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Abstract

We develop a theory of “Partial Equilibrium Thinking” (PET), whereby agents
fail to understand the general equilibrium consequences of their actions when infer-
ring information from endogenous outcomes. PET generates a two-way feedback ef-
fect between outcomes and beliefs, which can lead to arbitrarily large deviations from
fundamentals. In financial markets, PET equilibrium outcomes exhibit over-reaction,
excess volatility, high trading volume, and return predictability. We extend our model
to allow for rationality of higher-order beliefs, general forms of model misspecification,
and heterogenous agents. We show that more sophisticated agents may contribute to
greater departures from rationality. We also draw a distinction between models of
misinference and models with biases in Bayesian updating, and study how these two
departures from rationality interact. Misinference from mistakenly assuming the world
is rational amplifies biases in Bayesian updating.
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The idea that financial markets aggregate dispersed information is central to the Efficient

Market Hypothesis, and can be traced back to Hayek (1945). In a world where each agent

receives a piece of private news about the future payoff of a risky asset and trades on it,

the equilibrium price of the risky asset should aggregate all relevant information. However,

correctly inferring this information from prices is far from straightforward, as this requires

agents to perfectly understand what equilibrium forces generate the price they observe. The

Rational Expectations Equilibrium (REE) achieves this level of understanding by assuming

common knowledge of rationality.1

This paper studies the general equilibrium effects of relaxing this assumption when agents

infer information from prices. We allow agents to have incorrect beliefs about other agents’

actions, and thus to misunderstand the mapping from prices to other agents’ information.

Therefore, agents use a misspecified model of the world to extract information from prices,

leading to misinference. Since agents trade on this incorrect information, the equilibrium

price deviates from the REE benchmark.

For example, consider a trader who sees the price of Apple Inc.’s stock rise, but does not

know what caused this price change. They may think that some informed agents received

positive news about Apple and decided to buy, pushing up the price. Given this thought

process, our uninformed trader infers positive news about Apple, and also decides to buy.

However, agents who think in this way fail to realize that every other uninformed agent may

be thinking and behaving just like them. Therefore, while part of the price rise they observe

is due to the buying pressure of informed agents trading on new information, part of it may

be due to the buying pressure of other uninformed agents. If instead uninformed agents

attribute the whole price rise to positive information alone, they infer news which is better

than in reality.

In this setting, different equilibrium concepts make different assumptions as to what un-

informed traders in our example would do when they see the price of Apple rise. At one

extreme, the Competitive (or Cursed) Equilibrium (CE) assumes all agents trade on their

private information alone, and do not infer information from the price rise they observe, even

though this price change contains valuable information (Eyster et al. (2019)). In the aggre-

1Grossman (1976), Hellwig (1980), Grossman and Stiglitz (1980), Admati (1985), among others.
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gate, this leads to under-reaction to news. At the opposite extreme, the REE assumes that

agents have common knowledge of rationality: not only do all agents infer valuable infor-

mation from prices, but they also perfectly understand the process that generates the price

change they observe. Therefore, since agents use the correct mapping to infer information

from prices, they are able to recover the right information, which is then correctly aggre-

gated into REE prices (Grossman (1976)). However, a vast literature, surveyed by Crawford,

Costa-Gomes and Iriberri (2013), documents that the assumption of common knowledge of

rationality is unrealistic in games with strategic thinking, and that instead agents exhibit

low levels of rationality of higher order beliefs.

In this paper, we relax the assumption of common knowledge of rationality and propose

a new equilibrium concept, Partial Equilibrium Thinking (PET), which leads to a psycho-

logically plausible bias that lies in between the CE and the REE: while PET agents do learn

information from prices, they fail to realize that all other uninformed agents do so too. In

this sense, our agents are “partial equilibrium thinkers” in that they fail to realize the gen-

eral equilibrium consequences of their actions. This leads PET agents to misunderstand the

process that generates the price change they observe, and to attribute any price change to

new information alone, just as we saw in the Apple example. Since PET agents then trade

on their incorrect beliefs, PET gives rise to over-reaction relative to the REE benchmark.

Section 1 starts by formalizing the intuition behind the Apple example. We model a

continuum of agents with constant absolute risk aversion (CARA) utility over terminal wealth

who solve a portfolio choice problem between a risky and a riskless asset. A fraction of agents

receive news about the future fundamental value of the asset and are thus informed. The

remaining agents are uninformed but can infer information from prices. In this setup, PET

is equivalent to assuming that all uninformed agents think that they are the only ones

extracting information from prices, when in reality all uninformed agents are extracting

information from prices using the same misspecified model of the world.

Importantly, prices play a dual role in our model. First, prices have an informational role,

and this introduces strategic complementarities: higher prices reflect better fundamentals,

leading uninformed agents to increase their asset demand, which in turn increases prices

further, thus fuelling a feedback effect between outcomes and beliefs. Second, standard
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general equilibrium forces mean that prices also have a role as a measure of scarcity, and

this introduces strategic substitutabilities: higher prices make the asset more expensive,

leading all agents to demand less of it, which in turn puts downward pressure on prices,

and dampens the feedback effect between outcomes and beliefs. The interaction of these

two forces determines the overall strength of the feedback effect, and this in turn shapes the

properties of equilibrium outcomes: the stronger the informational role relative to the scarcity

role, the stronger the feedback effect, and the larger the deviations from REE outcomes. If

the feedback effect is strong enough, PET can lead to arbitrarily large deviations from the

REE, and in the extreme case when the feedback effect is explosive, the equilibrium is

unstable.

Our notion of Partial Equilibrium Thinking is similar in nature to the concept of näıve

herding developed in Eyster and Rabin (2008), Eyster and Rabin (2010) and Gagnon-Bartsch

and Rabin (2017), which belongs to a broader literature on social learning, correlation ne-

glect, and misinference.2 Unlike our framework, these papers consider environments where

the outcomes that agents learn from only have a purely informational role, and there is no

general equilibrium market feedback effect.3 Outside of the social learning literature, two

papers are closest in spirit to ours. Glaeser and Nathanson (2017) apply näıve herding to

explain patterns of momentum, reversal and excess volatility in house prices. They consider

a model where prices are determined by the willingness to pay of risk-neutral buyers, and

once again only have an informational role. Greenwood and Hanson (2015) develop a model

specifically geared to the dry bulk shipping industry and focus on a particular type of mis-

specification where firms neglect the responses of their competitors. We contribute to this

literature by proposing a tractable and general way to study model misspecification when

prices affect inference via a general equilibrium role, and we characterize the properties of

the feedback effect between outcomes and beliefs that misinference generates, including their

possibly explosive nature.

2See Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992), on rational herding, DeMarzo,
Vayanos and Zwiebel (2003), Eyster and Weizsacker (2010), Levy and Razin (2015), Gagnon-Bartsch and
Rabin (2017), Enke and Zimmermann (2019) on correlation neglect, and Bohren (2016), Bohren and Hauser
(2020), Frick, Iijima and Ishii (2020) on misinference, among others.

3Eyster et al. (2014) presents a model of social learning with congestion costs, which is a form of market
feedback. However, this paper only considers purely rational learning.
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Section 2 considers the implications of PET, and we show that it provides a micro-

foundation for over-reaction to news. Interestingly, despite the fact that the assumptions

which define PET are in between those of the CE and the REE, the equilibrium price in

PET does not lie in the convex set of the CE and REE outcomes. While CE leads to

under-reaction to information relative to the REE benchmark, PET leads to over-reaction,

just as we saw in the Apple example. In the context of financial markets, PET also speaks

to the leading asset pricing puzzles of excess volatility, excess trading volume, and return

predictability, and predicts that all three patterns are more pronounced in periods when

there are relatively fewer informed agents, and news has lower information content relative

to agents’ prior beliefs.4

Section 3 extends our equilibrium concept to allow for rationality of higher order beliefs,

as in Stahl and Wilson (1994) and Nagel (1995). In particular, we can think of the CE as

1−level thinking, of PET as 2−level thinking, and of the REE as ∞−level thinking. Since

PET equilibrium outcomes do not lie in the convex set of the CE and REE outcomes, in this

section we consider whether K−level thinking converges to the REE as we allow for higher

order beliefs. We find that this is not always the case, and that more sophisticated agents may

exacerbate departures from the REE.5 We also show how, in the presence of misinference, the

way under-/over-reaction arises in equilibrium is determined by the nature of the mapping

used by agents to extract information from prices: when misspecified agents think that on

average all other agents are underreacting(overreacting) more than they really are, they

attribute any price change to more(less) extreme news than in reality, which translates into

over-(under-)reaction in equilibrium. This makes the path in going from the CE to the REE,

passing through all possible levels of higher order beliefs, non-monotonic.6

Section 4 generalizes our model further by allowing uninformed agents to use a general

4See Shiller (1981) and LeRoy and Porter (1981) on the excess volatility puzzle, Campbell and Shiller
(1988), Cochrane (2011), and Greenwood and Shleifer (2014) on return predictability, and French (2008) on
excess trading volume.

5Bohren and Hauser (2020) also finds that a higher level of reasoning can perform strictly worse than a
lower level of reasoning in a sequential learning environment.

6This is in contrast to Angeletos and Lian (2017), Garćıa-Schmidt and Woodford (2019), Farhi and
Werning (2019) and Iovino and Sergeyev (2020), who study K-level thinking in complete information setups
where agents have limited cognitive capacity to think through the effects of monetary policy shocks on future
outcomes. These models do not feature the inference problem that is central in our paper.
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linear (misspecified) mapping to extract information from prices, and we show that this

specification is flexible and tractable enough to account for heterogenous agents with a wide

range of behavioral and cognitive biases. Even in this more general framework, we are

able to recover many of the insights uncovered in PET. For example, we show how the

possibility of an explosive feedback effect between outcomes and beliefs, and the existence of

an unstable equilibrium are pervasive features of situations where agents infer information

using misspecified models, and not just a curiosity of our baseline setup. Moreover, we

exploit this general framework to make clear the distinction between models of misinference

and models of non-rational Bayesian updating, and to study how the two mistakes may

interact: crucially, correct inference in models of non-rational Bayesian updating requires

the very strong assumption that agents must recognize non-rational behavior in others,

while failing to acknowledge irrationality in their own behavior.7 Relaxing this assumption

can lead to extreme and unstable outcomes, something which is not explored in models of

non-rational Bayesian updating. For example, if agents fail to recognize their own mistakes

in others, misinference due to the incorrect belief that others are rational always amplifies

the original bias. This suggests that, in the presence of misinference, smaller departures

from rational Bayesian updating may be required to match empirical evidence which is at

odds with rational benchmarks.

Section 5 discusses further applications, and concludes. While prices are a natural general

equilibrium variable agents may learn from, the feedback effect which PET generates can

be applied much more broadly in a variety of macro and finance setups. In Bastianello and

Fontanier (2020a) we build a dynamic model of financial markets featuring PET agents,

and provide a feedback-loop theory of bubbles, and in Bastianello and Fontanier (2020b) we

explore the implications of misinference in explaining several features of credit cycles.

7In models of misinference agents do correct Bayesian updating, but do so with the wrong information
they learn. Instead, models of non-rational Bayesian updating assume that agents possess the correct infor-
mation, but use it in the wrong way, as in models of inattention (Gabaix (2020)), of overconfidence (Odean
(1998), Daniel et al. (1998) or Daniel et al. (2001)), or of underinference, as in Eyster et al. (2019), where
agents do not make an error in the information they extract, but fail to fully incorporate this information
into their expected utility.
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1 Model

We consider a setup similar to Grossman and Stiglitz (1980), after information acquisition

costs have been incurred. Agents solve a portfolio choice problem between a risky and a

risk-free asset. The risky asset is in fixed supply Z, and has a terminal (next-period) payoff

of v per share. The unconditional distribution of v is normal with mean µ0 and variance σ2
0.

We let P be the price of the risky asset. The risk-free asset is in zero net supply and we

normalize its price and its gross rate of return to 1.

There is a continuum of measure one of agents with constant absolute risk aversion

(CARA) utility over terminal wealth. A fraction φ of agents are Informed (I) and receive a

common noisy signal s = v+ ε, where ε is normally distributed with mean zero and variance

σ2
s , and is independent of v. The remaining fraction 1 − φ of agents are Uninformed (U),

and do not directly observe the realization of s.8 The setup and the moments which define

the conditional distribution of v|s are common knowledge.

CARA utility implies that agent i’s portfolio choice problem reduces to:9

max
Xi

{
Xi (E[v|Ii]− P )− 1

2AX
2
i Var[v|Ii]

}
(1)

with first-order condition:

Xi = E[v|Ii]− P
AVar[v|Ii]

(2)

where A is the coefficient of absolute risk aversion, Xi is the dollar amount that agent i

invests in the risky asset, and Ii is agent i’s information set at the start of the period. While

the optimal asset demand function in (2) is extremely standard, it also makes clear that

in order to compute agents’ demand functions, we need to determine what information set

agents condition on in forming their beliefs. In particular, agents can either condition on

their private information alone, or they may also condition on the equilibrium price, which

aggregates agents’ private information.10

8We use this information structure to illustrate our notion of PET in the simplest possible framework.
In Appendix F we show that the intuitions of our model go through even when we allow for a symmetric
information structure where all agents receive a private signal, and also when we allow for prices to be only
partially revealing.

9See Campbell (2018) p. 25-26 for a derivation of this expression.
10Agents benefit from conditioning on prices as these aggregate informed agents’ private information, and
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However, specifying whether agents condition or not on prices is not enough to determine

their information set: as illustrated in the Apple example in the introduction, the informa-

tion uninformed agents extract from prices depends on their beliefs about the process that

generates the price they observe, as this determines the mapping they use to extract infor-

mation. In this respect, the Competitive/Cursed equilibrium (CE) assumes that agents do

not extract information from prices, and instead trade on their private information alone.

At the opposite extreme, the Rational Expectations Equilibrium (REE) assumes common

knowledge of rationality: not only do agents condition on prices, but they also use the cor-

rect mapping to extract information from them, thus leading to IREEI = {s, P} = {s} and

IREEU = {P} = {s}.11,12 Partial Equilibrium Thinking (PET) relaxes the assumption of

common knowledge of rationality to rationality of second order beliefs: while PET agents

do condition on prices, they fail to realize the general equilibrium consequences of their

actions. Therefore, PET agents use a misspecified mapping to extract information, and

IPETI = {s, P} = {s} and IPETU = {P} = {s̃}, where s̃ is the (wrong) signal they infer from

prices. More generally, we use ·̃ to refer to uninformed agents’ beliefs about a variable.

Finally, we assume that agents do standard rational Bayesian updating: given a signal

si (with sI = s, and sU = s̃), agent i’s posterior beliefs are normally distributed with mean

E[v|si] = τs
τs+τ0

si + τ0
τs+τ0

µ0 and variance Var[v|si] = (τs + τ0)−1, where τ0 = 1/σ2
0 and τs = 1/σ2

s

are the prior and signal precisions, respectively.

Once we have specified the mapping uninformed agents use to extract information from

prices, we define the equilibrium as follows.

Definition 1. An equilibrium in our economy is a combination of beliefs and prices (s̃, P )

such that:

(i) Agents optimize, according to (2).

therefore allow uninformed agents to obtain a more precise estimate of the fundamental value of the asset,
thus reducing the uncertainty they face.

11Notice that I agents know that the common signal they receive, s, is the only new information about
v. Therefore, given that they observe this signal directly, they know there is no additional information left
for them to learn from prices.

12Uninformed agents are able to perfectly recover s from prices because in our economy prices are fully
revealing: since the risky asset is in fixed supply, the only random shock in the model comes from the signal
that informed agents receive, and there exists a one-to-one mapping from prices to signals. All the intuitions
of our model carry through to a model with partially revealing prices, as detailed in Appendix E.
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(ii) The market for the risky asset clears: φXI + (1− φ)XU = Z.

(iii) Agents’ beliefs are consistent with the equilibrium price they observe, given their (mis-

specified) model of the world.

In what follows, we solve for the PET equilibrium with three steps, and we solve for the

CE and REE benchmarks in the same way in Appendix A.1.

Step 1: Mapping from Prices to Extracted Signals. We specify the mapping PET agents

use to extract information from prices: for any given price P , this mapping returns the signal

that uninformed agents extract, s̃. This is illustrated by the dashed line in Figure 1.

Step 2: True Price Function. Given any pair of information sets, II = {s} and IU = {s̃},

we compute agents’ asset demand functions and impose market clearing. This gives us the

market clearing price P as a function of s and of s̃, as shown by the solid line in Figure 1.

Step 3: Equilibrium Price and Extracted Signal. The equilibrium is given by the (P PET ,

s̃PET )−pair such that uninformed agents’ beliefs are consistent with the equilibrium price

they observe. This corresponds to the intersection of the dashed and solid lines in Figure 1.

1.1 Partial Equilibrium Thinking (PET)

With Partial Equilibrium Thinking, all uninformed agents extract information from prices,

but they mistakenly think they are the only ones doing so.

1.1.1 Mapping from Prices to Extracted Signals

To construct the mapping that PET agents use to extract information from prices, we need

to determine the market clearing condition which PET agents think is generating the price

that they observe: φX̃I + (1− φ)X̃U = Z. This, in turn, requires us to specify PET agents’

beliefs about other agents’ asset demand functions, X̃I and X̃U .

In particular, uninformed PET agents think that I agents trade on s̃, and have the
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following demand function:13

X̃I = E[v|s̃]− P
AVar[v|s̃] = τ0

µ0 − P
A

+ τs
s̃− P
A

, (3)

Moreover, uninformed PET agents think that all other U agents do not receive the signal,

and do not extract information from prices. Instead, they think that all other U agents trade

on their prior information alone, with the following demand function:

X̃U = E[v]− P
AVar[v] = τ0

µ0 − P
A

(4)

Importantly, all agents are atomistic and do not consider the effect of their own asset

demand on prices. Therefore, PET agents think that the equilibrium price is the result of

the following market clearing condition:

φ
(
τ0
µ0 − P
A

+ τs
s̃− P
A

)
︸ ︷︷ ︸

X̃I

+(1− φ)
(
τ0
µ0 − P
A

)
︸ ︷︷ ︸

X̃U

= Z. (5)

which gives U agents’ misspecified mapping, linking prices to new information:

PMis(s̃) = φτs
φτs + τ0

s̃+ τ0

φτs + τ0
(µ0 − AZτ−1

0 ), (6)

Intuitively, (6) shows U agents’ beliefs that a fraction φ of agents (I) trade on s̃ with

precision τs, and a fraction 1 of agents (I and U) trade on the prior with precision τ0.

Therefore, for a given observed price P , PET agents extract s̃ by inverting (6):

s̃ = τ0 + φτs
φτs

P − τ0

φτs
(µ0 − AZτ−1

0 ). (7)

This mapping is shown by the dashed line in Figure 1: given any price P on the vertical

axis, this mapping returns the signal PET agents extract, s̃, on the horizontal axis. The slope

of this mapping is informative of the nature of misinference induced by PET. In particular,

13Recall that PET agents think that the signal they are extracting is the correct one. Therefore s̃ denotes
PET agents’ beliefs about the signal I agents receive and trade on.
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(6) can be rewritten as:

PMis(s̃) = γs̃+ (1− γ)(µ0 − AZτ−1
0 ) (8)

where γ ≡ ∂PMis(s̃)
∂s̃

= φτs
φτs+τ0

is uninformed PET agents’ perceived sensitivity of prices to

new information. Appendix A.1 shows that when agents use the correct mapping to infer

information from prices, this slope is γREE = τs
τs+τ0

, and since φ ∈ [0, 1]:

γ < γREE (9)

Moreover, this wedge is decreasing in the fraction of informed agents, φ. Specifically,

PET agents think that the price is less responsive to new information than it truly is, and

the wedge between γ and γREE reflects the extent of misinference. By failing to take into

account the general equilibrium consequences of their actions, PET agents attribute any

price change they observe to new information alone, and extract a more extreme signal than

in reality, as in the Apple example.

Finally, notice that (6) is exactly the price function which arises as the solution to the

CE (derived in Appendix A.1), as PET agents (incorrectly) think that everyone is trading

on their private information alone, as if they were fully cursed.

1.1.2 True Price Function

To determine the true price function, we must specify the true market clearing condition. In

reality, all U agents extract information from prices using the mapping described above and

trade on s̃, unlike PET agents’ beliefs that they are trading on the prior alone. Moreover,

in reality, I agents trade on the true signal s.14

14By trading on s, I agents are best responding, irrespective of other agents’ beliefs and actions: given the
optimal asset demand function in (2), all agents are only concerned with forecasting the fundamental value
of the asset, v|II . Other agents’ beliefs and actions affect agents’ realized asset demand via the equilibrium
price, but do not affect the demand function used by agents. In other words, other agents’ actions affect the
realization, but not the strategy used by I agents.

11



In equilibrium, the true market clearing condition is given by:

φ
(
τ0
µ0 − P
A

+ τs
s− P
A

)
︸ ︷︷ ︸

XI

+(1− φ)
(
τ0
µ0 − P
A

+ τs
s̃− P
A

)
︸ ︷︷ ︸

XU

= Z, (10)

and the resulting market clearing price function is:

P True(s, s̃) = φτs
τ0 + τs

s+ (1− φ)τs
τ0 + τs

s̃+ τ0

τ0 + τs
(µ0 − AZτ−1

0 ), (11)

which shows that a fraction φ of agents (I) trade on s with precision τs, a fraction (1 − φ)

of agents (U) trade on s̃ also with precision τs, and a fraction 1 of agents (I and U) trade

on the prior with precision τ0. This mapping is shown by the solid line in Figure 1: given a

fixed true signal s, this function provides the market clearing price that arises when I agents

trade on s, and all U agents trade on s̃. We can rewrite (11) as:

P True(s, s̃) = αs+ βs̃+ (1− α− β)(µ0 − AZτ−1
0 ) (12)

where α ≡ ∂PTrue(s,s̃)
∂s

= φτs
τs+τ0

and β ≡ ∂PTrue(s,s̃)
∂s̃

= (1−φ)τs
τs+τ0

reflect the influence on prices of I

and U agents’ beliefs, respectively. Given these definitions, notice that γREE = τs
τs+τ0

= α+β,

as further discussed in Appendix A.1.

1.1.3 Equilibrium Price and Extracted Signal

In equilibrium, the signal U agents extract must be consistent with the equilibrium price they

observe. We therefore solve for the equilibrium price and extracted signal (P PET , s̃PET )−pair

such that P PET ≡ PMis(s̃PET ) = P True(s, s̃PET ) in (7) and (11), as shown by the intersection

of the two mappings in Figure 1. The resulting equilibrium price and extracted signal are

given by:

P PET = τs

τs + τ0 −
(

1−φ
φ

)2
τ0

s+

1− τs

τs + τ0 −
(

1−φ
φ

)2
τ0

 (µ0 − AZτ−1
0 ) (13)
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Figure 1: Equilibrium Price and Extracted Signal. This Figure plots the mapping used by un-
informed PET agents to extract information from prices (dashed line), and the price function that arises
when all I agents trade on a fixed signal s, and U agents extract a signal s̃ (solid line). The intersection
of these two mappings gives the PET equilibrium price and extracted signal for a given s. Notice that,
in (P, s̃)−space, changing s shifts the true price function (solid line) and leaves the mapping from s̃ to P
unchanged, as can be seen from the expressions in (7) and (11).
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s̃PET = s+

(
1−φ
φ2

)
τ0

τs + τ0 −
(

1−φ
φ

)2
τ0

(
s−

(
µ0 − AZτ−1

0

))
(14)

This shows that PET leads to misinference whenever φ 6= 1 and s 6= µ0 − AZτ−1
0 .

Intuitively, when φ = 1, all agents are informed, and when s = µ0 −AZτ−1
0 the equilibrium

price is P = µ0 − AZτ−1
0 , leaving no scope for misinference in (6).

Before proceeding to comparing the PET equilibrium outcomes with those from the CE

and REE benchmarks, we introduce two key properties of PET equilibria: the implicit

feedback effect between outcomes and beliefs, and a notion of stability.

1.2 PET Feedback Effect and Stability

In the Apple example in the introduction, we alluded to a two-way feedback effect between

outcomes and beliefs: following a positive shock, higher prices lead to more optimistic beliefs,

which feed into even higher prices, more optimistic beliefs, and so on. Not only does the

strength of this feedback effect determine the properties of the PET equilibrium, but it also

sheds light on the core mechanism at the heart of PET.

To understand how this feedback effect operates in practice, and for ease of exposition,
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consider the case with µ0 −AZτ−1
0 = 0, so that we can write the system of the misspecified

and true mappings in (7) and (11) as:

s̃ = 1
γ
P (15)

P = αs+ βs̃ (16)

where γ ≡ ∂PMis(s̃)
∂s̃

= φτs
φτs+τ0

, α ≡ ∂PTrue(s,s̃)
∂s

= φτs
τs+τ0

and β ≡ ∂PTrue(s,s̃)
∂s̃

= (1−φ)τs
τs+τ0

.

Starting from a steady state with P0 = µ0 − AZτ−1
0 = s̃0 = 0, consider shocking the

economy by increasing the signal I agents receive to s > 0, as illustrated by the upward

shift in the true price function in Figure 2. By definition, the resulting PET equilibrium is

given by the intersection of this new shifted true price function with the mapping used by

U agents to extract information from prices:

P PET = α

1− β
γ

s (17)

s̃PET = α

γ − β
s (18)

To see how this equilibrium embeds a two-way feedback effect between prices and beliefs

which amplifies shocks, let us analyze the tâtonnement process in going from P0 to P PET .

These are depicted by the arrows in Figure 2. When I agents receive a signal s, (16) implies

that on impact P1 = αs. Given this price, PET agents extract a signal s̃1 = 1
γ
P1 = 1

γ
αs

using (15). These new (more optimistic) beliefs then generate a higher market clearing price

via (16): P2 = αs+ β
γ
P1 =

(
1 + β

γ

)
αs. However, since P2 6= P1, U agents extract a different

signal s̃2 = 1
γ
P2 = 1

γ

(
1 + β

γ

)
αs, and given these beliefs, the market clearing price becomes

P3 = αs+ β
γ

(
1 + β

γ

)
αs =

(
1 + β

γ
+ β2

γ2

)
αs. Iterating this further, we find that:

Pn =
n−1∑
i=0

(
β

γ

)i
αs (19)

This expression illustrates two key points. First, β
γ

corresponds to the size of the feedback

effect between outcomes and beliefs. Second, when β
γ
< 1, the feedback effect is weak enough

that its influence on equilibrium outcomes dies out as it gets compounded. In other words, the

14



geometric sum in (19) is well defined, and the tâtonnement process just described converge

to the PET equilibrium in (17), where U agents’ beliefs are consistent with the price they

observe. This is illustrated in the left panel of Figure 2. If instead β
γ
> 1, the influence of the

feedback effect gets stronger as it gets compounded, and prices and beliefs do not converge

to the PET equilibrium, unless P0 = P PET . Instead, they become extreme and decoupled

from fundamentals, with limn→∞ Pn = ±∞, as in the right panel of Figure 2.

Figure 2: PET Feedback Effect and Stability. This figure shows how equilibrium outcomes evolve
following a positive shock to informed agents’ signal, s > s0. Specifically, the positive shock is captured by
an upward shift in the true price function from the dotted line (PTrue(s0, s̃)) to the bold line (PTrue(s, s̃)).
The misspecified mapping used by uninformed PET agents to extract information from prices is given by
the dashed line (PMis(s̃)), and this remains unchanged. The old and new steady states are given by the
intersection of PMis(s̃) with PTrue(s0, s̃) and PTrue(s, s̃), respectively. Finally, the arrows trace out the
tâtonnement process which, starting from the original steady state, leads to (19) following the shock. Panel
(a) provides an example of a stable equilibrium (β/γ < 1), and shows that in this case the tâtonnement
process converges to the new steady state. Conversely, Panel (b) depicts a case where the equilibrium is
unstable (β/γ > 1), and shows that in this case the tâtonnement process leads prices and beliefs to diverge
away from the steady state.
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In light of this discussion, we define the PET equilibrium to be stable if, regardless of

the starting point, the process just described converges to the PET equilibrium. Otherwise,

we define the PET equilibrium to be unstable.

Proposition 1 (Stability). The PET equilibrium is stable if and only if:

β

γ
< 1 ⇐⇒ ∂PMis(s̃)

∂s̃
>
∂P True(s, s̃)

∂s̃
(20)
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In our setup, this is equivalent to:

φ >

(
1 +

√
1 + τs

τ0

)−1

(21)

Therefore, the stability region is increasing both in the fraction of informed agents, φ, and

in the informativeness of the signal relative to the prior, τs/τ0.

Proof. All proofs are in Appendix A.2, unless stated otherwise.

As shown in Figure 2, this condition requires the true price function to be steeper than

the misspecified mapping in (P, s̃)−space. Intuitively, for a given correct sensitivity γREE,

the discrepancy between the true and the REE mapping is decreasing in γ, as anticipated in

(9). Therefore, a higher γ reduces the extent of misinference. Moreover, a lower β diminishes

the influence that PET agents have on equilibrium prices. Both of these effects contribute

to stability.

To understand why the PET equilibrium can be unstable, notice that in this framework

prices play a dual role: an informational role, as well as their traditional role as a measure of

scarcity. Their informational role introduces strategic complementarities: U agents associate

higher prices with more valuable fundamentals. These more optimistic beliefs lead them to

increase their asset demand, and this translates into even higher prices, thus fuelling the

feedback effect between prices and beliefs which PET generates. On the other hand, the

traditional role as a measure of scarcity introduces strategic substitutabilities: higher prices

make the asset more expensive, thus inducing all agents to reduce their asset demand, which

translates into lower prices, and this weakens the strength of the feedback effect. The way

these two effects interact in shaping equilibrium outcomes is particularly clear when writing

down the PET aggregate excess demand function for the asset:

XTOT − Z = φ

( τs
τs+τ0

s+ τ0
τs+τ0

µ0 − P
A(τs + τ0)−1

)
︸ ︷︷ ︸

XI

+(1− φ)
( τs
τs+τ0

s̃+ τ0
τs+τ0

µ0 − P
A(τs + τ0)−1

)
︸ ︷︷ ︸

XU

−Z (22)

This shows P ’s role as a measure of scarcity, as it enters negatively into both agents’ demand

functions. However, we know from (7) that s̃ is also an increasing function of P , as U agents

16



infer information from prices. Making use of this, and rearranging:

XTOT − Z = 1
A(τs + τ0)−1

(1− φ)τs
τs + τ0

(
φτs

φτs + τ0

)−1

︸ ︷︷ ︸
informational role

(
− 1
φτs

1 1
φτs

)
︸ ︷︷ ︸

scarcity role

P + constant (23)

Whenever (1−φ)τs
τs+τ0

(
φτs

φτs+τ0

)−1
> 1, which is equivalent to β

γ
> 1, the informational role of

prices dominates over their role as a measure of scarcity, and the feedback effect between

prices and beliefs is so strong that the resulting aggregate excess demand function is upward

sloping, and the equilibrium unstable. If we were to give this excess demand function to

a Walrasian auctioneer, they would never reach the PET equilibrium, unless they were to

start from it.15 Instead, when the condition is reversed and β
γ
< 1, the effect of strategic

substitutabilities is greater than that of strategic complementarities, the excess demand

function is downward sloping, the equilibrium stable, and a Walrasian auctioneer would

converge to the PET equilibrium.16

The strength of the feedback effect between outcomes and beliefs shapes the properties of

equilibrium outcomes, and Section 4.1 shows that the possible unstable nature of equilibrium

outcomes is widespread in misinference models, and not just a curiosity of PET. In the rest of

the paper, we focus on the properties of the stable equilibrium, which is consistent with excess

demand functions being downward sloping in equilibrium. However, it is worth noticing that

the possible unstable nature of the PET equilibrium is interesting in itself as it is the result of

an extreme manifestation of the two-way feedback effect which PET generates. This feature,

which is absent in the CE and REE benchmarks, lends itself to explaining periods where

15In addition, when the equilibrium is unstable, the resulting equilibrium price is decreasing in the level
of the true signal: ∂PPET/∂s < 0. This is simply a manifestation of Samuelson’s Correspondence Principle.
See the proof in Appendix A.2.7 for more details.

16Notice that our Walrasian auctioneer is endowed with the excess demand function XTOT−Z. Implicitly,
this requires that no matter what price the Walrasian auctioneer calls out, U agents treat this price as if it
were arising from the (misspecified) market clearing condition in (5), so that, for any price P , their demand
function is given by:

XU = 1
A(τs + τ0)−1

(
τs

τs + τ0

(
φτs

φτs + τ0

)−1
− 1
)
P + constantU (24)

which we obtain from substituting the mapping in (14) into agents’ FOC in (2) and rearranging.
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outcomes and beliefs are extreme and decoupled from fundamentals.17

2 Properties of PET Equilibrium Outcomes

In this section we compare the properties of the PET equilibrium with the CE and REE

benchmarks, and we discuss how PET outcomes relate to empirical patterns in asset pric-

ing. Specifically, we compare beliefs, prices, trading volume, and returns across equilibrium

concepts, and we show that PET outcomes do not lie in the convex set of their CE and

REE counterparts, despite the fact that the assumptions which define PET lie in between

those which characterize the CE and the REE.18 We also show that PET is able to speak

to some of the leading asset pricing puzzles: excessive trading volume, predictability of re-

turns, and excess volatility. These properties are the result of the interaction of two crucial

aspects of the PET equilibrium. First, PET’s misinference leads agents to hold incorrect

beliefs, which translate into over-reaction and predictability of realized returns. Second,

PET generates endogenously heterogenous beliefs without relying on heterogeneous priors

or “agree-to-disagree” assumptions. This leads to positive trading volume and variability

in expected returns. While PET is not the only theory which addresses the asset pricing

puzzles described above, it offers an alternative explanation for them, and we view its ability

to do so as further corroborating the plausability of this behavioral bias.

Over-reaction and Excess Volatility. As anticipated in the Apple example, and as

shown in (14), PET naturally leads to beliefs that are more extreme than under fully rational

inference. Therefore, PET provides a micro-foundation to over-reaction to news, as is clear

17We explore this further in Bastianello and Fontanier (2020a) where we develop a dynamic version of
PET, and we fully exploit the properties of the unstable region.

18Recall that the CE assumes rationality of first order beliefs, PET assumes rationality of first and second
order beliefs, and the REE assumes common knowledge of rationality. Specifically, in our setup, rationality
of first order beliefs is equivalent to agents having optimal demand functions, as in (2), given their private
information. When all agents are rational in this sense, prices aggregate all agents’ private information, and
therefore contain valuable information. Rationality of second order beliefs additionally requires that agents
understand that all other agents are rational, and therefore that prices contain valuable information which
other agents also wish to extract.
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from comparing equilibrium outcomes from Section 1.1.3 and Appendix A.1:

PCE = φτs
φτs + τ0

s+
(

1− φτs
φτs + τ0

)
(µ0 − AZτ−1

0 ) (25)

PREE = τs
τs + τ0

s+
(

1− τs
τs + τ0

)
(µ0 − AZτ−1

0 ) (26)

P PET = τs

τs + τ0 −
(

1−φ
φ

)2
τ0

s+

1− τs

τs + τ0 −
(

1−φ
φ

)2
τ0

 (µ0 − AZτ−1
0 ) (27)

Figure 3 plots these expressions, and shows that PET gives rise to over-(under-)pricing

following positive(negative) risk-adjusted signals.

Proposition 2 (Over-reaction). When the equilibrium is stable, PET delivers over-reaction

to news, while the CE delivers under-reaction:

∂PCE

∂s
<
∂PREE

∂s
<
∂P PET

∂s
(28)

Even though the assumptions which define PET lie in between those that characterize the

REE and CE equilibrium benchmarks, the resulting PET equilibrium outcomes do not lie in

the convex combination of the REE and CE outcomes.

PET also speaks to the long-standing “excess volatility” puzzle (Shiller (1981) and LeRoy

and Porter (1981)): PET naturally delivers excess volatility since beliefs are excessively

volatile relative to fundamentals.19

The Identity of Contrarians. The implications of PET differ sharply from those of the

REE and CE when we look at the identity of agents who trade in the direction of the signal,

and those who trade as contrarians. In the REE, the asset is correctly priced, making all

agents indifferent on how much of the asset to hold at the equilibrium price. On the other

hand, the CE predicts that informed agents trade in the direction of the signal because they

understand the asset is under-priced, and uninformed agents trade as contrarians. PET

19Bordalo, Gennaioli, LaPorta and Shleifer (2020) use survey data to show that beliefs about future
fundamentals are sufficiently volatile to account for Shiller’s excess volatility puzzle.
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Figure 3: CE, PET, and REE equilibrium prices. This Figure plots the CE, PET, and REE
equilibrium price functions in (25) (26) and (27) over the true signal, s. Parameters φ and τs/τ0 satisfy the
restrictions in (21), ensuring that the PET equilibrium is stable. The thin dotted lines mark the risk-adjusted
neutral signal s = µ0 −AZτ−1

0 , and the average signal s = µ0.
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makes the opposite prediction: following good news, informed agents know the asset is over-

priced, while uninformed agents believe they live in a cursed world, and therefore think the

asset is under-priced.

Proposition 3 (Contrarians). Unlike the CE and REE benchmarks, informed PET agents

are contrarians and uninformed PET agents trade in the direction of the signal.

Trading Volume. A well-documented fact in financial markets is that trading volume is

far greater than what rational models can justify (Tirole (1982), Milgrom and Stokey (1982),

French (2008), Barberis (2018)). Starting from common priors, PET generates endogenously

heterogenous beliefs, and therefore positive trading volume in equilibrium. Moreover, the

amount of trading volume may be arbitrarily large if the size of the feedback effect between

outcomes and beliefs is strong enough.

Proposition 4 (Volume). For any fixed s 6= µ0−AZτ−1
0 , PET trading volume is increasing

in the size of the feedback effect, and lim β
γ
→1+ V PET =∞.

Proposition 4 highlights that PET does not rely on extreme signals to achieve excessive

amounts of trading volume: indeed, Proposition 1 shows that the size of the feedback effect

between outcomes and beliefs only depends on the fraction of informed agents, φ, and on
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the informativeness of the signal relative to the prior, τs/τ0. To illustrate this point, Figure

4 compares CE, REE, and PET trading volume when informed agents receive the average

signal. Even for s = µ0, PET trading volume can be arbitrarily large when the fraction of

informed agents decreases towards the unstable region: misinference becomes more accen-

tuated, beliefs become more dispersed, disagreement more pronounced, and trading volume

more excessive. Another implication of Proposition 4 is that PET can generate even larger

trading volume than its CE counterpart, even though PET agents actively extract infor-

mation from prices and have beliefs which are consistent with the equilibrium price they

observe.

Figure 4: CE, PET and REE Trading Volume over φ, for the fixed true signal s = µ0. This
Figure plots equilibrium CE, PET and REE trading volume for a fixed true signal s = µ0 over the range of
fractions of informed agents, φ, such that (21) holds and the PET equilibrium is stable.
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In addition, not only is PET able to generate large trading volume, but it also predicts

that agents trade because they mistakenly think they have an information advantage. This is

consistent with empirical evidence in Liu et al. (2020), who combine survey and transaction

data of retail investors in China to elicit trading motives, and find that the two most dom-

inant drivers of excessive trading are a misperceived information advantage and gambling

preferences.

Finally, in Appendix C we show that if agents were to learn about φ and s from observing

both prices and volume, they would learn the correct model of the world. However, notice

that our model is attentionally stable, in the sense of Gagnon-Bartsch et al. (2020), and
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Figure 5: Comparing CE, PET, and REE Expected and Realized Returns. This Figure plots
the equilibrium CE, PET, and REE expected returns by I agents (left panel), and expected returns by U
agents (right panel) for different values of the true signal, s. Notice that average realized returns are equal
to expected returns by I agents since they hold rational beliefs.
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agents need not realize their model of the world is misspecified.20

Realized and Expected Returns. We now turn to expected and realized returns:

Ei[R]K = E[v|IKi ]− PK = E[v|IKi ]−
(
Ē[v]K − V̄ar[v]K

)
, (29)

where i ∈ {I, U} and K ∈ {CE,REE,PET}, and Ē[v]K and V̄ar[v]K aggregate agents’

posterior beliefs.21 Conditional on s, realized returns are equal to I agents’ expected returns,

on average. Figure 5 plots these quantities over the true signal.

Figure 5 shows that REE expected returns are constant for both I and U agents, as

prices perfectly adjust to account for changes in beliefs.22 Turning to the CE, informed

agents understand that equilibrium outcomes under-react, and therefore correctly expect
20Since prices are fully revealing, if agents were to extract information from equilibrium outcomes using

the true model of the world, the equilibrium price would be a sufficient statistic and trading volume would
provide no additional information. Conversely, prices are not a sufficient statistic when agents use the
wrong model of the world. However, since agents think they are using the correct model of the world, they
(incorrectly) believe that the equilibrium price is a sufficient statistic, and have no reason to pay attention
to trading volume.

21Let τKi = V ar[v|IKi ] for i ∈ {I, U} and K ∈ {CE,REE,PET}. Then Ē[v]K = φτKI
φτK
I

+(1−φ)τK
U

E[v|IKI ] +
(1−φ)τKU

φτK
I

+(1−φ)τK
U

E[v|IKU ], and ¯V ar[v]K = (φτKI + (1− φ)τKU )−1. By inspection of (25), (26) and (27), it follows
that PK = Ē[v]− ¯V ar[v]AZ.

22This follows immediately from (29) as all agents update their beliefs in the same (correct) way so that
E[v|IREEi ] = Ē[v]REE , and the average conditional variance is independent of s.
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higher returns in good times, when the asset is under-priced. On the other hand, U agents’

beliefs are independent of s, and they expect higher returns in bad times, when the price

is lower.23 Finally, in PET, U agents’ misinference gives rise to over-reaction. Following

good news, U agents become over-optimistic (E[v|IPETI ] < Ē[v]PET < E[v|IPETU ]), and (29)

then shows that they therefore expect higher payoffs and higher returns than their rational

counterparts. The argument is symmetric following bad news. On the other hand, I agents

understand the extent of over-reaction, and expect higher returns in bad times, when the

asset is under-priced. Similarly, on average, realized returns are high in bad times, and

low in good times. Therefore, by failing to realize the general equilibrium consequences

of their actions, U PET agents have higher expected returns in good times, and they are

systematically disappointed. Unlike the CE and REE, PET can rationalize the empirical

evidence in Greenwood and Shleifer (2014).24

Proposition 5 (Returns). The stable PET can reconcile the empirical evidence in Greenwood

and Shleifer (2014). On average:

1. ∂EU [R]PET
∂s

> 0: U agents’ expected returns are higher in good times;

2. ∂RPET

∂s
< 0: realized returns are lower in good times.

Similarly, using survey data Giglio et al. (2020) show that investors report low expected

returns when they expect a higher probability of a disaster. Our model has a natural

explanation: when investors expect a high probability of a disaster in the future, they fail

to realize that other investors hold the same beliefs as them, and that the equilibrium price

is lower to reflect this. This leads them to expect lower returns following bad news, just as

in Figure 5.
23In the CE, I agents correctly update their beliefs conditional on s, while U agents’ beliefs are independent

of the signal. Therefore, when there is good news, E[v|ICEI ] > Ē[v]CE > E[v|ICEU ], and conversely when
there is bad news. The rest follows from (29).

24Notice that the combination of two key ingredients allows us to speak to the empirical patterns in
Greenwood and Shleifer (2014): heterogeneous agents, and over-reaction. One without the other would not
be enough in our setup. For example, models of over-reaction with a representative agent are not able to
generate any variation in expected returns, unless they allow for the perceived variance of the fundamental
to vary: with ¯V ar[v] constant, homogenous beliefs imply that E[v|Ii] − Ē[v] = 0, so that expected returns
in (29) must also be constant. Conversely, rational and heterogeneous agents in this setup can generate
time-varying expected returns, but rational agents are right on average, unlike the empirical evidence in
Greenwood and Shleifer (2014), which documents a decoupling of expected and realized returns.
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Moreover, empirical studies that have looked for a relation between risk-premia (equiv-

alently expected returns in our model) and future returns have shown that conventional

wisdom on risk-based explanations for time-varying risk premia fail.25 Proposition 5 shows

how PET breaks the classic risk/return tradeoff. Since E[v|IPETi ] − Ē[v]PET for i ∈ {I, U}

changes with s, our model delivers time-varying expected returns that do not ultimately

compensate investors for bearing risk.

Comparative Statics. We conclude this section with a general characterization of how

equilibrium quantities vary with the parameters of the model. In Proposition 4, we showed

that the wedge between REE and PET trading volume is increasing in the strength of the

feedback effect β
γ
, which is itself decreasing in φ and in τs

τ0
. Moreover, we showed that as

the strength of the feedback effect approaches the unstable region, the discrepancy between

PET and REE volume can becomes arbitrarily large. This empirical prediction generalizes

to all PET outcomes considered so far.26

Proposition 6 (Comparative Statics). When the PET equilibrium is stable, the wedge be-

tween PET and REE equilibrium outcomes (s̃, P , ∂P/∂s, V , Ei[R], etc) is increasing in the

size of the feedback effect between outcomes and beliefs, β
γ

. Therefore, the discrepancy is

greater when the fraction of I agents (φ) is low, and when news are uncertain relative to the

prior (i.e. when τs
τ0

is low). This wedge becomes arbitrarily large in the limit as β
γ
→ 1+.

This is somewhat striking given that at the individual level the nature of the psychological

bias itself is fixed: regardless of the environment, PET truncates common knowledge of

rationality to rationality of second order beliefs. However, despite the nature of the bias

being fixed, varying the environment (φ and τs/τ0) leads to very different sized wedges between

PET and REE outcomes, and Proposition 6 suggests that these wedges can be arbitrarily

large even for reasonable (i.e. bounded) parameter values. This is a direct implication of

the properties of the feedback effect between outcomes and beliefs which PET generates.

25Moreira and Muir (2017) show that a strategy that manages volatility so as to take less risk in recessions
and crisis still earns high average returns, contrary to what leading models would predict.

26Further details are in Appendix A.2.6.
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3 K-Level Thinking

In Section 2, we refer to the CE as 1−level thinking, to PET as 2− level thinking, and to the

REE as∞−level thinking. The natural next step is to consider what happens as we allow for

rationality of higher order beliefs, whereby a K−level thinker believes that all other agents

are (K − 1)−level thinkers.27 For example, a 3−level thinker believes that all other agents

think they are the only ones extracting information from prices. In light of our finding in

Proposition 2 that PET equilibrium outcomes do not lie in the convex set of the CE and

REE, we analyze whether K−level thinking converges to the REE in the limit of common

knowledge of rationality.

3.1 Solving for K-Level Thinking

We solve for K−level thinking recursively by following the same steps outlined in Section

1.1. First, in extracting information from prices, all U agents believe that all other U agents

are (K−1)−level thinkers, and that the price they observe is generated by the (K−1)−level

thinking equilibrium price function:

PMis(s̃) = γK−1s̃+ (1− γK−1)(µ0 − AZτ−1
0 ) (30)

where γK−1 is the sensitivity of the price to the true signal in the (K − 1)−level thinking

equilibrium, and s̃ here denotes a K−level thinker’s belief about s.

Second, in reality, all I agents trade on the true signal s, and all U agents are K−level

thinkers and trade on the signal s̃, which they extract from prices using the mapping in (30).

Given these beliefs, the true market clearing condition leads to:

P True(s, s̃) = αs+ βs̃+ (1− α− β)(µ0 − AZτ−1
0 ) (31)

where α ≡ φτs
τs+τ0

, β ≡ (1−φ)τs
τs+τ0

, and are constant and independent of K.

Finally, in equilibrium, agents’ (misspecified) beliefs must be consistent with the price

27Many papers have tested K−level thinking and estimated low levels of K, between 0 and 3 (Costa-
Gomes et al. (2001), Costa-Gomes and Crawford (2006), Crawford et al. (2013))
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they observe. Defining 1−level thinking to be the CE, so that γ1 ≡ φτs
φτs+τ0

, and solving for

the (PK , s̃K)−pair which satisfy (30) and (31) jointly, provides us with a recursive solution

for K > 1:

PK = γKs+ (1− γK)(µ0 − AZτ−1
s ) (32)

s̃K = γK
γK−1

s+
(

1− γK
γK−1

)(
µ0 − AZτ−1

0

)
(33)

where:

γK = α

1− β
γK−1

(34)

Solving (34) forwards yields the following equilibrium sensitivity for K > 1:

γK = α

1 +∑K−2
j=1

(
−β
α

)j
−
(
−β
α

)K−2 β
γ1

= τs

τs + τ0 −
(
−1−φ

φ

)K
τ0

(35)

where the second equality uses the expressions for α and β.

3.2 Properties of K-level Thinking

Let us start by studying the properties of the recursive relationship in (34), as this fully

characterizes K−level thinking equilibrium outcomes in (32) and (33). Figure 6 plots this

relationship in bold, together with the 45◦ line. The intersections of these two lines corre-

spond to two fixed points such that γK−1 = γK : γK = α + β > 0 is the REE, and γK = 0

is a degenerate fixed point where the price is unresponsive to the signal. The arrows then

show the recursive evolution of γK as we allow for rationality of higher order beliefs. Figure

6 makes clear three properties of the K−level thinking equilibrium, two of which generalize

the intuitions on stability and over-reaction we uncovered in Section 1.2 and in Section 2,

and the third relates to convergence to the REE as we allow for rationality of higher order

beliefs. We discuss them in turn.

Proposition 7 (Stability and K−Level Thinking). The K−level thinking equilibrium is

stable if and only if β/γK−1 < 1. Otherwise, the equilibrium is unstable.

This result generalizes our findings in Proposition 1. Intuitively, as argued in Section

1.2, when γK−1 > 0 and β/γK−1 > 0, the informational role of prices introduces strategic
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Figure 6: Convergence of K−level thinking. This Figure plots the recursive relationship in (34)
in bold: the x−axis tracks the sensitivity of the misspecified mapping of a level K thinker, and the y−axis
tracks the corresponding sensitivity of the K−level thinking equilibrium price. The diagonal line is the 45◦
line. The intersection of these two lines correspond to two fixed points such that γK−1 = γK : γK = α+β > 0
is the REE, and γK = 0 is a degenerate fixed point. The arrows show the recursive evolution of γK as we
allow for rationality of higher order beliefs, starting from γ1. The left panel depicts a case where α > β, and
the left panel shows a case for α < β.
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complementarities which work against the strategic subsitutabilities from the scarcity role of

prices, and push towards an upward sloping aggregate excess demand function. When this

is the case, β/γK−1 < 1 simply ensures that the scarcity role dominates over the informational

role, so that the demand function is downward sloping, and the equilibrium is stable. On the

other hand, notice that withK−level thinking we may now also encounter cases when γK−1 <

0, according to which the informational role of prices introduces strategic substitutabilities.

When this is the case, there is no tension between the two roles of prices: instead, the

informational role reinforces the downward sloping nature of the demand function. Not

only does this ensure stability, but it also dampens the general equilibrium adjustment, thus

leading to under-reaction relative to the REE, as shown in Figure 6.28,29

28The results from Proposition 7 can be seen in Figure 6 by noticing that γK > 0 if and only if γK−1 > β
or γK−1 < 0. Moreover, when γK−1 < 0, γK < γREE and the equilibrium exhibits under-reaction. Appendix
A.2.7 shows formally the equivalence between a positive sensitivity of the equilibrium price to the true signal,
and equilibrium stability.

29The fact that K−level thinking can either dampen or amplify GE effects is consistent with Angeletos
and Lian (2017), who study a complete information setup where agents have limited capacity to think
through the response of others to a known shock. A different approach to studying wedges between partial
and general equilibrium effects is in Angeletos and Lian (2018), Angeletos and Sastry (2020) and Angeletos
and Huo (2020). They maintain common knowledge of rationality but add higher-order uncertainty: agents
engage in a beauty contest style of thinking to forecast other agents’ beliefs and responses to shocks, but
there is no inference from endogenous outcomes.

27



Next, we turn to the properties of K−level thinking when the equilibrium is stable.

Proposition 8 (K−level Thinking Over-/Under-reaction). When the equilibrium is stable,

K−level thinking outcomes exhibit over-reaction relative to the REE if and only if γK−1 <

γREE. Otherwise, they exhibit under-reaction.

This result is clear in Figure 6: only when β < γK−1 < γREE is the K−level thinking

equilibrium stable and γK > γREE = α + β. Intuitively, focusing on stable outcomes, when

γK−1 < γREE, U agents think that all other agents are, on average, underreacting, and that

the equilibrium price is less responsive to signals than it really is. Therefore, they attribute

any price change they observe to more extreme news than in reality. Since all U agents behave

in the same way, this translates into aggregate level over-reaction, just as in PET. Conversely,

when γK−1 > γREE, U agents think that other agents are, on average, overreacting, and their

combined response leads to under-reaction in equilibrium. Therefore, in the specific case we

consider (with level−1 being the CE), K−level thinking alternates between under-reaction

when K is odd (and U agents think others are overreacting) and over-reaction when K is

even (and U agents think others are underreacting). Section 4.1 makes this result about

individual level inference more general and shows that it is independent of K.

We end this section by considering the conditions for K−level thinking to converge to

the REE, as we allow for rationality of higher order beliefs.

Proposition 9 (Convergence to the REE). K−level thinking converges to the REE as we

allow for rationality of higher orders beliefs if and only if α > β. Otherwise, it converges to

the degenerate fixed point with γK = 0.

This result is clear from equation (35), where limK→∞ γK = α + β = γREE if α > β

and limK→∞ γK = 0 if α < β. Moreover, notice how convergence is independent of the

initial size of the bias, γ1. Instead, for K−level thinking outcomes to converge to the REE,

we simply need the equilibrium influence on prices of I agents (α) to be greater than the

influence on prices of U agents (β).30 Figure 6 depicts examples of convergence to the REE
30When this is the case, the size of the bias shrinks as it gets compounded with K. Conversely, when

α < β, the extent of over-reaction in PET (2−level) is greater in absolute value than the extent of under-
reaction in CE (1−level). The mapping used by 3−level agents then deviates more from the REE than
the one used by 2−level thinkers, thus translating into even greater equilibrium deviations from the REE
outcomes, and to even more misspecified mappings for higher level thinkers.
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and degenerate fixed points, in the left and right panels, respectively. The right panel of

Figure 6 also show that when α < β there always exists a K large enough such that the

K−level thinking equilibrium becomes unstable.

In our framework the condition for convergence reduces to φ > 1/2. This suggests that a

market populated by more U agents than I agents may exhibit smaller deviations from the

REE when agents have lower levels of K. If one were to interpret agents with higher levels

of K as being more sophisticated than their low K counterparts, the above result implies

that greater levels of sophistication may contribute to greater (rather than lower) mispricing

and to instability. Only when α > β and the market is populated by more I than U agents

do greater levels of sophistication bring us closer to the REE. We summarize these results

in Corollary 1.

Corollary 1 (Deviations from REE and Rationality of Higher Order Beliefs). When α > β,

the deviations of K−level thinking equilibrium outcomes from the REE are decreasing in K.

Conversely, when α < β, the deviations of K−level thinking equilibrium outcomes from the

REE are increasing in K for stable equilibria, and there exists a K large enough such that

the equilibrium becomes unstable.

Empirically, this suggests that we are likely to observe greater mispricing when the market

is populated by a large fraction of U agents with high levels of rational higher order beliefs.

In these scenarios, agents are more likely to chase mispricing rather than information. More

generally, our results illustrate the fragility of the REE assumption in settings where agents

are learning from endogenous outcomes.

4 Generalization and Robustness

Our theory of Partial Equilibrium Thinking departs from the common knowledge of rational-

ity assumption in a deliberately specific way. We now allow for more general forms of model

misspecification. This serves three different purposes. First, it clarifies how our insights on

over-reaction and instability generalize. Second, it makes it possible to nest other types of

biases, such as errors in Bayesian updating, and to consider the interaction of these biases

with mistakes in inference. Third, it allows us to illustrate the tractability of our model
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and to explore a setup with heterogenous levels of sophistication. This section concludes by

highlighting how the results uncovered so far are robust to setups where the supply of the

risky asset is stochastic and prices are only partially revealing, as well as to setups with a

symmetric information structure where all agents receive noisy private signals.

4.1 Misinference and Incorrect Bayesian Updating

Consider a setup similar to the one in Section 3 , except that we now allow for the true and

misspecified models to be arbitrary linear functions of s and s̃:31

PMis(s̃) = γ̃s̃+ (1− γ̃)(µ0 − AZτ−1
0 ) (36)

P True(s, s̃) = α̂s+ β̂s̃+ (1− α̂− β̂)(µ0 − AZτ−1
0 ), (37)

where γ̃, α̂, and β̂ are positive constants.32 Specifically, denote by α and β the sensitivities of

the true model of the world when agents perform rational Bayesian updating, and let α̂ 6= α

and β̂ 6= β reflect departures from rational Bayesian updating. The intersection of (36) and

(37) gives us the following equilibrium outcomes:

P = α̂

1− β̂
γ̃

s+
1− α̂

1− β̂
γ̃

 (µ0 − AZτ−1
0 ) (38)

s̃ = s+
 α̂ + β̂ − γ̃

γ̃ − β̂

(s− (µ0 − AZτ−1
0 )

)
(39)

The expression in (39) makes clear that for agents to perform correct inference we must

have γ̃ = α̂ + β̂: only then do U agents recover the correct signal s̃ = s, for any true signal

s. Instead, when γ̃ 6= α̂ + β̂, agents’ signal extraction results in misinference. Specifically,
31While not completely general, the linear models we consider here are able to nest many other departures

from rationality arising from errors in Bayesian updating, as discussed below.
32Notice that in both equations (36) and (37), the constant coefficients of the price involving the terms in

(µ0−AZτ−1
0 ) could be replaced by arbitrary constants. Specifying the model in this more general form would

nest a variety of cases, and would allow agents to have different perceptions of risk aversion, of liquidity,
heterogeneous priors, and would even allow some agents to have trading motives which are orthogonal to the
information we are interested in. However, we abstract from this generalization as it requires the introduction
of additional notation that is not necessary for our purpose of discussing over-reaction and stability in this
more general framework.
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when γ̃ < α̂ + β̂, U agents think that the price is less sensitive to new information than in

reality, and therefore they extract a signal which is more extreme, as in PET, and conversely

for γ̃ > α̂ + β̂.

Moreover, fixing γ̃ = α̂ + β̂, so as to shut down misinference, we see that whenever

α̂+β̂ > α+β equilibrium outcomes are too sensitive to new information, as in models of over-

confidence (Daniel et al. (1998) and Odean (1998)), or diagnostic expectations (Bordalo et al.

(2018)). Conversely, when α̂+β̂ < α+β equilibrium outcomes underreact to new information,

as in models of dismissiveness (Banerjee et al. (2009), Banerjee and Kremer (2010), and

Banerjee (2011)), cursedness (Eyster et al. (2019)), or inattention (Gabaix (2020)).

Lemma 1 (Departures from Bayesian Updating and Misinference). Let α and β be the

sensitivities of the price to, respectively, the true and extracted signals in the true model of

the world when agents perform rational Bayesian updating. Then:

− α̂ 6= α and β̂ 6= β represent departures from rational Bayesian updating.

− γ̃ 6= α̂ + β̂ represents departures from correct inference.

This is shown in Figure 7, where the two thick dashed lines correspond to regions where

agents perform correct Bayesian updating and correct inference, respectively.33 The REE

then corresponds to the intersection of these two lines. Away from this intersection, the two

lines split the plane into four quadrants, where the two departures from rationality interact

in shaping the properties of equilibrium outcomes.

A key point to notice is just how plausible it is to have both mistakes in play in any

setup where agents perform non-rational Bayesian updating and also extract information

from endogenous outcomes. Models of non-rational Bayesian updating generally assume

that agents do correct inference, implicitly assuming that agents are aware of the mistakes

of others, and yet fail to recognize those exact same mistakes in themselves. For example,

a common assumption in the over-confidence literature is that agents perform correct signal

extraction, and must therefore be aware that others are overconfident, even though they

are themselves overconfident regarding their own information (Odean (1998), Daniel et al.

33Details on how we vary α̂ and β̂ are illustrated in Appendix D.
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Figure 7: General Model Misspecification: misinference, non-rational Bayesian updating,
and their interaction. This Figure illustrates how non-rational Bayesian updating and misinference
interact in generating under- and over-reaction. The dashed vertical line at α̂+ β̂ = α+β corresponds to the
region where all agents perform rational Bayesian updating, and the dash-dotted diagonal line with γ̃ = α̂+β̂
corresponds to the region where agents perform correct inference. The REE is at the intersection of these
two lines. The horizontal axis captures departures from correct Bayesian updating, while the vertical axis
captures misinference. The horizontal dotted line at γ̃ = α + β corresponds to the case where agents infer
information from prices under the (incorrect) assumption that all agents are rational. The white and the
gray areas illustrate combinations of parameters which lead to under-reaction and over-reaction, respectively.
The dark gray area shows regions where the equilibrium is unstable.

(1998)). If instead agents believe that they live in a rational world, thus failing to realize that

all other agents are also overconfident, they underestimate the sensitivity of the equilibrium

price to new information, and they extract a more extreme signal than the true one, leading

to even stronger departures from the REE. Similarly, in Bordalo, Gennaioli, Kwon and

Shleifer (2020), diagnostic agents infer the correct signal from prices, which requires agents

to recognize that other agents are diagnostic, even though they fail to realize that they

themselves are not rational. In what follows, and in an example in Appendix D, our analysis

shows that these assumptions can result in extreme outcomes and unstable regions, features

which are normally absent in this literature.

Turning to the properties of equilibrium outcomes, Proposition 10 generalizes the condi-

tions for stability uncovered in PET and in K−level thinking.
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Proposition 10 (Stability with General Model Misspecfication). Given a general linear

mapping, as in (36) and a true model of the world as in (37), the equilibrium is stable if and

only if α̂

1− β̂
γ̃

> 0. When α̂ > 0, this condition is equivalent to β̂
γ̃
< 1.

The relevant parameters in determining the strength of the feedback effect are γ̃ and β̂.

Instead, stability is not directly related to the rational parameters α and β.

Turning to the equilibrium properties relative to the REE, α̂+ β̂ > α+ β and γ̃ < α̂+ β̂

both push towards over-reaction, while reversing these inequalities pushes towards under-

reaction. Intuitively, fixing α̂ and β̂, a lower γ̃ < α̂ + β̂ gives rise to greater over-reaction

in the form of misinference, as U agents attribute any price change to a signal which is

more extreme than in reality. Moreover, for a given level of misinference, greater α̂− α > 0

and β̂ − β > 0, give rise to greater over-reaction in the form of non-rational Bayesian

updating. As is clear from Figure 7, these forces may either point in the same direction,

in which case they compound and amplify each other (quadrants 1 and 3), or they push in

opposite directions (quadrants 2 and 4). Proposition 11 shows that the resulting properties

of equilibrium outcomes depends on the relative strength of the two mistakes.

Proposition 11 (Over- and Under-reaction with General Model Misspecfication). Given

a general linear mapping as in (36), a true model of the world as in (37), and rational

coefficients α and β, a stable equilibrium displays over-reaction if:

α̂

1− β̂
γ̃

> α + β ⇐⇒ γ̃ < (α + β)
 β̂

β − (α̂− α)

 (40)

and under-reaction if the inequality is reversed.

When agents perform correct Bayesian updating, this condition is equivalent to γ̃ <

α+β = γREE. In light of Proposition 11, Figure 7 can be used to illustrate how discrepancies

from the REE arising from wrong Bayesian updating are always amplified when agents

misinfer information from prices because they assume the world is rational when it is not, a

result we anticipated earlier in this section. The thin dotted line with γ̃ = α + β in Figure

7 corresponds to the region where agents infer information from prices under the (possibly

incorrect) assumption that the world is rational. Importantly, this line always lies either in
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the top-left, or in the bottom-right quadrants described above, and wrong Bayesian updating

and misinference amplify each other in both these regions. Figure 7 also shows that this type

of misinference (with γ̃ = α + β 6= α̂ + β̂) can even lead to unstable outcomes, as is clear

from the fact that, for large enough α̂ + β̂ the thin dotted line enters the unstable region.

Proposition 12 (Misinference from (mistakenly) assuming correct Bayesian updating).

Consider a scenario where agents perform non-rational Bayesian updating, α̂ + β̂ 6= α + β.

Misinference due to the incorrect assumption that the world is rational, γ̃ = α+β, amplifies

the bias due to wrong Bayesian updating:

• If α̂ + β̂ < α + β, γ̃ = α + β amplifies under-reaction relative to γ̃ = α̂ + β̂;

• If α̂+ β̂ > α+ β, γ̃ = α+ β either amplifies over-reaction relative to γ̃ = α̂+ β̂, or it

makes the equilibrium unstable.

This discussion bears important quantitative implications for models which aim to as-

sess the importance of these behavioral biases in empirical settings: smaller departures from

Bayesian updating may be needed to obtain empirically meaningful departures from ratio-

nality. Similarly, we should expect the same bias in Bayesian updating to have a greater

influence on aggregate outcomes in settings where agents infer information from endogenous

outcomes. Moreover, unpacking the true driver of these departures from rationality is im-

portant as the two types of biases introduce different frictions, and have different policy

implications: while misinference can be attenuated with greater transparency and better

communication, as in Angeletos and Sastry (2020), errors in Bayesian updating would be

unaffected by these measures and generally require more direct changes in agents’ incentives

(with, for instance, taxes and subsidies as in Farhi and Gabaix (2020)).

4.2 Heterogenous Agents

So far, we have considered the case where all U agents extract information from prices using

the same misspecified model of the world, be it PET, K−level thinking, or any general

form of misspecified model. Giglio et al. (2020) document a large amount of heterogeneity

among agents’ actions and beliefs. The tractability of our model allows us to consider the
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interaction of heterogeneous agents, who differ in their level of sophistication in extracting

information from prices.34

The key point in solving these models is to notice that we have to specify the mapping

used by each type of agent who extracts information from prices. Appendix B develops a

general setup and allows for N types of agents, each with their own different misspecified

model.35 Appendix B.2 then considers an example where we study the interaction of three

types of agents with different levels of sophistication, and we study the comparative statics

which emerge from it.

When we extend our setup in this way, we find that the main insights in the paper

generalize to a setup with heterogeneous agents. At the individual level, agents who believe

the equilibrium price is less(more) responsive than it truly is attribute a given price change to

a more(less) extreme signal, and overreact(underreact).36 This also corroborates the results

in Section 4.1 that agents who believe the world is rational need not necessarily be better

off. At the aggregate level, outcomes display over-(under-)reaction if, on average, agents

believe the equilibrium price is less(more) sensitive than in the REE.37 Therefore, aggregate

level rationality need not imply individual level rationality if agents’ mistakes cancel out on

average. Finally, we show that with heterogenous levels of thinking, having a higher level of

rationality of higher order beliefs does not guarantee a higher level of realized welfare.

34Most papers studying model misspecification assume that all individuals share the same bias. No-
table exceptions include Gagnon-Bartsch (2016); Frick et al. (2019); and Bohren and Hauser (2020), who
characterizes long-run beliefs in general settings with model heterogeneity.

35For the sake of clarity we consider the case where each type is performing correct bayesian updating,
but we can easily extend this exercise to include errors in bayesian updating along the lines of Section 4.1.

36Therefore, when there are heterogeneous types of uninformed agents, to understand responses at the
individual level, one needs to compare agents’ misspecified mappings with the resulting equilibrium mapping,
and not with the REE one. For example, if the equilibrium exhibits over-reaction, an agent who believes the
world is rational underreacts. Similarly, even agents who think that there is aggregate level over-reaction
may overreact if they underestimate the extent of aggregate level over-reaction. This is reminiscent of the
results in Section 4.1.

37In Appendix B, we maintain rational Bayesian updating. We could easily generalize these results further
by allowing for non-rational Bayesian updating, as in Section 4.1. With non-rational Bayesian updating,
correct inference is not enough to ensure the recovery of the REE at the aggregate level.
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4.3 Robustness

Our model can be enriched along several other dimensions, all of which keep the basic

intuitions we developed intact. In Appendix E we relax the assumption that prices are fully

revealing, and allow for the supply of the risky asset to be stochastic, as in Diamond and

Verrecchia (1981). In Appendix F we maintain the assumption of partially revealing prices

and consider the symmetric case where all agents receive a noisy private signal of the risky

asset’s payoff. All the main intuitions of our results go through, thus showing that our results

do not rely on the particular information structure that we adopt in the baseline model.

5 Conclusions

We develop a theory of “Partial Equilibrium Thinking (PET)” where agents fail to under-

stand the general equilibrium consequences of their actions when inferring information from

endogenous outcomes. Specifically, we model a financial market where all uninformed agents

extract information from prices under the incorrect belief that they are the only ones doing

so. Since PET agents fail to understand the general equilibrium forces which generate the

prices they observe and instead attribute any price change to new information alone, they

use a misspecified mapping to infer information from prices, and this results in misinfer-

ence. We show that PET provides a micro-foundation to over-reaction to news relative to

the Rational Expectations Equilibrium (REE), and that this simple deviation from rational

expectations is also able to speak to some of the leading asset pricing puzzles, such as excess

volatility, excessive trading volume, and return predictability.

Moreover, PET delivers a very natural feedback effect between outcomes and beliefs:

higher prices translate into more optimistic beliefs, which in turn lead to even higher prices

and optimistic beliefs. The strength of this feedback effect is decreasing in the fraction of

informed agents and in the informativeness of new information relative to the prior, and

it determines the properties of equilibrium outcomes: the stronger the feedback effect, the

greater the discrepancies from rational outcomes, and these may become arbitrarily large.

This feedback effect can even be explosive, in which case the equilibrium becomes unstable.

When we allow for higher order beliefs, we find that K−level thinking does not always
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converge to the REE in the limit of common knowledge of rationality. Moreover, agents with

higher rational order beliefs may exacerbate instead of attenuate discrepancies from REE

outcomes. Both these results highlight the fragility of the REE equilibrium concept.

Our model is tractable enough to allow for more general forms of model misspecification,

as well as heterogenous agents with different levels of sophistication and cognitive limita-

tions. Throughout the different frameworks we consider, we find that agents who believe

the equilibrium price is less(more) responsive than it truly is overreact(underreact). We

also show that the possibility of an explosive feedback effect between outcomes and beliefs

is pervasive in models of misinference, and not just a curiosity of our baseline framework.

Moreover, we exploit our general framework to study the interaction of misinference and

non-rational Bayesian updating. We show that misinference from failing to recognize one’s

own irrationality in others amplifies the bias in non-rational Bayesian updating. This bears

important implications as it suggests that when agents infer information from endogenous

outcomes, empirical patterns which are at odds with rational expectations may be reconciled

with smaller biases in Bayesian updating, and distinguishing between these two channels may

have important policy implications.

More broadly, our mechanism can be generalized to any setup where agents use a mis-

specified model of the world to extract information from a general equilibrium outcome, thus

lending itself to many other macro and finance applications. In Bastianello and Fontanier

(2020a), we extend the framework dynamically, and we show that PET can give rise to

self-sustained price increases, followed by an endogenous burst of the eventual bubble. This

is achieved by showing that, in a dynamic framework, the strength of the feedback effect

between prices and beliefs can be endogenously time-varying. Therefore, the feedback effect

can be very strong at first, and weaken thereafter, thus allowing prices to converge back

to fundamentals following a period where they are decoupled from them. In Bastianello

and Fontanier (2020b), we apply our general framework of model misspecification to a setup

where banks finance projects of unobservable quality. We show that when lenders misun-

derstand the relationship between credit volume and the underlying quality of borrowers,

credit cycles naturally emerge. Credit booms are accompanied by a deterioration of borrower

quality, weakening lending standards, but also decreasing credit spreads.
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Appendices

A Proofs and Derivations

A.1 Solving for the CE and REE benchmarks

A.1.1 Cursed/Competitive Equilibrium (CE)

In the Cursed (or Competitive) Equilibrium, agents trade on their own private information

alone. Therefore, I agents trade on the signal s they receive, and U agents do not extract

information from prices. This translates into the following market clearing condition:

φ
(
τ0
µ0 − P
A

+ τs
s− P
A

)
︸ ︷︷ ︸

XCE
I

+(1− φ)
(
τ0
µ0 − P
A

)
︸ ︷︷ ︸

XCE
U

= Z, (A.1)

and the resulting equilibrium price PCE is given by:

PCE = φτs
τ0 + φτs

s+
(

1− φτs
τ0 + φτs

)
(µ0 − AZτ−1

0 ). (A.2)

where the sensitivity of the equilibrium price with respect to the signal is increasing in the

fraction of I agents, φ.

Notice that (A.2) shows that, not only do prices aggregate all private information, but

they are also fully revealing: PCE is a linear function of the true signal s, which is the only

shock in this economy, while all other parameters are common knowledge to all. One can

interpret the fact that U agents do not extract information from prices as them failing to

realize that prices contain valuable information. In this respect, we can think of the CE

as 1−thinking: agents are rational, but fail to realize that others are too, and that, as a

consequence, prices contain valuable information which they could condition on to obtain

more precise beliefs about the terminal payoff, v.

Moreover, notice that the expression in (A.2) is the same price function that PET agents

use to extract information from prices in (6): this is precisely the price function agents

would invert to extract s from prices if they believed that no other agent were extracting
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information from prices. As shown in Section 1.1, if all agents extract information from

prices in this way as in PET, then the resulting equilibrium price will be different.

A.1.2 Rational Expectations Equilibrium (REE)

In the REE, U agents have common knowledge of rationality, and extract information from

prices. As we did in PET, we can solve for the REE equilibrium price and extracted signals

by finding the intersection between the mapping used by U agents to extract information

from prices, and the true price function.

Mapping from Prices to Extracted Signals. Since agents have common knowledge of

rationality, U agents believe that everyone is trading on the same signal s̃: they believe I

agents receive the signal s̃, and U agents extract this information from prices. Therefore, they

believe that the price they observe is generated by the following market clearing condition:

φ
(
τ0
µ0 − P
A

+ τs
s̃− P
A

)
︸ ︷︷ ︸

X̃REE
I

+(1− φ)
(
τ0
µ0 − P
A

+ τs
s̃− P
A

)
︸ ︷︷ ︸

X̃REE
U

= Z (A.3)

which results in the following mapping:

PMis(s̃) = τs
τ0 + τs

s̃+
(

1− τs
τ0 + τs

)
(µ0 − AZτ−1

0 ). (A.4)

REE agents then invert this price funciton to extract the signal s̃:

s̃ = τ0 + τs
τs

P − τs
τ0

(µ0 − AZτ−1
0 ). (A.5)

Therefore, notice that γREE ≡ ∂PMis(s̃)
∂s̃

= τs
τs+τ0

= α + β, where α ≡ ∂PTrue(s,s̃)
∂s

= φτs
τs+τ0

and β ≡ ∂PTrue(s,s̃)
∂s̃

= (1−φ)τs
τs+τ0

, as can be seen from (A.7) below.

True Price Function. The true price function which occurs whenever I agents trade on

s and U agents trade on s̃ is the same one we used in (11):
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P True(s, s̃) = φτs
τ0 + φτs + (1− φ)τs

s

+ (1− φ)τs
τ0 + φτs + (1− φ)τs

s̃

+ τ0

τ0 + φτs + (1− φ)τs
(µ0 − AZτ−1

0 ). (A.6)

or simply:

P True(s, s̃) = φτs
τs + τ0

s+ (1− φ)τs
τs + τ0

s̃+ τ0

τs + τ0
(µ0 − AZτ−1

0 ). (A.7)

Equilibrium Price and Extracted Signal. The equilibrium (PREE, s̃REE)−pair is at

the intersection of the two mappings in (A.5) and (A.7), such that PREE = PMis(s̃REE) =

P True(s, s̃REE)

s̃REE = s, (A.8)

and

PREE = τs
τs + τ0

s+
(

1− τs
τs + τ0

)
(µ0 − AZτ−1

0 ), (A.9)

which reflects the fact that all agents trade on s with precision τs and on the prior with

precision τ0: I agents trade on s because they receive the signal, and U agents trade on s

because they perfectly extract this information from prices. Therefore the sensitivity of the

price with respect to the signal is independent of the fraction of informed agents, φ.

Equations (A.8) and (A.9) show that in a world with common knowledge of rationality,

REE agents extract the right information from prices. The reason why this is the case is

that in a world with common knowledge of rationality, agents who believe that everyone has

common knowledge of rationality are indeed correct. This means that they invert the right

price function to extract information from prices, as can be seen from the fact that (A.4) is

the same function as (A.9).

This is a more general result: for uninformed agents to extract the right signal from prices,

it must be the case that the mapping they use to extract information coincides with the price

function that realizes in equilibrium. As we show in Section 3, this can be formalized into a

fixed point argument.
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A.1.3 Equilibrium Price and Extracted Signal across Benchmarks

For reference, we summarize below the equilibrium price and extracted signal of the three

equilibrium benchmarks, which we derived in Section 1.1 and in Appendix A.1. Prices are

given by:

PCE = φτs
φτs + τ0

s+
(

1− φτs
φτs + τ0

)
(µ0 − AZτ−1

0 ) (A.10)

PREE = τs
τs + τ0

s+
(

1− τs
τs + τ0

)
(µ0 − AZτ−1

0 ) (A.11)

P PET = τs

τs + τ0 −
(

1−φ
φ

)2
τ0

s+

1− τs

τs + τ0 −
(

1−φ
φ

)2
τ0

 (µ0 − AZτ−1
0 ) (A.12)

and extracted signals can be expressed as:

s̃REE = s (A.13)

s̃PET = s+

(
1−φ
φ2

)
τ0

τs + τ0 −
(

1−φ
φ

)2
τ0

(
s− (µ0 − AZτ−1

0 )
)

(A.14)

A.2 Proofs

A.2.1 Proposition 1: Stability

Starting from the condition for stability, which is proved in the main text:

β

γ
< 1 ⇐⇒ ∂P True(s, s̃)

∂s̃
<
∂PMis(s̃)

∂s̃
⇐⇒ (1− φ)τs

τs + τ0
<

φτs
φτs + τ0

(A.15)

Simplifying this inequality and rearranging the above inequality holds iff:

φ2τs + 2φτ0 − τ0 > 0 ⇐⇒ τs + τ0 −
(

1− φ
φ

)2

τ0 > 0 ⇐⇒ φ >

(
1 +

√
1 + τs

τ0

)−1

(A.16)

which is precisely the expression in (21). Comparative statics follow by inspection.
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A.2.2 Proposition 2: Over-reaction

From (A.10), (A.11) and (A.12), the equilibrium sensitivities of the equilibrium price to the

true signal, across the three equilibrium benchmarks, can be rewritten as:

∂PCE

∂s
= τs

τs + τ0 +
(

1−φ
φ

)
τ0

,
∂PREE

∂s
= τs
τs + τ0

,
∂P PET

∂s
= τs

τs + τ0 −
(

1−φ
φ

)2
τ0

.

(A.17)

To prove the inequality in Proposition 2, we start by proving the following Lemma.

Lemma 2 (Stability and PET sensitivity). The sensitivity of the PET equilibrium price to

new information is positive if and only if the PET equilibrium is stable.

Proof.
∂P PET

∂s
> 0 ⇐⇒ τs + τ0 −

(
1− φ
φ

)2

τ0 > 0 (A.18)

From (A.16), we see that this expression is positive if and only if the equilibrium is stable.

Therefore, when the PET equilibrium is stable, all three quantities in (A.17) are positive

(the CE and REE sensitivities are always positive). For φ ∈ (0, 1), it immediately follows

that:
τs

τs + 1
φ
τ0
<

τs
τs + τ0

<
τs

τs + τ0 −
(

1−φ
φ

)2
τ0

. (A.19)

This proves the first part of our statement.

Finally, the assumptions which define PET lie in between those which define the CE and

REE benchmarks as we can reframe the CE as being 1−level thinking, PET as being 2−level

thinking, and the REE as ∞ level thinking, as discussed in the introduction.

A.2.3 Proposition 3: Contrarians

According to the first order condition in (2), agents’ asset demand function conditional on

their beliefs is given by:

XK
i = E[v|IKi ]− PK

AVar[v|IKi ] (A.20)

for i ∈ {I, U}, and K ∈ {CE,REE,PET}. We are now interested in understanding when,

in equilibrium, this quantity is increasing or decreasing in the true signal s.
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REE. E[v|IREEi ] = τs
τs+τ0

s + τ0
τs+τ0

µ0, and Var[v|IREEI ] = (τs + τ0)−1, for both agents i ∈

{I, U}. Substituting these expressions and (A.11) into (A.20), we find that XREE
I = XREE

U =

Z, so that:
∂XREE

I

∂s
= ∂XREE

U

∂s
= 0 (A.21)

In other words, agents’ demands for the risky asset are in equilibrium independent of the

signal, s, as the asset is (perceived) as being correctly priced at all times by both agents.

CE. Informed agents’ beliefs are such that: E[v|ICEI ] = τs
τs+τ0

s+ τ0
τs+τ0

µ0, and Var[v|ICEI ] =

(τs + τ0)−1. Substituting these expressions together with (A.10) into (A.20), and differenti-

ating with respect to s, we find that:

∂XCE
I

∂s
= (1− φ)τsτ0

A(φτs + τ0) > 0 (A.22)

Similarly, uninformed agents’ beliefs are such that: E[v|ICEU ] = µ0, and Var[v|ICEI ] = τ−1
0 .

Substituting these expressions together with (A.10) into (A.20), and differentiating with

respect to s, we find that:
∂XCE

U

∂s
= − φτsτ0

A(φτs + τ0) < 0 (A.23)

Therefore, in the CE, informed agents’ equilibrium asset demand is increasing in the true

signal s, while uninformed agents’ equilibrium asset demand is decreasing in the true signal

s. The same argument and comparative statics immediately go through when we refer to

agents’ net positions, XCE
i − Z.

PET. Informed agents’ beliefs are such that: E[v|IPETI ] = τs
τs+τ0

s+ τ0
τs+τ0

µ0, and Var[v|IPETI ] =

(τs + τ0)−1. Substituting these expressions together with (A.12) into (A.20), and differenti-

ating with respect to s, we find that in a stable equilibrium:

∂XPET
I

∂s
= −

(
1−φ
φ

)2
τsτ0

A
(
τs + τ0 −

(
1−φ
φ

)2
)
τ0

< 0 (A.24)
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Similarly, uninformed agents’ beliefs are such that: E[v|ICEU ] = τs
τs+τ0

s̃ + τ0
τs+τ0

µ0, and

Var[v|ICEI ] = (τs + τ0)−1. Substituting these expressions together with (A.10) and (A.14)

into (A.20), and differentiating with respect to s, we find that:

∂XPET
U

∂s
=

(
1−φ
φ

)
τsτ0

A
(
τs + τ0 −

(
1−φ
φ

)2
τ0

) > 0 (A.25)

Therefore, in PET, informed agents’ asset demand in equilibrium is decreasing in the true

signal s, while uninformed agents’ asset demand in equilibrium is increasing in the true signal

s. The same argument and comparative statics immediately go through when we refer to

agents’ net positions, XCE
i − Z.

Comparing the results in (A.21), (A.22), (A.23), (A.24) and (A.25) completes the proof.

A.2.4 Proposition 4: Trading Volume

Trading volume for K = {CE,REE,PET} is formally defined as:

V K = φ|Z −XK
I |+ (1− φ)|Z −XK

U | = 2φ(1− φ)|XU −XI |, (A.26)

where the last equality uses the market clearing condition, φXI + (1− φ)XU = Z.

To find trading volume in PET, let’s first make use of the fact that both informed and

uninformed agents’ demand functions use the same precision, so that (A.26) simplifies to:

V PET = 2φ(1− φ)τs
A

|s̃− s|. (A.27)

This makes it clear that PET volume is proportional to, |s̃−s|, which is the amount of belief

disagreement between I and U agents. Moreover, we see that risk-aversion scales volume,

which is simply due to the fact that it scales all demand functions.

Substituting the PET equilibrium extracted signal in (A.14) into equation (A.27) yields
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an expression of volume as a function of fundamentals:

V PET = 2(1− φ)2τsτ0

Aφ
(
τs + τ0 −

(
1−φ
φ

)2
τ0

) |s− µ0 + AZσ2
0| (A.28)

= 2φ(1− φ)τs
A

 α
γ
−
(
1− β

γ

)
1− β

γ

 |s− µ0 + AZσ2
0| (A.29)

where α ≡ ∂PTrue(s,s̃)
∂s

= φτs
τs+τ0

, β ≡ ∂PTrue(s,s̃)
∂s̃

= (1−φ)τs
τs+τ0

, and γ = ∂PMis(s̃)
∂s̃

= φτs
φτs+τ0

, as in

the main text. First, notice that when s = µ0 − AZσ2
0, trading volume is zero, as discussed

in Section 2. Moreover, from (A.29), it is clear that V PET is increasing in the size of the

feedback effect β
γ
, and that lim β

γ
→1 =∞. This completes our proof.

Moreover, notice how this result contrasts to the CE and REE cases. In the REE, (A.26)

immediately shows that trading volume is zero, as all agents have the same asset demand,

so that XU = XI , and V REE = 0. We can also compute CE trading volume by substituting

CE agents’ asset demands into (A.26). This yields:

V CE = 2φ(1− φ)τsτ0

A(φτs + τ0) |s− µ0 + AZτ−1
0 |, (A.30)

which, for finite τs and τ0, is always bounded. By contrast, PET allows for arbitrarily large

trading volume using reasonable parameter values.

A.2.5 Proposition 5: Returns

Expected returns are defined additively, for i ∈ {I, U}, and K ∈ {CE,PET,REE}:

Ei[R]K = E[v|IKi ]− PK = E[v|IKi ]−
(
Ē[v]− ¯V ar[v]AZ

)
(A.31)

where Ē[v] and ¯V ar[v] are weighted averages of agents’ beliefs and precisions, respectively.38

Since I agents all have the same beliefs across CE, REE and PET, the differences in

I agents’ expected returns across equilibrium concepts is purely driven by differences in

38Let τi = V ar[v|Ii] for i ∈ {I, U}. Then Ē[v] = φτI
φτI+(1−φ)gE[v|II ] + (1−φ)g

φτI+(1−φ)gE[v|IU ], and ¯V a+ r =
(φτI + (1− φ)g)−1. The fact that PK = Ē[v]− ¯V ar[v]AZ then follows by inspection of Equations (25), (26)
and (27).
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equilibrium prices. After some algebra, we find that, conditional on a signal s, I agents’

expected returns are given by:

EI [R]REE = AZ(τs + τ0)−1 (A.32)

EI [R]CE =
(

τs
τs + τ0

− φτs
φτs + τ0

)(
s−

(
µ0 − AZτ−1

0

))
+ AZ(τ0 + τs)−1 (A.33)

EI [R]PET = −(1− φ)τs
τs + τ0


(

1−φ
φ2

)
τ0

τs + τ0 −
(

1−φ
φ

)2
τ0

(s− (µ0 − AZτ−1
0

))
+AZ(τ0+τs)−1 (A.34)

Moreover, since I agents’ beliefs are rational, their expected returns are equal to average

realized returns, conditional on s. The corresponding expected returns of U agents are given

by:

EU [R]REE = AZ(τs + τ0)−1 (A.35)

EU [R]CE = − φτs
φτs + τ0

(
s−

(
µ0 − AZτ−1

0

))
+ AZτ−1

0 (A.36)

EU [R]PET = φτs
τs + τ0


(

1−φ
φ2

)
τ0

τs + τ0 −
(

1−φ
φ

)2
τ0

(s− (µ0 − AZτ−1
0

))
+ AZ(τ0 + τs)−1 (A.37)

Proposition 5 then simply follows by inspection, as the denominator in (A.37) and (A.34)

is positive when the equilibrium is stable, as shown in Lemma 2. Specifically:

∂EU [R]PET
∂s

= φτs
τs + τ0


(

1−φ
φ2

)
τ0

τs + τ0 −
(

1−φ
φ

)2
τ0

 > 0 (A.38)

∂RPET

∂s
= −(1− φ)τs

τs + τ0


(

1−φ
φ2

)
τ0

τs + τ0 −
(

1−φ
φ

)2
τ0

 < 0 (A.39)
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A.2.6 Proposition 6: Comparative Statics

The equilibrium signal PET agents extract from prices, s̃PET , can be written as:39

s̃PET = s+
α
γ
−
(
1− β

γ

)
1− β

γ

(
s−

(
µ0 − AZτ−1

0

))
(A.40)

This expression makes clear that the discrepancy of PET with the REE, s̃−s, is i) increasing

in β/γ, and ii) limβ/γ→1 s̃
PET − s =∞.

Turning to the wedge between PET and REE sensitivities of the equilibrium price with

respect to the true signal s, we can write this as:40

∂P PET

∂s
− ∂PREE

∂s
=
 α

1− β
γ

− (α + β) =
(α + β − γ)β

γ

1− β
γ

(A.42)

Moreover, in our setup, α + β = τs
τs+τ0

> γ = φτs
φτs+τ0

. Therefore, by inspection, the wedge

between the PET and REE sensitivity is also i) increasing in β/γ, and ii) limβ/γ→1
∂PPET

∂s
−

∂PREE

∂s
=∞.

In what follows we show that the wedge between PET and REE outcomes is proportional

to the difference between the extracted signal s̃PET and the true signal s. Starting with

equilibrium prices, we can express the wedge between PET and REE prices using equation

(11) as:

P PET − PREE = β(s̃PET − s) (A.43)

It follows immediately from the discussion above that this wedge is also i) increasing in β/γ,

and ii) limβ/γ→1+ P PET − P =∞.

Finally, the wedge in expected returns,

EU [R]PET − EU [R]REE = τs
τs + τ0

(s̃− s)− (P PET − PREE) (A.44)

39To see this, one can either rely on the derivation in Section 4.1, or simply compare the expression in
(A.40) with (A.14), after having substituted in for the values of α = φτs

τs+τ0
, β = (1−φ)τs

τs+τ0
, and γ = φτs

φτs+τ0
.

40Notice that this wedge is also related to the wedge between s̃− s:

s̃PET − s = 1
β

(
∂PPET

∂s
− ∂PREE

∂s

)(
s−

(
µ0 −AZτ−1

0
))
. (A.41)
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= (α + β)(s̃− s)− β(s̃− s) (A.45)

= α(s̃− s) (A.46)

where the second equality uses the fact that τs
τs+τ0

= α+β and the result in (A.43). Similarly,

EI [R]PET − EI [R]REE = −(P PET − PREE) (A.47)

= −β(s̃− s) (A.48)

where the second equality uses the result in (A.43). Therefore, (A.46) and (A.48) confirm

that the following properties hold for the discrepancy between PET and REE expected and

realized returns as well. They are i) increasing in β/γ, and ii) limβ/γ→1 Ei[R]PET−Ei[R]REE =

∞ for i ∈ {I, U}. This also holds for realized returns as, on average, realized returns are

equal to informed agents’ expected returns.

These results are depicted graphically in Figure 8, which shows equilibrium quantities

when s = µ0 as we increase the fraction of informed agents, φ. The lower φ, the greater is

the feedback effect, and the greater the discrepancy.41

A.2.7 Proposition 7: Stability and K−level Thinking

In Section 1.2, we showed that for an equilibrium to be stable, the aggregate excess demand

function for the risky asset must be downward sloping. For K−level thinking, the aggregate

excess demand function takes the following form:

XK
TOT − Z = φ

( τs
τs+τ0

s+ τ0
τs+τ0

µ0 − PK

A(τs + τ0)−1

)
+ (1− φ)

( τs
τs+τ0

s̃K + τ0
τs+τ0

µ0 − PK

A(τs + τ0)−1

)
(A.49)

Moreover, from (30), we know that K−level uninformed agents use the following mapping

to extract information from prices: s̃K = 1
γK−1

PK − 1−γK−1
γK

(µ0 − AZτ−1
0 ). Substituting this

41Decreasing φ has two effects on equilibrium outcomes: first, it increases the number of uninformed PET
agents making a mistake; second, it increases the size of the mistake PET agents make: since PET agents
are wrong about the actions of U agents, the more U agents there are, the more agents each PET agents is
wrong about. Both these effects go in the same direction, so that our results are amplified as we decrease φ.
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Figure 8: Comparative Statics over φ. This Figure plots CE, PET, and REE equilibrium prices (top
left), realized returns (top right), expected returns by Informed agents (bottom left) and expected returns
of Uninformed agents (bottom right), for different values of φ such that the equilibrium is stable and (21) is
satisfied, and for a fixed true signal, at s = µ0. We let φ ∈ (0.5, 1]. All parameter values are consistent with
those in all other figures with σ2

0 = 0.16, σ2
s = 0.12, µ0 = 1, Z = 1, and A = 2.
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into (A.49), and rearranging, we get:

XK
TOT − Z = 1

A(τs + τ0)−1

(
(1− φ)τs
τs + τ0

1
γK−1

− 1
)
PK + constants (A.50)

and since (1−φ)τs
τs+τ0

= β, we can rewrite this as:

XK
TOT − Z = 1

A(τs + τ0)−1

(
β

γK−1
− 1

)
︸ ︷︷ ︸

slope of excess demand function

PK + constants (A.51)
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Therefore, the K−level thinking equilibrium is stable if and only if the slope of this excess

demand function is negative, which is equivalent to:

(
β

γK−1
− 1

)
< 0 ⇐⇒ β

γK−1
< 1 (A.52)

Since β > 0, this condition is satisfied either if γK−1 < 0, or if 0 < β < γK−1. Otherwise,

the excess demand function is upward sloping, and the equilibrium unstable.

Finally, notice that, as in Lemma 2 for PET, the K−level thinking sensitivity of the

equilibrium price to the true signal is positive if and only if the equilibrium is stable. We

summarize this in the following Lemma.

Lemma 3 (Stability and K−level thinking sensitivity). The sensitivity of the K−level think-

ing equilibrium price to the true signal is positive if and only if the K−level thinking equi-

librium is stable.

Proof. Since α > 0, by inspection of (32) and (34):

∂PK

∂s
> 0 ⇐⇒ 1− β

γK−1
> 0 (A.53)

which is precisely the condition for stability uncovered in (A.52).

A.2.8 Proposition 8: K−level Thinking Over-/Under-reaction

The equilibrium sensitivity of the K−level thinking equilibrium price to the true signal is

given in equation (34):

γK = α

1− β
γK−1

(A.54)

From Lemma 3, we also know that the K−level thinking equilibrium is stable if and only if

γK > 0. Since α, β > 0, this is equivalent to γK−1 > β. The REE sensitivity is given by:

γREE = α + β. (A.55)
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By definition, the K−level thinking equilibrium exhibits over-reaction if γK > γREE:

α

1− β
γK−1

> α + β ⇐⇒ γK−1 < α + β = γREE (A.56)

where the last inequality uses the fact that the equilibrium is stable. Therefore, for a stable

equilibrium to exhibit over-reaction, we need: β < γK−1 < γK .

A.2.9 Proposition 9: Convergence to the REE

We start with the recursive formulation of the equilibrium sensitivity (34):

γK = α

1− β
γK−1

(A.57)

Solving for the fixed point of this equation, such that γK = γK−1, yields two solutions, γK =

α+β = γREE and γK = 0 (these are also shown in Figure 6). Define the convergence function

as f(γK−1) = α

1− β
γK−1

. The REE fixed point is attractive when the following condition is

met:

|f ′(γREE)| < 1 (A.58)

Straigthforward algebra yields that this is verified when:

αβ

(γREE − β)2 < 1 ⇐⇒ αβ

(α + β − β)2 < 1 ⇐⇒ α > β (A.59)

Similarly, the attractive fixed point is the degenerate one if:

|f ′(0)| < 1 (A.60)

which requires:
αβ

(0− β)2 < 1 ⇐⇒ α < β (A.61)

Using the values of α and β, we also notice that, in our setup, (A.59) is satisfied if and

only if φ > 1/2.
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A.2.10 Proposition 12: Misinference from (mistakenly) assuming correct Bayesian

updating

Consider the case with α̂+ β̂ 6= α+β, so that some agents make a mistake in their Bayesian

updating. We need to compare two scenarios: i) agents understand that others do wrong

Bayesian updating, and use the actual price sensitivity to extract information from prices,

γ̃ = α̂+ β̂; ii) agents fail to realize other perform incorrect Bayesian updating, and mistak-

ingly assume that all other agents are rational on this dimension, γ̃ = α + β.

Starting with case i), and setting γ̃ = α̂ + β̂ in (38) and (39), we have:

PCase i) = (α̂ + β̂)s+ (1− α̂− β̂)(µ0 − AZτ−1
0 ) (A.62)

s̃Case i) = s (A.63)

Turning to case ii), and setting γ̃ = α + β in (38) and (39), we have:

PCase ii) = α̂

1− β̂
α+β

s+
1− α̂

1− β̂
α+β

 (µ0 − AZτ−1
0 ) (A.64)

s̃Case ii) = s+
 α̂ + β̂ − α− β

α + β − β̂

(s− (µ0 − AZτ−1
0 )

)
(A.65)

Wrong Bayesian updating and under-reaction: α̂ + β̂ < α + β. Consider the case

with α̂+ β̂ < α+ β, so that wrong Bayesian updating pushes towards under-reaction. From

(A.62) and (A.63) we see that Case i) leads to correct inference, but under-reaction relative

to the REE since ∂PCase i)

∂s
= α̂ + β̂ < α + β = ∂PREE

∂s
.

Moreover, from (A.64) and (A.65), we notice that α̂ + β̂ < α + β implies:

∂PCase ii)

∂s
<
∂PCase i)

∂s
<
∂PREE

∂s
(A.66)

Therefore, when α̂ + β̂ < α + β Case ii) leads to more under-reaction than Case i). In

other words, misinference from the incorrect belief that the world is rational amplifies the

bias which arises from wrong Bayesian updating alone.
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Intuitively, since γ̃ = α + β > α̂ + β̂, agents mistakingly believe that the equilibrium

price is more responsive to the true signal than it really is. Therefore, they attribute any

price change they observe to news which is less extreme than in reality. The under-reaction

in signal extraction then compounds with the under-reaction in Bayesian updating.

Wrong Bayesian updating and over-reaction: α̂+ β̂ > α+ β. Now consider the case

with α̂ + β̂ > α + β, so that wrong Bayesian updating pushes towards over-reaction. From

(A.62) and (A.63) we see that Case i) leads to correct inference, but over-reaction relative

to the REE since ∂PCase i)

∂s
= α̂ + β̂ > α + β = ∂PREE

∂s
.

Moreover, from (A.64) and (A.65), we notice that if α+ β > β̂, the equilibrium is stable

and we can make the following comparisons:

∂PCase ii)

∂s
>
∂PCase i)

∂s
>
∂PREE

∂s
(A.67)

Therefore, when the equilibrium is stable, Case ii) leads to more over-reaction than Case

i). In other words, misinference from the incorrect belief that the world is rational amplifies

the bias which arises from wrong Bayesian updating alone.

Intuitively, since γ̃ = α + β < α̂ + β̂, agents mistakingly believe that the equilibrium

price is more responsive to the true signal than it really is. Therefore, they attribute any

price change they observe to news which is more extreme than in reality. The over-reaction

in signal extraction then compounds with the over-reaction in Bayesian updating.

Moreover, from (A.64) and (A.65), we also see that when α + β < β̂, misinference due

to the incorrect belief that agents perform correct Bayesian updating can be so strong as

to make the equilibrium unstable, something which could not arise with wrong Bayesian

updating alone.

B Heterogeneous Agents

Giglio et al. (2020) document a large amount of heterogeneity among agents’ actions and

beliefs. In this section we illustrates how the tractability of our model allows us to consider

heterogeneous agents who differ in their level of sophistication in extracting information from
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prices. The key point in solving these models is to notice that we have to specify the mapping

used by each type of agent who extracts information from prices. We start by solving the

models with a general framework and then offer some examples.

B.1 Solving the Model with Heterogeneous Agents

Let there be a fraction of informed agents, and a fraction of uninformed agents. Moreover,

let there be N different types of uninformed agents, each using a different misspecified model

of the world to extract information from prices.

Misspecified model of the world for each agent n = 1, 2, . . . , N . To solve the model,

we need to specify the mapping used by each type of agent to extract information from

prices. In this section we allow agents to have general linear mappings.42,43 We denote these

models as:44

PMis1 = γ1s̃1 + (1− γ1)ζ1 (B.1)

...

PMisN = γN s̃N + (1− γN)ζN (B.2)

So that for n = {1, 3, ..., N}, inverting prices gives the following extracted signal:

s̃n = 1
γn
PMisn −

(
1− γn
γn

)
ζn (B.3)

42As shown in the main text, the linearity assumption is unrestrictive for CE, PET, REE and K−level
thinking, and in section 4.1 we also discussed how this assumption nests many types of behavioral biases
studied in the literature.

43In a setup where there are heterogeneous agents extracting information from prices, this linearity as-
sumption simply requires that each agent n thinks that the (misspecified) mappings used by other agents
are linear. When this is the case, agent n believes that other agents’ (wrong) extracted signals are linear
functions of the true signal. Therefore, when each agent n aggregates his/her perception of all other agents’
linear asset demands, the resulting market clearing price function which determines his/her (misspecified)
mapping is also linear. In this case, the details of what each agent n thinks about other agent’s extracted
signals determines γn, but not the functional form of their (misspecified) mapping.

44Notice that ζi could simply be equal to (µ0−AZτ−1
0 ) as in the analysis in the main text. In this section

we leave it general as, for example, agents may have different priors.
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True Model of the World. Given these N types of agents, the true price function takes

the following form:

P True = αs+
N∑
n=1

βns̃n + δ, (B.4)

where α, βn for n ∈ {1, . . . , N} and δ are constant coefficients that depend on the compo-

sition of agents and fundamental parameters of the economy. We assume that each type of

agent performs correct Bayesian updating, so that misinference is the only mistake agents

eventually make.45,46

Equilibrium Price and Extracted Signals. We solve for the equilibrium price and

extracted signals by setting P = PMis1 = PMis2 = ... = PMisN and solving these N equations

in N unknowns (P , s̃1, s̃2, ..., s̃N). Substituting (B.3) into (B.4), we get:

P = αs+
N∑
n=1

βn

(
1
γn
P − 1− γn

γn
ζn

)
+ δ (B.5)

Rearranging gives us the equilibrium price P :

P = α

1−∑N
n=1

βn
γn

s+
δ −∑N

n=1
βn(1−γn)

γn
ζn

1−∑N
n=1

βn
γn

(B.6)

We can also find the equilibrium extracted signal by substituting this expression into (B.3).

s̃n =
α
γn

1−∑N
m=1

βm
γm

s+ 1
γn

δ −∑N
m=1

βm(1−γm)
γm

ζm

1−∑N
m=1

βm
γm

− (1− γn)ζn

 (B.7)

Notice that the resulting equilibrium is strikingly similar to the basic framework we

explored in the main text.47 In what follows, we show how stability and over-/under-reaction

generalize to this setup with heterogeneous agent.

Proposition 13 (Stability with Heterogeneous Agents). In an economy with N different

45This implies that the REE is achieved when γn = α+
∑N
m=1 βm for all n.

46We can easily generalize this to account for non-rational bayesian updating.
47To add generality we did not take a stance on the coefficients ζn and δ of the price functions. It is easy

to verify that if we assume that ζi = µ0 − AZτ−1
0 for all i, and δ =

(
1− α−

∑N
n=1 βn

)
(µ0 − AZτ−1

0 ), we
are back to the case we described in details in Section 4.1.

60



types of agents who extract information from prices using the linear mappings described in

(B.4), the equilibrium is stable if and only if:

N∑
m=1

(
βm
γm

)
< 1 (B.8)

Proof. This follows immediately from applying Lemma 2 to (B.6) with α > 0.

Notice that while (B.8) may seem more restrictive than the equivalent condition in Propo-

sition 1, this is not necessarily the case. To see why, recall from (B.4) that βn captures the

relative influence on equilibrium prices of agent n’s beliefs: the greater N is, the smaller

βn is, on average. Similarly, from (B.4), γn is agent n’s perceived sensitivity of the equi-

librium price to new information: the greater the number of agents extracting information

from prices, the more likely it is that uninformed agents think the equilibrium price is more

sensitive to new information.

Next, we turn to characterize over-and under-reaction at the individual and aggregate

levels in the following two propositions.

Proposition 14 (Over- and Under-Reaction at the Individual Level). When the equilibrium

is stable, an agent of type n overreacts to changes in the unobserved signal s if and only if:

γn <
α

1−∑N
m=1

βm
γm

= ∂P

∂s
(B.9)

and underreacts when the inequality is reversed.

Proof. This immediately follows from solving ∂s̃n/∂s > 1 and using our derivation in equa-

tion (B.7) together with the condition for stability in (B.8).

This proposition shows that to determine an individual’s level of over-/under-reaction, it

is enough to compare the sensitivity of their mapping to a single aggregate statistic. Intu-

itively, individual agents extract the correct signal from prices if they use the true sensitivity

of the equilibrium price to new information in their mapping. Agents who mistakingly think

that the sensitivity is lower than in reality attribute a given price change to a more extreme
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signal, and overreact. Conversely, if agents think the sensitivity if greater than in reality

they underreact.

When there is a single type of uninformed agent, this condition boils down to γn < α+β =

γREE, which is consistent with our earlier result in Proposition 11. However, whenever there

are more than one type of agents, Proposition 14 shows that the correct benchmark to assess

individual level over-reaction is the true equilibrium mapping, and not the REE one.

We now turn to the behavior of aggregate prices.

Proposition 15 (Over- and Under-Reaction at the Aggregate Level). The aggregate price

function overreacts to changes in the signal s relative to the rational counterfactual if and

only if:
α

1−∑N
m=1

βm
γm

> α +
N∑
m=1

βm ⇐⇒
N∑
n=1

(
βn∑N

m=1 βm

1
γn

)
>

1
γREE

(B.10)

and it underreacts when the inequality is reversed.

Proof. This proposition follows from inspecting ∂P/∂s from equation (B.6), and using the

fact that the rational counterfactual is such that γn = α +∑N
m=1 βm for all n.

The LHS of (B.10) is the weighted average of 1/γn across agents, where the weights are

given by the relative influence that each agent has on equilibrium prices, βn/
∑N

m=1 βm. If

we call this weighted average 1/̄γ, then the above expression implies that equilibrium prices

exhibit over-reaction relative to the REE if and only if γ̄ < γREE. This is reminiscent of the

result we found in Section 3, which now generalizes to a setup with heterogeneous agents:

if, on average, agents’ sensitivity is lower than γREE, then, on average, they extract signals

which are more extreme than in reality, leading to over-reaction in equilibrium outcomes.

Moreover, the first inequality in (B.10) also makes clear that when the equilibrium is

stable the extent of over-reaction is increasing in the strength of the aggregate feedback

effect, ∑N
n=1

βn
γn

.

We flesh out a specific example to apply these results in Appendix B.2.
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B.2 Combining Heterogeneous levels of Thinking

To illustrate the results of the framework with heterogenous agents, consider a world popu-

lated by 2−level thinkers (PET agents) and 3−level thinkers. More specifically, let us assume

that the distribution of agents is as shown in Figure 9:

− Informed agents: a fraction φ of agents are informed and trade on s;

− PET agents: a fraction (φ′−φ) of agents are uninformed and believe that all uninformed

agents are cursed. The resulting signal is s̃1;

− K3−level agents: a fraction (1 − φ′) of agents are 3−level thinkers, and believe that

all other uninformed agents are PET. The resulting extracted signal is s̃2.

Figure 9: Distribution of Heterogeneous Agents. This diagram shows the distribution of heteroge-
neous agents and the signal that they trade on, respectively. A fraction φ of agents are Informed and trade
on the true signal s. Of the fraction 1 − φ of Uninformed agents, φ′ − φ are PET agents and extract and
trade on signal s̃1, and 1− φ′ are 3−level thinkers and trade on signal s̃2.

0 φ φ′ 1

Informed︷ ︸︸ ︷ Uninformed︷ ︸︸ ︷

︸ ︷︷ ︸
I

︸ ︷︷ ︸
PET

︸ ︷︷ ︸
K3−level

s s̃1 s̃2

Since both PET and K3 agents extract information from prices, we need to specify the

two misspecified models of the world they use to do so. Consistent with notation in Section

B.1, we let type n = 1 refer to PET agents, and type n = 2 refer to K3 agents.

PET’s Misspecified Model of the World. PET agents believe that all other uninformed

agents are cursed and only trade on their prior. Given this misspecified model of the world,

PET agents believe the mapping from prices to signals is given by inverting:

PMis1 = φτs
φτs + τ0

s̃1 +
(

1− φτs
φτs + τ0

)
(µ0 − AZτ−1

0 ), (B.11)
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which yields the extracted signal by PET agents:

s̃1 = φτs + τ0

φτs
PMis1 − τ0

φτs
(µ0 − AZτ−1

0 ) (B.12)

Therefore, to keep with notation from section B.1, let γ1 = φτs
φτs+τ0

.

3−Level Thinkers’ Misspecified Model of the World. 3−level thinkers believe that

all other uninformed agents are PET. Given this misspecified model of the world, they use

the following mapping to extract information from prices:

PMis2 = τs

τs + τ0 −
(

1−φ
φ

)2
τ0

s̃2 +

1− τs

τs + τ0 −
(

1−φ
φ

)2
τ0

 (µ0 − AZτ−1
0 ), (B.13)

which yields the extracted signal by 3−level agents as:

s̃2 =
τs + τ0 −

(
1−φ
φ

)2
τ0

τs
PMis2 −

τs + τ0 −
(

1−φ
φ

)2
τ0

τ0 −
(

1−φ
φ

)2
τ0

(µ0 − AZτ−1
0 ) (B.14)

Therefore, to keep with notation from section B.1, let γ2 = τs

τs+τ0−( 1−φ
φ )2

τ0
.48

True Model of the World. Given that a fraction φ of agents are I and trade on s, a

fraction (φ′ − φ) of agents are PET and trade on s̃1, and a fraction (1 − φ′) of agents are

3−level tinkers and trade on s̃2, we get the following true price function:

P True = φτs
τs + τ0

s+ (φ′ − φ)τs
τs + τ0

s̃1 + (1− φ′)τs
τs + τ0

s̃2 + τ0

τs + τ0
(µ0 − AZτ−1

0 ) (B.15)

Therefore, to keep with notation from section B.1, let α := φτs
τs+τ0

, β1 := (φ′−φ)τs
τs+τ0

, β2 :=
(1−φ′)τs
τs+τ0

and δ := τ0
τs+τ0

(µ0 − AZτ−1
0 ) = (1− α− β1 − β2)(µ0 − AZτ−1

0 ).49

48We assume that the parameters are such that the PET equilibrium would be stable, such that γ3 > 0.
49Notice that PET, 3−level thinking are nested in this price function:

− PET when φ′ = 1: all uninformed agents are PET;

− 3−level when φ′ = φ: as all uninformed agents are 3−level thinkers.
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Equilibrium Price and Extracted Signals. Given the misspecified and true models

of the world in equations (B.12), (B.14) and (B.15), we obtain the equilibrium price and

extracted signals by setting P = P True = PMis2 = PMis3, and solving these three equations

in three unknowns. This is a direct application of our general theory, and thus the equilibrium

price and extracted signals are given by equations (B.6) and (B.7), with N = 2, n = 1 being

PET agents, n = 2 being K3 agents, and with α, β1, β2, γ1 and γ2 as described above.

P = γ∗s+ (1− γ∗)
(
(µ0 − (AZτ−1

0 ))
)

(B.16)

s̃1 = s+ γ∗ − γ1

γ1

(
(s− (µ0 − AZτ−1

0 ))
)

(B.17)

s̃2 = s+ γ∗ − γ2

γ2

(
(s− (µ0 − AZτ−1

0 ))
)

(B.18)

where:

γ∗ = τs

τs + τ0 −
(

1−φ
φ2

) (
(φ′ − φ)− (1− φ′)

(
1−φ
φ

))
τ0

(B.19)

Properties of Equilibrium Outcomes. We can refer to the propositions in Section B.1

to understand the properties of equilibrium outcomes.

First, at the individual level, we see that 3−level agents always underreact:

∂s̃2

∂s
< 1 (B.20)

Proof. From (B.18). we see that 3−level agents underreact if and only if:

γ2 > γ∗ (B.21)

⇐⇒ τs

τs + τ0 −
(

1−φ
φ

)2
τ0

>
τs

τs + τ0 −
(

1−φ
φ

)2
τ0 −

(
1−φ
φ2

) (
−(1− φ) + (φ′ − φ)− (1− φ′)

(
1−φ
φ

))
τ0

(B.22)

65



By comparing the denominators, it is clear that this hold iff:

⇐⇒ (1− φ′)
φ

> 0 (B.23)

which is indeed always the case.

Intuitively, K3 agents are right about PET agents, and instead are wrong about other

K3 agents. Specifically, they think that other K3 agents are PET and have a higher sensi-

tivity than their true one. Therefore, K3 agents over-estimate the aggregate sensitivity, and

underreact.

Whether PET agents over- or under-react depends on whether the fraction of K3 agents

is large enough relative to the fraction of I agents:

∂s̃1

∂s
> 1 ⇐⇒ φ > 1− φ′. (B.24)

Proof. Using the result in Proposition 14, PET agents over-react if and only if:

γ1 < γ∗ (B.25)

τs

τs + τ0 +
(

1−φ
φ

)
τ0
<

τs

τs + τ0 +
(

1−φ
φ

)
τ0 −

(
1−φ
φ2

) (
φ+ (φ′ − φ)− (1−φ)(1−φ)

φ

)
τ0

(B.26)

⇐⇒ φ > 1− φ′ (B.27)

Intuitively, recall that we argued that K3 agents always underreact. If there are enough

of these agents, and φ < (1 − φ′), then the equilibrium sensitivity may be even lower than

the cursed sensitivity.50 When this is the case, PET agents under-estimate the extent of

under-reaction in the economy. This leads them to believe that the equilibrium price is more

responsive to news than it really is, which results in them extracting more extreme signals

50In Proposition 9 we showed that in a world were all uninformed agents are the same type of K− level
thinker, the extent of under-reaction with 3−level thinking can be greater than the extent of under-reaction
with CE agents when φ < (1 − φ) ⇐⇒ φ < 1/2. This condition becomes harder to satisfy when there are
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than in reality and overreacting.

At the aggregate level, whether there is over- or under-reaction depends on the composi-

tion of agents: the equilibrium price exhibits over-reaction only if the fraction of PET agents

is high enough relative to the fraction of 3−level agents.

Proof. Using the result in Proposition 15, the equilibrium price exhibits over-reaction if and

only if: (
β1

β1 + β2

)
1
γ1

+
(

β2

β1 + β2

)
1
γ2

> α + β1 + β2 (B.29)

which simplifies to:

(φ′ − φ) > (1− φ′)
(

1− φ
φ

)
⇐⇒ (φ′ − φ)(φ− (1− φ′)) > (1− φ′)2 (B.30)

where the last inequality uses the fact that (1− φ) = (1− φ′)− (φ′ − φ).

Notice that if φ < (1 − φ′), then we know from (B.24) that PET agents underreact.

Therefore, in this case both K3 and PET agents underreact, and there is under-reaction in

equilibrium. When instead φ > (1− φ′), PET agents overreact, and K3 agents underreact.

In this case, equilibrium outcomes exhibit over-reaction if there are enough PET agents

(φ′ − φ) overreacting relative to K3 agents (1− φ′) underreacting.

Welfare. Another question we can address with this is example is whether agents always

benefit from having higher levels of rational higher order beliefs. Specifically, our example is

populated with 2−level and 3−level thinkers. In what follows we show that 3−level thinkers

are not always better off, despite having more rational higher order beliefs.

PET agents as well as 3−level thinkers populating the economy as:

τs

τs + τ0 +
(

1−φ
φ

)3
τ0︸ ︷︷ ︸

γAll 3K

<
τs

τs + τ0 +
(

1−φ
φ

)3
τ0 −

(
1−φ
φ3

)
(φ′ − φ)︸ ︷︷ ︸

γ∗

(B.28)

Clearly, the more PET agents there are, (φ′ − φ) > 0, the less likely that γCE = τs
τs+τ0+( 1−φ

φ )τ0
> γ∗, so

the less likely that PET agents underreact. Specifically φ < 1/2 isn’t enough to ensure that γ∗ < γCE , and
this is reflected in the fact that for PET agents to underreact in (B.24), we need even fewer informed agents
φ < φ < 1/2.
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To address the question about welfare, we ought to refer back to agents’ objective func-

tion. Agents’ realized utility is maximized when they are able to best forecast the fundamen-

tal value, on average. Therefore, since the signal I agents receive is unbiased, uninformed

agents’ utility is maximized, on average, when they are able to correctly infer this signal from

prices. In other words, the smaller the discrepancy |s̃i − s|, the greater agent i’s welfare.

Computing these quantities for i ∈ {1, 2}, we have that:

|s̃1 − s| =

∣∣∣∣∣∣
(

1−φ
φ2

) (
−1−φ′

φ
+ 1

)
τ0

τs + τ0 −
(

1−φ
φ2

) (
(φ′ − φ)− (1− φ′)

(
1−φ
φ

))
τ0

(s− µ0 + AZσ2
0)

∣∣∣∣∣∣ (B.31)

|s̃2 − s| =

∣∣∣∣∣∣
(

1−φ
φ2

) (
−1−φ′

φ

)
τ0

τs + τ0 −
(

1−φ
φ2

) (
(φ′ − φ)− (1− φ′)

(
1−φ
φ

))
τ0

(s− µ0 + AZσ2
0)

∣∣∣∣∣∣ (B.32)

By comparing the numerators of these expressions, we see that PET agents can be better

off than K3 agents if:

|s̃1 − s| < |s̃2 − s| ⇐⇒

∣∣∣∣∣∣− 1− φ′
φ

+ 1

∣∣∣∣∣∣ <
∣∣∣∣∣∣− 1− φ′

φ

∣∣∣∣∣∣ (B.33)

⇐⇒ |φ− (1− φ′)| < |1− φ′| (B.34)

⇐⇒ φ < 2(1− φ′) (B.35)

which shows that PET (K2) agents are better off than K3 agents if there are enough K3

agents relative to I agents. Intuitively, increasing the fraction of K3 agents, increases indi-

vidual level under-reaction by K3 agents, and decreases individual level over-reaction (which

may even turn into under-reaction) by PET agents.

More generally, an agent has higher welfare when their model of the world is closest to

the true model of the world, and having higher levels of rational higher order beliefs does

not guarantee this, and may in fact be detrimental.
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C Expected and Realized Volume

In this section we consider whether volume realized in the PET equilibrium is consistent with

the amount of volume PET agents expect given their misspecified model of the world. In

other words, would PET agents realize that they are making a mistake by observing trading

volume?

To answer this question, we first need to compute the volume PET agents expect in

equilibrium given their misspecified model of the world. Since they believe i) that they live

in a CE world and ii) that the signal is s̃, we can obtain PET expected volume by simply

evaluating V CE(s̃). Starting from the definition of trading volume in (A.26), we can write

PET realized and expected volume as follows:51

V PET = 2φ(1− φ)
A(τs + τ0)−1

∣∣∣∣∣∣ τs
τs + τ0

(s̃− s)

∣∣∣∣∣∣ (C.1)

E[V PET ] = 2φ(1− φ)
A (φ(τs + τ0)−1 + (1− φ)(τ0)−1)

∣∣∣∣∣∣ τs
τs + τ0

(
s̃− (µ0 − AZτ−1

0 )
) ∣∣∣∣∣∣ (C.2)

These expressions make clear that realized and expected volume may differ via two com-

peting channels. First, by focusing on the denominator of the first term in both expressions,

we see that PET agents think that the aggregate risk-baring capacity is lower than in real-

ity.52 This leads them to expect lower trading volume in equilibrium, as they think agents

are trading less aggressively than they really are. Second, comparing the terms inside the

absolute value operators, we see that PET agents expect greater belief dispersion. This

channel leads them to expect higher trading volume in equilibrium.

Figure 10 shows how realized and expected PET volume vary with the fraction of informed

agents, φ. The two channels described above balance out for φ = 1/2. When this is the

case, even by looking at trading volume, uninformed agents would not realize their mistake.

Instead, when φ > 1/2, the second channel dominates and PET agents expect higher volume

than what is realized. Conversely, when φ < 1/2, PET agents under-estimate the amount of
51The expression for realized volume is less simplified than that in (A.28), so as to make the comparison

with expected volume more explicit.
52PET agents think that a fraction (1− φ) of agents are trading on their prior alone, and therefore with

lower precision.
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trading volume.

Figure 10: Comparing PET Expected Volume by Uninformed Agents and PET Realized
Volume. This Figure plots Expected Volume by PET agents (dashed line) and realized PET volume (full
line) for different values of φ when the equilibrium is stable and (21) is satisfied, and for a fixed true signal,
at s = µ0. Realized PET volume is the PET equilibrium trading volume, while the expected volume by PET
agents is obtained by evaluating the CE equilibrium trading volume at s = s̃.
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Therefore, when φ 6= 1
2 , if agents were to learn about both φ and s from prices and

volume, they would learn the correct model of the world. However, notice that our model

is attentionally stable, as in Gagnon-Bartsch et al. (2020). Since prices are fully revealing,

agents have no reason to pay attention to volume: according to their (misspecified) model

of the world, volume should not convey any additional information. Therefore, agents need

not realize that their model of the world is misspecified.

D Misinference from Assuming the World is Rational

In this section we illustrate a specific example where we consider the implications of mis-

inference in models of wrong Bayesian updating. As explained in Section 4.1, inferring the

correct information from prices when wrong Bayesian updating is pervasive implies that

agents must fully understand other agents’ mistakes, while failing to recognize those same

mistakes in themselves. For example, consider agents who have diagnostic expectations, as

in Bordalo et al. (2018). For these agents to correctly infer information from endogenous

outcomes, they must fully understand that all other agents are diagnostic. If instead agents
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fail to recognize their same (to them unknown) mistake in others, then agents infer informa-

tion as if they lived in a rational world, and this leads to misinference. The same is true of

setups with overconfidence, as in Odean (1998), or if some agents are inattentive.

To study the implications of this type of misinference, consider a setup similar to our

benchmark framework, but assume instead that the misspecified and true price functions are

given by:

PMis(s̃) = τs
τs + τ0

s̃+ τ0

τs + τ0

(
µ0 − AZτ−1

0

)
(D.1)

P True(s, s̃) = φτ̃s
τ̃s + τ0

s+ (1− φ)τ̃s
τ̃s + τ0

s̃+ τ0

τ̃s + τ0

(
µ0 − AZτ−1

0

)
(D.2)

where τ̃s 6= τs. For example, when τ̃s > τs, this true price function corresponds to the case

where both I and U agents trade using a precision that is too high relative to the true

precision of the signal, as would arise if agents were diagnostic or if they were over-confident

about the precision of new information.

The dotted line in Figure 7 depicts this scenario. In this case α̂ + β̂ = τ̃s
τ̃s+τ0

, and

changes in α̂ + β̂ along the x−axis come from varying τ̃s. Here we provide an example of

how combining wrong Bayesian updating with misinference can be so detrimental so as to

give rise to instability, something which could not arise if we had wrong Bayesian updating

alone. Specifically, an immediate application of Proposition 10 tells us that the equilibrium

is unstable if and only if:
τs

τs + τ0
<

(1− φ)τ̃s
τ̃s + τ0

. (D.3)

When (1− φ)τ0 − φτs > 0, this condition reduces to:

τ̃s
τs
>

τ0

(1− φ)τ0 − φτs
(D.4)

Therefore, for a high enough τ̃s, misinference due to the fact that agents believe in a

rational world when it is not, can indeed lead to instability. This is shown on the part of the

light dotted line in Figure 7 which is in the shaded unstable region.

The intuition behind this example is as follows. Since uninformed agents fail to realize

that everyone is over-reacting in the form of τ̃s > τs, they extract information from prices

using a misspecified model of the world that is less responsive to new information than the
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true model of the world. This leads them to extract a signal which is more extreme than in

reality. Having extracted this extreme signal, uninformed agents then over-react themselves,

leading to even further mispricing. Finally, notice that while informed agents are using the

correct signal so in a way their over-reaction contributes to stabilizing the equilibrium, their

over-reaction also worsens uninformed agents’ misinference.

Finally, notice that incorrect bayesian updating can occur along two dimensions: α̂ 6= α

and β̂ 6= β, so that there really are two degrees of freedom in determining α̂+ β̂. In Figure 7

we specified a particular way of varying α̂+β̂: in the example considered above, all agents are

over-confident and varying τ̃s changes both α̂ and β̂, so that α̂+ β̂ = φτ̃s
τ̃s+τ0

+ (1−φ)τ̃s
τ̃s+τ0

= τ̃s
τ̃s+τ0

.

However, α̂ and β̂ need not be linked in this specific way. For example, in Figure 11 we

perform a similar exercise, with a different type of variation in α̂+ β̂: the left panel fixes α̂,

so that all variations in α̂ + β̂ come from changes in β̂, and the right panel fixes β̂, so that

all variations in α̂ + β̂ come from changes in α̂.53

Figure 11: Instability, Under- and Over-reaction regions with General Model Misspecifica-
tion. In the left panel we fix the parameter α̂ to its rational value α, and let β̂ vary. In the right panel β̂ is
kept fixed at β and α̂ varies.

+

+

+

+

53In general, α̂ and β̂ are likely to be linked. For example, if informed agents were rational and only
uninformed agents were over-confident, this would still lead to α̂ 6= α, as both α̂ and β̂ are scaled by the
average precision across agents. Therefore, fixing α̂ and letting β̂ vary does not necessarily amount to fixing
the bias of I agents and letting the bias of U agents vary. We show these cases for completeness and for
intuition.
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E Partially Revealing Prices

This section generalizes PET to environments where prices are only partially revealing. This

serves two purposes. First, it verifies that the insights we uncovered are robust to small

variations in the information structure. Second, it allows us to expand our setup to a

symmetric case where all agents receive a private signal, as shown in Appendix F.54

To do so, we model the supply of the risky asset as being stochastic, for example because

of the presence of noise traders. Therefore, the supply shock z is now drawn from a normal

distribution, z ∼ N(z̄, τ−1
z ). All other assumptions are the same as in our baseline framework.

To construct their demand functions, informed traders need to compute the distribution

of v|s (using simple Bayesian updating as we did throughout the main text), while uninformed

traders need to compute the distribution of (v, s, z)|P . Moreover, uninformed traders still

think that they lived in a cursed world. Using the same notation as in Section 4.1, we can

write uninformed agents’ misspecified model as:

PMis = γs̃+ (1− γ)(µ0 − Azτ−1
0 ), (E.1)

Uninformed traders cannot observe z, but they can use standard Bayesian updating

to extract the maximum-likelihood signal. Following Diamond and Verrecchia (1981), we

first write down the distribution of the information structure of the uninformed agents,

(v, s, z, PMis) ∼ N(m,M), which is multivariate normal with meanm and variance-covariance

matrix M , where:55

m = (µ0, µ0, z̄, µ0 − (1− γ)Az̄τ−1
0 )T+ (E.2)

54It also allows us to circumvent the Grossman-Stiglitz paradox. In a setup with fully revealing prices,
no agent would have an incentive to pay to acquire information, since all information can be inferred freely
from prices. This is not the case anymore with partially revealing prices, which can rationalize why only a
fraction φ of agents acquire information and are thus informed.

55Note that:
V ar(PMis) = γ2(τ−1

0 + τ−1
s ) + (1− γ)2τ−1

z .

While the covariances are given by:
Cov(PMis, v) = γτ−1

0 ,

Cov(PMis, s) = γ(τ−1
0 + τ−1

s ),

Cov(PMis, z) = (1− γ)τ−1
z .
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M =



τ−1
0 τ−1

0 0 γτ−1
0

τ−1
0 τ−1

0 + τ−1
s 0 γ(τ−1

0 + τ−1
s )

0 0 τ−1
z (1− γ)τ−1

z

γτ−1
0 γ(τ−1

0 + τ−1
s ) (1− γ)τ−1

z γ2(τ−1
0 + τ−1

s ) + (1− γ)2τ−1
z


=

 M11 M12

M21 M22

 ,

(E.3)

where M11 is 3 × 3 (making the distinction between what is in the information set of the

agent and what is not). Similarly, let m = (m1,m2), with m1 being 3× 1.

Then (v, s, z)|P is jointly normal, with mean m∗, and covariance matrix M∗, where:

m∗ = m1 +M12M
−1
22 (P −m2) (E.4)

M∗ = M11 −M12M
−1
22 M21. (E.5)

The first element in m∗ and in M∗ characterize uninformed agents’ belief about the funda-

mental value of the asset, given their mapping: We can then write uninformed agents beliefs

as follows:

E[v|IU ] = µ0 +
τs/γ

τ0 + τs +
(

1−γ
γ

)2
τ0τs
τz

(P − µ0 + (1− γ)Az̄τ−1
0 ) (E.6)

= µ0 + g

γ
(P − µ0 + (1− γ)Az̄τ−1

0 ) (E.7)

Var[v|IU ] = τ−1
0 −

τsτ
−1
0

τ0 + τs +
(

1−γ
γ

)2
τ0τs
τz

= τ−1
0 (1− g) (E.8)

where g is the Kalman gain:56

g = τs

τ0 + τs +
(

1−γ
γ

)2
τ0τs
τz

(E.9)

56When τz =∞, we recover the Kalman gain with fixed supply: τs/(τ0 + τs).
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Putting the above components together, U agents’ demand function is given by:57

XU =
µ0 + g

γ

(
P − µ0 + (1− γ)Az̄τ−1

0

)
− P

Aτ−1
0 (1− g)

. (E.10)

Moreover, I agents’ demand function is simply given by:

XI =
µ0 + τs

τs+τ0
(s− µ0)− P

A(τs + τ0)−1 (E.11)

As in our baseline case, the equilibrium price must solve the following market clearing

condition, z = φXI + (1− φ)XU :

z = φ

(
µ0 + τs

τs+τ0
(s− µ0)− P

A(τs + τ0)−1

)
+ (1−φ)

µ0 + g
γ

(
P − µ0 + (1− γ)Az̄τ−1

0

)
− P

Aτ−1
0 (1− g)

 (E.12)

Before solving for the equilibrium price, notice that, just as in Section 1.1, prices still play

a dual role: their informational role gives rise to strategic complementarities, while their

scarcity role gives rise to strategic substitutabilities. The interaction of these two forces

determines whether the equilibrium is stable, as is clear from the excess demand function:

XTOT − z = 1
A

 (1− φ)g
τ−1

0 (1− g)
1
γ︸ ︷︷ ︸

information role

− φ

(τ0 + τs)−1 −
(1− φ)

τ−1
0 (1− g)︸ ︷︷ ︸

scarcity role

P + constants (E.13)

As in Section 1.2, the complementarities introduced by the informational role of prices give

rise to a two-way feedback effect between outcomes and beliefs. The strength of this feedback

effect is now given by:

strength of feedback effect = (1− φ)g
τ−1

0 (1− g)
1
γ
, (E.14)

and this is increasing in the influence that uninformed agents have on prices
(

(1−φ)g
τ−1

0 (1−g)

)
,

57The algebra is less straightforward than in our baseline case, because PET agents are now using a lower
precision than informed agents: their inference is weakened by the noisy supply.
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and decreasing in the sensitivity of the misspecified mapping γ.58 When this feedback effect

is strong enough, the aggregate excess demand function becomes upward sloping and the

equilibrium unstable, just as we saw in Proposition 10. In particular, (E.13) shows that the

equilibrium is stable if and only if:

φ

(τ0 + τs)−1 + (1− φ)
τ−1

0 (1− g)
>

(1− φ)g
τ−1

0 (1− g)γ
(E.15)

We can now solve for the equilibrium price:

P =
φτ0 + (1−φ)(1− g

γ )
τ−1

0 (1−g)
φ

(τ0+τs)−1 + (1−φ)
τ−1

0 (1−g) −
(1−φ)g
τ−1

0 (1−g)
1
γ

µ0 + φτs
φ

(τ0+τs)−1 + (1−φ)
τ−1

0 (1−g) −
(1−φ)g
τ−1

0 (1−g)
1
γ

s

+
(1−φ)g(1−γ)

(1−g)γ
φ

(τ0+τs)−1 + (1−φ)
τ−1

0 (1−g) −
(1−φ)g
τ−1

0 (1−g)
1
γ

Az̄ − 1
φ

(τ0+τs)−1 + (1−φ)
τ−1

0 (1−g) −
(1−φ)g
τ−1

0 (1−g)
1
γ

Az (E.16)

In Figure 12, we plot this price function against the signal informed agents receive,

s, together with the equilibrium price function of the CE and REE in this setup. Our

benchmark results are preserved: PET features over-reaction, and lies outside the convex

set of the CE and REE prices. As in Section 3, we can extend this argument to allow for

K−level thinking. Figure 12 plots the equilibrium price for 3−level thinking and we see that

this once again delivers under-reaction. Overall results are qualitatively and quantitatively

similar to our fully revealing benchmark. For the sake of clarity, and for ease of exposition,

we focus on the fully revealing case in the main text.

Finally, notice how in this particular setup the PET equilibrium concept is much easier

to solve than the REE. Indeed, to solve for the REE one needs to postulate a price function,

use Bayesian updating to find uninformed agents’ demands conditional on the price function,

and then work through market clearing to obtain the equilibrium price function. After this,

58Notice that increasing g has two effects: first, it reduces the conditional variance of uninformed agents,
which makes them less risk averse, and this effect strengthens both the scarcity role and the informational
role of prices in equal proportions. Second, it increases the weight that uninformed agents put on prices
when performing Bayesian updating, and this increases the strength of the informational role. Therefore,
the net effect of an increase in g is to strengthen the informational role relative to the scarcity role, and this
contributed to instability. Moreover, as in Section 1.2, the strength of the feedback effect is decreasing in γ,
so that the insights we uncovered in the fully revealing case are preserved.
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Figure 12: Comparing Equilibrium Prices as we allow for rationality of Higher Order Beliefs
in the Partially Revealing Case. This Figure plots the equilibrium prices which arise for different levels
of K−thinking as we vary the value of the true signal, s. The CE is 1−level thinking, PET is 2−level
thinking, and REE is ∞−level thinking. Here, φ is fixed at 0.6, τ−1

0 = 0.16, τ−1
0 = 0.12, µ0 = 1, Z̄ = 1,

τ−1
z = 0.1, and A = 2.
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agents still need to solve a fixed-point problem (that is far from trivial) where they equate the

postulated price functions to the equilibrium price function. In this respect, PET agents are

solving a much simpler problem, which requires far fewer cognitive skills than the REE.59.

F Private signals

In this section we consider an alternative setup where agents are ex-ante symmetric, and

all receive a different stochastic private signal. The price aggregates all private information,

and agents infer the information received by others by conditioning on the equilibrium price.

Specifically, there is a continuum of agents of measure 1, denoted by i ∈ [0, 1]. Supply is

stochastic as in Appendix E. Each agent i receives a signal:

si = v + εi (F.1)

with εi ∼i.i.d. N (0, τ−1
s ). By the law of large numbers, the average signal received by the

population corresponds to the period−1 payoff of the asset,
∫ 1

0 sidi = v.

The misspecified model of the world corresponds to the case where all agents trade on
59Computationally, the PET equilibrium is the first-step in solving the fixed-point process of the REE.
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their private information alone (the CE benchmark), which yields the following misspecified

price function:

PMis = γv + (1− γ)(µ0 − Azτ−1
0 ), (F.2)

with γ = τs/(τ0 + τs). All agents condition on si and P to update their prior. As previously,

we start by constructing the variance-covariance structure:

Cov(v, si) = τ−1
0 , (F.3)

Cov(PMis, si) = γτ−1
0 . (F.4)

Which gives the following covariance matrix for the triplet (v, si, P ):

M =


τ−1

0 τ−1
0 γτ−1

0

τ−1
0 τ−1

0 + τ−1
s γτ−1

0

γτ−1
0 γτ−1

0 γ2τ−1
0 + (1− γ)2τ−1

z

 . (F.5)

We now need to define two Kalman gain coefficients, as all agents condition both on the

price and on the private signal they receive:

gs = (1− γ)2τs
γ2τz + (1− γ)2(τ0 + τs)

, (F.6)

gv = γ2τz
γ2τz + (1− γ)2(τ0 + τs)

. (F.7)

Therefore, agent’s posterior beliefs of the fundamental value of the asset are normal, and

characterized by the following posterior mean and variance:

E[v|si, P ] = µ0 + gs(si − µ0) + gv

(
P − µ0 − (1− γ)Az̄τ−1

0
γ

)
(F.8)

V ar[v|si, P ] = τ−1
0 (1− gs − gv). (F.9)
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Individual i’s demand function is then given by:

Xi =
µ0 + gs(si − µ0) + gv

(
P−µ0+(1−γ)Az̄τ−1

0
γ

)
− P

Aτ−1
0 (1− gs − gv)

. (F.10)

We can now impose market clearing and use the law of large numbers to aggregate private

signals. This leads to the following equilibrium price expression:

P = 1− gs − gv/γ
1− gv

γ

µ0 + gs
1− gv

γ

v − (1− gs − gv)
1− gv

γ

Azτ−1
0 −

gv
1−γ
γ

1− gv
γ

Az̄τ−1
0 (F.11)

Figure 13 displays how the equilibrium price varies with the value of the fundamental.

The results are qualitatively and quantitatively similar to our baseline framework.

Figure 13: Comparing Equilibrium Prices with Symmetric Private Signals. This Figure plots
the equilibrium prices as we vary the value of the fundamental realization, v. Here, τ−1

0 = 0.16, τ−1
s = 0.32,

and τ−1
z = 0.95 so that the condition which guarantees that the equilibrium PET price is stable is satisfied.
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Notice how the price sensitivity to the fundamental realization in (F.11) has exactly the

same form as the sensitivity of the price to new information in the general case with model

misspecification in (38). With private signals, the feedback effect between outcomes and

beliefs is now represented by the ratio gv/γ, since gv pertains to how agents incorporate into

prices the information they get by learning from prices – the exact counterpart of β̂ in our

main framework. As such, all the insights we uncovered in the main text remain valid here.

We conclude with a remark on how the volatility of supply relates to the stability of the
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equilibrium.

Corollary 2. In this setup with symmetric agents and stochastic supply, the equilibrium is

stable, and the price is increasing in the fundamental, if and only if:

γ > gv ⇐⇒ τz <
τ 2

0
τs

(F.12)

In other words, once we allow for a symmetric information structure, the stochastic supply

needs to be volatile enough for the equilibrium to be stable. Intuitively, when prices are close

to fully revealing, the signal agents can recover from prices is infinitely more informative

than their own private signal. Therefore, in this extreme case, agents do not use their own

signal in their demand function. However, if all agents act in this way, no private signal is

incorporated into prices, and the resulting price becomes completely uninformative. Since

PET agents fail to realize that all other agents are also learning from prices (and therefore

that they are not incorporating their own private signal in them), they treat the price as

informative even when it is not, and this contributes to unstable outcomes.
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