this

data source are nonclassical.

2.2 Data Illustration

To illustrate these issues with remotely sensed satellite data on forest cover, we examine two different

data sources for Mexico. The two measures are based on similar imagery taken at nearly the same time.

However, the two measures are derived from different pre-processing and classification techniques.

The first data source is the Land Use and Vegetation, Series V (henceforth, GOM).4 It is part of a series

of land cover maps that has been produced periodically by the Mexican government since 1985. The GOM

product that we use exploits 2011 images from the Landsat 5 satellite, and updates the previous Series IV

map, which used a compilation of images from a different satellite between 2007 to 2010 (Government of

Mexico 2014). The Landsat satellites all have a resolution of 30 meters. The GOM data classifies forest

by type using supervised classification supported by ground-truthing in the field. The data come in what

is called “vector” form, which is a series of polygons defined as homogeneous classes rather than data on

individually interpretable pixels. There are 59 land use classes in the original data. For our purposes, we

4The data are publicly available (Government of Mexico 2014). See http://www.conabio.gob.mx/informacion/metadata/

gis/usv250s5ugw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no for the dataset and https://

www.inegi.org.mx/contenidos/temas/mapas/usosuelo/metadatos/guia_interusosuelov.pdf for documentation.
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reclassify these land use categories into a binary indicator for forest or non-forest. Although the underlying

images have a 30 meter resolution, the minimum mappable unit for the analysis (the smallest size that

determines whether a feature is captured) is 50 hectares.

The second data source is the University of Maryland’s Global Land Cover and Deforestation data set

(henceforth, the Hansen data) (Hansen et al. 2013). We use Hansen’s binary classification for forest or

non-forest from 2010, which is based upon Landsat 7 imagery. This data is available in “raster” form

(in contrast to the vector above), which means that the information comes in a grid of 30 meter pixels,

rather than as polygons. A pixel is classified as forested when its canopy cover measure exceeds 50%,

a common cutoff.5 The Hansen data classifies pixels using supervised classification supported by higher

resolution imagery as well as previous tree cover layers derived from both Landsat and lower resolution

imagery (Hansen et al. 2013).

In light of this, the GOM and Hansen measures may differ due to the reclassification of the GOM

product and the differences in scale and year across the two datasets. In addition, there are small differences

between Landsat 5 and Landsat 7 (there is no Landsat 6). Both have the same spatial resolution (30 m) and

image size (approximately 170 x 183 km), but Landsat 7 has an additional spectral band (U.S. Geological

Service 2021). Imagery from these two satellites is quite frequently combined in remote sensing analyses

(Kovalskyy & Roy 2013).

To compare the two datasets, we extract the information within a 5 x 5 km grid laid across the contigu-

ous land area of Mexico. We engage in this aggregation because it makes the dataset more manageable,

and because some aggregation choice had to be made to make the vector (GOM) dataset comparable to

the raster (Hansen) dataset. The process of aggregating across space is both necessary and common in

the use of satellite imagery; the terrestrial area of the earth requires around 400 billion Landsat pixels to

cover it (NASA 2021). Furthermore, the classification of a single pixel into a given land cover is, in fact, a

mini process of aggregation, where land use categories are determined by different spectral thresholds.

This aggregation yields the proportion of forest cover within each (5 x 5 km) cell. We also generate

binary indicators of any forest cover, defined using a threshold of 50 ha (based upon the processing of the

GOM data) for both datasets.6 Below we discuss the implications of using different thresholds. Finally,

we observe several attributes of each cell, such as elevation, slope, and forest type. To examine the role

of satellite image availability in driving differences in classification, we also include counts of the number

5It is not uncommon to use canopy cover cutoffs as low as 10% to define forest cover and the Hansen data offers a number
of possible cutoff points.

6It is possible to count smaller areas of forest as detectable in the Hansen dataset, but we use the same threshold to make
the indicators more comparable.
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of Landsat 5 and Landsat 7 images with less than 25 percent cloud cover available in 2010 and 2011. A

greater number of cloud-free images increases the amount of information available to the remote sensor,

and is likely to improve the accuracy of final classifications. Figure A2 shows the distribution of these

images across Mexico in 2010.

Before continuing, it is important to stress that we present these contrasts not to establish which data is

more accurate, nor even to understand where along the assembly line of the data production the differences

may materialize. Our primary point – to see the forest for the trees so to speak – is that both GOM and

Hansen are publicly available datasets and reasonable researchers may use either without giving it much

thought. However, the two data sources are classifying the same landscape in demonstrably different ways.7

Thus, while it would be nice to have ground-truthed data with which to compare one or both of these data

sources, this is not necessary for our objective (nor is it feasible, to our knowledge).

Table 1: Summary statistics

Mean SD Obs

Proportion forest, 2011, GOM 0.360 0.397 79954
Proportion forest, 2010, Hansen 0.195 0.295 79954
Binary forest, 2011, GOM 0.581 0.493 79954
Binary forest, 2010, Hansen 0.482 0.500 79954
Mean elevation (1000s m) 1.022 0.820 79954
Mean slope 8.810 7.326 79954
Std Deviation (slope) 7.198 4.917 79954
Dry tropical biome 0.189 0.391 79954
Moist tropical biome 0.137 0.344 79954
Pine/oak biome 0.231 0.421 79954
Mangrove biome 0.018 0.134 79954
Dry woodlands or grasslands 0.419 0.493 79954
Number of cloud-free scenes L7, 2010 12.124 3.899 79954
Number of cloud-free scenes L5, 2011 7.567 5.286 79954
Minimum of Landsat scenes, 2010-2011 7.299 4.942 79954

Table shows simple summary statistics for all variables used in analysis. L7
(L5) indicates the Landsat 7 (5) satellite.

Table 1 shows means and standard deviations of the variables, including the measures of forest cover

from the two sources. Three striking differences emerge. First, the GOM data reports considerably more

forest cover, as a proportion of land, than the Hansen data; nearly 17 percentage points more. This may

7We do note that differences between the two data sources may also be attributable to the slightly different time scale:
2010 versus 2011. However, it seems unlikely that this is much of a factor in explaining the divergence between the two data
sources since the GOM data (from 2011) report significantly more forest cover than the Hansen data (from 2011). It is highly
unlikely that new forest growth over such a short time span could explain the differences. On the other hand, had the Hansen
data contained significantly more forest cover than the GOM data, then one might worry that excessive deforestation in 2010
might account for the differences.
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be because of the larger minimum mappable unit of the GOM data, but also due to differences anywhere

along the processing line between the raw image and the final numerical data. Second, the Hansen data

reports a lower fraction of cells with at least some forest coverage; the difference is about 10 percentage

points. Together, these suggest greater divergence in the continuous measure of proportion forest than

the binary measure of forest presence.8 Finally, the divergence between the two data sources is not uni-

directional. Specifically, the Spearman rank correlation between the two continuous measures is 0.77; the

Pearson correlation coefficient is 0.63. This higher Spearman correlation suggests a nonlinear relationship.

To further investigate the divergence between the two sources, Table 2 shows the cross-tabulation of

the binary measure of any forest in a cell across the two sources. The two data sources concur over 81% of

the time. In about 4% of cells, the Hansen data detects some level of forest while the GOM data does not;

the reverse occurs in 14% of the cells. Appendix Figure B1 shows how the proportion of cells where there

is disagreement in classification changes as we apply different cutoff levels to each dataset. The lowest

level of classification disagreement occurs with a cutoff of 1 for both datasets. Divergence is also low when

cutoffs for both datasets are quite low (0 for Hansen and less than 0.20 for GOM). In general, divergence

is larger with medium-sized cutoffs and smaller on the ends of the distribution.

Table 2: Cross-tabulation of measures of any forest across Mexico

Hansen data
0 1 Total

GOM data
0 37.9 4.0 41.9
1 13.9 44.2 58.1
Total 51.8 48.2 100.0

Table shows cross-tabulation for two data
sources used in analysis. Cells show per-
centages in each category.

To visually examine the differences in the continuous measure of forest cover, the left panel in Figure

1 presents a scatterplot of the continuous outcomes across the entirety of both data sets. If the two data

sources were identical, all data points would lie along the 45 degree line. However, the figure makes it clear

that this is far from the case. In particular, the Hansen data contains a significant mass of observations

with low, but non-zero, forest cover. In contrast, the GOM data reports relatively larger forested areas.

Nonetheless, a nontrivial share of the data also lie below the 45 degree line, indicating that the GOM

8The divergence in the continuous measure of forest cover is nearly one-half the standard deviation of the proportion of
forest cover when the two data sources are pooled. The divergence in the binary measure of any forest is only one-fifth the
standard deviation of the binary measure when the two data sources are pooled.
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(Hansen) data are not simply over- (under-)measuring forest cover.

Figure 1: Scatterplot of forest cover in 5 x 5 km cells across Mexico

To assess whether these differences are explained by the differential availability of imagery due to cloud

coverage, the right panel in Figure 1 identifies data points where the number of Landsat 7 cloud free images

is above the median. Even in this sub-sample, the divergence between the data sources is stark. These

differences are further highlighted by examining the empirical cumulative distribution functions (CDFs)

in Figure 2, which also shows that the Hansen data is dominated by smaller proportions of forest; nearly

70 percent of the forested proportions in Hansen are less than 0.20, as opposed to 50 percent of the GOM

cells.

Figure 2: Empirical CDFs of forest cover in 5 x 5 km cells across Mexico

Next, we compute reliability statistics for the continuous measures of forest cover following the approach

in Abowd & Stinson (2013). The results are shown in Table 3. Each row supposes that the truth is a

weighted average of the GOM and Hansen data, with the weights listed in the first column. Given this
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“truth,” the variance of the signal and measurement error contained in each data source is presented. The

former is equal to Var (y∗), where y∗ = ωGOM + (1 − ω)Hansen is the “truth”. The latter is equal to

Var (µ), where µ = y − y∗ is the measurement error associated with data source y. The final column

displays the reliability statistic of each data source, given by 1 − Var (µ) /Var (y∗). Note, the reliability

statistic may be negative, as it for the Hansen data in the first row, if the measurement error is nonclassical.

In this case, the variance in the Hansen data, which is relatively small due to the large mass of data points

close to zero (see Figure 1), is dwarfed by the variance of the measurement error if the GOM data represent

the truth. Even if the truth is the equally-weighted average of both measures, then each measure has a

reliability statistic below 0.85.

Table 3: Reliability statistics

Truth Model Variance Variance Variance of ME Reliability Statistic
Weight(GOM,Hansen) GOM Hansen of Signal GOM Hansen GOM Hansen

(1) (2) (3) (4) (5) (6) (7)

1,0 0.158 0.087 0.158 0.000 0.097 1.000 -0.112
0.9,0.1 0.158 0.087 0.142 0.001 0.078 0.994 0.099
0.5,0.5 0.158 0.087 0.098 0.024 0.024 0.847 0.722
0.1,0.9 0.158 0.087 0.085 0.078 0.001 0.504 0.989

0,1 0.158 0.087 0.087 0.097 0.000 0.388 1.000

ME = measurement error.

Finally, we assess how the divergence in what is measured by the two data sources is related to geo-

graphic characteristics of the land. Differences in measured outcomes that are systematically related to

physical characteristics suggest that measurement errors may be nonclassical, leading to bias in statistical

analyses. As mentioned above, while ideally we might like to have ground-truth data in order to back out

exact values of the measurement errors, our current data are nonetheless sufficient.

To see this, suppose that the data are generated as follows

y1 = y∗ + µ1 (1)

y2 = y∗ + µ2, (2)

where yj is the observed forest cover measure in data source j, y∗ is the truth, and µj is the corresponding

measurement error. If µj , j = 1, 2, are classical measurement errors, then the divergence in the two

observed forest cover measures, equal to µ2 − µ1, will be uncorrelated with environmental attributes.9.

However, the converse is not true; even if µj , j = 1, 2, are nonclassical measurement errors, it is not

9Trivially, if Cov(µ1, x) = Cov(µ2, x) = 0, then Cov(µ2 − µ1, x) = 0.
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necessarily the case that the divergence in the two observed forest cover measures will be correlated with

environmental attributes. Thus, assessing correlation between y2 − y1 and environmental attributes is a

conservative test for nonclassical measurement error.

Table 4 reports the standardized beta coefficients from a regression of the divergences in forest cover

measures on environmental attributes of the cell as well as the availability of satellite imagery to support

the classification process. Thus, the coefficients may be interpreted as the effect of a one standard deviation

increase in each covariate. Most importantly, we find that the divergences are correlated, both statisti-

cally and economically, with all of the covariates. In particular, the differences between data sources are

pronounced where the topography is extreme, as measured with high elevation and slope. It is also the

case that the coefficients on the different forest biomes are all positive relative to the omitted category,

grasslands and agriculture. The beta coefficients are particularly high for the pine-oak and tropical biomes.

This is consistent with measurement error that enters during pre-processing – tropical areas tend to have

more clouds – and through the classification algorithms used to define forest cover.

The differences are decreasing in the minimum number of cloud-free images available for either Landsat

7 in 2010 (the basis of the Hansen classification) and Landsat 5 in 2011 (the basis of the GOM data). This

suggests that greater image availability may improve agreement between the two datasets. The maximum

actual value of this variable is 18 (although in theory there could be up to 22 scenes per year). An

increase from the mean value in the data (7) to the maximum value (18) would decrease the proportion of

divergences in the data estimated in the second column by more than half (-0.128), conditional on a slope

value of zero. In interpreting the image availability effect, it is important to note that Landsat scenes are

quite large areas – around 185 km square – which can pick up ecosystem and other broad scale spatial

effects. The interaction between image availability and slope is positive, suggesting for the same number

of images, higher slope is associated with greater differences in classification. At the mean value of slope in

the data (8.8), the positive effect of slope on disagreement across the two datasets overwhelms the palliative

effect of greater image availability.

Table B1 shows these same regressions using different cutoff thresholds for forest cover in the two

datasets. We observe that as we increase the threshold towards 1, geographic characteristics (slope, eleva-

tion) become more important relative to image availability.

As stated at the outset, we take no stance on the relative reliability of the GOM and Hansen data

sources. We do, however, know that both are indicative of the types of data sources increasingly being

used by researchers. As such, their divergences should cause researchers great pause. The differences
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Table 4: Differences in measurement of forest cover using two Landsat-based sources

Proportion of 5 km cell Indicator of any forest
Abs(GOM - Hansen) Abs(GOM - Hansen)

(1) (2)

Ln(elevation, 1000s) 0.052*** 0.131***
(0.004) (0.006)

Mean slope 0.233*** -0.497***
(0.000) (0.000)

Dry tropical biome 0.509*** 0.281***
(0.004) (0.007)

Moist tropical biome 0.290*** 0.198***
(0.004) (0.007)

Pine/oak biome 0.488*** 0.217***
(0.003) (0.006)

Mangrove biome 0.164*** 0.100***
(0.006) (0.013)

Minimum of Landsat scenes, 2010-2011 -0.055*** -0.180***
(0.000) (0.001)

Minimum of Landsat scenes x slope mean 0.113*** 0.370***
(0.000) (0.000)

Mean DV 0.210 0.178

Column headers indicate dependent variables. The unit of analysis is 5 x 5 km grid cells across
the entire landscape of Mexico. State fixed effects are included. Standard errors are robust, and
the estimator is OLS. Beta coefficients are displayed. * p <.10, ** p< .05, *** p<.01.

here appear more extreme than similar exercises that compare data on self-reported income with linked

administrative earnings records, where neither data source is seen as infallible (Kapteyn & Ypma 2007,

Gottschalk & Huynh 2010, Abowd & Stinson 2013). Thus, we now turn to possible econometric remedies

when estimating the determinants of a binary outcome, such as forest cover, measured via satellite imagery.

3 Empirics

3.1 Setup

Motivated by our application, we focus on estimating the determinants of a binary outcome with panel

data containing only a single outcome measure for each observation.10 Let y∗it denote the true outcome for

location i at time t, where y∗it ∈ {0, 1}. The data-generating process (DGP) for y∗ is assumed to be given

10In other words, in contrast to Section 2, we no longer have two measures of forest cover at each point in time.
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by

Pr(y∗it = 1|xit, ωi) = F (xitβ + ωi), (3)

where xit is a vector of correctly measured, exogenous covariates, ωi is a location–specific fixed effect (FE),

and F (·) is the link function. If F (·) is the identity link function, then F (·) = xitβ + ωi and (3) is a linear

probability model (LPM). The estimating equation in this case is

y∗it = xitβ + ωi + εit. (4)

If F (·) is the standard normal CDF or the logistic CDF, then (3) is the usual probit or logit model,

respectively. A less well-known alternative model that we also consider is known as a skewed logit or scobit

model (Nagler 1994). In the scobit model, F (·) is defined as

F (·) = 1− 1

[1 + exp(xitβ + ωi)]
α , (5)

where α is an unknown parameter. The scobit model corresponds to the usual logit model when α = 1.

A few comments are warranted. First, location FEs are easily accommodated in the LPM by either

first-differencing or mean-differencing the data and then estimating the transformed model via Ordinary

Least Squares (OLS). We refer to this estimator hereafter as FE-LPM. However, the remaining models are

estimated via Maximum Likelihood (ML). In this case, FEs lead to the well-known incidental parameters

problem (Lancaster 2000).11 A common solution in applied analysis is to assume a correlated random

effects (CRE) structure. The CRE structure directly models the dependence between the FEs and the

location-specific covariates. Specifically, we assume

E[ωi|xi] = xiγ, (6)

where xi is a vector of location-specific covariates across all time periods and xi is a vector of location-

specific means of the covariates. In error form, we have

ωi = xiγ + ηi, (7)

11For the logit model, using the conditional likelihood function, where the conditioning is done on the
∑

t yit, circumvents
the incidental parameters problem. Nonetheless, it is not an ideal solution since the marginal effects cannot be computed
without invoking additional assumptions on the FEs.
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where ηi is now a location-specific random effect. Substitution of (7) into (3) yields

Pr(y∗it = 1|xit, ωi) = F (xitβ + xiγ + ηi), (8)

which can be estimated using random effects binary choice models or traditional binary choice models with

robust standard errors. Hereafter, we refer to estimators adopting this strategy as CRE estimators.

Second, it is well-known that the usual binary choice models perform very poorly when there are

proportionately few occurrences of ones (or, conversely, zeros) in the data (King & Zeng 2001). Such

outcomes are referred to as rare events. One reason for the poor performance of probit and logit models in

this case is because the link function, F (·), is symmetric. This implies that the probability approaches zero

and one at the same rate as the index, xitβ + ωi, approaches −∞ and +∞, respectively. The probit and

logit also possess the property that the marginal effects of the covariates are maximized for observations

with an initial probability of y∗it being one of one-half. This may also contribute to the poor performance

of these models in the case of rare events.

While several alternatives for modeling rare events data have been proposed, we focus here on the

scobit model. It may potentially perform better with rare events data because the link function is no

longer symmetric when α 6= 1. In particular, as α→ 0, the probability of y∗it being one conditional on xit

and ωi falls.12 This implies lower probabilities of the value one occurring unless the index, xitβ + ωi, is

quite large. Goleţ (2014) finds that the scobit does very well when modeling rare corporate bankruptcies.

Finally, ML estimation of the scobit model produces consistent estimates of the parameters if the DGP

is correct. The LPM, while convenient and popular, is unlikely to produce consistent estimates (Horrace

& Oaxaca 2006).

3.2 Misclassification

When y∗ is not observed by the researcher, but rather a mismeasured version, y, then all of the preceding

estimators will be inconsistent. To see this in the FE-LPM, we introduce the following measurement error

equation

yit = y∗it + µit, (9)

where µit ∈ {−1, 0, 1} is the measurement error. However, since µit can only take on the values of 0 or −1

if y∗it = 1, and can only take on the values of 0 or 1 if y∗it = 0, then it must be the case that Cov(y∗it, µit) < 0.

12The scobit model is similar to the Generalized Extreme Value (GEV) regression model proposed in Calabrese & Osmetti
(2013). The GEV model also introduces an additional free parameter into the link function to allow for asymmetry.
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Substituting (9) into (4) yields the following estimating equation

yit = xitβ + ωi + µit + εit (10)

Since Cov(y∗it, µit) < 0, it follows that Cov(xitβ+ωi+εit, µit) < 0, likely leading to biased estimates. In other

words, since the measurement error is negatively correlated with the truth, it is also negatively correlated

with the determinants of the truth. Consequently, all of the covariates in (10) become endogenous.13

To see the inconsistency resulting from measurement error in the ML models, we introduce the following

misclassification probabilities

Pr(yit = 1|y∗it = 0, zit) = G0(zitθ0) (11)

Pr(yit = 0|y∗it = 1, zit) = G1(zitθ1), (12)

where G0(·) and G1(·) are two new link functions, zit are correctly observed covariates, and θ0 and θ1

are corresponding vectors of unknown parameters. Equations (11) and (12) reflect the probabilities of

false positives and false negatives occurring in the data, respectively. In Hausman et al. (1998), G0(·) and

G1(·) are each assumed to be a scalar parameter, say α0 and α1. Thus, in their model, the probability

of misclassification depends only on the true value, y∗it. Here, we allow for covariates to also affect the

misclassification probabilities as in Lewbel (2000). As discussed in Section 2, the probability of misclassi-

fication in remotely sensed data on forest cover may depend on weather variables, such as cloud cover, or

geographic variables, such as the slope of the land.

Combining (3), (7), (11), and (12), the probability of a one or zero occurring in the observed data is

given by

Pr(yit = 1|xit, zit, µi) = G0(zitθ0) + [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi) (13)

Pr(yit = 0|xit, zit, µi) = 1−G0(zitθ0)− [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi). (14)

A näıve ML model that ignores measurement error uses the following (incorrect) probabilities to construct

13One exception to this occurs if β = 0. However, note that even if one element of β, say βk, equals zero but the corresponding
covariate, xk, is correlated with other elements of x with non-zero coefficients, then the estimate of βk will likely still be biased.
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the likelihood function:

Pr(yit = 1|xit, zit, µi) = F (xitβ + xiγ + ηi) (15)

Pr(yit = 0|xit, zit, µi) = 1− F (xitβ + xiγ + ηi). (16)

This model will yield inconsistent estimates. However, deriving the likelihood function based on (13)

and (14) will yield consistent estimates assuming the full DGP is correctly specified. Specifically, the

log-likelihood function is

lnL =
∑
i

∑
t

{yit ln {G0(zitθ0) + [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi)} (17)

+ (1− yit) ln {1−G0(zitθ0)− [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi)}}.

In our implementation of the ML estimators, we allow for the link function, F (·), to correspond to the

scobit family. When α equals one, we refer to the model as the Misclassification CRE (MC-CRE) Logit;

when α is less than one, we refer to the model as the MC-CRE Scobit. However, in all cases we use the

standard normal CDF for the link functions in the misclassification probabilities, G0(·) and G1(·).

We also consider one additional set of estimators for comparison. Researchers aware of the effect of

weather and geographic variables, zit, on the accuracy of satellite data often choose to simply control

for these in the model as traditional covariates. Thus, we also consider a FE-LPM and traditional logit

and scobit models where the set of covariates is augmented to include zit. We refer to these as ad hoc

estimators. The Ad Hoc FE-LPM is given by

yit = xitβ + zitθ + ωi + εit (18)

and the Ad Hoc CRE Logit and Ad Hoc CRE Scobit models are based on the following probabilities

Pr(yit = 1|xit, zit, µi) = F (xitβ + zitθ + xiγ0 + ziγ1 + ηi). (19)

A few final comments pertaining to identification and estimation in the ML models allowing for mis-

classification are necessary. First, identifying the separate effects of covariates on the determinants of y∗

and the misclassification probabilities relies on the nonlinearity of the link functions in (13) and (14). As

such, if x and z have covariates in common, identification may be tenuous. Lewbel (2000) proves that the
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model is semiparametrically identified if x contains a continuous covariate not included in z.

Second, in the scobit model, identification of the shape parameter, α, along with the misclassification

probabilities is also tenuous. Intuitively, this arises because θ0, θ1, and α all make use of the same variation

for identification. To see this, consider a particular observation with a high value of the index, xitβ0 +xiγ0,

for a given set of parameter values β0 and γ0, but the observed yit is zero. In this case, the estimates of θ1

can adjust to suggest a higher probability that this observation is misclassified or α can adjust such that

the value of the index is associated with a lower probability of observing an outcome of one. In the logit

model allowing for misclassification, this identification concern does not arise since the shape of the link

function, F (·), is fixed. To circumvent this issue, we treat α as unidentified and constrain it to different

values.14 By doing a grid search over α, we can assess sensitivity of the results to changes in α. Moreover,

we can compare values of the log-likelihood functions for model selection.

Third, we follow Papke & Wooldridge (2008) and estimate the MC-CRE Logit and Scobit models using

the traditional logit and scobit probabilities (i.e., ignoring the presence of the random effect, η). However,

we adjust the standard errors in order to allow for arbitrary serial correlation by clustering at the unit

level (or higher).

Finally, given our discussion in Section 2 that made use of two potentially mismeasured versions of the

same object of interest, one might be tempted to consider econometric methods that exploit access to such

data (e.g., Black et al. 2000, Browning & Crossley 2009). We do not pursue this here for the main reason

that we only have access to a single source of remotely sensed data in our application. However, this could

be a valuable avenue for future research. One might also wish to take advantage of spatial information in

the data to help identify the misclassification probabilities. While we do not do so here, one can easily do

so through construction of the z variables.

4 Monte Carlo Study

This section presents a (limited) Monte Carlo study intended to assess the performance of the estimators

discussed in Section 3. The design of the simulation closely follows the structure of the data in our

application in Section 5. In the interest of brevity, we focus our discussion on the estimation of average

marginal effect (AME) of a binary treatment, although the measurement error has implications for all of

14This procedure is analogous to Altonji et al. (2005). There, the authors wish to estimate a probit model with an endogenous
binary covariate using a bivariate probit model. Lacking an exclusion restriction in the first-stage for the endogenous covariate,
they note that the model is still identified due to the non-linearity of the bivariate normal CDF. Nonetheless, the authors treat
the correlation coefficient between the errors as an unindentified parameter and conduct a grid search over different values.
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the coefficient estimates in the regressions.

4.1 Design

Data are simulated from variants of the following DGP:

y∗it = Bernoulli(pit), i = 1, ..., N ; t = 1, ..., T

pit =
exp(β0 + β1x1it + β2x2it + β3dit + ωi)

1 + exp(β0 + β1x1it + β2x2it + β3dit + ωi)

x1it
iid∼ 0.01 · χ2(25)

x2it
iid∼ χ2(45)

zit
iid∼ Poisson(9)

dit = I (−8− 0.1x1it + 0.05x2it + 0.1zit + 0.5ωi + uit > 0)

uit, ωi
iid∼ N(0, 5)

Pr(yit 6= y∗it|y∗it = 0, zit) = Φ (θ0 − 0.10zit)

Pr(yit 6= y∗it|y∗it = 1, zit) = Φ (θ1 + 0.15zit)

where Bernoulli (·) is the Bernoulli distribution, Poisson (·) is the Poisson distribution, χ2 is the Chi-

squared distribution, and I (·) is the indicator function taking a value of one if the argument is true and

zero otherwise. Here, y∗it is the true binary outcome, x1it and x2it are exogenous continuous covariates, dit

is an exogenous binary covariate, and ωi is a unit-specific unobserved effect. Note, if y∗it is observed, then

a FE logit model is the correct specification.

To add misclassification, y∗it is unobserved to the researcher; yit is observed instead. Pr(yit 6= y∗it|y∗it =

0, zit) is the (conditional) probability of a false positive, where Φ (·) is the standard normal CDF. Pr(yit 6=

y∗it|y∗it = 1, zit) is the (conditional) probability of a false negative. These probabilities depend on a covariate,

zit. With yit observed in lieu of y∗it, a FE logit model no longer produces consistent estimates of β.

The DGP is designed to conform to our application. The distributions of the exogenous continuous

covariates, x1it and x2it, align closely with two covariates in the real data used in our application below:

the slope of the land and distance to the nearest road, respectively. The binary covariate, dit, corresponds

to the treatment variable in our application in that the proportion of treated is roughly 20%. Finally, the

distribution of the determinant of misclassification, zit, closely mirrors the distribution of the number of

cloud-free scenes.
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In all designs, we set β1 = −3, β2 = −0.1, β3 = −2, the number of cross-sectional units, N , is 2,000

and the number of time periods, T , is 15. In our application, T is 15 and N is about 20,000. Here, we set

N to 2,000 to expedite the computations. The following parameters are varied:

β0 ∈ {3.5, 0,−3.5}

θ0 ∈ {−1.5,−0.5}

θ1 ∈ {−2.5,−1.3}

The parameter β0 affects the proportion of ones in the true data. The three values of β0 map to Pr (y∗it = 1)

being approximately 0.34, 0.14, and 0.04, respectively. The parameter θ0 governs the false positive rate

in the observed data. In our application, we believe false positives are rare. Thus, the two parameter

values correspond to false positive rates of roughly 0.01 and 0.09, respectively. Finally, the parameter θ1

determines the false negative rate in the observed data. In our application, we believe false negatives to be

quite common. Thus, the two parameter values correspond to false negative rates of approximately 0.15

and 0.50, respectively.

Our objective is to estimate the marginal effects of x1it, x2it, and dit. The true marginal effects are

given by

ME(x1it) = Λ (Wit) [1− Λ (Wit)]β1

ME(x1it) = Λ (Wit) [1− Λ (Wit)]β2

ME(dit) = Λ (β0 + β1x1it + β2x2it + β3 + ωi)− Λ (β0 + β1x1it + β2x2it + ωi)

where Λ (·) is the logistic CDF and Wit ≡ β0 + β1x1it + β2x2it + β3dit + ωi. The AME of each covariate is

the average of these observation-specific marginal effects.

We report the bias and the root mean squared error (RMSE) for the AMEs based on 500 replications

of each set of parameters. The following estimators are considered:

1. True CRE Logit: y∗it on x1it, x2it, dit, x1i·, x2i·, and di·, where x1i·, x2i·, di· are the unit-specific

averages of the covariates.

2. CRE Logit: yit on x1it, x2it, dit, x1i·, x2i·, and di·, where x1i·, x2i·, di· are the unit-specific averages

of the covariates.

3. Ad CRE Hoc Logit: yit on x1it, x2it, dit, zit, x1i·, x2i·, di·, and zi·, where x1i·, x2i·, di·, zi· are the
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unit-specific averages of the covariates.

4. FE-LPM: yit on x1it, x2it, dit, and fixed effects.

5. Ad Hoc FE-LPM: yit on x1it, x2it, dit, zit, and fixed effects.

6. MC-CRE Logit: yit on x1it, x2it, dit, x1i·, x2i·, and di·, where x1i·, x2i·, di· are the unit-specific

averages of the covariates and the probability of a false positive is modeled as Φ (z̃itθ0) and a false

negative as Φ (z̃itθ1) and z̃it includes a constant and zit.

7. MC-CRE Scobit: yit on x1it, x2it, dit, x1i·, x2i·, and di·, where x1i·, x2i·, di· are the unit-specific

averages of the covariates and the probability of a false positive is modeled as Φ (z̃itθ0) and a false

negative as Φ (z̃itθ1) and z̃it includes a constant and zit. We constrain the parameter α to be 0.25,

0.50, and 0.75.

To summarize the key comparisons, the True CRE Logit (Estimator 1) applies the correct specification,

assuming the CRE approximation to the true FEs is reasonable, to the true data. This serves as the

benchmark since this is the best one can do in the absence of misclassification.15 Second, the MC-CRE

Logit (Estimator 6) is the correct specification, assuming the CRE approximation to the true FEs is

reasonable, in the presence of misclassification. Third, although the MC-CRE Scobit (Estimator 7) is

never the correct model, we evaluate it as an option since it may perform better when the outcome is of

the rare events type. Moreover, when estimating the MC Scobit, we fix the shape parameter, α, at various

values rather than estimate it given the identification concerns discussed in Section 3.

4.2 Results

In the interest of brevity, and aligning with our application where the parameter of interest is the AME

of a treatment, we focus our discussion on the estimation of the AME of the binary covariate, d. The

full set of results are provided in Appendix C and are generally similar. Table 5 reports the bias and

RMSE (both multiplied by 100) of each of the estimators considered across our 12 DGPs. Recall, as β0

declines, the proportion of ones in the data falls from roughly 0.34 to 0.17 to 0.04. Thus, lower values of

this parameter lead to the outcome being more in line with the rare event type. Moreover, the true AME

also depends on the value of β0, varying from roughly -0.13 to -0.07 to -0.03 as the parameter declines. In

Panels A and B (C and D), the false positive rate is about 0.01 (0.09). In Panels A and C (B and D), the

15Alternatively, one could estimate a fixed effects logit using the correctly measured data. However, computation of the
AMEs is then not straightforward since the fixed effects are conditioned out of the likelihood function.
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false negative rate is about 0.15 (0.50). Finally, Figure 3 plots the RMSE of each estimator relative to the

RMSE of the True CRE Logit for each DGP.

In terms of bias, a few interesting patterns arise. First, the True CRE Logit consistently underestimates

the true AME on average, although the bias is small (as the bias reported in the table is multiplied by

100). Second, the CRE Logit and Ad Hoc CRE Logit have the largest bias (in absolute value) when the

proportion of false negatives is high (i.e., θ1 = −1.3) or when the proportion of ones is high (i.e., β0 = 3.5).

In these cases, the bias for these two models is an order of magnitude higher than it is in the True model.

Only when the proportion of false negatives is relatively low and the proportion of ones is relatively low

(i.e., θ1 = −1.3, β0 = 0,−3.5) do the CRE Logit and Ad Hoc CRE Logit outperform the FE-LPM and Ad

Hoc FE-LPM. That said, all four estimators do consistently poorly.

Third, the ad hoc approach of adding covariates related to misclassification does not improve the

performance of the CRE Logit and FE-LPM. More often, the addition of these covariates increases the

bias (in absolute value), particularly when the false negative rate is high (i.e., θ1 = −1.3). Fourth, the

bias of the estimators ignoring misclassification is sometimes positive and sometimes negative; the sign

even occasionally varies across the LPM and CRE Logit estimators for the same DGP. This implies that

misclassification (as modeled here) does not necessarily lead to attenuation bias. This is consistent with

the conclusions in Hausman et al. (1998).

Fifth, the estimators that account for misclassification have much smaller bias overall. In particular,

when the proportion of ones is high (i.e., β0 = 3.5), the MC-CRE Scobit with α equal to 0.50 or 0.75 tends

to produce the smallest bias. As the proportion of ones falls (i.e., β0 = 0,−3.5), the MC-CRE Scobit with

α equal to 0.25 or 0.50 tends to produce the smallest bias. Finally, the direction of the bias changes with

α; the bias is consistently negative for the MC-CRE Logit and transitions to consistently positive when

α = 0.25.
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Figure 3: Monte carlo results: AME(d)

Notes: Markers show the ratio of RMSE of the indicated model to the RMSE of the CRE Logit model using
the data free of measurement error. Values of β0 decrease along the x-axis, resulting in lower presence of
ones. Within each value for β0, θ0 increases also decreases from left to right, decreasing the rate of false
positives. Within values of β0 and θ0, values of θ1 decreases from left to right, lowering the rate of false
negatives.

In terms of RMSE of the estimators ignoring misclassification – CRE Logit, Ad Hoc Logit, LPM, and

Ad Hoc LPM – several findings emerge. First, the performance of all four estimators is quite poor when

the proportion of ones in the data is reasonable (i.e., β0 = 3.5, 0). For example, with a high proportion of

ones and a high degree of misclassification (i.e., β0 = 3.5, θ0 = −0.5, θ1 = −1.3), the relative RMSE of all

four estimators exceeds 12, meaning that it is 12 times larger than the RMSE of the benchmark case (see

Figure 3). Second, when the proportion of ones in the data is quite low (i.e., β0 = −3.5), the performance

of the four estimators is not as poor and, occasionally, quite good.

Third, the relative performance of the estimators that do not account for misclassification depends on

the proportion of ones in the data, as well as the severity of the misclassification. When the proportion

of ones is relatively high (i.e., β0 = 3.5), the LPM estimators always dominate the CRE Logit estimators.

However, as the outcome becomes more rare (i.e., β0 = 0,−3.5), the LPM estimators continue to dominate
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the CRE Logit estimators only when the false negative rate is very high (i.e., θ1 = −1.3).

Fourth, the ad hoc estimators do not consistently perform better than their counterparts that do not

control for z. The RMSE of the Ad Hoc FE-LPM is smaller than that of the FE-LPM in five of 12 DGPs.

The RMSE of the Ad Hoc CRE Logit is smaller than that of the CRE Logit in only one of 12 DGPs. Thus,

despite it being common practice to control for environmental variables thought to affect the reliability of

remotely sensed outcomes, this is not a cure for the misclassification induced.

Regarding the estimators addressing misclassification, again several results stand out. First, the MC

estimators generally outperform the estimators ignoring misclassification, often quite substantially. For

example, in the DGP referenced above with a high proportion of ones and a high degree of misclassification

(i.e., β0 = 3.5, θ0 = −0.5, θ1 = −1.3), the relative RMSE of all four estimators is below five; below three

for the MC-CRE Logit and MC-CRE Scobit with α = 0.50, 0.75. Second, the performance of the MC-CRE

Logit and MC-CRE Scobit with α equal to 0.50 or 0.75 deteriorate as the proportion of ones in the data

fall. However, the performance of the MC-CRE Scobit with α equal to 0.25 varies non-monotonically with

the proportion of ones in the data.

Third, the relative performance of the estimators depends critically on the proportion of ones in the

data. When the proportion is relatively high (i.e., β0 = 3.5), the MC-CRE Logit and MC-CRE Scobit

with α equal to 0.50 or 0.75 performs best. When the proportion of ones is modest (i.e., β0 = 0), then

the MC-CRE Scobit with α equal to 0.50 marginally outperforms the other estimators. Lastly, when the

proportions of ones is quite low (i.e., β0 = −3.5), then the MC Scobit with α equal to 0.25 consistently

perform best.

A final comment is warranted as it pertains to the results from the simulations involving rare events

(i.e., β0 = −3.5). As mentioned previously, the estimators ignoring misclassification occasionally perform

very well in this instance, while the performance of MC-CRE Logit and MC-CRE Scobit with α = 0.50 or

0.75 decline relative to their performance in DGPs with a higher proportion of ones. That said, in our view,

the results do not suggest reliance on the estimators ignoring misclassification when analyzing rare events.

We reach this conclusion because of the extreme variation in performance of individual estimators across

the DGPs considered. In contrast, the MC-CRE Scobit with α = 0.25 consistently performs well across all

DGPs considered when the outcome measures a rare event. For example, when the false negative rate is

very high (i.e., θ1 = 0,−1.3), then the LPM performs very well but the CRE Logit can perform very poorly.

However, when the false negative rate is relatively low (i.e., θ1 = −2.5), the FE-LPM performs poorly while

the CRE Logit or the Ad Hoc CRE Logit may perform well. As such, the volatility in the performance of
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the estimators ignoring misclassification suggests they should not be relied upon by researchers.

In sum, our simulation results confirm the ability of the MC-CRE Logit and MC-CRE Scobit to address

misclassification, even in the case of rare events. Since the true proportion of ones in the data is unknown

in the presence of misclassification, the results suggest estimating a range of MC-CRE Scobit models

to complement the MC Logit model. When the true proportion of ones is suspected to be quite low,

the MC-CRE Scobit estimator with a low value of α is recommended. Furthermore, while there are a few

instances where the estimators ignoring misclassification perform nearly as well as the estimators addressing

misclassification, the vastly inferior performance in the majority of DGPs considered here suggests that

researchers should not rely on them in practice.

5 Application

5.1 Description

Deforestation due to agricultural expansion, logging, and urban development is a “persistent global

environmental problem” in low and middle income countries such as Mexico, where governments struggle

to balance the twin goals of poverty alleviation and greenhouse gas reduction (Sims & Alix-Garcia 2017, p.

8). Moreover, direct regulation of land use is expensive, monetarily and politically, to enforce. As a result,

payment for environmental services (PES) – defined as any voluntary agreement between a buyer and a

seller in which the seller receives payment for providing some environmental service such as conservation

of the forest cover on the seller’s land – has been promoted for providing market incentives to deter

deforestation (Jack et al. 2008).

Mexico has a relatively long history of PES policies, and previous analyses have shown the programs to

be effective in deterring deforestation, although with significant variation across time and space (see Alix-

Garcia et al. (2019) for discussion of program history and of program impacts). Here, we assess the effect

of Mexico’s Payments for Hydrological Services program between 2003 and 2015. This program is part of

a broader national system of PES that is run by Mexico’s National Forestry Commission (CONAFOR, for

its acronym in Spanish). The program compensates landowners who maintain intact forest cover on their

properties with the goal of reducing deforestation. Contracts are to either individual or common-property

landowners and last five years. Payments to landowners are conditional on maintaining land cover and

completing conservation activities. Until recently, participants were able to apply and receive payments

multiple times. The program is monitored by a combination of remote sensing and field verification
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activities.

To evaluate the program, we use administrative information on properties that applied to the program.

The unit of analysis is a parcel (polygon) within a property. The reason for this is that applicants may apply

and enroll multiple times to the program. In order to avoid double-counting, the analysis polygons were

created by dividing applicant parcels into smaller units that preserve their unique application histories.

For example, if a landowner submitted a parcel in 2010 and was rejected, and the following year submitted

an imperfectly overlapping parcel that was accepted, these two applications would generate three non-

overlapping polygons: one rejected in 2010, one rejected in 2010 and accepted in 2011, and one accepted

in 2011. Figure A3 shows a visual representation of these units within various communities with repeated

applications. We limit polygons to those between 20 and 2000 ha. The lower bound is meant to eliminate

“slivers” of overlap between polygons and the upper bound to get rid of potential errors in the polygon

boundaries, since the program did not accept applications greater than 2000 ha per landholder, except in

the case of specially negotiated contracts that are not subject to the usual program rules.

Within each of these polygons we calculate a number of covariates that are associated with forest cover

change. These include elevation, slope, distance to nearest road, baseline forest cover in 2000, area of the

polygon, and whether or not the polygon is located in a majority indigenous municipality. While previous

evaluations of this program have used a more complicated set of covariates and different identification

strategies (Alix-Garcia et al. 2012, 2015, 2019), our purpose is to illustrate how our proposed measurement

error solution affects estimation results.

The deforestation and baseline forest area measures come from Hansen et al. (2013), version 1.2 (ac-

cessed in 2016). Importantly, the annual forest cover loss does not come from a difference in levels of

measured forest, but rather from a separate time-series analysis that detects disturbance of pixels assessed

as having forest in 2000. This data is the only available source with annual variation in deforestation

during our period of study; alternative estimators exploiting multiple misclassified measures would not be

applicable. We define the true outcome, y∗it, an indicator equal to one if any deforestation occurred on

polygon i in year t and zero otherwise. The observed outcome, yit, is a binary indicator if any deforestation

is recorded in the data.

The deforestation data are intended for global/regional change analysis, not change analysis at the level

of a small parcel. It has been shown that the accuracy of the classification algorithm varies across different

countries and ecosystem types. For example, assessments by the CONAFOR remote sensing team suggest

that the Hansen product offers better results in Mexico when the percentages of forest cover are below
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30 or above 60 percent. The data are likely to understate loss of natural forest because it may classify

plantations and agroforestry crops as forested areas, and it may also fail to capture selective logging – an

important source of forest degradation – or very small areas of deforestation. In a comparison between

locally calibrated measures of deforestation and the Hansen measures of deforestation in Madagascar, the

Hansen data captured only 64% of deforestation due to slash and burn agriculture (Burivalova et al. 2015).

Mitchard et al. (2015) compare deforestation rates measured using 5 m satellite imagery to the Hansen

data and find that while classification was reasonably accurate in Brazil, omitting between 16 and 18%

of probable deforestation, it missed 80% of the deforestation events in Ghana. Using our misclassification

terminology, these studies suggest a high presence of false negatives in the data.

The data contain all applicants, including those that did not end up receiving payments from the

program. We refer to successful applicants as program beneficiaries and unsuccessful applicants as non-

beneficiaries. Determination of beneficiary status requires several steps. First, applications have always

been limited to geographic “eligible zones” determined by CONAFOR. Any applications coming from

outside of eligible zones are automatically rejected. Applications from within eligible zones are evaluated

according to a variety of criteria. Although these criteria have increased over time, variables used in

the decision process throughout the program’s history include measures of environmental quality (forest

type and location in particular water-scarce areas), opportunity cost (deforestation risk as determined by

geographic factors), and social criterion (location in marginalized or indigenous municipalities) (Sims et al.

2014, Alix-Garcia et al. 2019).

Table 6: Means of covariates according to beneficiary status

(1) (2) (3)
Non-beneficiary land Beneficiary land Norm diff

Any deforestation, Hansen 0.167 0.191 0.045
Average Elevation (m) 1540.656 1539.381 -0.001
Average Slope (degree) 15.593 15.760 0.015
Distance to any road (m) 4767.515 4186.011 -0.092
Distance to city with > 5,000 people 28.854 26.526 -0.083
Percent of majority indigenous 0.254 0.292 0.062
Percent forested, 2000 0.733 0.823 0.234
Cloud-free scenes, L7 8.816 9.616 0.154

Observations 245,490 47,376 292,866

The sample is divided into those parcels of land that were beneficiaries of a PES payment and those that ap-
plied but were rejected. Columns (1) and (2) show means for each group for the years a parcel fell into those
categories and column (3) the normalized difference in means. L7 indicates the Landsat 7 satellite.

Our final sample is a balanced panel of 20,919 polygons from 2001–2014, for a total sample size of
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292,866. Of these, 9,954 polygons are beneficiaries in at least one year; 47,376 observations in the sample

are beneficiaries. Table 6 displays the summary statistics. Over the sample period, 16.7% (19.1%) of

parcel-year observations in the non-beneficiary (beneficiary) sub-sample are classified in the Hansen data

as experiencing some deforestation. Importantly, the geographic attributes of parcels are correlated with

beneficiary status. In particular, beneficiaries tend to be at slightly lower elevation, higher slope, closer to

roads and cities, with higher baseline forest cover, and in municipalities with greater indigenous presence.

In addition, beneficiaries are often located in Landsat footprints with more cloud-free scenes from Landsat

7 sensors. Thus, even if beneficiary status is not directed correlated with misclassification in the Hansen

data, it is likely correlated with other covariates that are associated with misclassification.

5.2 Results

5.2.1 Ignoring Misclassification

Table 7 shows the results from the models that ignore misclassification. The covariates include the

variables in rows 2–7 in Table 6 as well as year dummies. In addition, the FE-LPM models, based on (10),

include municipality fixed effects. The CRE models, based on (15) and (16), include municipality-level

means of the covariates. There are 1,078 municipalities in the data. The mean (median) municipality

contains 19 (six) parcels. Finally, the ad hoc models control for the number of cloud-free satellite images

and interactions between the number of cloud-free images and slope and elevation. The ad hoc CRE models

add the municipality-level means of these variables as well. Coefficient estimates are reported for the LPM

models, while AMEs are reported for the remaining models. Standard errors are clustered at the level of

the municipality.

Two findings stand out. First, the FE-LPM and Ad Hoc FE-LPM point estimates on the treatment

effect for program beneficiary are the smallest in magnitude and of only marginal statistical significance.

The treatment effect is the largest (nearly three times the size of the LPM point estimates) for the Ad Hoc

CRE Scobit. All point estimates suggest that beneficiary status decreases the probability of deforestation.

Thus, ignoring misclassification, we find evidence of a beneficial impact of PES on deforestation, particularly

when not using an LPM.

Second, the estimated effects of the remaining covariates are qualitatively similar across the various

estimators. The three minor exceptions are the smaller and marginally statistically significant effects of

slope in the Ad Hoc Scobit models with α equal to 0.50 or 0.75, the smaller effect of the percent deforested

in 2000 according to the LPM models, and the fact that the effect of the percent of majority indigenous is
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statistically significant only in the Ad Hoc Scobit models (although the point estimates are similar across

all estimators).

5.2.2 Incorporating Misclassification

Table 8 displays results from the models that account for misclassification, based on (13) and (14),

and include estimates of the proportion of false positives (G0) and false negatives (G1). The covariates

included in x are identical to the CRE Logit and Scobit models in Table 7. The covariates included in z

are the number of cloud-free images (odd-numbered columns) or the number of cloud-free images and its

interaction with the average elevation and slope of the cell (even-numbered columns).

Before discussing the AMEs, panel (a) in Figure 4 plots the density and cumulative density of the

observation-specific estimates of false positive, Φ(zitθ̂0), and false negative probabilities, Φ(zitθ̂1), from the

MC-CRE Logit. The figure shows that the estimated probabilities of a false positive are very close to zero

for the entire sample. The sample average probability of a false positive is 0.012, as reported in column 1

in Table 8. In contrast, the estimated probabilities of a false negative are concentrated between 0.4 and

0.6. The sample average probability of a false negative is 0.512, as reported in column 2 in Table 8. Thus,

roughly half of all instances of deforestation is estimated to be missed in the data; essentially no instances

of a lack of deforestation is estimated to be missed. Since roughly 50,000 observations in our sample,

or 17%, are reported to experience deforestation in the Hansen data, this suggests that the true number

is about 100,000, or 34%. Taking the false positive rate to be zero, this implies that the unconditional

probability of being misclassified in the Hansen data is roughly 17%. This is in line with the accuracy

studies mentioned previously.

Given the lack of evidence of false positives in panel (a), we restrict the false positive rate to be zero in

the MC-CRE Scobit models to aid identification. Panel (b) in Figure 4 plots the density and cumulative

density of the observation-specific estimates of false negative probabilities from the MC-CRE Scobit models

(and the MC-CRE Logit for comparison).16 The estimates come from the even-numbered columns in Table

8. The figure shows that the entire density shifts to the left as α declines from 1 to 0.25. Nonetheless, even

when α is 0.25, the estimated probabilities of a false negative are concentrated between 0.2 and 0.6.

Panel (b) compares just the false negative rates across the MC-CRE Logit and MC-CRE Scobit models

(since the MC-CRE Scobit models impose a zero false positive rate). The density and cumulative density

show essentially a first-order stochastic dominance relationship among the distributions. As α declines from

16Note, any apparent differences in the estimated distributions of false negatives obtained from the MC-CRE Logit across
panels is due to the change in scale of the vertical axis and choice of rule-of-thumb bandwidth.
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Figure 4: Distribution of estimated misclassification rates from logit and scobit models
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one in the logit model to 0.75, 0.50, and 0.25, the entire distribution shifts to the left, indicating lower

overall rates of misclassification. The average probabilities of a false negative are 0.477, 0.452, and 0.378,

respectively, as reported in Column 8, 6, and 4 in Table 8. Thus, the shape of the link function is important

to the estimated misclassification rate. Nonetheless, all four estimators suggest substantial misclassification

as the even MC-CRE Scobit with α equal to 0.25 estimates that the unconditional probability of being

misclassified is roughly 10%.

Turning to the point estimates, a few findings emerge. First, the observed proportion of outcomes equal

to one in the data is 17%. Combining this proportion with the consistently high estimates of the false

negative rate (and the near-zero false positive rate) suggests that the true proportion of outcomes equal

to one is roughly 30%. From the simulation results in Section 4, this suggests that the MC-CRE Logit

and the MC-CRE Scobit with α equal to 0.50 or 0.75 estimators are preferred. Comparing the maximized

value of the log likelihood functions indicates that the MC-CRE Logit in column 2 fits the data best.17

Thus, the MC-CRE Logit, allowing for the misclassification rate to depend on the number of cloud-free

images and its interaction with topography, is the preferred estimator in this application.

Second, the estimated AMEs of beneficiary status are negative and statistically different from zero across

all models, and generally indicate a decrease in the probability of deforestation of one percentage point.

However, the magnitude does decline monotonically as α declines, with the MC-CRE Logit producing the

largest AME (in absolute value) at 1.4 percentage points. Comparing our preferred estimator, MC-CRE

Logit, to the most commonly used estimator in practice, Ad Hoc FE-LPM, indicates a substantial effect

from addressing misclassification. Specifically, our preferred estimator yields an effect that is nearly three

times as large in magnitude, as well as statistically different zero at the p < 0.01 level.

Figure 5 provides a detailed comparison of the distribution of the AME of beneficiary status across all

estimators excluding the LPMs (since the AME does not vary).18 Interestingly, not only are the mean and

median AME in the MC-CRE Logit larger (in absolute value) than all other estimators, the distribution is

also quite wide. The 75th percentile of the distribution of the marginal effects is more than two percentage

points and maximum is roughly 2.5 percentage points (in absolute value). This heterogeneity is missed if

one instead relies on a LPM.

Third, failure to account for misclassification results in attenuation bias of the AMEs for several other

covariates in the model as well. In particular, comparing the MC-CRE Logit (column 2 in Table 8) to the

17Note, a likelihood ratio test easily rejects the MC-CRE Logit in column 1 in favor of the MC-CRE Logit in column 2 at
the p < 0.01 level.

18Figure D1 in Appendix D displays the distributions of AMEs for all covariates.

34



T
ab

le
8:

R
es

u
lt

s
fr

om
m

o
d

el
s

al
lo

w
in

g
m

is
cl

as
si

fi
ca

ti
on

M
C

-C
R

E
L

o
g
it

M
C

-C
R

E
S
co

b
it

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

B
en

efi
ci

a
ry

(0
/
1
)

-0
.0

1
4
*
*
*

-0
.0

1
4
*
*

-0
.0

0
8
*
*

-0
.0

0
8
*

-0
.0

1
0
*
*

-0
.0

1
0
*
*

-0
.0

1
1
*
*

-0
.0

1
1
*
*

(0
.0

0
5
)

(0
.0

0
6
)

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
5
)

(0
.0

0
5
)

(0
.0

0
5
)

A
v
er

a
g
e

E
le

va
ti

o
n

(m
t)

-0
.0

0
1

0
.0

0
2

-0
.0

0
1

0
.0

0
1

-0
.0

0
1

0
.0

0
2

-0
.0

0
1

0
.0

0
2

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
1
)

(0
.0

0
2
)

(0
.0

0
1
)

(0
.0

0
2
)

(0
.0

0
1
)

(0
.0

0
2
)

A
v
er

a
g
e

S
lo

p
e

(d
eg

re
e)

-0
.3

5
7
*
*
*

-0
.5

4
5
*
*
*

-0
.2

5
5
*
*
*

-0
.4

4
4
*
*
*

-0
.2

9
7
*
*
*

-0
.5

0
6
*
*
*

-0
.3

1
6
*
*
*

-0
.5

2
8
*
*
*

(0
.0

8
9
)

(0
.1

0
9
)

(0
.0

6
7
)

(0
.0

9
8
)

(0
.0

8
1
)

(0
.1

0
3
)

(0
.0

8
5
)

(0
.1

0
6
)

D
is

ta
n
ce

to
a
n
y

ro
a
d

(m
et

er
s)

-0
.0

1
2
*
*
*

-0
.0

1
2
*
*
*

-0
.0

0
7
*
*
*

-0
.0

0
7
*
*
*

-0
.0

0
8
*
*
*

-0
.0

0
9
*
*
*

-0
.0

0
9
*
*
*

-0
.0

1
0
*
*
*

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
1
)

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
2
)

D
is

ta
n
ce

to
ci

ty
w

it
h
>

5
,0

0
0

p
eo

p
le

-0
.0

3
8

-0
.0

5
0

-0
.0

2
1

-0
.0

3
0

-0
.0

2
6

-0
.0

3
7

-0
.0

2
9

-0
.0

4
0

(0
.0

4
9
)

(0
.0

5
0
)

(0
.0

3
6
)

(0
.0

4
2
)

(0
.0

4
2
)

(0
.0

4
6
)

(0
.0

4
5
)

(0
.0

4
8
)

A
re

a
o
f

p
o
ly

g
o
n

0
.0

5
6
*
*
*

0
.0

7
3
*
*
*

0
.0

3
9
*
*
*

0
.0

5
6
*
*
*

0
.0

4
6
*
*
*

0
.0

6
3
*
*
*

0
.0

4
9
*
*
*

0
.0

6
5
*
*
*

(0
.0

1
4
)

(0
.0

1
5
)

(0
.0

0
9
)

(0
.0

1
6
)

(0
.0

1
2
)

(0
.0

1
6
)

(0
.0

1
3
)

(0
.0

1
5
)

P
er

ce
n
t

o
f

m
a
jo

ri
ty

in
d
ig

en
o
u
s

0
.0

7
8

0
.0

8
6

0
.0

6
0

0
.0

7
5

0
.0

7
0

0
.0

8
3

0
.0

7
5

0
.0

8
6

(0
.0

5
5
)

(0
.0

5
8
)

(0
.0

4
1
)

(0
.0

4
6
)

(0
.0

4
8
)

(0
.0

5
2
)

(0
.0

5
1
)

(0
.0

5
5
)

P
er

ce
n
t

fo
re

st
ed

,
2
0
0
0

-0
.1

0
6
*
*
*

-0
.1

2
4
*
*
*

-0
.0

6
6
*
*
*

-0
.0

8
2
*
*
*

-0
.0

8
0
*
*
*

-0
.0

9
6
*
*
*

-0
.0

8
6
*
*
*

-0
.1

0
2
*
*
*

(0
.0

2
9
)

(0
.0

3
1
)

(0
.0

2
0
)

(0
.0

2
5
)

(0
.0

2
4
)

(0
.0

2
7
)

(0
.0

2
5
)

(0
.0

2
7
)

G
0

0
.0

1
2

0
.0

1
4

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

G
1

0
.4

4
2

0
.5

1
2

0
.2

3
5

0
.3

7
8

0
.3

4
7

0
.4

5
2

0
.3

8
8

0
.4

7
7

α
0
.2

5
0

0
.2

5
0

0
.5

0
0

0
.5

0
0

0
.7

5
0

0
.7

5
0

lo
g
L

-1
1
3
7
0
8
.5

4
7

-1
1
3
5
2
8
.7

0
2

-1
1
3
9
6
3
.4

8
3

-1
1
3
8
3
5
.2

7
7

-1
1
3
8
9
1
.7

6
0

-1
1
3
7
5
0
.0

6
5

-1
1
3
8
7
8
.8

1
3

-1
1
3
7
3
6
.2

0
8

C
o
lu

m
n

h
ea

d
er

s
in

d
ic

a
te

es
ti

m
a
to

r.
S
ta

n
d
a
rd

er
ro

rs
a
re

cl
u
st

er
ed

a
t

th
e

m
u
n
ic

ip
a
li
ty

le
v
el

.
M

a
rg

in
a
l

eff
ec

ts
ev

a
lu

a
te

d
a
t

sa
m

p
le

m
ea

n
s

a
re

d
is

p
la

y
ed

.
G

0
a
n
d
G

1
a
re

th
e

p
ro

b
a
b
il
it

y
o
f

a
fa

ls
e

p
o
si

ti
v
e

a
n
d

n
eg

a
ti

v
e,

re
sp

ec
ti

v
el

y,
ev

a
lu

a
te

d
a
t

sa
m

p
le

m
ea

n
s.

T
h
e

fa
ls

e
p

o
si

ti
v
e

ra
te

in
C

o
lu

m
n

1
a
n
d

th
e

fa
ls

e
n
eg

a
ti

v
e

ra
te

s
in

a
ll

o
d
d
-n

u
m

b
er

ed
co

lu
m

n
s

d
ep

en
d

o
n

th
e

n
u
m

b
er

o
f

cl
o
u
d
-f

re
e

im
a
g
es

.
T

h
e

fa
ls

e
p

o
si

ti
v
e

ra
te

in
C

o
lu

m
n

2
a
n
d

th
e

fa
ls

e
n
eg

a
ti

v
e

ra
te

s
in

a
ll

ev
en

-
n
u
m

b
er

ed
co

lu
m

n
s

d
ep

en
d

o
n

th
e

n
u
m

b
er

o
f

cl
o
u
d
-f

re
e

im
a
g
es

a
n
d

it
s

in
te

ra
ct

io
n

w
it

h
av

er
a
g
e

el
ev

a
ti

o
n

a
n
d

av
er

a
g
e

sl
o
p

e.
T

h
e

fa
ls

e
p

o
si

ti
v
e

ra
te

in
C

o
lu

m
n
s

3
–
8

is
co

n
st

ra
in

ed
to

b
e

ze
ro

.
T

im
e

fi
x
ed

eff
ec

ts
in

cl
u
d
ed

in
a
ll

m
o
d
el

s.
*

p
<

.1
0
,

*
*

p
<

.0
5
,

*
*
*

p
<

.0
1
.

35



Figure 5: Distribution of marginal effects of beneficiary status

Notes: Each shaded box spans the interquartile range; mid-line of the box corresponds to the median.
Edges of the lines represent the minimum and maximum. Estimates obtained from columns 3-10 in Table
7 and the even-numbered columns in Table 8.

CRE Logit (column 3 in Table 7), we find the magnitude of the AME is about three times as large for

average slope and area of the polygon and twice as large for distance to any road and percent forested in

2000.

Fourth, the AME of average slope varies considerably between the odd- and the even-numbered columns.

This occurs because the even-numbered columns allow the probability of a false negative to depend on

average slope (and average elevation). When allowing average slope to affect the misclassification rate, we

find a much larger, negative effect of average slope on deforestation. Thus, failure to account for the effect

of topography on misclassification alters the AME of topography on deforestation.

Finally, the AMEs of average slope, distance to any road, the area of the cell, and the percent forested

in 2000 follow a similar pattern as beneficiary status. Specifically, the MC-CRE Logit estimates are largest

(in absolute value) and decline monotonically as α declines.

In sum, our analysis finds evidence of a beneficial effect of PES on deforestation in Mexico, with the

effect being reasonably large in magnitude for the majority of the sample (a decline in deforestation rates

exceeding one percentage point from an estimated sample deforestation rate of roughly 30%). Perhaps

more importantly, the analysis confirms the need to address misclassification in remotely sensed, binary
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measures of deforestation. In this particular case, results from customary models used by researchers

are attenuated, both for the treatment variable and for a number of covariates. The models addressing

misclassification also fit the data better, and the estimated levels of false positives and false negatives are

generally consistent with accuracy assessments of the Hansen data on deforestation in other countries.

6 Conclusion

The opportunities for researchers to exploit remotely sensed data to gain new insights are seemingly

infinite. In the case of deforestation, these insights are critically important. Changes in land use have

far-reaching effects on climate change, biodiversity, and other environmental services. Slowing deforesta-

tion requires effective policy interventions. Remotely sensed data allows for empirical evaluation of such

interventions by bringing previously unavailable data into the hands of researchers. However, to ensure the

evaluations from which such insights are derived are credible requires researchers to properly understand

this data source. New satellites with ever-greater resolution and different types of sensors are launched

every year, and remote sensing scientists are constantly developing new algorithms to improve the accu-

racy of the final data product. Yet, with each new technology and translation, new sources of error will

undoubtedly arise alongside the possibility to uncover previously unseen dynamics. To fully harness the

potential of this information, researchers must engage in conversations across disciplinary boundaries to

understand the construction of the data, and avoid the usage of näıve statistical models that fail to account

for the nonclassical measurement error that may contaminate the data.

In this paper we have provided evidence of the extent and nature of mismeasurement in commonly used,

remotely sensed data on forest cover. Although our focus has been on forest cover and deforestation, some

lessons are surely generalizable. Sensor function, ecological attributes, and topographic features that lead

to nonclassical measurement errors in data on forest cover can potentially generate the same systematic

errors when measuring other phenomena such as nighttime lights, urban development, air pollution, and

more. Moreover, remotely sensed, binary measures, while perhaps measured with less error than their

continuous counterparts, nonetheless guarantee that the errors are nonclassical. Our simulation study

reveals that this bias can be significant and need not necessarily lead to attenuation.

We have also demonstrated the feasibility and performance, both via simulation and through an appli-

cation, of several estimators when analyzing the determinants of a remotely sensed, binary outcome such

as deforestation. In our application, failure to address misclassification in the analysis of deforestation in

Mexico leads to significant attenuation bias. Once misclassification is addressed, we find that PES has a
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beneficial effect on slowing deforestation.

While we believe the methods provided here offer a significant advancement over current research prac-

tices, much work remains to be done. Most importantly, future work is needed to better understand the

nature of measurement error across different types of remotely sensed data, as well as develop remedies.

Such remedies might exploit multiple measures containing error, or exploit spatial correlation in measure-

ment error or the phenomena of interest. Future research is also needed to develop useful econometric

tools when the remotely sensed outcome is continuous.

References

Abowd, J. M. & Stinson, M. H. (2013), ‘Estimating measurement error in annual job earnings: a comparison

of survey and administrative data’, Review of Economics and Statistics 95(5), 1451–1467.

Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. E. (2012), ‘Forest conservation and slippage: Evidence

from Mexico’s National Payments for Ecosystem Services program’, Land Economics 88(4), 613–638.

URL: http://le.uwpress.org/content/88/4/613.short

Alix-Garcia, J. M., Sims, K. R., Orozco-Olvera, V. H., Costica, L., Medina, J. D. F., Romo-Monroy, S. &

Pagiola, S. (2019), Can environmental cash transfers reduce deforestation and improve social outcomes?

A regression discontinuity analysis of Mexico’s national program (2011–2014), The World Bank.
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Appendix A Supplemental Remote Sensing Figures

Figure A1: Example of scanline error

Source: Yale University Center for Earth Observation
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https://yceo.yale.edu/how-fill-gaps-landsat-etm-images


Figure A2: Distribution of cloud-free Landsat 5 and 7 scenes across Mexico in 2011 and 2010

Shading of footprints indicates number of scenes available in 2011 (Landsat 5) and 2010 (Landsat 7) with
less than 25% cloud cover. Warmer colors indicate more scenes, and shading is by quantiles of the number
of available scenes. 44



Figure A3: Example of properties with multiple applications

Legend

Property boundaries

Yr application

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Dark gray boundaries indicate common property borders. Polygons within properties are shaded to indicate
their most recent year of application to the PES program. The red rectangle in the inset map indicates the
location of the detailed polygons within Mexico.
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Appendix B Supplemental Results Comparing Classification with Vary-

ing Cutoff Thresholds

Figure B1: Disagreement in classification by cutoff

The vertical axis measures the proportion of cells with disagreement in classification across the GOM and Hansen data. The
horizontal axes measure different cutoff thresholds for defining a grid cell as forested in the GOM and Hansen datasets.
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Appendix C Supplemental Simulation Results
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Figure C1: Monte carlo results: AME(x1)

Notes: Markers show the ratio of RMSE of the indicated model to the RMSE of the CRE Logit model using
the data free of measurement error. Values of β0 decrease along the x-axis, resulting in lower presence of
ones. Within each value for β0, θ0 increases also decreases from left to right, decreasing the rate of false
positions. Within values of β0 and θ0, values of θ1 decreases from left to right, lowering the rate of false
negatives.
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Figure C2: Monte carlo results: AME(x2)

Notes: Markers show the ratio of RMSE of the indicated model to the RMSE of the CRE Logit model using
the data free of measurement error. Values of β0 decrease along the x-axis, resulting in lower presence of
ones. Within each value for β0, θ0 increases also decreases from left to right, decreasing the rate of false
positions. Within values of β0 and θ0, values of θ1 decreases from left to right, lowering the rate of false
negatives.
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Appendix D Supplemental Application Results

Figure D1: Distribution of marginal effects of all covariates

Notes: Each shaded box spans the interquartile range; mid-line of the box corresponds to the median.
Edges of the lines represent the minimum and maximum. Estimates obtained from columns 3-10 in Table
7 and the even-numbered columns in Table 8.
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Figure D1 (cont.): Distribution of marginal effects of all covariates

Notes: Each shaded box spans the interquartile range; mid-line of the box corresponds to the median.
Edges of the lines represent the minimum and maximum. Estimates obtained from columns 3-10 in Table
7 and the even-numbered columns in Table 8.

55


	Introduction
	Nonclassical Measurement Error in Satellite Data
	Data Collection Process
	Data Illustration

	Empirics
	Setup
	Misclassification

	Monte Carlo Study
	Design
	Results

	Application
	Description
	Results
	Ignoring Misclassification
	Incorporating Misclassification


	Conclusion
	Supplemental Remote Sensing Figures
	Supplemental Results Comparing Classification with Varying Cutoff Thresholds
	Supplemental Simulation Results
	Supplemental Application Results



