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Abstract

We estimate a model of high school students’ college choices, allowing for rich heterogeneity

in students’ preferences for college attributes. We use data on students’ enrollment decisions and

application decisions—i.e., the sets of colleges to which they applied—to identify the distribution

of students’ preferences. We use our estimates to quantify differences in a student’s expected

value upon college application that result from the uneven spatial distribution of colleges. As

with other aspects of economic opportunity, we find that place matters: students with otherwise

identical characteristics can have very different expected values depending on where they live.

The importance of location reflects differences across states as well as differences across counties

within a state. For students with low parental incomes and low SAT scores, over 70% of the

variation is within-state across counties, while for students with high parental incomes and high

SAT scores, 66% of the variation is across states.
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1 Introduction

Some of young adults’ most consequential decisions are about whether and where to attend college.

The weight of these choices reflects both the importance of college as an economic investment, since

the choice of college can substantially influence both near-term costs and lifetime earnings,1 and the

fact that college is also an expensive consumption good, since a student’s enjoyment of the multi-

year college experience depends on the match of college attributes to her preferences. However, the

uneven spatial distribution of colleges in the United States means that not all students are endowed

with equal access. Given that students typically face much lower in-state tuition than out-of-state

tuition, cross-state differences in the quality of public colleges directly translate to differences in

students’ ex ante expected net returns to a college education depending on which state they live

in.2 Moreover, to the extent that students prefer to attend college close to home, they face unequal

access to colleges even within a state.

Table 1 shows the relevance of both types of spatial dispersion faced by college-bound students

surveyed in the Educational Longitudinal Study 2002.3 The first row shows the cross-student

distribution of the quality of one’s home state’s flagship college, as proxied by the median SAT score

of admitted freshmen.4 At the lower end, 5% of the students are from states where the flagship

colleges have a median SAT score of 1080 or lower; at the upper end, 5% are from states where

the flagship colleges have a median SAT score of 1325 or more. The remaining rows summarize the

cross-student distribution of the number of four-year colleges within a 250 kilometer radius of the

student’s home. Some students have over 200 colleges nearby, including over 50 high-SAT colleges;

some have fewer than 10 colleges nearby, with none of them being high-SAT colleges.

However, whether the heterogeneity described in Table 1 should cause concerns about “education

deserts” depends on students’ preferences, as would policies aimed at addressing such concerns. For

example, if students care little about distance, then it will not matter that students from Wyoming

have to travel greater distances from home to attend college. Similarly, if students do not have

strong attachment to their home states, then cross-state differences in the quality of public colleges

could be mitigated via tuition subsidies that offset the out-of-state vs. in-state tuition difference

for students who attend high-quality out-of-state public colleges.5 However, if students do care

about proximity, and to different degrees, then such subsidies will do little to level the playing

1See, for example, Brewer, Eide, and Ehrenberg (1999) and Black and Smith (2006).
2Another major source of inequality, one that has been the focus of a large literature, is credit constraints. See

Monge-Naranjo and Lochner (2012) for a review.
3We classify as “college-bound” any student who applied to at least one four-year college.
4Our data report the 25th and 75th percentiles of SAT scores, but not the 50th. We compute the average of the

25th and 75th percentiles and refer to it as the median for expositional simplicity.
5This statement is made in a partial equilibrium (individual optimality) sense. Large-scale policies such as cross-

state reciprocal tuition agreements can serve a similar purpose, but likely stimulate general equilibrium responses.
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Table 1: Heterogeneity in college access

Percentiles
5 25 50 75 95

Median SAT of home state’s flagship collegea 1080 1160 1195 1260 1325
# colleges within 250kmb 6 24 54 93 210
# private colleges within 250km 3 14 36 70 148
# public colleges within 250km 3 11 18 27 63
# top-quartile-SAT colleges within 250km 0 6 16 26 56
aThe average of the 25th and 75th percentiles of SAT scores of the college reported in IPEDS.
b250km radius around the centroid of one’s home zip code.

SOURCES: U.S. Department of Education, National Center for Education Statistics, Educational
Longitudinal Study (ELS) 2002 and Integrated Postsecondary Education Data System (IPEDS) 2004.

field for students whose willingness to pay to stay in their home states exceeds the out-of-state

vs. in-state tuition difference; instead, these subsidies will disproportionately benefit students who

value college quality over proximity. Moreover, if the latter group tend to have more advantaged

family backgrounds, these subsidies will be regressive in nature, leading to serious equity concerns.

More generally, the efficiency and equity implications of education policies clearly depend on the

distribution of student preferences for various college attributes.

This paper aims at recovering a richer characterization of students’ preferences for college attributes

by incorporating information about the sets of colleges to which they applied, which we will refer

to as students’ application sets.6 The essential idea is that when we observe the set of colleges a

student applied to, the strength of her preference for a given attribute is reflected in the similarity

of that attribute across colleges in that set. For example, conditional on observables, a student who

applies only to colleges near her home may have very different preferences than her counterpart

who applies only to academically competitive colleges: the former appears to care mostly about

geographic proximity while the latter mostly about academic quality. Intuitively, recovering the

distribution of preferences is then based on observing the fractions of students who appear to care

a lot about the given characteristic.

Our model of student preferences follows the approach that is common in Industrial Organization

studies of differentiated product markets, casting student utility as a function of college character-

istics. Heterogeneity in preferences is incorporated by allowing student-specific coefficients on those

characteristics. Application sets are most informative about students’ preferences—i.e., their vec-

tors of coefficients for college characteristics—if we fully utilize comparisons of all colleges included

and excluded from these sets. Given the large number of colleges to choose from (and hence combi-

6Some studies have attempted to quantify which factors are influential in students’ college choice decisions (e.g.,
Manski and Wise 1983, Avery and Hoxby 2004, Long 2004, Dillon and Smith 2017); while another set of studies has
focused specifically on the impact of tuition or financial aid on college choices (e.g., Curs and Singell 2000, Dynarski
2003, Avery and Hoxby 2004, Kane 2007 and Deming and Walters 2018).
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natorially large number of possible application sets), empirically modeling the optimal application

decision becomes a daunting task. However, there are useful properties that the optimal set must

obey,7 which we utilize in our empirical approach: we derive necessary conditions for optimality of

students’ observed application sets, and base our estimator on these conditions.

We estimate our model with data from the Educational Longitudinal Study (ELS) 2002, the Na-

tional Postsecondary Student Aid Study (NPSAS), and the Integrated Postsecondary Education

Data System (IPEDS). The ELS data provide information on application sets, admission and enroll-

ment outcomes, and binary indicators of whether financial aid was received at each of the colleges to

which a student was admitted. We supplement ELS with more detailed information from NPSAS

about financial aid amounts. The IPEDS data provide information on college attributes.

We use our estimates of students’ preferences to answer two questions about college choices. First,

we quantify the implications of the uneven spatial distribution of colleges for student welfare.

Following in the spirit of Chetty et al (2014) and several other recent papers that have emphasized

the geography of opportunity,8 we use our estimates to calculate ex ante welfare for the same

student were she to live in different counties across the U.S. We find that geographic variation in

student welfare is considerable; that the variation is more pronounced for high-SAT students; and

that the geographic patterns are quite different for high-SAT students vs. low-SAT students. For

example, we find that across U.S. counties the interquartile range of the ex ante expected utility for

an average high-SAT, low-income college-bound student is over 2,500 tuition dollars, compared to

about 1,700 tuition dollars for her low-SAT, low-income counterpart. There is important variation

both across states and across counties within a state: for low-SAT low-income students, over 70%

the variation is within-state across counties, while for high-SAT high-income students, 66% of the

variation is across states. We discuss the broader implications of these findings in our concluding

section.

Second, we predict the substitution patterns that would result if a student were to face out-of-state

tuition rates in all states. Peltzman (1973) argues that subsidies in the form of lower tuition for

in-state students can perversely lead to a reduction in education—the idea being that inexpensive

public colleges may attract students who otherwise would have attended costlier but higher-quality

colleges. As a preliminary, partial-equilibrium investigation of such a hypothesis, we use our esti-

mated model to simulate the choices of students if they had to pay the out-of-state tuition at their

home-state public colleges. We find that while high-income students with high SAT scores would

enroll in colleges with higher SAT scores on average, across all students the average quality of the

7See Chade and Smith (2006) for a theoretical analysis.
8See, for example, Abbott and Gallipoli (2017); Corak (2019); Berger (2018); Berger and Engzell (2019); and the

follow-up paper by Chetty and Hendren (2018).

4



chosen college goes down, largely because many students simply switch to lower quality in-state

universities that charge lower out-of-state tuition than their higher-quality counterparts. Our find-

ings suggest that based on substitution effects alone, increasing in-state tuition would have a very

limited effect in pushing students toward higher quality institutions.

Our paper contributes to the broad literature on the economics of higher education, especially

the branch that studies the college market through the lens of structural models. For instance,

Arcidiacono (2005) and Howell (2010) estimate structural models of students’ choices and use them

to address questions about affirmative action policies. Epple, Romano and Sieg (2006), Fu (2014),

Bodoh-Creed and Hickman (2018), Fillmore (2018), and Cook (2019) estimate equilibrium models

of the college market in which both students and colleges make strategic decisions.

The geography of college opportunity has been analyzed in the sociology literature, where re-

searchers such as Turley (2009) and Hillman (2016) have documented geographic disparities in

college availability. These studies emphasize that most students choose colleges in close proximity

to their homes, and the number of nearby colleges varies considerably depending on where a student

lives. Moreover, this variation is correlated with race and socioeconomic status, with minorities

and lower-income students having fewer nearby colleges on average. Hillman (2016) contemplates

whether some locations should be described as education deserts. Our estimated model allows us

to quantify such geographic disparities not just in terms of proximity but also incorporating other

college characteristics that students value.

Our estimation method, which exploits necessary conditions for optimality of students’ application

sets, is similar to approaches other authors have used in the IO literature. For example, Ellickson,

Houghton, and Timmins (2013) use profit inequality conditions to estimate the strength of network

economies for retail chains like Walmart and Target. As in our application, it would be infeasible

to characterize the exact optimal choice of where these chains should locate their stores; but

estimation can be based on necessary conditions for the optimality of those choices. Our use of

data on application sets is somewhat similar to the use of survey data by Avery, Glickman, Hoxby,

and Metrick (2013) to construct a revealed preference ranking of U.S. universities. They surveyed

high school seniors to determine the set of colleges to which each student was admitted, as well

as the single college the student chose to enroll in. Knowing the admissions set enables them

to characterize each student’s chosen university as the winner of a small tournament, and their

overall ranking of colleges is essentially an aggregation of the preference rankings implied by these

tournaments.
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2 Data

We analyze a sample of college applicants from the Educational Longitudinal Study (ELS) 2002

run by the National Center for Education Statistics (NCES). The ELS 2002 surveyed a nationally

representative sample of students as 10th graders in 2002 and as 12th graders in 2004, and also

conducted follow-up surveys of the same students in 2006 and 2012. For our purposes, the important

survey questions are about the students’ college application and enrollment decisions: for each

student, we know which colleges they applied to, where they were admitted, whether they received

financial aid at each of the colleges to which they were admitted, and where they chose to enroll.

We limit our sample to the respondents who reported applying to college while still in high school,

which yields a sample of 7,410 students,9 whose characteristics are summarized in Table 2.

Table 2: Summary of student characteristics (N = 7, 410)

Percentiles
Mean Std. Dev. 10 50 90

High school GPA 3.12 0.58 2.30 3.19 3.84
SAT score 1,037 201 780 1,030 1,300
Family income 79,650 60,090 22,500 62,500 150,000
Female 0.55
Black 0.12
Hispanic 0.09
College-educated Parents 0.56

SOURCE: U.S. Department of Education, National Center for Education Statistics, Educational
Longitudinal Study (ELS) 2002.

Our data on college characteristics come from NCES’s Integrated Postsecondary Education Data

System (IPEDS) for the academic year 2004-2005, to match the year when the students in our

sample would have been entering college. In estimating our college choice model, we include only

colleges that offer four-year degrees, and we exclude the five U.S. service academies and colleges

whose Carnegie classification is “Special Focus Institution”.10 The resulting sample includes 1,337

four-year colleges, whose characteristics are summarized in Table 3.

The cost of attending a college includes both tuition and fees.11 For public colleges, the cost

often depends on a student’s state of residency due to differences between in-state and out-of-state

tuition. Among the 492 public universities in the data, 479 charge higher tuition for out-of-state

students than in-state students, with out-of-state tuition on average over $7,400 higher. At least

54 of these public colleges have reciprocity agreements that allow neighboring states’ students to

9This sample size is rounded to the nearest 10, at the request of the NCES.
10These are mostly seminaries/theology schools, technical colleges, and specialized medical schools.
11The tuition numbers reported in Table 3 include fees, and throughout the paper when we say or report “tuition”

we mean “tuition plus fees.”
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pay discounted tuition. However, many of the most prestigious flagship universities opt out of their

states’ reciprocity agreements. For example, UC Berkeley and the University of Michigan do not

offer in-state tuition to students from neighboring states even though other colleges in California

and Michigan do.12

Table 3: Summary of college characteristics (N = 1, 337)

Percentiles
Mean Std. Dev. 10 50 90

Tuition: Public In State 5,088 2,023 2,955 4,658 7,891
Tuition: Public Out of State 12,504 3,779 8,354 12,384 17,097
Tuition: Private 18,830 5,977 11,610 18,230 27,703
SAT of admitted students 1,065 124 930 1,050 1,225
# of freshmen 938 1,126 157 504 2,270
# of full-time undergraduates 4,205 5,334 629 2,034 10,984
Fraction women 0.58 0.13 0.47 0.57 0.71
Fraction Black 0.12 0.19 0.01 0.06 0.24
Fraction Hispanic 0.06 0.09 0.01 0.03 0.13
NCAA Division 1 sports∗ 0.09 0.28 0.00 0.00 0.00
∗ This is an indicator equal to one if the college has an NCAA Division 1 football team.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Integrated
Postsecondary Education Data System (IPEDS) 2004.

A final data source is the 2004 wave of the NCES National Postsecondary Student Aid Study

(NPSAS), which we use to augment the information from the ELS about students’ financial aid

outcomes. While the ELS survey only indicates whether a student received any financial aid at each

college to which she was admitted, the NPSAS data also include information on the amounts and

sources of financial aid received. As we explain below, we use these data from NPSAS to estimate

the distribution of aid amounts conditional on receiving aid.

Before outlining our model, we first describe several key facts and patterns in the data. Table 4

shows the distribution of application set sizes (i.e., how many colleges a student applies to). An

important and perhaps surprising fact is that 30% of students apply to only one college. Applying

to multiple colleges is more common for students who have higher family income and higher SAT

scores.

Table 5 shows some examples of “overlaps”—namely, colleges that tend to appear together in a

student’s application set. In some cases the overlaps reflect similarity in quality—for example,

students who applied to Harvard also tended to apply to Yale, Princeton, and UPenn. But more

often the overlaps reflect geographic proximity. For example, students who applied to the University

of Georgia also commonly applied to Georgia State, Auburn, and Georgia Tech. This suggests

12Our data on reciprocity agreements were obtained from a survey conducted in 2001 by the Cornell Higher
Education Research Institute.
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Table 4: Distribution of the number of college applications

Number of colleges applied to
1 2 3 4 5+

All students .30 .24 .17 .11 .18
Low income, low SAT .39 .30 .16 .07 .08
Low income, middle SAT .34 .26 .16 .10 .14
Low income, high SAT .27 .15 .15 .14 .28
Middle income, low SAT .41 .27 .18 .07 .07
Middle income, middle SAT .32 .25 .19 .11 .14
Middle income, high SAT .24 .22 .17 .13 .24
High income, low SAT .27 .30 .19 .13 .10
High income, middle SAT .24 .22 .15 .12 .27
High income, high SAT .15 .15 .17 .14 .39

Cells indicate fractions. Low (high) income students are those whose parents’ total family
income is 35,000 or less (100,001 or more). Low (high) SAT students are those whose SAT
score is 950 or less (1,130 or more).

SOURCE: U.S. Department of Education, National Center for Education Statistics,
Educational Longitudinal Study (ELS) 2002.

most students prefer to attend colleges close to their homes, which means that differences in the

availability of nearby colleges (as described above in Table 1) could translate into economically

important differences in the ex ante value of students’ college choice sets.

Table 5: Examples of application overlaps

College Three most common overlaps

UC Berkeley UCLA, UC San Diego, UC Davis
U Georgia Georgia State, Auburn, Georgia Tech
UNC Chapel Hill NC State-Raleigh, Duke, Elon U
U Wisconsin-Madison U Minn.-Twin Cities, Marquette, U Wisconsin-Milwaukee
U Oregon U Washington, Oregon State, UC Berkeley
New York U Boston U, Columbia, Boston College
Harvard Yale, Princeton, Penn
Stanford UC Berkeley, UC San Diego, UCLA
Notre Dame Miami U-Oxford, Marquette, Boston College

Overlaps are the additional colleges most commonly applied to by students who applied to the

college listed in the left column. Overlaps are listed starting with the most common.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Educational
Longitudinal Study (ELS) 2002.

3 Model

Our purpose is to estimate high school students’ preferences for college attributes using a framework

that leverages not only those students’ enrollment decisions (which college they choose to attend),
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but also their application decisions (which colleges they choose to apply to). As explained above,

knowing the full set of colleges to which a student applied—what we call the student’s application

set—should improve estimation of preference heterogeneity, since similarities in the applied-to

colleges reflect the strength of the student’s preferences for certain characteristics.

In this section we outline the structure of our model, specifying the decisions students make and

the uncertainties they face when making those decisions. Details of how various functions are

parameterized for estimation are described in Section 4.

3.1 Primitives

There are J (four-year) colleges, each characterized by a vector Wj of attributes including location,

academic quality, public/private dummy, and college athletics. Each student i is characterized by a

vector of observable characteristics Xi (including location, demographics, family background, and

test scores) and a vector of unobservable tastes (βi) associated with the various college characteris-

tics. Each student makes two decisions in our model: which colleges to apply to, and—conditional

on the admissions and financial aid outcomes—which college to enroll in.

3.1.1 Admissions and Net Tuition

Students face uncertainty over the outcomes of admissions and financial aid. The probability that

student i is admitted to college j is assumed to be a function of student and college observable

characteristics, given by

pij = P (Xi,Wj) . (1)

A student may obtain financial aid to attend college, the amount of which is a stochastic function

of student characteristics, college characteristics and gross tuition tj . The net tuition tij for student

i attending college j is given by

tij = f (Xi,Wj , tj) + ηij , (2)

where ηij is a random shock that is realized after the student makes her application decisions.13

Students know the admissions probabilities and the distribution of financial aid amounts when they

make their application decisions.

13Financial aid includes both government aid (e.g., Pell grant) and college-specific aid.
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3.1.2 Student Preferences

Students care about the net tuition cost tij and college characteristics Wj , and both the sign and

strength of student preferences for these characteristics may vary with their own characteristics Xi

and taste vector βi. Student i’s utility from attending college j is given by

uij = U (Xi,Wj , tij ;βi)

There is an outside option available to all, the value of which is normalized to zero ex ante. After

applications are submitted, the outside option is subject to a shock ui0 that captures unforeseen

events that change the opportunity cost of attending college (e.g., getting a job offer).

3.2 Student Problem

Student i faces a two-stage decision problem. In the first stage she chooses a set of colleges to

apply to, after which admissions, financial aid outcomes, and the shock to the outside option are

realized. Then, in the second stage, she chooses to enroll in one of the colleges that admitted her,

or the outside option. To characterize students’ optimal choices, we begin with the second stage

enrollment decision and work backward.

Given a set of admissions and financial aid outcomes, student i chooses her most preferred college

within the set Oi of colleges that admit her, or the outside option, i.e.,

v (Oi, Xi, βi, ηi, ui0) ≡ max{{uij}j∈Oi , ui0} (3)

Denoting the ex-ante value of being admitted to Oi as v(Oi, Xi, βi) ≡ E [v (Oi, Xi, βi, ηi, ui0)] , we

can write the value of an application portfolio Y ⊆ J for student i as

V (Y,Xi, βi) ≡
∑
O⊆Y

Pr(O|Xi)v(O,Xi, βi)− C(|Y |),

where Pr(O|Xi) is the probability that i is admitted to the set of colleges O. |Y | is the number of

colleges in Y and C(|Y |) is the application cost. Denoting the set of J colleges as J , the student’s

application problem is therefore

max
Y⊆J
{V (Y,Xi, βi)}. (4)

10



3.2.1 Simplification

Note that uncertainty about admissions makes a student’s application decision (4) a complicated

portfolio problem rather than one of simply listing the colleges she most wishes to attend. For

example, admissions uncertainty creates incentives for students to include “safety schools” in their

application sets.14 Moreover, the complexity of this portfolio problem increases combinatorially

with the number of colleges (J). Other studies that examine students’ college choices have typically

restricted J to be a small number, either by allowing for only a small number of colleges in the

choice set (e.g., Arcidiacono (2005) and Cook (2019)) or by grouping colleges into a small number

of types (e.g., Epple, Romano and Sieg (2006) and Fu (2014)). Since the goal of this paper is to

gain a more precise understanding of students’ heterogeneous preferences over college attributes,

we treat each college as a unit (instead of grouping them) and allow for a large number of colleges

in the consideration set (J = 80 in our empirical application), which makes solving the full problem

(4) a daunting task.

However, notice that (4) can be viewed as a two-layer problem, where a student chooses the best

portfolio of a given size n in the inner layer and optimizes over n in the outer layer, i.e.,

max
n∈{1,..J}

{ max
Y⊆J s.t. |Y |=n

{V (Y,Xi, βi)}}. (5)

To simplify our analysis we focus on the inner layer of (5) and solve a student’s problem taking the

observed application set size n as given. The cost of this simplification is that we cannot estimate

the application cost function C(|Y |). This also means that in the counterfactual simulations below

we must hold each student’s n fixed at the value we observe in the data.

Even taking n as given, with J = 80 (as in our empirical application) it is computationally infeasible

for an estimator to find the exact optimal set of colleges to include in the application set. For

example, if n = 4 there would be over 1.5 million possible sets to check. The following assumption

greatly facilitates the search for a tractable estimator.

Assumption 1: Conditional on observables, student i’s admissions outcomes are independent

across colleges, i.e.,

Pr(O|Xi) =
∏
j∈O

pij
∏

j′∈Y \O

(1− pij′). (6)

Assumption 1 is not entirely innocuous: it would be violated if multiple colleges receive similar

information about student i beyond Xi and interpret it in similar ways. In order to make As-

14See Chade, Lewis, and Smith (2014) for discussion and analysis of the student’s portfolio choice problem.
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sumption 1 as realistic as possible, in our empirical analysis we include a rich set of observables

in the admissions probability function P (Xi,Wj), and we assume the independence of admissions

outcomes conditional on those observables.

Under Assumption 1, we can form an estimator based on necessary conditions for optimality of the

application set, as stated in the following Proposition.

Proposition 1. Given Assumption 1, a necessary condition for the optimality of application set

Yi among sets of the same size is that for all y∗ ∈ Yi and all k /∈ Yi,

piy∗
∑

{O′i}⊆Yi\y∗
Pr
(
O′i|Xi

)
v
({
O′i, y

∗} , Xi, βi
)
− pik

∑
{O′i}⊆Yi\y∗

Pr
(
O′i|Xi

)
v
({
O′i, k

}
, Xi, βi

)
≥ (piy∗ − pik)

∑
{O′i}⊆Yi\y∗

Pr
(
O′i|Xi

)
v
(
O′i, Xi, βi

)

The proof of this proposition is in Appendix A. In essence, the proposition says that for the

observed application set to be optimal, it must be that all possible pairwise swaps—of one college

outside the set for one of the colleges in the set—would weakly reduce the expected utility. Our

estimator utilizes these necessary conditions for optimality and involves checking these pairwise

swaps, which is tractable because for a student who applied to n colleges, we only need to check

n(J − n) conditions instead of comparing all
(
J
n

)
possible application sets.

4 Estimation

Our primary objective is to structurally estimate the distribution of students’ preferences for college

characteristics, rather than colleges’ preferences for students. As such, we estimate parameters

governing admissions probabilities and financial aid distribution outside of the model. In this

section, we will first briefly describe our estimation of these two components, and then we will

describe our empirical specification for student preferences and how we estimate them within the

model.

4.1 Admissions Probabilities and Financial Aid

Admissions Probabilities are estimated via probit regressions in which student i’s probability of

admission at college j is a function of the student’s characteristics, the college’s characteristics, and

their interactions. In the interest of flexibility, we estimate the model separately for six categories
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of colleges defined by (public vs. private) × (tercile of SAT cj ), where SAT cj (the median SAT score

of students in college j) is a proxy for college quality that we obtain from IPEDS.15 In each case,

the included covariates are student high school GPA; student SAT score; median SAT of the college

SAT cj ; an indicator for whether student i’s SAT score is below the 25th percentile of SAT scores in

college j; an indicator for whether college j is in the student’s home state; an indicator for whether

the student has taken any Advanced Placement course; indicators for female, black, and Hispanic;

an indicator for whether the student is from a single-parent family; an indicator for whether at least

one of the student’s parents graduated from college; and indicators for 7 family income categories.

Importantly, the probit regressions deliver predicted admissions probabilities that exhibit reason-

able patterns (e.g. they are increasing in student’s GPAs and SAT scores) and cover a sensible

range (e.g. low-SAT students’ predicted probabilities of being admitted to Harvard are around

3 percent, and high-SAT students’ predicted probabilities of being admitted to non-competitive

public universities are above 90 percent). Additional details and fit statistics are available in an

online appendix.

Financial Aid includes both government aid (the Pell grant) and college-specific aid. We compute

the Pell grant following the government-specified formula, where the amount of grant depends

mainly on one’s expected family contribution (EFC) and the cost of attendance. For college-specific

aid, we model the probability of receiving aid in a way that mirrors the admissions probabilities, with

probit regressions run separately for the six different college types. In addition to the covariates

listed above for the admissions model, we also allow the probability to depend on the college’s

tuition and the student’s EFC. This yields a predicted probability that student i will receive aid

at college j for any i-j pair.

To estimate the amount of college-specific aid received, conditional on receiving any, we use the

NPSAS data (described in Section 2). We model the log of aid received as a truncated normal with

the upper truncation point set at 1.2 times the maximum observed amount of aid,16 and the mean

being a linear function of covariates including the college’s gross tuition, the student’s EFC, sex and

race dummies, student SAT score, college median SAT score, an indicator for whether the student

is in the same state as the college, and a few interactions among these variables. Full details are in

the online appendix referenced above. The NPSAS data introduce a possible selection bias because

they only report aid amounts at students’ chosen colleges—i.e., the colleges where they chose to

enroll. If students tend to enroll in colleges that offer more aid, then the aid amounts of enrolled

15Each college in IPEDS reports the 25th and the 75th percentiles of SAT scores of its enrollees; we take the
average of these two percentiles as SAT cj .

16We found that if we simply model aid amounts as being log-normally distributed without any upper bound, our
estimator for student preferences would sometimes draw simulated aid amounts that were unrealistically high—i.e.,
out in the long tail of the log-normal distribution.
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students will tend to be higher than the aid amounts offered to admitted students, so our model

may slightly overpredict aid amounts.17 Fortunately, selection is not a problem in our model at

the aid vs. no-aid margin, since the ELS data report whether any aid was received at all colleges

to which the student applied.

4.2 Student Preferences

Empirical Specification Student i’s utility at college j is given by

uij = − (γ1LowInci +MidInci + γ2HighInci) tij (7)

+ α0 + α1(SATi − SAT cj )2+ + α2(SATi − SAT cj )2− + α3Blacki + α4Hispanici

+ exp (β1,i)
[
SAT cj + δ1(SAT

c
j − 1200)+

]
+ β2,i [ln (Distij) + δ2OutStateij ]

+ β3,iPrivatej + β4,iNCAAIj .

The first component of this function reflects the student’s sensitivity to net tuition (tij), which

may differ across students from different family income groups. We categorize a student i’s family

income as low (LowInci = 1) if it is less than $35,000, as high (HighInci = 1) if it is above

$100,000, and as middle (MidInci = 1) otherwise. The parameters γ1 and γ2 measure how the

price sensitivity of low- and high-income students (respectively) differ from that of students in the

middle income group. We normalize the tuition coefficient for middle-income students to 1, so

student preferences for various college attributes are measured in tuition dollars.

The parameter α0 represents the overall attractiveness of attending a 4-year college relative to the

outside option for an average student; α3 and α4 are introduced to capture potential differences in

preferences among black and Hispanic students. To allow for the possibility that a student may

prefer colleges that closely match her own academic ability, we introduce parameters α1 and α2

to measure students’ preference for the difference between her own SAT (SATi) and the median

SAT score at the college (SAT cj ), allowing for asymmetry in the preference for over-match vs.

under-match.

For our purposes, the most important components of the utility function (7) are the college charac-

teristics over which students have heterogeneous preferences, as reflected by the student-specific βk,i

coefficients. First, students are allowed to have heterogeneous preferences for a college’s academic

quality, as measured by SAT cj . Since these quality differences are most likely to be meaningful for

17To check whether this selection effect is likely to be important, we examined data from the National Longitudinal
Survey of Youth (NLSY 97), which reports aid even for unaccepted offers. We estimated models for aid amounts
using both the full sample of all offers and the selected sample of accepted offers, and found that the latter predicted
aid amounts only slightly higher than the former.
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colleges toward the upper end of the distribution, we allow the slope to differ depending on whether

SAT cj is above or below 1200. Student-specific preferences for proximity are represented by β2,i,

where we use a distance index that combines actual distance (Distij) and an indicator for whether

j is out of student i’s home state. We measure Distij as the distance in kilometers between college

j and the centroid of student i’s home zip code. Finally, students have heterogeneous preferences

over whether or not the college is private (Privatej ∈ {0, 1}), and for whether or not the college has

an NCAA Division I football team (NCAAIj ∈ {0, 1}). The latter serves as a proxy for whether

major sporting events are an important aspect of college life in j.

Student-specific preference parameters βk,i are drawn from the following normal distribution,

βk,i = µk (Xi) + εk,iσk, with εk,i ∼ N (0, 1) .

The mean tastes for college SAT scores (β1,i), distance (β2,i), and private colleges (β3,i) are allowed

to vary with family income, while the mean tastes for Division I sports (β4,i) are common across

students, such that

µk (Xi) =

{
µk,0 + µk,1LowInci + µk,2HighInci for k = 1, 2, 3

µk,0 for k = 4

Students are subject to post-application shocks to their outside option, drawn from a normal

distribution:

ui0 = ε0,iσ0 (Xi) , with ε0,i ∼ N (0, 1) .

The dispersion of shocks is allowed to be different for low-income and/or low-SAT students, such

that

σ0 (Xi) = exp [λ0 + λ1LowInci + λ2I (SATi ≤ 950)] . (8)

We allow this layer of flexibility to better fit the data: conditional on admissions and financial aid

outcomes, low-income and/or low-SAT students have a much lower enrollment rate than other stu-

dents, which holds even if we compare students with similar application behaviors. Such patterns

can arise, for example, if low-income households are subject to higher income volatility (unemploy-

ment), which would be captured by a larger dispersion of post-application shocks faced by these

students.

Estimation Procedure At a high level, the goal of our estimation approach is to choose param-

eters that maximize the likelihood of students’ observed application sets and enrollment decisions.

Two complicating factors are that (1) our model does not admit a closed-form solution to the

portfolio problem of choosing an application set, and (2) the number of colleges in the U.S. is
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quite large. As explained above, our solution to the first problem is to base our estimator on the

necessary conditions for optimality of the application set, as described in Proposition 1.

To address the second issue, instead of including the full set of J colleges in each student’s choice

set, we draw a subset Ji of 80 colleges for each student i: Ji always includes colleges in student

i’s observed application set Yi, and the remaining colleges are drawn from J \Yi in a way that

accounts for both variety and relevance in terms of geography, school type (public vs. private)

and school quality. The sampling scheme, which we describe in more detail in Appendix B, draws

colleges proportionally from bins defined by public vs. private ownership, in-state vs. out-of-state,

and academic quality (as measured by SAT cj ). The scheme guarantees inclusion of at least one aca-

demically competitive public university from the student’s home state, since the flagship university

of a student’s home state is almost certainly in her consideration set. Importantly, the sampling

rules are common across students and independent of Yi.

Once we have constructed choice sets Ji for each student, we hold those sets fixed during the esti-

mation. We construct the quasi-likelihood function using a simulation procedure that (1) simulates

M copies of each student i, each with different preference “shocks” εk,i that lead to different pref-

erence coefficients βk,i; (2) uses these simulated students to compute a kernel-smoothed probability

that the chosen application set is better than all possible one-for-one swaps (Proposition 1); (3)

computes a smoothed probability that the enrollment decision is optimal given the admissions and

financial aid outcomes; and (4) combines the probabilities from (2) and (3) to construct the quasi-

likelihood for student i’s observed choices (application set and enrollment decision). The details of

this procedure are explained in Appendix C.

5 Results

5.1 Parameter Estimates

Table 6 reports the parameter estimates and associated standard errors.18 The estimated tuition

sensitivity declines with family income, which is in line with findings from the previous literature.

The coefficients on the distance between one’s own and a college’s quality as proxied by SAT cj ,

α1 and α2, are both negative—which is consistent with the idea that students prefer to fit in

academically rather than overmatch or undermatch.

18We estimate the information matrix as the sum of the outer products of the scores: Î =
∑
i gig

′
i, where gi is the

score function for student i. We estimate the Hessian matrix as Ĥ =
∑
i hi, with hi being the Hessian for student i.

The standard errors are then computed as the square roots of the diagonal elements of Ĥ−1ÎĤ−1.
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Table 6: Utility parameter estimates

Variable Parameter Estimate Std. Error

Tuition × Low income γ1 1.364 0.106
Tuition × High income γ2 0.269 0.029
Constant α0 7.677 1.349
(SATi − SAT cj )2+ α1 -0.574 0.053

(SATi − SAT cj )2− α2 -0.267 0.045

Black α3 0.493 0.919
Hispanic α4 -2.861 0.963
(SAT cj − 1200)+ δ1 2.692 0.250

SAT cj µ1,0 0.991 0.054

SAT cj × Low income µ1,1 0.155 0.052

SAT cj × High income µ1,2 -0.348 0.048

Out of state δ2 1.461 0.151
Distance µ2,0 -2.753 0.107
Distance × Low income µ2,1 -1.270 0.222
Distance × High income µ2,2 1.125 0.089
Private µ3,0 -2.236 0.300
Private × Low income µ3,1 -0.693 0.574
Private × High income µ3,2 0.370 0.393
NCAA Division 1 µ4,0 0.766 0.207
Std dev. of SAT preferences σ1 0.278 0.039
Std dev. of distance preferences σ2 5.253 0.677
Std dev. of Private preferences σ3 1.177 0.099
Std dev. of NCAA Div. 1 preferences σ4 4.722 0.490
Std dev. of outside option λ0 2.628 0.042
Std dev. of outside option (low income) λ1 0.458 0.069
Std dev. of outside option (low SAT) λ2 0.284 0.041

The main parameters of interest are the ones related to heterogeneity in preferences—i.e., the dis-

tributions of student-specific coefficients for various college attributes (academic quality, distance,

in-state vs. out-of-state, public vs. private and college athletics). To better understand these

estimates, we report, in Table 7, the change in a student’s utility, measured in thousands of tuition

dollars, associated with a given change of an attribute. The middle column reports the impact for

a student with the mean βk,i. The first and third columns report the same effects for students with

βk,i’s one standard deviation below or above that mean, respectively. Since we estimate different

tuition coefficients for different family income levels, we report the effects separately for each in-

come group. Students from high-income households are estimated to have a lower coefficient on

tuition (γ̂2 = 0.269), so the heterogeneity in their preferences for non-tuition college characteristics

is amplified when expressed in terms of tuition dollars.

Two points stand out from the table. First, there is considerable heterogeneity in how much

students value academic quality, as proxied by the college’s median SAT score. A middle-income
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Table 7: Preference heterogeneity

Preference at:
µ̂− σ̂ µ̂ µ̂+ σ̂

Increase SAT 1000 to 1100
Low income 1.75 2.31 3.04
Middle income 2.04 2.69 3.56
High income 5.36 7.07 9.34

Increase SAT 1300 to 1400
Low income 6.45 8.51 11.24
Middle income 7.53 9.95 13.13
High income 19.78 26.11 34.47

Increase distance from 10km to 500km
Low income -20.74 -11.54 -2.34
Middle income -23.32 -10.77 1.78
High income -70.34 -23.68 22.99

Out of state vs. in state
Low income -7.75 -4.31 -0.87
Middle income -8.71 -4.02 0.67
High income -26.27 -8.84 8.59

Private vs. public
Low income -3.01 -2.15 -1.28
Middle income -3.41 -2.24 -1.06
High income -11.31 -6.94 -2.56

NCAA Division I sports
Low income -2.90 0.56 4.02
Middle income -3.95 0.77 5.49
High income -14.70 2.85 20.40

student at the high end of the preference distribution (roughly the 85th percentile) would be willing

to pay $13,130 more in tuition to attend a college with median SAT scores of 1400 vs. 1300 (rough

examples would be UCLA vs. Loyola Marymount, or NYU vs. Rutgers), whereas a student at the

low end of the distribution would be willing to pay only $7,530. Second, a majority of students have

strong preferences for attending colleges close to home. For a middle-income student with average

preferences—i.e., with the mean value of β2,i—an increase in distance from 10 to 500 kilometers is

equivalent to a nearly $11,000 increase in tuition. However, some students appear to prefer being

further from home. Our estimates imply that 10 percent of low-income students and 31 percent of

high-income students have positive coefficients on distance. Similarly, most students exhibit strong

home-state biases (for reasons beyond tuition and distance), while a small fraction of students
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prefer to go out of their home states.

5.2 Model Fit

As discussed in Section 3.2.1, all of our simulations take as given the observed number of colleges

|Y o
i | a student applied to. To evaluate how well our model fits the data, we simulate each student i’s

optimal application set given size |Y o
i | by solving the inner layer of problem (5) and then deriving

her optimal enrollment decision given the admissions and financial aid outcomes for the applied-to

colleges. Panel A of Table 8 shows the average characteristics of the colleges students actually ap-

plied to and enrolled in as well as the average characteristics of the colleges our model predicts they

would apply to and enroll in. Some of these college characteristics are common across students—

such as college median SAT, private, and NCAA—while others are college-student specific, such as

admissions and aid probabilities, aid amount, tuition (because tuition for public colleges depends

on in-state status and reciprocity agreements with other states), differences between the student’s

SAT and the college’s median SAT, whether the college is out of state, and home-college distance.

For enrollment, each row is a simple average across college enrollees. For application, since some

students applied to more than one college, we first take the average of (college-student-specific)

characteristics across the colleges a student applied to, and then average across students.19 Over-

all, the model fits the data well. However, it underpredicts the tuition and home-to-college distance

for both applied colleges and enrolled colleges.

Panel B reports model fits for the fraction of students admitted to any college, and the fraction of

college enrollees among those with at least one offer. Table 12 and Table 13 in the appendix show

model fits by family income and by student SAT, respectively.

6 Counterfactual Simulations

Using our estimated model, we explore two questions about higher education. First, we examine

the implications of the uneven spatial distribution of colleges in the U.S. for students’ choices and

welfare. Then, we examine the substitution patterns that would result if public universities’ in-state

subsidies were eliminated.

19For example, to obtain the entry in Row 1 of the Application column, we first calculate the college-student-specific
admissions probability pij for student i at each of the colleges she applied to, and take the average across j ∈ Yi,
yielding an average pi ≡ 1

|Yi|
∑
j∈Yi

pij for the student; then we take the average across students, i.e., 1
I

∑I
i=1 pi.
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Table 8: Model fit

Panel A: College characteristics

Data Model
Application Enrollment Application Enrollment

Admission probability 0.74 0.80 0.76 0.77
Tuition ($1,000) 11.34 11.51 10.52 9.97
Aid probability 0.49 0.50 0.52 0.51
Aid amount ($1,000) 7.76 7.69 8.15 7.82

(SATi − SATj)2+ 0.70 0.81 0.62 0.63

(SATi − SATj)2− 2.74 1.36 2.45 1.95

Median SAT (100) 11.03 11.08 11.04 11.14
Private 0.32 0.33 0.38 0.34
Distance (100 km) 3.47 3.38 2.74 2.49
Out of state 0.27 0.26 0.17 0.14
NCAA Division I sports 0.34 0.35 0.32 0.36

Panel B: Admission and enrollment rates
Data Model

Admission rate 0.90 0.92
Enrollment rate 0.84 0.88
The admission rate is the fraction of students who were admitted to at least one of the colleges
they applied to, and the enrollment rate is conditional on being admitted to at least one college.

6.1 Geographic Differences in Student Welfare

Given our estimated student preferences, the uneven spatial distribution of colleges in the U.S. may

lead to different outcomes and welfare levels for otherwise identical students depending on where

they live. To quantify these differences, we use our estimates to simulate the outcome and welfare

for the same student were she to live in different counties across the U.S. Since locations may matter

more depending on students’ backgrounds, we conduct the cross-county comparison separately for

9 hypothetical students, each representing a group defined by SAT (low, middle, high) and family

income (low, middle, high). The representative student in each group is assigned the average

characteristics of the students in that group.20 For each of the 9 representative students, we place

her into each U.S. county and simulate her application and enrollment outcomes in each county. We

use the same draws of random preference coefficients and shocks (to financial aid and the outside

option) in all counties, so that all differences across simulations for the same representative student

are attributable to the county of residence.

Figure 1 summarizes the geographic variation in students’ ex ante welfare upon college application

with heat maps for each combination of family income (low, middle, high shown from the top

20To construct the group averages, we use means for continuous variables and medians for categorical variables
(like family income).
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to the bottom) and student SAT tercile (low, middle, high shown from the left to the right).21

The differences shown in the figure reflect a variety of factors. Obviously the main driver is that

most students have relatively strong preferences to attend a nearby college. This preference for

proximity, combined with the substantial heterogeneity in students’ preferences for other college

characteristics, makes it quite valuable to live in a place with a wide variety of nearby colleges. This

is especially true for high-SAT students, since their higher chances of admission mean that more

of the nearby colleges will be realistic options for them. Indeed, the largest geographic differences

shown in Figure 1 are for students with high SAT scores. The values of high-SAT students’ choice

sets differ sharply across regions, with higher values in the eastern half of the country. A high-

performing student is meaningfully better off if she lives in Virginia instead of Nevada, for instance.

By contrast, geographic heterogeneity for students with low SAT scores is far less pronounced. With

the exception of some remote areas in states like Wyoming and Montana, low-SAT students’ ex

ante expected values are roughly the same regardless of where they live. This suggests that the

supply of non-selective colleges in the U.S. has a spatial distribution that mostly matches demand.

Besides the welfare differences shown in Figure 1, the uneven spatial distribution of colleges can also

lead to substantial differences in the same student’s likelihood of enrollment, and the characteristics

of the enrolled colleges, depending on her county of residence. The magnitudes of these differences

are summarized in Table 9, which shows the interquartile range of welfare and interquartile ranges

of four predicted outcomes across counties. For instance, the enrollment probability of a low-

income student with a middle SAT score varies by 5.47 percentage points between the 25th and

75th percentile counties, and the median SAT score of the enrolled college varies by 53 points.

Table 9: Interquartile Ranges of Simulated Outcomes

Expected Enrollment Characteristics of enrolled colleges
Student group utility ($)∗ Prob (%) SAT Distance (km) Net Tuition ($)

Low income, Low SAT 1,710 5.71 49 188 1,533
Low income, Middle SAT 2,027 5.47 53 145 1,514
Low income, High SAT 2,537 4.29 63 176 2,390
Middle income, Low SAT 1,855 4.90 41 205 1,356
Middle income, Middle SAT 2,161 4.15 45 169 1,450
Middle income, High SAT 2,577 3.23 53 205 2,366
High income, Low SAT 3,790 2.78 31 254 1,841
High income, Middle SAT 4,167 2.30 33 219 2,021
High income, High SAT 5,875 2.18 25 370 3,660
∗ Expected utility values are divided by the relevant tuition coefficient in order to express utility in terms of
tuition dollars.

21Student welfare is measured by the ex ante value maxY⊆J s.t. |Y |=n {V (Y,Xi, βi)} , where n is the number of
colleges applied to by a representative student in each of the 9 groups. Values are divided by the tuition coefficient
corresponding to the student’s income group, so they are expressed in tuition dollars.
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Figure 1: Expected utility of college education across U.S. counties

16,520 − 23,132
15,774 − 16,520
15,234 − 15,774
14,697 − 15,234
14,051 − 14,697
10,587 − 14,051

(a) Low income, low SAT

20,327 − 26,995
19,387 − 20,327
18,756 − 19,387
18,145 − 18,756
17,424 − 18,145
13,776 − 17,424

(b) Low income, middle SAT

25,506 − 32,426
24,477 − 25,506
23,679 − 24,477
22,874 − 23,679
21,799 − 22,874
15,600 − 21,799

(c) Low income, high SAT

20,584 − 27,966
19,847 − 20,584
19,260 − 19,847
18,648 − 19,260
18,012 − 18,648
14,212 − 18,012

(d) Middle income, low SAT

24,736 − 32,186
23,813 − 24,736
23,080 − 23,813
22,423 − 23,080
21,659 − 22,423
18,012 − 21,659

(e) Middle income, middle SAT

29,548 − 34,988
28,534 − 29,548
27,734 − 28,534
26,924 − 27,734
25,776 − 26,924
19,568 − 25,776

(f) Middle income, high SAT

76,529 − 91,840
74,972 − 76,529
73,720 − 74,972
72,470 − 73,720
71,192 − 72,470
65,481 − 71,192

(g) High income, low SAT

85,445 − 98,956
83,801 − 85,445
82,397 − 83,801
81,112 − 82,397
79,580 − 81,112
70,063 − 79,580

(h) High income, middle SAT

98,365 − 112,850
96,056 − 98,365
94,256 − 96,056
92,392 − 94,256
89,277 − 92,392
73,766 − 89,277

(i) High income, high SAT

Expected utility is measured in tuition dollars. From top to bottom, the family income for the
three rows are ≤ 35, 000, (35, 000, 100, 000], and > 100, 000, respectively. From left to right, the
student SAT for the three columns are ≤ 950, (950, 1130), and ≥ 1, 130, respectively. Each map
has 6 colors, each representing 1/6 of the counties.

There are also meaningful correlations between the same student’s welfare and her enrollment

outcome across counties, as shown in Table 10. Each row in the table refers to one of the 9

representative students; the four columns show how each representative student’s expected utility

is correlated with her college enrollment probability and the characteristics of enrolled college

(quality, distance and net tuition) when she resides in different counties in the U.S. Not surprisingly,

expected utility is highly correlated with enrollment probability. Among the three characteristics

of the enrolled college, the expected utility is most strongly correlated with distance, but there is

some heterogeneity across student groups. For example, regardless of income, a high-SAT student’s

expected utility is strongly correlated with the quality of her enrolled college, while this correlation

is either negative or near zero for low- and middle-SAT students.
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Table 10: Correlations with the expected utility

Enrollment Characteristics of enrolled college
Student group Probability SAT Distance Net Tuition R2

Low income, Low SAT 0.93 -0.23 -0.68 -0.38 0.27
Low income, Middle SAT 0.89 -0.00 -0.72 -0.15 0.19
Low income, High SAT 0.86 0.44 -0.68 0.08 0.41
Middle income, Low SAT 0.93 -0.15 -0.65 -0.36 0.29
Middle income, Middle SAT 0.87 0.04 -0.69 -0.24 0.25
Middle income, High SAT 0.83 0.48 -0.66 0.14 0.45
High income, Low SAT 0.95 -0.14 -0.52 -0.25 0.29
High income, Middle SAT 0.91 0.09 -0.65 -0.06 0.26
High income, High SAT 0.90 0.52 -0.72 -0.30 0.66

Cells in columns 2-5 report correlations of the indicated outcome with ex ante expected utility across
counties. The last column reports the R2 from a regression of county expected utilities on state fixed
effects.

A natural question to ask is whether the geographic differences mostly reflect state-level variation,

or whether variation across counties within a state is also important. To answer this question, we

regress a student’s county-specific welfare on state fixed effects; the R2 from this regression is shown

in the last column of Table 10. State fixed effects generally explain between one fifth to two thirds

of the cross-county variation, implying that both between- and within-state variation in college

access are important, but to different extents depending on family income and SAT. In particular,

as a student’s family income and SAT increase, especially the latter, the student’s state of residence

becomes more and more relevant for her utility. For example, for a student with high family income

and high SAT, 66% of the geographic dispersion of expected utility reflects cross-state variation.

6.2 Student Responses to In-state Tuition Subsidies

Most public universities are heavily subsidized, charging much lower tuition for in-state residents.

Peltzman (1973) argues that such subsidies might actually cause students to choose in-state uni-

versities instead of unsubsidized but higher quality institutions for which they would qualify, thus

reducing their educational attainment. At a deeper level, this is an argument against the tuition

subsidy policy that applies to all in-state students; and an evaluation of counterfactual policies

would require an equilibrium model that takes into account the supply side responses. However,

before conducting such a full-blown investigation, a pre-requisite is to understand how an individual

student would respond.

To this end, for each student, we simulate her choice when facing the actual/baseline tuition

schedules, and separately simulate her choice if she were to face counterfactual tuition schedules
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in which she has to pay out-of-state tuition at her home-state institutions. To ensure that the

comparison of these two simulations isolates the effect of tuition changes, for each student the two

simulations use the same consideration set, the same draws of random preference coefficients, and

the same draws of the random shocks to financial aid and the outside option.22 Table 11 reports

the differences in average outcomes between the two simulations (counterfactual minus baseline).

Table 11: Simulated changes when in-state subsidies are removed

Characteristics of enrolled college
Student group SAT % out of state Distance (km) % Private

Low income, Low SAT -5.79 5.68 56.39 24.83
Low income, Middle SAT -7.47 3.85 52.09 32.57
Low income, High SAT -6.77 4.36 71.71 33.52
Middle income, Low SAT -7.33 9.23 104.62 25.20
Middle income, Middle SAT -8.85 7.73 94.23 29.99
Middle income, High SAT -3.21 8.04 105.25 29.90
High income, Low SAT -2.17 4.40 61.06 8.16
High income, Middle SAT 1.56 5.39 78.17 9.64
High income, High SAT 6.27 5.00 79.33 9.49

All students -3.11 6.97 88.75 23.91

Naturally, we find that eliminating subsidies leads students to substitute away from their home

states’ universities. Overall, students are 6.97 percentage points more likely to attend a college

outside of their home states, and the average distance to the enrolled college increases by 88.75

kilometers. Some of the substitution is consistent with Peltzman’s hypothesis, as higher income

students with high SAT scores on average enroll in colleges with higher SAT scores. Over all

students, however, the average quality of the enrolled college goes down. Some students simply

switch to lower quality in-state universities that charge lower out-of-state tuition than their higher-

quality counterparts. Others switch to lower quality private colleges where they are more likely to

get in and receive aid.23,24

These simulations are at best a crude evaluation of Peltzman’s hypothesis, but they suggest that

substitution effects resulting from the removal of in-state tuition subsidies would do little to push

students toward higher quality institutions. Perhaps a stronger argument for increasing in-state

22Tuition is an input into our model of college-specific financial aid, therefore, financial aid amounts are adjusted
accordingly.

23If students in the baseline are not allowed to re-optimize in response to the elimination of the in-state tuition
subsidy, the average net tuition of the enrolled college across all students would increase from $2,105 to $7,413,
compared to $5,191 in the counterfactual where re-optimization is allowed (not shown in the table). The smaller
increase in the counterfactual reflects the switch to colleges with lower out-of-state tuition and more generous financial
aid.

24The predicted enrollment rate (not shown in the table) also drops by 3 percentage points, but our simulation
may underpredict the drop in enrollment because we do not model the extensive margin of college application: if
application costs are high enough, an increase in tuition levels may discourage some students from applying to colleges
at all.
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tuition would be that the increased tuition revenue could be used to improve the quality of public

universities.

7 Conclusion

A central purpose of this study was to develop and estimate a model that allows for rich hetero-

geneity in students’ preferences for college characteristics. From a modeling standpoint, allowing

for heterogeneity in preferences is nothing new: estimating choice models with random coefficients

has long been a standard approach to estimating demand systems in product markets. From a data

standpoint, our key innovation is to use data on students’ application sets as a way of credibly iden-

tifying preference heterogeneity. The modeling challenge is to incorporate these data in estimation

without having to fully solve the computationally intractable portfolio problem of students choosing

which colleges to apply to. We achieve this by exploiting necessary conditions for optimality that

respect the subtleties introduced by admissions uncertainties (e.g. the “safety schools” problem).

Our estimates confirm considerable heterogeneity in students’ preferences for college attributes.

Most students prefer to attend colleges close to home, and for many students this preference is

quite strong. Preferences for other college characteristics are more variable: for instance, some

students appear to care a lot about academic quality, others very little. Given the uneven spatial

distribution of colleges in the United States, the combination of strong preferences for proximity

and variable preferences for other characteristics implies substantial differences in the expected

values of students’ choice sets depending on where they live. These differences are especially large

for high-performing students.

The fact that most students have strong preferences for proximity also means that even large

changes in tuition may not meaningfully change their choices. Peltzman (1973) hypothesized that

tuition subsidies for in-state students might inefficiently distort their choices away from higher-

quality colleges outside their home states, but our simulations indicate that if students were forced

to pay out-of-state tuition at their home state public colleges, most would simply switch to cheaper

colleges that are still close to home. Only high-performing students with higher incomes appear to

substitute toward higher-quality colleges that are further away.

Many policies and programs already aim to equalize opportunity in higher education, such as

private scholarship funds and government financial aid programs that specifically help low-income

students. Our results suggest these policies could also consider equalizing geographic differences

in opportunity, for instance by subsidizing students in locations where colleges are sparse, or by

making investments to raise the quality of academic institutions in targeted locations.

25



References

Abbott, Brant, and Giovanni Gallipoli. “Human capital spill-overs and the geography of intergen-
erational mobility.” Review of Economic Dynamics 25 (2017): 208-233.

Arcidiacono, Peter. “Affirmative action in higher education: How do admission and financial aid
rules affect future earnings?” Econometrica 73, no. 5 (2005): 1477-1524.

Avery, Christopher, and Caroline Minter Hoxby. “Do and should financial aid packages affect
students’ college choices?” In College choices: The economics of where to go, when to go, and how
to pay for it, pp. 239-302. University of Chicago Press, 2004.

Avery, Christopher, Mark Glickman, Caroline Hoxby, and Andrew Metrick. “A revealed preference
ranking of US colleges and universities.” NBER Working Paper 10803, 2004.

Berger, Thor. “Places of persistence: Slavery and the geography of intergenerational mobility in
the United States.” Demography 55, no. 4 (2018): 1547-1565.

Berger, Thor, and Per Engzell. “American geography of opportunity reveals European origins.”
Proceedings of the National Academy of Sciences 116, no. 13 (2019): 6045-6050.

Brewer, Dominic J., Eric R. Eide, and Ronald G. Ehrenberg. “Does it Pay to Attend an Elite
Private College?” The Journal of Human Resources 34, no. 1 (1999): 104-123.

Black, Dan A., and Jeffrey A. Smith. “Estimating the returns to college quality with multiple
proxies for quality.” Journal of Labor Economics 24, no. 3 (2006): 701-728.

Bodoh-Creed, Aaron L., and Brent R. Hickman. “College assignment as a large contest.” Journal
of Economic Theory 175 (2018): 88-126.

Chade, Hector, and Lones Smith. “Simultaneous search.” Econometrica 74, no. 5 (2006): 1293-
1307.

Chade, Hector, Gregory Lewis, and Lones Smith. “Student Portfolios and the College Admissions
Problem.” Review of Economic Studies 81, no. 3 (2014): 971-1002.

Chetty, Raj, Nathaniel Hendren, Patrick Kline, and Emmanuel Saez. “Where is the land of oppor-
tunity? The geography of intergenerational mobility in the United States.” The Quarterly Journal
of Economics 129, no. 4 (2014): 1553-1623.

Chetty, Raj, Nathaniel Hendren, Patrick Kline, Emmanuel Saez, and Nicholas Turner. “Is the
United States still a land of opportunity? Recent trends in intergenerational mobility.” American
Economic Review 104, no. 5 (2014): 141-47.

Cook, Emily. “Competing Campuses: An Equilibrium Model of the U.S. Higher Education Mar-
ket.” Working paper, University of Virginia (2020).

Corak, Miles. “The Canadian geography of intergenerational income mobility.” The Economic
Journal (2018).

26



Curs, Bradley, and Larry D. Singell Jr. “An analysis of the application and enrollment processes
for in-state and out-of-state students at a large public university.” Economics of Education Review
21, no. 2 (2002): 111-124.

Dale, Stacy Berg, and Alan B. Krueger. “Estimating the payoff to attending a more selective
college: An application of selection on observables and unobservables.” The Quarterly Journal of
Economics 117, no. 4 (2002): 1491-1527.

Deming, David J., and Christopher R. Walters. “The impact of price caps and spending cuts on
US postsecondary attainment.” NBER Working Paper 23736, 2017.

Dillon, Eleanor Wiske, and Jeffrey Andrew Smith. “Determinants of the match between student
ability and college quality.” Journal of Labor Economics 35, no. 1 (2017): 45-66.

Dynarski, Susan M. “Does aid matter? Measuring the effect of student aid on college attendance
and completion.” American Economic Review 93, no. 1 (2003): 279-288.

Ellickson, Paul B., Stephanie Houghton, and Christopher Timmins. “Estimating network economies
in retail chains: a revealed preference approach.” The RAND Journal of Economics 44, no. 2
(2013): 169-193.

Epple, Dennis, Richard Romano, and Holger Sieg. “Admission, tuition, and financial aid policies
in the market for higher education.” Econometrica 74, no. 4 (2006): 885-928.

Fillmore, Ian. “Price discrimination and public policy in the US college market.” Employment
Research Newsletter 23, no. 2 (2016): 2.

Fu, Chao. “Equilibrium tuition, applications, admissions, and enrollment in the college market.”
Journal of Political Economy 122, no. 2 (2014): 225-281.

Hillman, Nicholas W. “Geography of college opportunity: The case of education deserts.” Ameri-
can Educational Research Journal 53, no. 4 (2016): 987-1021.

Howell, J. “Assessing the Impact of Eliminating Affirmative Action in Higher Education.” Journal
of Labor Economics, 28, no. 1 (2010): 113-166.

Long, Bridget Terry. “How have college decisions changed over time? An application of the
conditional logistic choice model.” Journal of Econometrics 121, no. 1-2 (2004): 271-296.

Manski, Charles F., and David A. Wise. College choice in America. Harvard University Press,
1983.

Monge-Naranjo, Alexander, and Lance Lochner. “Credit Constraints in Education,” Annual Review
of Economics, Vol. 4 (2012): 225-256.

Peltzman, Sam. “The effect of government subsidies-in-kind on private expenditures: The case of
higher education.” Journal of Political Economy 81, no. 1 (1973): 1-27.

Turley, R. N. L. (2009). “College Proximity: Mapping Access to Opportunity.” Sociology of
Education, 82(2), 126-146.

27



Appendices

A Proof of Proposition 1

For convenience, we will drop the Xi and βi arguments from the v function, denoting the ex ante
value of being admitted to the set of colleges Oi as v(Oi). We do the same for the V function,
denoting the value of an application set Yi for student i as V (Yi). Finally, we drop the Xi argument
and denote the probability that student i is admitted to the set of colleges Oi as P (Oi).

Under Assumption 1, the value of application set Yi is given by

V (Yi) =
∑
Oi⊆Yi

P (Oi) v (Oi) +

1−
∑
Oi⊆Yi

P (Oi)

E (ui0) (9)

=
∑
Oi⊆Yi

P (Oi) v (Oi) .

Pick any school in Yi, say, y∗. O′i ⊆ Yi\y∗ are sets that do not include y∗. (9) can be written as

V (Yi) = piy∗
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, y

∗})+ (1− piy∗)
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
(
O′i
)

Consider the set Yi and Y ′i where y∗ is replaced by k.

V
(
Y ′i
)

= pik
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, k

})
+ (1− pik)

∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
(
O′i
)

V (Yi)− V
(
Y ′i
)

= piy∗
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, y

∗})− pik ∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
({
O′i, k

})
− (piy∗ − pik)

∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
(
O′i
)
.

V (Yi)− V (Y ′i ) ≥ 0 implies

piy∗
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, y

∗})− pik ∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
({
O′i, k

})
≥ (piy∗ − pik)

∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
(
O′i
)

B Choice sets

For each student, the choice set always includes (1) colleges in the actual application set and (2)
public colleges with the highest median SAT in each state that has a reciprocity agreement with

28



the student’s state of residency, or the public college with the highest median SAT in the nearest
neighboring state if the student’s state of residency has no reciprocity agreement with any other
state. The rest of the choice set are drawn randomly from the remaining colleges.

Specifically, for each student, all colleges are divided into ten groups that are exhaustive and
mutually exclusive: (i) top public in state, (ii) other public in state, (iii) top private in state, (iv)
other private in state, (v) top public out of state, (vi) middle public out of state, (vii) other public
out of state, (viii) top private out of state, (ix) middle private out of state, and (x) other private
out of state. An in-state public (private) college is classified as top if it meets at least one of three
criteria: (1) median SAT ranks among the top 10% of all public (private) colleges in the country,
(2) median SAT ranks first among all public (private) colleges in state, (3) enrollment ranks first
among all public (private) colleges in state. An in-state public (private) college is classified as other
if it does not meet any of the three criteria. An out-of-state public (private) college is classified
to be: (1) top if its median SAT ranks among the top 10% of all public (private) colleges in the
country, (2) middle if its median SAT ranks among the top 10-30% of all public (private) colleges
in the country, and (3) other if its median SAT ranks among the bottom 70% of all public (private)
colleges in the country.

The number of colleges drawn from each of the ten groups is proportional to the weighted group
size, subject to the following modifications:

1. Colleges in groups (vii) and (x) receive a weight of 0.5. All other colleges receive a weight of
1.

2. There must be at least one college drawn from each of the four in-state groups (i)-(iv),
unless the group is empty. The numbers for other groups are adjusted so that they are still
proportional to the weighted group size.

3. If the number of colleges for a group is not large enough to include the colleges in the actual
application set and the best public colleges in reciprocity (or the nearest neighboring) states,
it is increased to the number of the two types of colleges in the group. The numbers for other
groups are adjusted so that they are still proportional to the weighted group size.

4. If necessary, a random number is used to make sure the resulting numbers are all integers. As
an example, suppose steps 1-3 imply that the numbers of colleges drawn from the first two
groups are 1.6 and 3.4, respectively, while the numbers for the other groups are all integers.
We would draw a number from the uniform distribution [0,1]. If the number drawn is less
than 0.6, we set the numbers for the first two groups to 2 and 3, respectively. Otherwise,
they are set to 1 and 4, respectively.

The colleges in the actual application set and the best public colleges in reciprocity (or the nearest
neighboring) states are drawn first. If the number of these two types of colleges in a group is
smaller than the number to be drawn, the rest are drawn randomly from the remaining colleges in
the group.

While this procedure almost always ensures that the flagship university in a student’s home state
is included in her choice set, theoretically it may not be included if (1) the size of group (i) is larger
than one and (2) the flagship is not in the student’s application set.
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C Estimation algorithm

We use the following algorithm to construct the quasi-likelihood for student i’s observed choices
(application set and enrollment decision):

1. Simulate M copies of student i with the same characteristics Xi but different preference

“shocks” εk,i, so that each simulated student m ∈ {1, ..,M} is characterized by
(
Xi, ε

m
k,i

)
,

which are fixed throughout. Also draw a set of S post-application shocks {ηij , εi0}, which are
fixed throughout.

2. For each simulated student, compare each college j in the observed application set Yi with ev-
ery college k in Ji\Yi, checking the necessary condition from Proposition 1. For Yi to be opti-
mal among the set of alternatives involving one-for-one swaps, it must be that V (Yi, Xi, β

m
i ) ≥

V (Y
k\j
i , Xi, β

m
i ) for all possible swaps (j, k), where Y

k\j
i denotes i’s application set with col-

lege k replacing college j. The probability is calculated using a kernel smoothed frequency
simulator (McFadden (1989)), which converges to the frequency simulator as the smoothing
parameter ι goes to zero, so that the likelihood of the application decision for copy m of
student i is

Lappi,m =
exp

(
V (Yi,Xi,β

m
i )

ι

)
exp

(
V (Yi,Xi,βmi )

ι

)
+
∑
j∈Yi

∑
k∈Ji\Yi

exp

(
V (Y

k\j
i ,Xi,βmi )

ι

) .
3. For each college o in Oi ∪ {0} (the set Oi of colleges that admitted student i augmented

to include the outside option of not enrolling in any college j = 0), compute the ex post
utility Uimso for the random coefficient draw m and post-application shocks s. Letting o∗ be
the observed choice and reimso ≡ Uimso∗ − Uimso, we compute the smoothed likelihood of the
enrollment decision for copy m of student i as

Lenri,m =
1

S

∑
s

1∑
o∈Oi∪{0}

e−
re
imso
ι

(10)

4. The smoothed log-likelihood function of the sample is then calculated as

L =
1

N

∑
i

ln

(
1

M

∑
m

Lappi,mL
enr
i,m

)
. (11)

The model parameters are then chosen to minimize this log-likelihood function using a stan-
dard numerical optimization algorithm.

D Additional Tables for Model Fit

Table 12 reports model fit statistics for three groups of family income, and Table 13 reports the
same statistics for three groups of student SAT.
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Table 12: Model fit by family income

Data Model
Family income ($1,000) ≤ 35 (35, 100] > 100 ≤ 35 (35, 100] > 100

Panel A: College characteristics - application
Admission probability 0.68 0.76 0.77 0.71 0.78 0.74
Tuition ($1,000) 9.28 11.03 14.17 8.69 10.13 13.31
Aid probability 0.61 0.50 0.36 0.63 0.54 0.37
Aid amount ($1,000) 9.04 7.79 6.39 9.41 8.29 6.56

(SATi − SATj)2+ 0.37 0.73 0.94 0.34 0.68 0.75

(SATi − SATj)2− 4.88 2.40 1.41 4.21 2.08 1.59

Median SAT (100) 10.66 10.99 11.52 10.59 10.96 11.66
Private 0.26 0.31 0.40 0.32 0.38 0.44
Distance (100 km) 2.70 3.26 4.79 1.64 2.33 4.86
Out of state 0.18 0.25 0.41 0.07 0.14 0.33
NCAA Division I sports 0.30 0.34 0.39 0.27 0.32 0.39

Panel B: College characteristics - enrollment
Admission probability 0.76 0.82 0.79 0.74 0.80 0.74
Tuition ($1,000) 9.68 10.91 14.12 8.31 9.36 12.75
Aid probability 0.64 0.52 0.37 0.64 0.53 0.36
Aid amount ($1,000) 9.32 7.74 6.39 9.30 7.92 6.39

(SATi − SATj)2+ 0.47 0.88 0.88 0.39 0.70 0.65

(SATi − SATj)2− 2.36 1.23 0.92 3.32 1.69 1.45

Median SAT (100) 10.67 10.98 11.58 10.70 11.02 11.76
Private 0.30 0.32 0.40 0.28 0.33 0.40
Distance (100 km) 2.51 3.12 4.57 1.42 2.03 4.45
Out of state 0.16 0.23 0.40 0.06 0.11 0.29
NCAA Division I sports 0.27 0.34 0.42 0.30 0.35 0.44

Panel C: Admission and enrollment rate as a share of students
Admission rate 0.81 0.91 0.96 0.86 0.92 0.96
Enrollment rate 0.77 0.85 0.91 0.83 0.90 0.92

The admission rate is the fraction of students who were admitted to at least one of the colleges
they applied to, and the enrollment rate is conditional on being admitted to at least one college.

E Simulations

For baseline simulations, we proceed as follows:

1. For each individual, we keep the consideration set (with size J) and the draws of random
coefficients and shocks (to financial aid and the outside option) used in estimation.

2. For each individual, we draw J random numbers to determine the admission outcome of each
college in the consideration set.

3. For each draw of the random coefficients, we calculate the expected value of each possible
combination of n colleges, where n is the number of applications in data. The combination
with the largest expected value will be the application set.
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Table 13: Model fit by student SAT

Data Model
Student SAT ≤ 950 (950, 1130) ≥ 1130 ≤ 950 (950, 1130) ≥ 1130

Panel A: College characteristics - application
Admission probability 0.63 0.80 0.81 0.68 0.80 0.80
Tuition ($1,000) 8.90 10.46 14.85 8.15 9.96 13.65
Aid probability 0.46 0.48 0.54 0.49 0.52 0.56
Aid amount ($1,000) 7.21 7.19 8.89 7.35 7.87 9.30

(SATi − SATj)2+ 0.01 0.20 1.93 0.01 0.17 1.71

(SATi − SATj)2− 6.49 1.07 0.24 5.36 1.36 0.33

Median SAT (100) 10.41 10.93 11.81 10.24 11.02 11.93
Private 0.25 0.29 0.43 0.32 0.36 0.45
Distance (100 km) 2.52 3.19 4.79 2.12 2.45 3.70
Out of state 0.19 0.24 0.38 0.12 0.14 0.24
NCAA Division I sports 0.27 0.34 0.41 0.23 0.33 0.41

Panel B: College characteristics - enrollment
Admission probability 0.72 0.83 0.82 0.70 0.80 0.80
Tuition ($1,000) 8.54 10.33 14.43 7.72 9.19 12.57
Aid probability 0.47 0.48 0.54 0.48 0.51 0.54
Aid amount ($1,000) 6.70 7.10 8.82 7.06 7.43 8.81

(SATi − SATj)2+ 0.01 0.21 1.82 0.01 0.16 1.56

(SATi − SATj)2− 3.86 0.88 0.17 4.71 1.28 0.27

Median SAT (100) 10.20 10.87 11.82 10.28 11.02 11.96
Private 0.26 0.29 0.42 0.29 0.31 0.40
Distance (100 km) 2.31 3.06 4.35 2.00 2.20 3.17
Out of state 0.18 0.23 0.34 0.11 0.12 0.20
NCAA Division I sports 0.22 0.33 0.44 0.25 0.36 0.46

Panel C: Admission and enrollment rate as a share of students
Admission rate 0.77 0.95 0.99 0.84 0.95 0.97
Enrollment rate 0.70 0.87 0.94 0.82 0.91 0.93

The admission rate is the fraction of students who were admitted to at least one of the colleges
they applied to, and the enrollment rate is conditional on being admitted to at least one college.

4. Given the application set and the random numbers that determine the admission outcome of
each college, we have the admission set. We can then calculate the enrollment outcome for
each draw of the shocks to financial aid and outside options.
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