Women in Science Lessons from the Baby Boom

Scott Kim, Wharton Petra Moser, NYU, NBER and CEPR

Women are severely underrepresented in science

- Women comprise fewer senior staff and are promoted more slowly (National Academy of Sciences 2006)
- Women are more likely to leave STEM (Shaw and Stanton 2012)
 - 8 in 10 women and minority students who enroll in STEM drop out or switch out of STEM before finishing degree (Waldrop 2015)
- Structural Impediments
 - Discrimination at hire, glass ceiling in promotion, and inequity in salary and support (Settles et al. 1996; Sonnert and Holton 1996, Altonji and Blank 1999)
 - Lack of role models among faculty (Porter and Serra 2020) and in teaching materials (Stevenson and Zlotnik 2018)

Children are a possible cause

- Mothers spent more 46% more time on kids and 50% more on chores (American Time Use Survey 2019)
- Women do more housework and childcare even if they earn more (Besen-Cassino and Cassino 2014) and when their husbands are unemployed (van der Lippe, Treas, Norbutas 2018)

"Mommy can't take you to Katie's house. Mommy is busy cloning a slime mold."

Covid-19 widens gender gaps in work hours for mothers and fathers

- Feb-April 2020, mothers with young children reduced work hours 4-5x more than fathers
- 20-50% increase in gender gap of work hours (US population survey, Collins et al 2020)
- Survey of scientists in April 2020 shows that female scientists with young children experienced largest decline in time devoted to research (Meyers et al. 2020)
- What are the long run effects of these changes on participation and gender inequality?

How do children change productivity?

- Children contribute to gender gap in earnings (e.g., Bertrand, Goldin, and Katz 2010, Klevens, Landais, and Soogard 2019)
- But how do they affect output/ productivity?
 - Little systematic evidence to date
 - Especially when it comes to effects of children

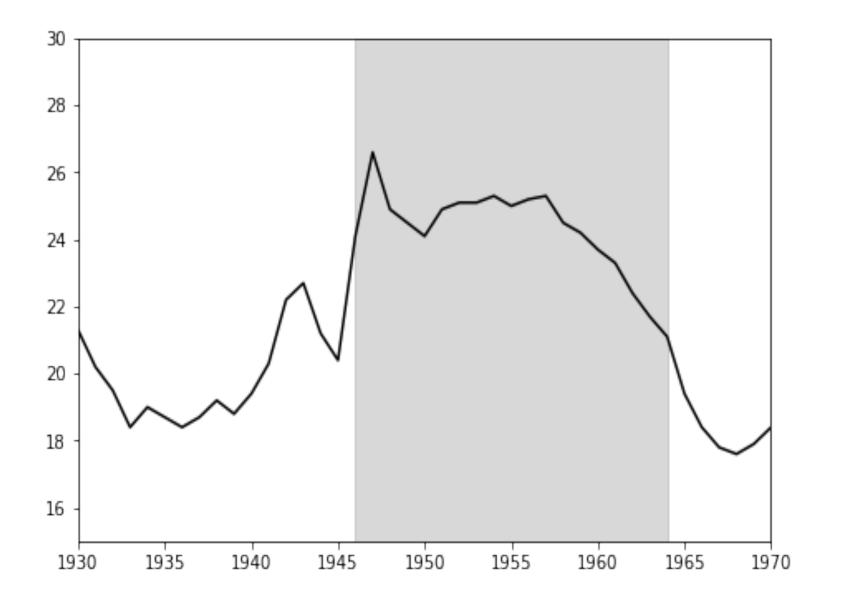
We ask:

- How do children affect the <u>timing of productivity</u>?
- How do differences in timing of productivity impact <u>tenure</u> and participation?

Women in Science

• Historical background

- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions


Baby Boom 1946-64

- 4.24 million births/year 1946-64
 - 76 million boomers in the U.S.
 - 6 million "boomies" in Canada
- Women give birth
 - at a younger age
 - immediately after marriage
 - Births spaced closely together
- "Family values" place burden of childcare squarely on women
 - Archives of the Institute for Human Development (Dyer, 1960)

A staff nurse greets some new arrivals at the Queen Charlotte Hospital in London, 1945.

Births increase from 22.7 per 1,000 in 1943 to 25.0 per year 1946-56

Women in Science

- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across demographic groups
 - Differences in inventive output across the life cycle
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing productivity across demographic groups
 - Differences in publishing productivity across the life cycle
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

ELDRIDGE - ELIZABETH

Oregon State Col. 32, M.S. 35; Ph.D.(physical chem), Cambridge, 53. Lab. assi, physics, Oregon State Col. 39-36; supervisor instrumentation research lab, Calilla Research Corp, 38-46; etc. Italion officer, U. 8. Office Naval Research, London, 48-52; READ INSTRUMENTATION & CONTROL LAB, STANFORD RESEARCE INST, 53- Fel. Faraday Soc; Moyal Soc Instrument Tech. Magazioatricito phenomena, Instrumentation for pressure, abock measurement; surface physics; labrication and frictions sutomatic control systems.

ELDERDGE, PROF. JOHN A(DAMS), Dept. of Physics, Saie University of fora, Ioras City, Lowa, PHYSICS, Wash, D. C. A.B., Wealeyan, 13; Ph.D. Wisconsin, 22. Instr. PHYSICS, Wisconsin, 18-24; assoc.prof. JOWA, 24-26, PROF, 28. Physical Soc. Conduction in gases; resonance and ionization potentials; kinetic theory of gases.

LUC HEORY OF GARGENER SON), 212 Capitol Trail, Newark, DeL. PHYSICAL CHEMISTRY. Great Barrington, Mass, Sept. 24, 19; m. 49; c. 1. 3.8, Barringth Col, 42; Ph.D.(chem), Wisconsta, 48, Jack-Accent Distribution (J. 42; Ph.D.(chem), Wisconsta, 48, Jack-Accent Distribution (J. 19), C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, D. 1990, C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, D. 1990, C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, D. 1990, C. 1

polymera. ELDRIDGE, PROF. JOHN W(ILLIAM), 4-R Copeley Hill, Charlotterville, Va. CHEMICAL ENGINEERING. Nachana, N. H. Ange 22, 21; m. 42; c. Z. Soh, Maine, 43; M. S. Syracues, 45; m. S. Song, S. S. S

ELDERDGE, DR. ROBERT WIALKERI, 134 Hillaide Are, Natley 10, N. J. ORGANIC CHEMBERY. Moscow, Maho, Jan. 24, 03; m. 28; c. 3. 25, Maho, 23; Ph.D.(org. chem), Yale, 37. RESEARCH CEEMERT, U. S. RUBBER CO, PASSAC, N. J. 28, PATENT LIABON, 30. Chem. 30c. Rubber vulcanization and aging: accelerators and antioxidants; latex technology; syntheses in quinoline series.

ELGES, COL. CARL B(RNNY), JR. Army War College, Carlisle Barracks, Pittherg, Da. TURDELOCY, Sparks, Nev, June 20, 10; m. 39; c. 1. B.S. Nevada, 33, MS, 34. Asst. metoorologist, Szp. San, Nevada, 324.1; it. col. U.S.A, 41-50, COL, 50. Mem, Int. Cmm. Baow. Factors affecting stream flow in arid west; forecasting stream flow from snow.

Int. Chin. Source Actions allegting stream how in atta wess; forecasting grama flow from more.
ELOIN, PROF. JOSEPH C(LIFTON), Princeton University, Princeton, N. J. CHEMCAC. ENGINEERING. Nashville, Tean, Feb. 11, 68; nn. 28; c. 3. Chem. E. Virginia, 24, fellow, 24–35, 30, Protect rollow, 23–30, PhoL Dohysical chem, 29; Mass. Inst. Tech, 28. Acting asst. prof. physical chem, 29; Mass. Inst. Tech, 28. Acting asst. prof. physical chem, 29; Mass. Inst. Tech, 28. Acting asst. prof. physical chem, 24, 54, assoc. dean ENG, 50–54, DEAN 54, A. m. Pettol. Inst. fellow, Princeton, 25–31; research consultant, indust, firma, 31.goplaymer and copylomar engineent develop. branches, Offlice Rubber Director, 42.-44; chem. engineer and div. head, a.a.m. labs, Columbia, 44.-55; consultant, Atomic Energy Can, New York, 46. Brookes industrial traveling fellow, eng. sch, Princeton, 31, Mem. exce. cni, div. chem. & chem. tech, Nat. Research Council, 47-r, chairman cni, to, relationalips ob)-, truster (Princeton) Associated Univs. Inc, 500-. Inst. Chem. Eng. Chem. Soc; Soc. Chem. Indust; Soc. Eng. 54, Inst. Mn. Metal. Zng. Sociated Univs. Inc, 500-. Inst. Chem. Eng. Chem. Soc; Soc. Chem. Indust; Soc. Eng. 54, Inst. Mn. Metal. Sup. Sociated Univs. Ne, 500-. Inst. Chem. Eng. Chem. Soc; Soc. Chem. Indust; Soc. Eng. 54, Inst. Mn. Metal. Sup. Sociated Univs. Ne, 500-. Inst. Chem. Eng. Chem. Soc; Soc. Chem. Indust; Soc. Eng. 54, Inst. Mn. Metal. Sup. Sociated Univs. Ne, 500-. Inst. Chem. Eng. Chem. Soc; Soc. Chem. Indust; Soc. Eng. 54, Inst. Mn. Metal. Sup. Sociated Univs. Ne, 500-. Inst. Chem. Eng. Chem. Soc; Soc. Chem. Indust; Soc. Eng. 54, Inst. Mn. Metal. Sup. Sociated Univs. Net Sociated Un

rubber reclaiming; hydrocarbon separation; polymerization. ELLAS, NGTHANELJ M, 56 Washington Mews, New York, N. Y. CHEMICAL ENGINEERING. New York, N. Y. Feb. 21, 95; m. 43; c. 2. B. S. Columbal, 15, 29-30. Research chemist; Homas A. Editon, 15-16; Editon Storage Battery Co, 16-17; research and device), intermediates and dyea, E. I. da Poad de Nemours and device), intermediates and dyea, E. I. da Poad de Nemours Editor. Co, 22-33; CONSULTING CHEMIST AND PHYATE RES-SEARCH, 29: Consultant dech. ed; Resources for the Future', 51-52. With Board Econ. Warfare, 45; N. African Econ. Board, 43; For. Econ. Admin, 44; Tech. Indust. Intel. Chan, 45; Reparations Cam, 46; President's Mat. Policy Chm. Dast, Min. & Metal. Eng; Intel. Risc. Eng; N. Y. Acad. Dyes; intermediates; pharmaceutical products; plastic

materials; thermal insulating materials; solvents and lacquers; textile materials and processes; synthetic rubber.

ELIASON, PROF. ALBERT L, Dept. of Chemistry, Concordia College, Moorhead, Minn. CHEMETRY. Swedeburg, Nebr, Aug. Warconta, 31, 34. City chemistr, Moline, all, 20-23; metalharrist, U.S. Steel Corp. 24; state chemist, III, 24, PROF. CHEM. ADD EEAD DEPT, CONCORDAL CoL. (MCORERAD, MINO), 24. U.S.A, 17-19. Chem. Soc; Aan. Sci. Workers. Analytical, Inorganic and organic chemistry. Molematry.

ELICH, PROF. JOE, 102 N. Fifth St, Tooele, Utah. MATHE-MATICS. Tooele, Utah, Sept. 28, 18. B.S. Utah State Agr. Col, 40; M.A. California, 42; California, Los Angeles, 48-50; ASST. PROF. MATH, UTAH STATE AGR. COL, 46- U.S.A, 42-46.

ENDS. BAIR, OHR SIAHS AGD, OD., 60. (10. 0.5.4, 10. 0.5, 10.

ELINS, D.R. BERBERT SIAMUEL), 75 Novecantle Road, Rochester 20, N. 7: PHOTOGRAPHIC CHEMISTRY. Lancaster, P.A. Nov. 24, 21; m. 49; c. 2. B.S., Franklin & Marshall Coi, 43; M.S. Illinois, 47, Ph.D.Chem, 19, M.S. R. RESEARCH CHEMIST, EAST-MAN KODAK CO, 49 Marine C. Res, 43-46; capt. A.A; Chem. 30c. Photographic emulatons; photographic gelatin.

Soc. Photographic emulatons; photographic gelaifn. ELON; DR. EVORAD, 1623 Junger S. N. W. Wachington 12, D. C. CHERMETERY. The Hague, Netherlands, July 33, 400, ant m. 37; c. 2. Chen, Bar, Unix, Jank, Tech, Holland, S.; Netherlands Pasteur Found, fellow, Paris, 25-27, Ph.D, 27; hon, prof, Inst. Fermentations, Belgium, 37. Managing directory, Lab. Ferrementation Tech. & Applied Chem, The Hague, 26-39; consultant and research chemisti, U.S. A, 34-35; ined med. 48: col. sect. Commonmentations, Belgium, 37. Managing directory, Lab. Ferrementation Tech. & Applied Chem, The Hague, 26-39; consultant and research chemisti, U.S. A, 34-35; ined med. 48: col. sect. Common-D. C. 43-46; press, Tech. Representations, Inc, 46-53; PRO-PRETOR, TECH. REPRESENTATIONS CO, 53; PRES, E. A. VAN ESSO'S FABELEKEN, N. V. HOLLAND, 46- 2nd gen. sec's Wetherlands SHL Chem. Agr. Indust, The Netherlands, 37: 07; A. A; Chem. Soc; Soc. Encl. Ann. Creat Chem; Inst. Food Tech; Soc. Sugar Beet Tech; Electrochem. Soc; Soc. Chem. Indust. London; Inst. Breverg, London; Boya Jio; Netherlands Chem. Soc; Netherlands Soc. Bicchem; Soc. Chim. Biol. Paris; Ann. Chim. Sucrete, Datalliter & Industa, Gran, Gar, Paris, Fermentations; cereal Chemistry; ourgrave; yaai; toreal backing. ELION, GERTRUDE S(ELLE), Welcome Research Laboratories,

ELION, GERTHUDE BICKLES, Wellcome Research Laboratories, Tuckahos 7, N. Y. BIOLOGICAL AND ORGANIC CHEMBSTRY. New York, N. Y. Jan. 33, 18. A.B. Hunter Col, 37, 16.5, N. Y. Univ, 41. Lab. assk. biochem, sch. marsing, N. Y. Hong, 37; chem. and physics, New York, N. Y. 41-43; analyst lood chem, Quaker Maid Co, 42-43; research chemist or cg. chem, Johanon and Johanon, 43-44; SR. BIOCHEMBY, WELLCOME RESEARCH LABS, 44 - Chem. Soc; Soc: Biol. Chem, N. Y. Acad. Chemistry of Purines, Pyrimidiase and Peridines; bacterial metaboliam; antibolium of radioactive purines in bacteria and animals.

ELIZABETH, SEFER ANN (SHEA), Sain Mary Collage, Xavier, Kann MATHERATICS. 3. Toseph, Mo. Sept. 18, 00. A.B., Kannas, 27, M.A., Wisconsin, 31, Ph.D.(math), 34, Teacher high sch, Kans, 37-30, Instr. MATH. and registrar, ST. MARY COL. (KANS), 31-33, PROF, 34-, registrar, 34-52. Math. Asn, Nat. Asn. Teachers Math.

ELIZABETH, SISTER M. (FRISCH), Dept. of Mathematics, Villa Madona College, Covington, Ky. MATHEMATICS. Covington, Ky, Oct. 18, Ol. A.B. Margyrove Col. 23, M.S., Notre Dame, 37, Pittaburgh, 28, Ph.D.(math), Catholic Univ, 40. Teacher high ach, Ky, 24-35, 40-43, INSTR. MATH, VILLA MADONNA COL, 45- Math. Soc. Power plant engineering; general biology; general analouny; electrical suparatus and machinery; deter-

"American Men of Science. A Biographical Directory"

- "...intended as a reference list for the Carnegie Institution of Washington....But the chief service it should render is to make men of science acquainted with one another and with one another's work." (Cattell 1921)
- James McKeen Cattell
 - First US professor of psychology
 - Editor of Science for nearly 50 years
- Members of scientific societies
- Male and female scientists in Canada and United States

34

ELDRIDGE - ELIZABETH

Oregon State Col. 32, M.S. 35; Ph.D.(physical chem), Cambridge, 53. Lab. assi, physics, Oregon State Col. 39-36; supervisor instrumentation research lab, Calilla Research Corp, 38-46; etc. Italion officer, U. 8. Office Naval Research, London, 48-52; READ INSTRUMENTATION & CONTROL LAB, STANFORD RESEARCE INST, 53- Fel. Faraday Soc; Moyal Soc Instrument Tech. Magazioatricito phenomena, Instrumentation for pressure, abock measurement; surface physics; labrication and frictions sutomatic control systems.

ELDERDGE, PROF. JOHN A(DAMS), Dept. of Physics, Sate University of form, Ioras City, Loras. PHYSICS Wash, D. C. A, B, Wealsyan, 13; Ph.D, Wisconsin, 22. Instr. PHYSICS, Wisconsin, 18-24; assec. prof. JONA, 24-26, PROF, 28. Physical Soc. Conduction in gases; resonance and ionization potentials; kinetic theory of gases.

LUC HEORY OF GARGENER SON), 212 Capitol Trail, Newark, DeL. PHYSICAL CHEMISTRY. Great Barrington, Mass, Sept. 24, 19; m. 49; c. 1. 3.8, Barringth Col, 42; Ph.D.(chem), Wisconsta, 48, Jack-Accent Distribution (J. 42; Ph.D.(chem), Wisconsta, 48, Jack-Accent Distribution (J. 19), C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, D. 1990, C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, D. 1990, C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, C. 1990, D. 1990, C. 1

polymera. ELDRIDGE, PROF. JOHN W(ILLIAM), 4-R Copeley Hill, Charlotterville, Va. CHEMICAL ENGINEERING. Nachana, N. H. Ange 22, 21; m. 42; c. Z. Soh, Maine, 43; M. S. Syracues, 45; m. S. Song, S. S. S

ELDERDGE, DR. ROBERT WIALKERI, 134 Hillaide Are, Natley 10, N. J. ORGANIC CHEMBERY. Moscow, Maho, Jan. 24, 03; m. 28; c. 3. 25, Maho, 23; Ph.D.(org. chem), Yale, 37. RESEARCH CEEMERT, U. S. RUBBER CO, PASSAC, N. J. 28, PATENT LIABON, 30. Chem. 30c. Rubber vulcanization and aging: accelerators and antioxidants; latex technology; syntheses in quinoline series.

ELGES, COL. CARL B(RNNY), JR. Army War College, Carlisle Barracks, Pittherg, Da. TURDELOCY, Sparks, Nev, June 20, 10; m. 39; c. 1. B.S. Nevada, 33, MS, 34. Asst. metoorologist, Szp. San, Nevada, 324.1; it. col. U.S.A, 41-50, COL, 50. Mem, Int. Cmn. Baow. Factors affecting stream flow in arid west; forecasting stream flow from snow.

Bit Colm. and Factors intering stream how in arth west, forecasting stream flow from mow.
ELGIN, PROF. JOSEPH C(LIFTON), Princeton University, Princeton, N. J. CHEMICA. ENGINEERING. Nashvilla, Tean, Feb. 11, 64; m. 28; c. 3. Chem. E, Virginia, 24, fellow, 24–35, 23, Proter follow, 23-29, DhoL) physical chem, 21; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 21; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 24; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 24; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 24; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 24; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 24; Mass. Inst. Tech, 28. Actuag asst. prof. physical chem, 24; Assoc. Gene ENG, 50-54, DEAN, 54. A. m. Petrol. Inst. fellow, Princeton, 25-31; research consultant, indust. firms, 31.golymer and coolymers engineent develop. branches, Offlice Rubber Director, 42-4; chem. engineer and div. head, a.a.m. labs, Columbia, 44-55; consultant, Atomic Energy Can, New York, 46. Brookes industrial traveling fellow, eng. sch. Princeton, 31. Mem. exec. cnt, div. chem. che, 50.-, Inst. Chem. Eng; Chem. Soc; Soc; Chem. Indust; Soc. Eng. 54, Inst. Mica, Metal. Eng. Sociated Univ, mechanics of countercurrent contacting towers, chemical engineering separation methods; phase equilibria in no-ideal systems; rubber reclaiming, hydrocarbon separation, polymerization. ELMS, MACHANELM, M, 65 Washington Mews, New York, N. Y.

rubber reclaiming; hydrocarbon separation; polymerization. ELLAS, NGTHANELJ M, 56 Washington Mews, New York, N. Y. CHEMICAL ENGINEERING. New York, N. Y. Feb. 21, 95; m. 43; c. 2. B. S. Columbal, 15, 29-30. Research chemist; Homas A. Editon, 15-16; Editon Storage Battery Co, 16-17; research and device), intermediates and dyea, E. I. da Poad de Nemours and device), intermediates and dyea, E. I. da Poad de Nemours Editor. Co, 22-33; CONSULTING CHEMIST AND PHYATE RES-SEARCH, 29: Consultant dech. ed; Resources for the Future', 51-52. With Board Econ. Warfare, 45; N. African Econ. Board, 43; For. Econ. Admin, 44; Tech. Indust. Intel. Chan, 45; Reparations Cam, 46; President's Mat. Policy Chm. Dast, Min. & Metal. Eng; Intel. Risc. Eng; N. Y. Acad. Dyes; intermediates; pharmaceutical products; plastic

materials; thermal insulating materials; solvents and lacquers; textile materials and processes; synthetic rubber.

ELIASON, PROF. ALBERT L, Dept. of Chemistry, Concordia College, Moorhead, Minn. CHEMETRY. Swedeburg, Nebr, Aug. Warconta, 31, 34. City chemistr, Moline, all, 20-23; metalharrist, U.S. Steel Corp. 24; state chemist, III, 24, PROF. CHEM. ADD EEAD DEPT, CONCORDAL CoL. (MCORERAD, MINO), 24. U.S.A, 17-19. Chem. Soc; Aan. Sci. Workers. Analytical, Inorganic and organic chemistry. Molematry.

Inorganic and organic chemistry; blochemistry: BLIASEN, DR. ROLF, Dept. of Sanitary Engineering, Massachunetts institute of Technology, Cambridge 39, Mass. SANI-TARY ENGINEERING. New York, NY. Feb. 22, 11; n. 41; c. 2. BA, Mass. Inst. Tech, 82, MK, 33, S. D. (sanit. engisity), and the second second second second second second sanit eng. 11. Inst. Tech, 39–04, 330, cord, col. eng. NY. Univ, 40–42, PROF, 46–49; MASS. INST. TECH, 49–Consulting engineer, 40–Chief dept. Civil Eng. Water Works Am; Pub. Bealth Ana; New Eng. Serged Works Am. Methods of wronesness.

ELICH, PROF. JOE, 102 N. Fifth St, Tooele, Utah. MATHE-MATICS. Tooele, Utah, Sept. 28, 18. B.S. Utah State Agr. Col, 40; M.A. California, 42; California, Los Angeles, 48-50; ASST. PROF. MATH, UTAH STATE AGR. COL, 46- U.S.A, 42-46.

ENDS. BAIR, OHR SIAHS AGD, OD., 60. (10. 0.5.4, 10. 0.5, 10.

ELINS, D.R. BERBERT S(AMUEL), 75 Norecastle Road, Rochester 20, N. T. PHOTOGRAPHIC CERUISITY, Lancaster, Pa. Nov. 24, 21; m. 49; c. 2. B.S. Franklin & Marshall Col, 45; M.S. Illinois, 47, Ph.D.Chem, J.S. SR. RESEARCH CHEMUET, EAST-MAN KODAK CO, 49 Marine C. Res, 43-46, capt. A.A; Chem. Soc. Pholographic emulations pholographic gelatin.

ELION, GERTRUDE B(ELLE), Wellcome Research Laboratories, Tuckahoe 7, N. Y. BIOLOGICAL AND ORGANIC CHEMISTRY. New York, N. Y. Jan. 23, 18. A.B. Hunler CO. 37, 1M. S.N. Y. Uuiy, 41. Lab. asst. blochem, sch. nursing, N. Y. Hong, 37, research asst. org. chem, Denver Chem. Co. 38-38; teacher chem. and physics, New York, N. Y, 41-42; analysi food chem, Quakor Maid Co. 40. 43, research chemist org. chem, Johnson H. LabS, 44. Chem. Soc; Soc. Biol. Chem; N. Y. Asst. Chemistry of Puritose, Pyrimidines and Pirefinies; LaceIrai metabolism; metabolism of radioactive purines in bacteria an animals.

LICADELTI, SAFLEA ANN (SHLA) SHIF BIRY COLUMP, ANDRY, Kans ANTHERATICS. S. Hoseph, Mo. Spept. 18, 00. A.B. Kansas, 27, M.A., Wisconsin, 31, Ph.D.(math), 34. Teacher high sch, Kans, 37-36, Instr. MATH. and registrar, ST. MARY COL. (EANS), 31-33, PROF, 34., registrar, 34-52. Math. Asn; Nat. Asn. Teachers Math.

ELIZABETH, SISTER M. (FRISCH), Dept. of Mathematics, Villa Madona College, Covington, Ky. MATHEMATICS. Covington, Ky, Oct. 18, Ol. A.B. Margyrove Col. 23, M.S., Notre Dame, 37, Pittaburgh, 28, Ph.D.(math), Catholic Univ, 40. Teacher high ach, Ky, 24-35, 40-43, INSTR. MATH, VILLA MADONNA COL, 45- Math. Soc. Power plant engineering; general biology; general analouny; electrical suparatus and machinery; deter-

"American Men of Science. A Biographical Directory"

- "...intended as a reference list for the Carnegie Institution of Washington....But the chief service it should render is to make men of science acquainted with one another and with one another's work." (Cattell 1921)
- James McKeen Cattell
 - First US professor of psychology
 - Editor of Science for nearly 50 years
- Members of scientific societies
- Male and female scientists in Canada and United States

34

COSMOS

GERTRUDE BELLE ELION

Nobel in Physiology or Medicine 1988

- with George H. Hitchings and Sir James Black for methods of rational drug design
- focused on understanding drug target rather than proceeding through trial-and-error

Elion's work led to

- creation of AIDS drug AZT
- development of first
 immunosuppressive drug,
 azathioprine, used to fight
 rejection in organ transplants
- first successful antiviral drug, acyclovir (ACV) used in treatment of herpes

Full name (with middle name)

- Assign gender
- Match with US patents

ELION, GERTRUDE B(ELLE) Wellcome Research Laboratories, Tuckahoe 7, N. Y. BIOLOGICAL AND ORGANIC CHEMISTRY. New York, N. Y, Jan. 23, 18. A.B, Hunter Col, 37; M.S, N. Y. Univ, 41. Lab. asst. biochem, sch. nursing, N. Y. Hosp, 37; research asst. org. chem, Denver Chem. Co, 38-39; teacher chem. and physics, New York, N. Y, 41-42; analyst food chem, Quaker Maid Co, 42-43; research chemist org. chem, Johnson and Johnson, 43-44; SR. BIOCHEMIST, WELLCOME RESEARCH LABS, 44- Chem. Soc; Soc. Biol. Chem; N. Y. Acad. Chemistry of Purines, Pyrimidines and Pteridines; bacterial metabolism; metabolism of radioactive purines in bacteria and animals.

Gertrude Elion as student at Hunter College, which she attended from 1933 to 1937 (Courtesy of Gertrude B. Elion Foundation)

Full name (with middle name)

- Assign gender
- Match with US patents

Birthplace and date

- Age
- Birth cohort
- We use age to match scientists with patents and publications

ELION, GERTRUDE B(ELLE) Wellcome Research Laboratories, Tuckahoe 7, N. Y. BIOLOGICAL AND ORGANIC CHEMISTRY. New York, N. Y, Jan. 23, 18. A.B, Hunter Col, 37; M.S, N. Y. Univ, 41. Lab. asst. biochem, sch. nursing, N. Y. Hosp, 37; research asst. org. chem, Denver Chem. Co, 38-39; teacher chem. and physics, New York, N. Y, 41-42; analyst food chem, Quaker Maid Co, 42-43; research chemist org. chem, Johnson and Johnson, 43-44; SR. BIOCHEMIST, WELLCOME RESEARCH LABS, 44- Chem. Soc; Soc. Biol. Chem; N. Y. Acad. Chemistry of Purines, Pyrimidines and Pteridines; bacterial metabolism; metabolism of radioactive purines in bacteria and animals. Full name (with middle name)

- Assign gender
- Match with US patents

	ELION, GERTRUDE B(ELLE) Wellcome Research Laboratories,	
Birthplace and date	Tuckahoe 7, N. Y. BIOLOGICAL AND ORGANIC CHEMISTRY.	— Discipline and
	New York, N. Y, Jan. 23, 18. A.B, Hunter Col, 37; M.S, N. Y.	
- Age	Univ, 41. Lab. asst. biochem, sch. nursing, N. Y. Hosp, 37;	research topics
Age	research asst. org. chem, Denver Chem. Co, 38-39; teacher	
- Birth cohort	chem. and physics, New York, N. Y, 41-42; analyst food chem,	
	Quaker Maid Co, 42-43; research chemist org. chem, Johnson	
	and Johnson, 43-44; SR. BIOCHEMIST, WELLCOME RESEARCH	
	LABS, 44- Chem. Soc; Soc. Biol. Chem; N. Y. Acad. Chemistry	
	of Purines, Pyrimidines and Pteridines; bacterial metabolism;	
	metabolism of radioactive purines in bacteria and animals.	

Example: Helene Wallace Toolan

BS 1929, PhD 1946, Assistant Professor 1953

TOOLAN, PROF. HELENE WALLACE, 151 W. 86th St, New York 24, N.Y.
EXPERIMENTAL DATHOLOGY. Chicago, Ill, Feb. 7, 12; m. 30; c. 3; m.
45. B.S. Chicago, 29; Ph.D. (path), Cornell, 46. Research asst, med. col, CORNELL, 40-50, ASST. PROF, SLOAN-KETTERING DIV, 53-; asst, SLOAN-KETTERING INST, 50-53, ASSOC, 53- A.A; Soc. Path. & Bact; Asn. Cancer Research; Soc. Exp. Biol; Harvey Soc. Heterologous transplantation of human tissues, both normal and malignant; immunology.

Year of undergraduate degree 1929 (age 17)

Helene Toolan, 80, Cancer Researcher And Institute Head

By WOLFGANG SAXON

Dr. Helene Wallace Toolan, a cancer researcher, died on Sunday at Southwestern Vermont Hospital Center in Bennington. She was 80 years old and lived in Old Bennington, Vt.

She died of congestive heart failure after a long illness, her family said.

Dr. Toolan, a native of Chicago, graduated with honors from the University of Chicago at the ageof 17 and received a Ph.D. in pathology from Cornell Medical Center. She was on the staff of the Sloan-Kettering Institute for Cancer Research in New York from 1950 until 1964.

Dr. Toolan did basic research on the transplantation of human tumors and tissues into laboratory animals. In 1955 she received the Sloan Award for her work.

Linked Cancers to Virus

She also studied the relationship between viruses and human cancer cells, leading a team of researchers that succeeded in linking viruses to eight types of human cancer in 1960. Previously only leukemia, a cancer affecting the blood, had been linked to a virus.

In 1964 Dr. Toolan moved to Bennington to direct the newly established Putnam Memorial Institute for Medical Research. In 1987 the institute was renamed the Helene W. Toolan Institute for Medical Research. She became director emeritus and senior scientist of the institute in 1978 and director emeritus and trustee in 1985.

Dr. Toolan was also an avid gardener, horticulturist and ornithologist, and participated in a project to beautify downtown Bennington in the early 1970's. The Garden Club of America gave her its Horticulural Award in 1982.

Example: Helene Wallace Toolan

BS 1929, PhD 1946, Assistant Professor 1953

TOOLAN, PROF. HELENE WALLACE, 151 W. 86th St, New York 24, N.Y. EXPERIMENTAL PATHOLOGY. Chicago, Ill, Feb. 7, 12 m. 30; c. 3 m. 45. B.S. Chicago, 29; Ph.D. (path), Cornell, 46. Research asst, med. col, CORNELL, 40-50, ASST. PROF, SLOAN-KETTERING DIV, 53-; asst, SLOAN-KETTERING INST, 50-53, ASSOC, 53- A.A; Soc. Path. & Bact; Asn. Cancer Research; Soc. Exp. Biol; Harvey Soc. Heterologous transplantation of human tissues, both normal and malignant; immunology.

Year of undergraduate degree 1929 (age 17)

Married in 1930 (age 18), 3 children

Helene Toolan, 80, Cancer Researcher And Institute Head

By WOLFGANG SAXON

Dr. Helene Wallace Toolan, a cancer researcher, died on Sunday at Southwestern Vermont Hospital Center in Bennington. She was 80 years old and lived in Old Bennington, Vt.

She died of congestive heart failure after a long illness, her family said.

Dr. Toolan, a native of Chicago, graduated with honors from the University of Chicago at the ageof 17 and received a Ph.D. in pathology from Cornell Medical Center. She was on the staff of the Sloan-Kettering Institute for Cancer Research in New York from 1950 until 1964.

Dr. Toolan did basic research on the transplantation of human tumors and tissues into laboratory animals. In 1955 she received the Sloan Award for her work.

Linked Cancers to Virus

She also studied the relationship between viruses and human cancer cells, leading a team of researchers that succeeded in linking viruses to eight types of human cancer in 1960. Previously only leukemia, a cancer affecting the blood, had been linked to a virus.

In 1964 Dr. Toolan moved to Bennington to direct the newly established Putnam Memorial Institute for Medical Research. In 1987 the institute was renamed the Helene W. Toolan Institute for Medical Research. She became director emeritus and senior scientist of the institute in 1978 and director emeritus and trustee in 1985.

Dr. Toolan was also an avid gardener, horticulturist and ornithologist, and participated in a project to beautify downtown Bennington in the early 1970's. The Garden Club of America gave her its Horticulural Award in 1982.

Example: Helene Wallace Toolan BS 1929, PhD 1946, Assistant Professor 1953

TOOLAN, PROF. HELENE WALLACE, 151 W. 86th St, New York 24, N.Y. EXPERIMENTAL PATHOLOGY Chicago III Feb. 7, 12 m. 30; c. 3 m. 45. B.S. Chicago, 29; Ph.D. (path), Cornell, 46. Research asst, med. col, CORNELL, 40-50, ASST. PROF, SLOAN-KETTERING DIV, 53-; asst, SLOAN-KETTERING INST, 50-53, ASSOC, 53- A.A; Soc. Path. & Bact; Asn. Cancer Research; Soc. Exp. Biol; Harvey Soc. Heterologous transplantation of human tissues, both normal and malignant; immunology.

Year of undergraduate degree 1929 (age 17)

Married in 1930 (age 18), 3 children

PhD in 1946 (age 34, 17 years after undergrad)

Helene Toolan, 80, Cancer Researcher And Institute Head

By WOLFGANG SAXON

Dr. Helene Wallace Toolan, a cancer researcher, died on Sunday at Southwestern Vermont Hospital Center in Bennington. She was 80 years old and lived in Old Bennington, Vt.

She died of congestive heart failure after a long illness, her family said.

Dr. Toolan, a native of Chicago, graduated with honors from the University of Chicago at the ageof 17 and received a Ph.D. in pathology from Cornell Medical Center. She was on the staff of the Sloan-Kettering Institute for Cancer Research in New York from 1950 until 1964.

Dr. Toolon did bosic research on the transplantation of human tumors and tissues into laboratory animals. In 1955 she received the Sloan Award for her work.

Linked Cancers to Virus

She also studied the relationship between viruses and human cancer cells, leading a team of researchers that succeeded in linking viruses to eight types of human cancer in 1960. Previously only leukemia, a cancer affecting the blood, had been linked to a virus.

In 1964 Dr. Toolan moved to Bennington to direct the newly established Putnam Memorial Institute for Medical Research. In 1987 the institute was renamed the Helene W. Toolan Institute for Medical Research. She became director emeritus and senior scientist of the institute in 1978 and director emeritus and trustee in 1985.

Dr. Toolan was also an avid gardener, horticulturist and ornithologist, and participated in a project to beautify downtown Bennington in the early 1970's. The Garden Club of America gave her its Horticulural Award in 1982.

Example: Helene Wallace Toolan BS 1912, PhD 1946, Assistant Professor 1953

TOOLAN, PROF. HELENE WALLACE, 151 W. 86th St, New York 24, N.Y.
EXPERIMENTAL PATHOLOGY. Chicago, III, Feb. 7, 12 m. 30; c. 3 m.
45. B.S. Chicago, 29; Ph.D. (path), Cornell, 46. Research asst, med. col, CORNELL, 40-07, ASST. PROF, SLOAN-KETTERING DIV, 53-; asst, SLOAN-KETTERING INST, 50-53, ASSOC, 53- A.A; Soc. Path. & Bact; Asn. Cancer Research; Soc. Exp. Biol; Harvey Soc. Heterologous transplantation of human tissues, both normal and malignant; immunology.

Year of undergraduate degree 1929 (age 17)

Married in 1930 (age 18), 3 children

PhD in 1946 (age 34, 17 years after undergrad)

> Assistant professor 1953 At age 41, 7 years after PhD Academic scientist ("asst. prof")

Helene Toolan, 80, Cancer Researcher And Institute Head

By WOLFGANG SAXON

Dr. Helene Wallace Toolan, a cancer researcher, died on Sunday at Southwestern Vermont Hospital Center in Bennington. She was 80 years old and lived in Old Bennington, Vt.

She died of congestive heart failure after a long illness, her family said.

Dr. Toolan, a native of Chicago, graduated with honors from the University of Chicago at the ageof 17 and received a Ph.D. in pathology from Cornell Medical Center. She was on the staff of the Sloan-Kettering Institute for Cancer Research in New York from 1950 until 1964.

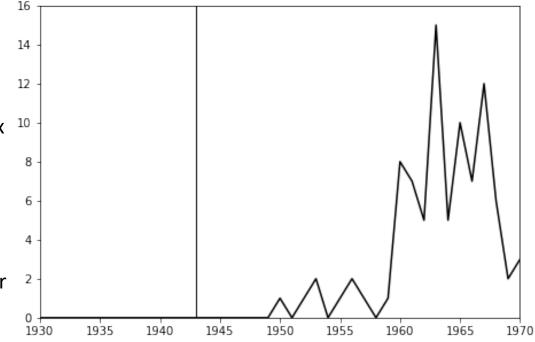
Dr. Toolan did basic research on the transplantation of human tumors and tissues into laboratory animals. In 1955 she received the Sloan Award for her work.

Linked Cancers to Virus

She also studied the relationship between viruses and human cancer cells, leading a team of researchers that succeeded in linking viruses to eight types of human cancer in 1960. Previously only leukemia, a cancer affecting the blood, had been linked to a virus.

In 1964 Dr. Toolan moved to Bennington to direct the newly established Putnam Memorial Institute for Medical Research. In 1987 the institute was renamed the Helene W. Toolan Institute for Medical Research. She became director emeritus and senior scientist of the institute in 1978 and director emeritus and trustee in 1985.

Dr. Toolan was also an avid gardener, horticulturist and ornithologist, and participated in a project to beautify downtown Bennington in the early 1970's. The Garden Club of America gave her its Horticulural Award in 1982.


We link each scientists with their patents and publications

- Dr. Giuliana C. Tesoro
 - Born in Venice 1921
 - Jewish, not allowed to attend University in Italy under Fascist Racial Laws
 - Moved to Switzerland first and to US in 1939
 - Yale PhD in organic chemistry in 1943
- Married Victor Tesoro in 1943
 - Following her marriage, Tesoro worked part-time in summer job for Calco Chemical Company 43-44
 - Took a job as research chemist with Onyx¹
 Oil 1944, promoted to Head of Organic
 Synthesis Dept. 1946
- 2 children by 1956
- 89 US patents
 - Including patent for flame-retardant fiber

Year of marriage & number of children ~

TESORO, DR. GIULIANA C, 278 Clinton Ave, Dobbs Ferry, N. Y. ORGANIC CHEMISTRY. Venice, Italy, June 1, 21, nat. 46; m. 43; c. 2. Ph.D.(org. chem), Yale, 43. Research chemist, Calco Chem. Co, N. J, 43-44; ONYX OIL & CHEM. CO, 44-46, HEAD ORG. SYNTHESIS DEPT, 46- Chem. Soc; N. Y. Acad. Synthesis of pharmaceuticals, textile chemicals, germicides and insecticides; synthesis and rearrangement of glycols in the hydrogenated naphthalene series.

Controls for variation in output across fields

Two empirical challenges:

- Propensity to patent varies across fields (Moser 2012)
- Women may select into fields with low productivity

Solution:

- Control for field fixed effects
- Investigate selection into fields

Discipline

TESORO, DR. GIULIANA C, 278 Clinton Ave, Dobbs Ferry, N. Y. ORGANIC CHEMISTRY. Venice, Italy, June 1, 21, nat. 46; m. 43; c. 2. Ph.D.(org. chem), Yale, 43. Research chemist, Calco Chem. Co, N. J, 43-44; ONYX OIL & CHEM. CO, 44-46, HEAD ORG. SYNTHESIS DEPT, 46- Chem. Soc; N. Y. Acad. Synthesis of pharmaceuticals, textile chemicals, germicides and insecticides; synthesis and rearrangement of glycols in the hydrogenated naphthalene series.

Research topics

k-means assigns Tesoro to "benzene" Apply *k*-means clustering to disciplines and research topics to assign each scientist to one unique field (Moser and San 2020)

VOLKOFF, PROF. G(EORGE) M(ICHAEL), Dept. of Physics, University of British Columbia, Vancouver 8, B. C. Can. PHYS-ICS. Moscow, Russia, Feb. 23, 14, Can. citizen; m. 40; c. 3.
B.A, British Columbia, 34, M.A, 36, hon. D.Sc, 45; Royal Soc. Can. fellow, California, 39-40, Ph.D. (theoret. physics), 40.
Asst. prof. physics, British Columbia, 40-43; assoc. research physicist, Montreal lab, Nat. Research Council Can, 43-45, research physicist and head theoret. physics branch, Atomic Energy Proj, Montreal and Chalk River, 45-46; PROF. PHYSICS, BRITISH COLUMBIA, 46- Ed. 'Can. Jour. Physics,' 50- Mem. Order of the British Empire, 46. A.A; Asn. Physics Teachers; Physical Soc; fel. Royal Soc. Can; Can. Asn. Physicists. Theoretical nuclear physics; neutron diffusion; nuclear magnetic and quadrupole resonance.

- Use Volkoff's field "Physics" and topics "theoretical nuclear physics; neutron diffusion; nuclear magnetic and quadrupole resonance" to define Volkoff's field of research
- Find other people who work in the same field ("cluster")
- Control for average output of scientists in the same field (through field FE)
- Examine selection into fields

k-mean clustering (1/3) Create a matrix of words

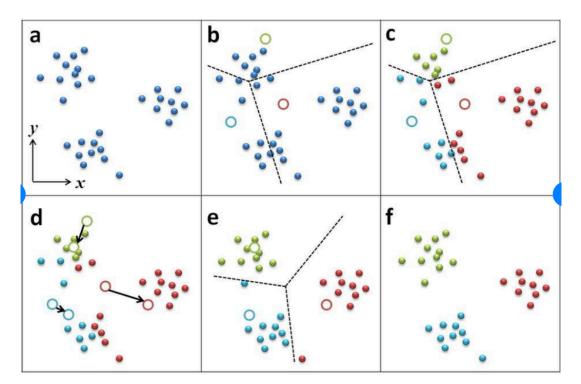
- Partition *n* observations into *k* clusters assigning each observation to cluster with nearest mean
- First, concatenate all fields and topics of a scientist into a list of words ("document")
 - Remove punctuation and stop words (Nothman, Qin & Yurchak 2018)
- Represent research topics as bags of words
 - E.g., Volkoff's bag of words "physics theoretical nuclear physics neutron diffusion nuclear magnetic quadrupole resonance"
- Corpus of documents represented by a matrix
 - 1 row per document
 - 1 column per word occurring in the corpus
 - Entries counting occurrences of words in each document

k-mean clustering (2/3)

Inverse frequency weights: less weight on frequent words

- Frequent words like "theory" or "research" carry less information than rarer words like "neutron" or "polymer"
 - E.g. "theoretical" in Volkoff's back of word, "physics theoretical nuclear physics neutron diffusion nuclear magnetic quadrupole resonance"
 - Feeding them into a classifier would overshadow frequencies of rarer but more interesting terms
- Implementing Baeza-Yates & Ribeiro (2011)

$$tf_idf(w,d) = tf(w,d) \times idf(w),$$

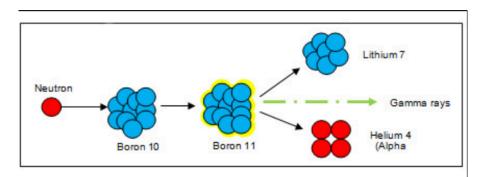

where n is the number of documents, and

$$idf(w) = \log \frac{1+n}{1+df(w)} + 1$$

df(w) is the number of documents that contain word wtf(w, d) is the frequency of word w in document d.

k-mean clustering (3/3) Minimizing distance within clusters

- Cluster data by separating documents in k disjoint clusters
 - Each described by the mean of the vectors in the cluster
- Minimizing within-cluster sum-of-squares (Forgy 1965)
 - Python scikit-learn
- Set number of clusters e.g., k=100



Schematic illustration of the k-means algorithm for 2dimensional data clustering from Chen, Yu-Zhong & Lai, Ying-Cheng. (2016). Universal structural estimator and dynamics approximator for complex networks.

cluster	9	19	29	39	49
title	Servomechanism	Chemical engineering	Organic chemistry	Neutron radiation	ternal combustion engine
scientists	594	232	648	749	204
field_1	electrical engineering	chemical engineering	organic chemistry	physics	mechanical engineering
field_2				nuclear physics	engineering
field_3	Example: Volkoff falls into cluster 39:			nuclear chemistry	chemical engineering
field_4	•	y chemistry	chemistry		
field_5	el			experimental physics	physics
word_1				nuclear	combustion
word_2	Common word	IS:		physics	engines
word_3				energy	internal
word_4	"nuclear, physics, energy, spectroscopy,		spectroscopy	mechanical	
word_5			• • •	cosmic	engineering
word_6	cosmic, rays, scattering, reactor, reactions,			rays	fuels
word_7				scattering	fuel
word_8	neutron"			reactor	engine
word_9		reactions	jet		
word_10				neutron	gas
cluster	Cluster 39 has	749 scientists inc	cl. Volkoff	89	99
title				Calculus of variations	Adsorption
scientists	182	889	377	101	1109
field_1	aeronautical engineering	mathematics	chemistry	mathematics	physical chemistry
field_2	engineering	applied mathematics	organic chemistry	pure mathematics	chemistry
field_3	aeronautics	physics	chemical engineering	applied mathematics	physics
field_4	physics	actuarial mathematics	physical chemistry	mathematical analysisphysical organic chemistry	
field_5	mechanical engineering	engineering	physics	physics	oceanography
word_1	aeronautical	mathematics	rubber	calculus	physical
word_2	aircraft	analysis	chemistry	variations	chemistry
word_3	engineering	topology	synthetic	mathematics	properties
word_4	structures	functions	plastics	equations	kinetics
word_5	design	mathematical	latex	differential	thermodynamics
word_6	control	applied	organic	theory	adsorption
word_7	flight	series	compounding	analysis	chemical
word_8	research	functional	polymerization	functions	catalysis
	research				
word_9	stability	numerical	technology	mathematical	surface

Sanity check: Let Google name our clusters and check whether names make sense

- Python spits out numbers
- To name clusters, we enter each cluster's common words into Google
- E.g., cluster 39, which includes Volkoff's research has the following common words *nuclear physics energy spectroscopy cosmic rays scattering reactor reactions neutron*
- Google returns "Neutron radiation"
- Just a sanity check, we do not use names in the analysis

Neutron radiation: Neutrons released from the nucleus during interactions such as nuclear fission or fusion

cluster	9	19	29	39	49
title	Servomechanism	Chemical engineering (Catalysis)	Organic chemistry	Neutron radiation	nternal combustion engine
scientists	594	232	648	749	204
field_1	electrical engineering	chemical engineering	organic chemistry	physics	mechanical engineering
field_2	physics	engineering	chemistry	nuclear physics	engineering
field_3	engineering	chemistry	physical organic chemistry	nuclear chemistry	chemical engineering
field_4	chemistry	industrial and chemical engineering	organic and polymer chemistry	chemistry	chemistry
field_5	electrical and chemical engineering		biochemistry	experimental physics	physics
word_1	electrical	chemical	organic	nuclear	combustion
word_2	engineering	engineering	chemistry	physics	engines
word_3	power	process	synthetic	energy	internal
word_4	electric	development	polymer	spectroscopy	mechanical
word_5	machinery	industrial	medicinal	cosmic	engineering
word_6	circuits	chemistry	steroids	rays	fuels
word_7	transmission	catalysis	research	scattering	fuel
word_8	servomechanisms	plastics	pharmaceuticals	reactor	engine
word_9	electronics	kinetics	syntheses	reactions	jet
word_10	measurements	organic	medicinals	neutron	gas
cluster	59	69	79	89	99
title	Aircraft	Mathematical analysis	Vulcanization	Calculus of variations	Adsorption
scientists	182	889	377	101	1109
field_1	aeronautical engineering	mathematics	chemistry	mathematics	physical chemistry
field_2	engineering	applied mathematics	organic chemistry	pure mathematics	chemistry
field_3	aeronautics	physics	chemical engineering	applied mathematics	physics
field_4	physics	actuarial mathematics	physical chemistry	mathematical analysis hysical organic chemistry	
field_5	mechanical engineering	engineering	physics	physics	oceanography
word_1	aeronautical	mathematics	rubber	calculus	physical
word_2	aircraft	analysis	chemistry	variations	chemistry
word_3	engineering	topology	synthetic	mathematics	properties
word_4	structures	functions	plastics	equations	kinetics
word_5	design	mathematical	latex	differential	thermodynamics
word_6	control	applied	organic	theory	adsorption
word_7	flight	series	compounding	analysis	chemical
word_8	research	functional	polymerization	functions	catalysis
word_9	stability	numerical	technology	mathematical	surface
word_10		spaces	accelerators	problems	structure

k-means clustering able to captures the essence of a scientists' research topics

FRAGOLA, CAESAR (FRANCIS), Sperry Gyroscope Co, Great Neck, L. I, N. Y. ENGINEERING. Brooklyn, N. Y, June 1, 16; m. 42; c. 5. B.E.E, Polytech. Inst. Brooklyn, 37, fellow, 39-40, M.E.E, 40. Develop. engineer, Root Research Lab, New York, 38-39; asst. project engineer, SPERRY GYROSCOPE CO, 40-44, project engineer, 44-48, HEAD ENG. SECT. 48- Assoc. Inst.
Elec. Eng; assoc. Inst. Radio Eng. Aircraft instrumentation engineering; development of aircraft flight and navigation instruments; individual components and complete system components for stabilized remotely located aircraft compasses and flight directors.

de TURK, ELDER P(ATTISON), Armament Test, Naval Air Test Center, Patuxent River, Md. PHYSICS. Reading, Pa, Dec. 13, 11; m. 40; c. 3. B.S, Texas, 39, M.A, 42. Asst. project engineer, Sperry Gyroscope Co, 42-44; instr. physics, Texas, 44-46, staff mem, war research lab, 44-46; physicist, ARMAMENT TEST, NAVAL AIR TEST CENTER, 46-47, head, assessment and ground

test, 47-52, ASST. CHIEF PROJECT ENGINEER, 52- Civilian with Office Sci. Research & Develop; A.F; U.S.N, 44. Physical Soc; Asn. Physics Teachers. Design and development of aircraft instruments; test of gravity meters; test, development and evaluation of aircraft armament systems.

Caesar Fragola: Discipline: engineering

Elder de Turk: Discipline: physics

- Simple classification by discipline would have missed connection between Fragola and de Turk
- k-means connects them through the field of "aircraft"

Who is included in the MoS?

- Members of scientific organizations
- Focused on researchers
 - Moser and Parsa (2020) compare Harvard 1955 Directory of University Professors and Students with MoS (1956)
- Full professors are more likely to be included
 - 32% of full professors at Harvard are in MoS
 - 11% of associate and 9% of assistant professors

Who was a female scientist?

This sounds more trivial than it is. We compared 4 different ways

- Manual assignment
 - Data typists assign gender based on their perception of gender
 - Problem: Based on perception of names today
- Algorithm using frequencies of male and female names in US census 1940
 - Uses historical perception of names in 1940
 - Assign gender based on % female in census of 1940
- Attendance at women's college
 - Built a list of women's colleges, w dates when they admitted men
- US Social Security Administration data, 1880-2011
 - Frequencies of male and female first names

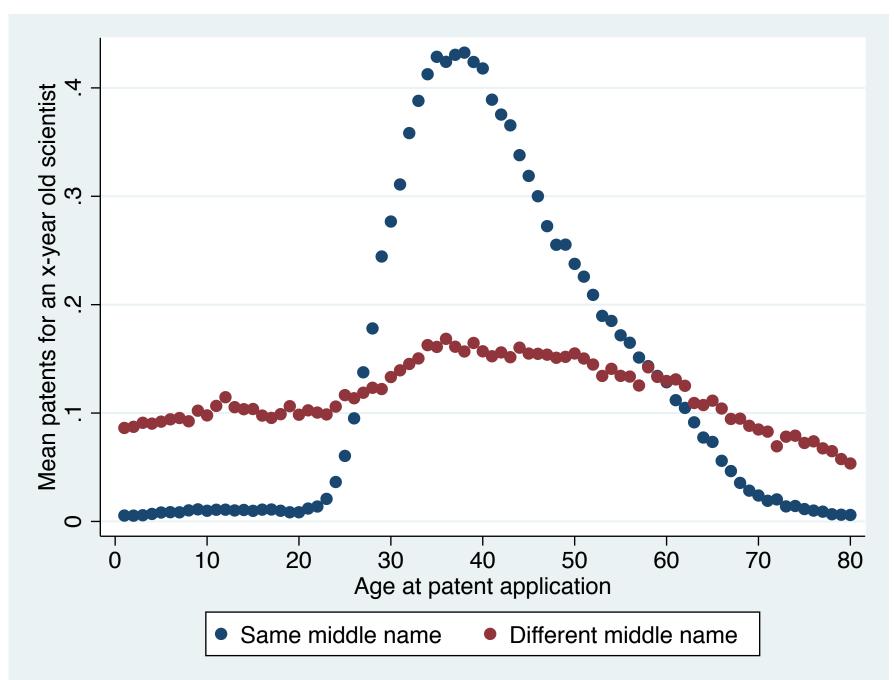
Who was a female scientist?

We compared 4 different methods to assign gender

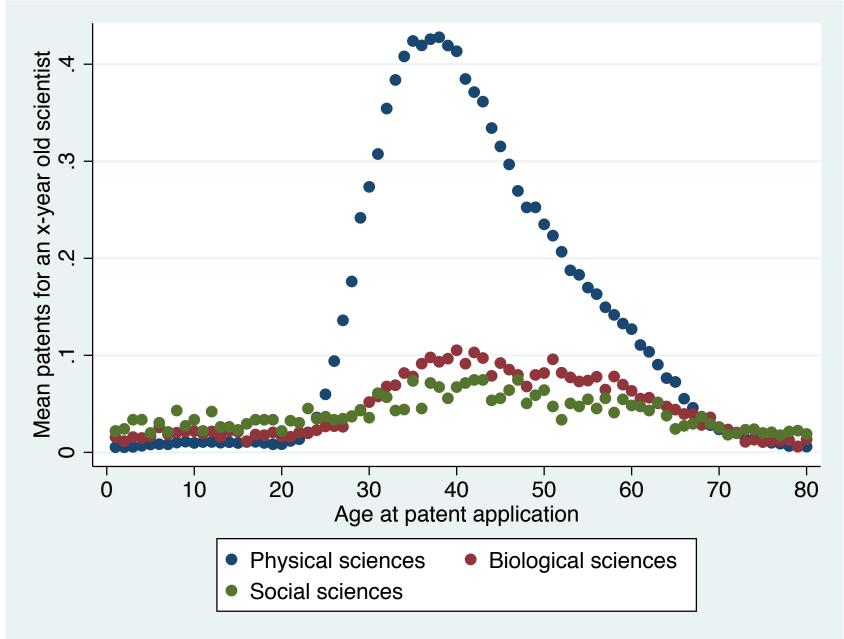
- Manual assignment
 - Data typists assign gender based on their perception of gender
 - Problem: Based on perception of names today
- Algorithm using frequencies of male and female names in US census 1940
 - Uses historical perception of names in 1940
 - Assign gender based on % female in census of 1940
- Attendance at women's college
 - Built a list of women's colleges, w dates when they admitted men
- US Social Security Administration data, 1880-2011
 - Frequencies of male and female first names
 - Python module "gender-detector"

Women in Science

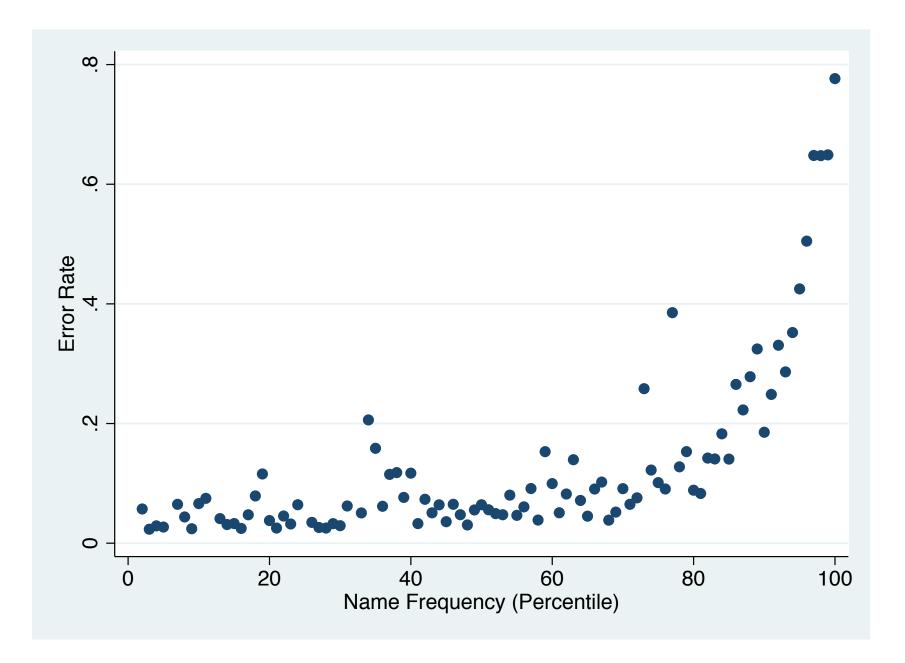
- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions


Patents

- Systematic measure for changes in productivity over time
- Match scientists with patents
 - Match using first, middle, and last names
 - Levenstein distance measure, allowing 1 letter to be different
 - Use age to reduce false positives
 - Patent applications when the scientists was a kid (0-18 years)
 - Best match quality in the physical sciences
 - Physical, biological, and social sciences
 - Frequent names get many false positives
 - Drop the top 20 percent of frequent names
- Propensity to patent varies across fields (Moser 2012)
 - Solution: Control for fields


Patents applications when scientists are 0-18 years are likely false positives

Match on middle initial



Analysis of patents focus on physical sciences (STEM): chemistry, physics, engineering, mathematics

From Moser and San (2020)

Low match quality for common names, esp above 80%

Highest quality match using middle names, focusing on physical sciences, and dropping common names

	All	Physical Sciences	Biological Sciences	Social Sciences
Scientists in MoS (1956)	82,094	41,096	25,505	15,493
A. <u>Patent applications made when</u> scientists are 18-80 years old				
Scientists with at least 1 patent	43,929	27,527	10,777	5,625
Patents	1,496,170	887,658	384,058	224,454
Patents per scientist	18.23	21.60	15.06	14.49
Error rate	83.3%	75.0%	96.2%	92.9%
 B. <u>Scientists and patentees have</u> <u>matching middle names</u> Scientists with at least 1 patent 	27,030	20,743	4,506	1,781
Patents	27,030	20,743	23,113	1,781
Patents per scientist	3.05	5.27	0.91	0.72
Error rate	22.1%	14.2%	72.3%	81.6%
C. <u>Matching middle name &</u> <u>excluding frequent names</u>				
Scientists with at least 1 patent	18,035	15,146	2,311	578
Patents	164,892	154,883	8,064	1,945
Patents per scientist	2.01	3.77	0.32	0.13
Error rate	6.3%	4.2%	32.8%	67.9%
			om Moser and	

From Moser and San (2020)

Publications

- Microsoft Academic Graph (MAG)
 - Moser and Parsa (2020) "Reducators: How Joseph McCarthy Changed the Course of American Science."
 - Updated weekly. Our data from August 20, 2020
 - English-language publications and authors with 1+, 1900-60
- Match scientists in MoS (1956) with MAG authorid
 - Using first, last name, and middle initial
 - Manually clean duplicates
- Focus on journal publications
 - Excl book chapters and other publications
- All disciplines
 - STEM (physical sciences) + biological and social sciences

Gertrude B. Elion had 105 publications, including 75 journal publications

Years for all publications Result accuracy: FILTER BY: 👩 CLEAR ALL Showing 1-10* of 105 IEW 🗆 🗏 🗏 SORT BY SALIENCY 💙 0 (1.196 seconds) Time 🛗 Gertrude B. Elion Q I On the Mechanism of Inactivation of Xanthine Oxidase by 439 citations* DUKE UNIVERSITY 1939-1970 💙 Allopurinol and Other Pyrazolo[3,4-d]pyrimidines Gertrude "Trudy" Belle Elion (January 23, 1918 -**1970** JOURNAL OF BIOLOGICAL CHEMISTRY February 21, 1999) was an American biochemist and Top Topics Vincent Massey, Hirochika Komai, Graham Palmer, Gertrude B. Elion pharmacologist, who shared the 1988 Nobel Prize in Physiology or Medicine with George H. Hitchings and Sir Chemistry ▲ Xanthine oxidase ▲ Pyrimidine View More (7+) V ▲ Stereochemistry James Black for their use of innovative methods of rational drug design for the development of ... MORE Xanthine oxidase Abstract Allopurinol and other 6-unsubstituted pyrazolo[3,4-d]-pyrimidines have been shown to reduce all of the oxidation-reduction reactive groups of milk xanthine oxidase. The great inhibitory action of these compounds has been Biochemistry PUBLICATIONS (186) CITATIONS* (16,954) shown to be due to a sort of "suicide" reaction, in which the product ... View Full Abstract 🗸 Allopurinol Authors with similar name ▲ gertrude b elion 🗰 1939 🗮 1970 -2 99 Oxipurinol Gertrude B Elion Q Top co-author: P de Miranda Purine metabolism PUBLICATIONS (39) CITATIONS* (733) Stereochemistry 405 citations* Metabolic studies of allopurinol, an inhibitor of xanthine oxidase Gertrude B. Elion **1966** BIOCHEMICAL PHARMACOLOGY Pyrimidine PUBLICATIONS (1) CITATIONS* (230) Gertrude B. Elion, Aylene Kovensky, George H. Hitchings Pharmacology The Wellcome Research Laboratories, Burroughs Wellcome & Co. (U.S.A.) Inc., Tuckahoe, N.Y., USA Gertrude B. Elion PUBLICATIONS (1) CITATIONS* (121) Biology ▲ Xanthine oxidase ▲ Xanthipe analog ▲ Uric acid View More (7+) V MORE MORE Abstract The metabolic disposition of allopurinol [4-hydroxypyrazolo(3,4-d)-pyrimidine) was determined in mice, dogs, and human subjects. The drug is a substrate for, as well as an inhibitor of, xanthine oxidase and is converted in all Publication Types species to the corresponding xanthine analog, alloxanthine, wh... View Full Abstract V Journal publications ▲ gertrude b elion 🗰 1/39 🗰 1970 * 😂 🤧 Patents Other Potentiation by inhibition of drug degradation : 6-substituted 398 citations* Book chapters puripes and xanthine oxidase **1963 BIOCHEMICAL PHARMACOLOGY** Gertrude B. Elion, Sandra Callahan, Henry Nathan, Samuel Bieber, R.Wayne Rundles see all 6 authors Top Authors Duke University Gertrude B. Elion A Xanthine oxidase inhibitor ▲ Xanthine oxidase George H. Hitchings Abstract The administration of the xanthine oxidase inhibitor. 4-hydroxypyrazolo (3, 4-d)pyrimidine, concurrently with Thomas A. Krenitsky 6-mercaptopurine, results in a marked decrease in the metabolic oxidation of the latter to 6-thiouric acid in both the mouse and man. The inhibition of metabolic degradation by th... View Full Abstract V Samuel Bieber R. Wayne Rundles ▲ gertrude b elion 1939 11970 * 🛢 🤫 Henry C. Nathan

754,851 journal publications by 46,102 scientists

- 66% of 70,230 US scientists have at least 1 publication
- 10.8 publications per scientist
 std 23.7, median 2
- Scientists with most publications
 - Carl Djerassi, 864 publications
 - Jane Marion Oppenheimer, 240 publications

Image: Carl Djerassi with his assistant Arelina Gonzales in Mexico in 1851. Djerassi and Luis E. Miramontes synthesized Norethindron, the key ingredient of the birth-control pill

Citations as a control for differences in the quality of publications


- Measure differences in quality by the number of later publications that *cite* each publication as relevant input to their work.
- Citations data in the MAG include 18,537,851 citations to 790,180 publications. 23.5 per publication.
- Most highly cited paper:
 - Oliver Howe Lowery on "Protein measurement with the folin phenol reagent" (1951, 250,657 citations).
 - Marilyn Gist Farquhar on "Junctional complexes in various epithelia" (1962, 5,156 citations) joint work with George Palade (Nobel 1974)

Women in Science

- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

Mothers reach peak productivity at 42, 5 years later than fathers

Figure A2, Panel A: Mothers vs Fathers

Mothers became more productive than other women after age 38

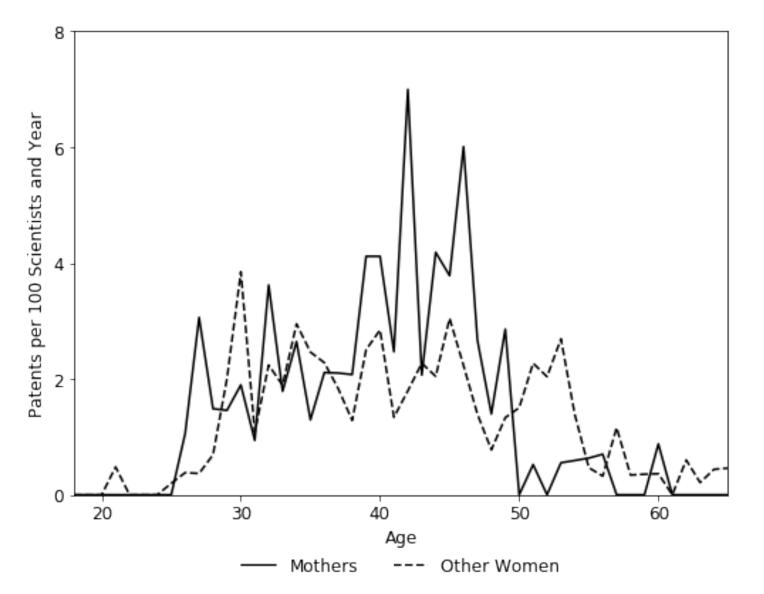


Figure A2, Panel C: Mothers vs Other Women

No significant differences for women and men w/o kids

Figure A2, Panel B: Male vs. Female Scientists w/o Children

Differential changes in productivity across the life cycle

Estimate OLS separately for demographic groups *d*: mothers, fathers, women w/o kids, men w/o kids

$$y_{ia}^{d} = \beta_{a}^{d} A g e_{i} + \delta_{t} + \pi_{b} + \mu_{f} + \epsilon_{it}$$

- y_{ia}^d patents by scientists *i* of demographic *d* at age *a*
- δ_t year fixed effects
- π_b birth year fixed effects
- μ_f field fixed effects
 - 20 is excluded age group

Mothers patent more after age 35

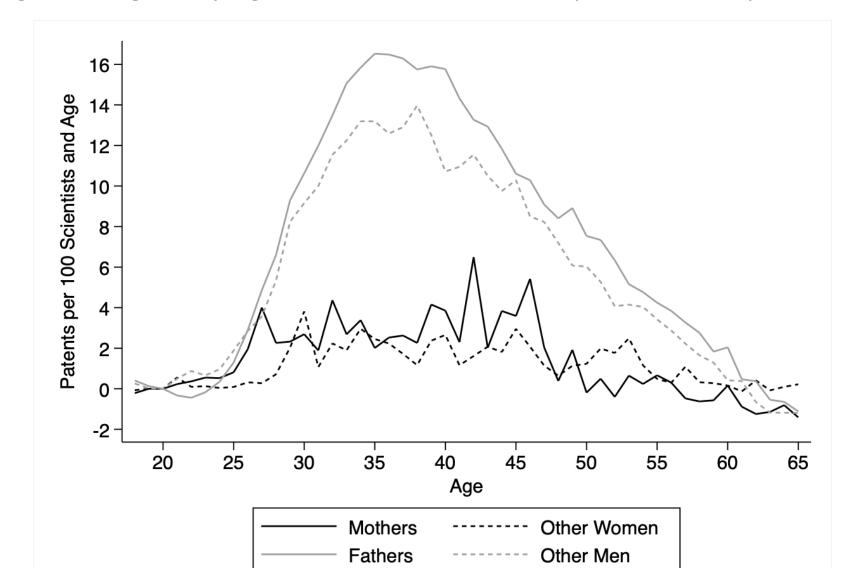


Figure 2: Age-Varying Estimates of Productivity Measured by Patents

Women in Science

- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

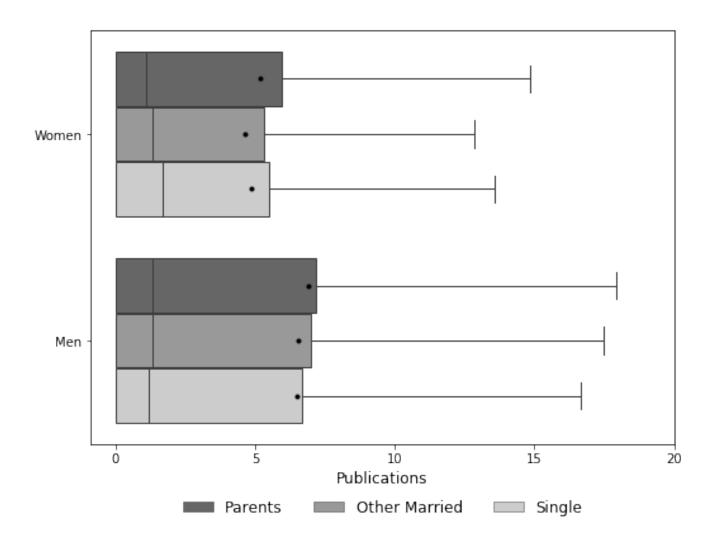
Mothers produce more patents than other women but many less than fathers

	All women	All men	Wo	men	Μ	en
	All women	All men	with children	w/o children	with children	w/o children
Demographics:						
Ν	4,032	66,198	892	3,140	48,987	17,211
Share married (in %)	38.8	84.2	93.3	23.4	95.6	51.9
Age at marriage	28.8	27.6	27.1	30.8	27.2	29.8
	(6.55)	(5.21)	(5.01)	(7.48)	(4.78)	(6.60)
Share parents (in %)	22.1	74.0	100	0	100	0
Children per scientist	0.41	1.69	1.88	0	2.28	0
-	(0.88)	(1.35)	(0.89)		(1.05)	
Scientific Productivity:			· · ·			
Patents per scientist	0.51	3.58	0.65	0.47	3.82	2.83
-	(3.58)	(11.74)	(5.80)	(2.67)	(12.43)	(9.30)
Publications per scientist	5.14	7.14	5.39	5.06	7.23	6.89
	(10.38)	(15.96)	(11.67)	(9.98)	(16.36)	(14.75)
Citations per publication	260.94	155.20	709.27	125.35	137.92	206.82
	(3,364.16)	(2,152.10)	(5,650.29)	(2,232.58)	(2,000.40)	(2,568.73)

TABLE 1 – SUMMARY STATISTICS ON MARRIAGE, PARENTING, AND INVENTION

Mothers are more productive than other women, but much less productive than fathers

	All women	All men	Wor	men	Μ	en
	All women	All men	with children	w/o children	with children	w/o children
Demographics:						
N	4,032	66,198	892	3,140	48,987	17,211
Share married (in %)	38.8	84.2	93.3	23.4	95.6	51.9
Age at marriage	28.8	27.6	27.1	30.8	27.2	29.8
	(6.55)	(5.21)	(5.01)	(7.48)	(4.78)	(6.60)
Share parents (in %)	22.1	74.0	100	0	100	0
Children per scientist	0.41	1.69	1.88	0	2.28	0
_	(0.88)	(1.35)	(0.89)		(1.05)	
Scientific Productivity:						
Patents per scientist	0.51	3.58	0.65	0.47	3.82	2.83
-	(3.58)	(11.74)	(5.80)	(2.67)	(12.43)	(9.30)
Publications per scientist	5.14	7.14	5.39	5.06	7.23	6.89
-	(10.38)	(15.96)	(11.67)	(9.98)	(16.36)	(14.75)
Citations per publication	260.94	155.20	709.27	125.35	137.92	206.82
	(3,364.16)	(2,152.10)	(5,650.29)	(2,232.58)	(2,000.40)	(2,568.73)


TABLE 1 - SUMMARY STATISTICS ON MARRIAGE, PARENTING, AND INVENTION

Fathers are more productive than other men

	All women	All men	Wo	men	Men	
	All wolliell	All men	with children	w/o children	with children	w/o children
Demographics:						
Ν	4,032	66,198	892	3,140	48,987	17,211
Share married (in %)	38.8	84.2	93.3	23.4	95.6	51.9
Age at marriage	28.8	27.6	27.1	30.8	27.2	29.8
	(6.55)	(5.21)	(5.01)	(7.48)	(4.78)	(6.60)
Share parents (in %)	22.1	74.0	100	0	100	0
Children per scientist	0.41	1.69	1.88	0	2.28	0
	(0.88)	(1.35)	(0.89)		(1.05)	
Scientific Productivity:						
Patents per scientist	0.51	3.58	0.65	0.47	3.82	2.83
-	(3.58)	(11.74)	(5.80)	(2.67)	(12.43)	(9.30)
Publications per scientist	5.14	7.14	5.39	5.06	7.23	6.89
	(10.38)	(15.96)	(11.67)	(9.98)	(16.36)	(14.75)
Citations per publication	260.94	155.20	709.27	125.35	137.92	206.82
	(3,364.16)	(2,152.10)	(5,650.29)	(2,232.58)	(2,000.40)	(2,568.73)

TABLE 1 – SUMMARY STATISTICS ON MARRIAGE, PARENTING, AND INVENTION

Parents (and especially mothers) publish more than other scientists

Papers by mothers are more highly cited than papers by women without children

	All women	All men	Wo	men	Μ	en
	All wolliell	All men	with children	w/o children	with children	w/o children
Demographics:						
N	4,032	66,198	892	3,140	48,987	17,211
Share married (in %)	38.8	84.2	93.3	23.4	95.6	51.9
Age at marriage	28.8	27.6	27.1	30.8	27.2	29.8
	(6.55)	(5.21)	(5.01)	(7.48)	(4.78)	(6.60)
Share parents (in %)	22.1	74.0	100	0	100	0
Children per scientist	0.41	1.69	1.88	0	2.28	0
_	(0.88)	(1.35)	(0.89)		(1.05)	
Scientific Productivity:						
Patents per scientist	0.51	3.58	0.65	0.47	3.82	2.83
-	(3.58)	(11.74)	(5.80)	(2.67)	(12.43)	(9.30)
Publications per scientist	5.14	7.14	5.39	5.06	7.23	6.89
-	(10.38)	(15.96)	(11.67)	(9.98)	(16.36)	(14.75)
Citations per publication	260.94	155.20	709.27	125.35	137.92	206.82
	(3,364.16)	(2,152.10)	(5,650.29)	(2,232.58)	(2,000.40)	(2,568.73)

TABLE 1 – SUMMARY STATISTICS ON MARRIAGE, PARENTING, AND INVENTION

Papers by mothers are as highly cited as papers by fathers and other men

	TABLE 1 – SUM	TABLE 1 – SUMMARY STATISTICS ON MARRIAGE, PARENTING, AND INVENTION						
	All women	All men	Women		Men			
	All women	All men	with children	w/o children	with children	w/o children		
N	4,032	66,198	892	3,140	48,987	17,211		
Share married	38.8%	84.2%	93.3%	23.4%	95.6%	51.9%		
Age at marriage	28.8	27.6	27.1	30.8	27.2	29.8		
	(6.55)	(5.21)	(5.01)	(7.48)	(4.78)	(6.60)		
Share parents	22.1%	74.0%	-					
Children	0.41	1.69	1.88	0.0	2.28	0.0		
per scientist	(0.88)	(1.35)	(0.89)		(1.05)			
Patents	0.51	3.58	0.65	0.47	3.82	2.83		
per scientist	(3.58)	(11.74)	(5.80)	(2.67)	(12.43)	(9.30)		
Publications	8.35	11.65	8.73	8.25	11.91	10.90		
per scientist	(15.48)	(25.51)	(17.02)	(15.02)	(26.30)	(23.07)		
Citations per publication	18.68	23.86	23.17	17.30	23.84	23.92		

Differences in inventive output across demographic groups

Estimate OLS

$$y_{it} = \beta_1 Parent_i + \beta_2 Female_i + \beta_3 Female * Parent_i + \delta_t + \pi_b + \mu_f + \epsilon_{it}$$

- y_{ia}^d patents per 100 scientists *i* in year *t*
- δ_t year fixed effects
- π_b birth year fixed effects
- μ_f field fixed effects

Women patent 67% less compared with men (-5.9/8.8)

Mothers patent 77% less compared with fathers (-5.9-0.9/8.8) Mothers patent 9% more than other women (1.8-0.9/8.8)

		TABLE 2 – PRODU	CTIVITY MEASUREI	D BY PATENTS						
		Patents								
	(1)	(2)	(3)	(4)	(5)	(6)				
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***				
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)				
Parent	1.772***	1.898***	1.675***	1.186***	1.098***	1.089***				
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)				
Female*Parent	-0.912**	-1.090***	-1.293***	-0.847***	-0.795**	-0.924***				
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)				
Year FE	Yes	Yes	Yes	Yes	Yes	Yes				
Birth year FE	Yes	No	Yes	Yes	No	Yes				
Age FE	No	Yes	No	No	Yes	No				
Field FE	Yes	Yes	Yes	Yes	Yes	Yes				
Disciplines	STEM	STEM	STEM	All	All	All				
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80				
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524				
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.606	4.579				
***	denotes significan	nce at the 1-percent le	evel, $\frac{1}{2}$ at the 5-per	cent level, and * at the	he 10-percent level					

Women patent 67% less compared with men (-5.9/8.8) Mothers patent 77% less compared with fathers (-5.9-0.9/8.8)

Mothers patent 9% more than other women (1.8-0.9/8.8)

		TABLE 2 – PRODU	CTIVITY MEASURE	D BY PATENTS					
_		Patents							
	(1)	(2)	(3)	(4)	(5)	(6)			
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***			
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)			
Parent	1.772***	1.898***	1.675***	1.186***	1.098***	1.089***			
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)			
Female*Parent	-0.912**	-1.090***	-1.293***	-0.847***	-0.795**	-0.924***			
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)			
Year FE	Yes	Yes	Yes	Yes	Yes	Yes			
Birth year FE	Yes	No	Yes	Yes	No	Yes			
Age FE	No	Yes	No	No	Yes	No			
Field FE	Yes	Yes	Yes	Yes	Yes	Yes			
Disciplines	STEM	STEM	STEM	All	All	All			
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80			
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524			
Pre-baby boom mean	8.811	▲ 8.811	8.752	4.606	4.606	4.579			
***	denotes significat	nce at the 1-percent le	vel, ** at the 5-per	cent level, and * at th	ne 10-percent level				

Women patent 67% less compared with men (-5.9/8.8) Mothers patent 77% less compared with fathers (-5.9-0.9/8.8) Mothers patent 9% more than other women (1.8-0.9/8.8)

		TABLE 2 – PRODU	CTIVITY MEASURE	DBY PATENTS		
			Pa	tents		
	(1)	(2)	(3)	(4)	(5)	(6)
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)
Parent	1.772***	1 .898***	1.675***	1.186***	1.098***	1.089***
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)
Female*Parent	-0.912**	1.090***	-1.293***	-0.847***	-0.795**	-0.924***
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Birth year FE	Yes	No	Yes	Yes	No	Yes
Age FE	No	Yes	No	No	Yes	No
Field FE	Yes	Yes	Yes	Yes	Yes	Yes
Disciplines	STEM	STEM	STEM	All	All	All
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.606	4.579
***	* denotes significat	nce at the 1-percent le	vel, ** at the 5-per	cent level, and * at the	e 10-percent level	

This may be due selection, if only exceptionally productive mothers "survive"

Robust to controlling for scientists' age (instead of birth year)

			Pat	ents		
	(1)	(2)	(3)	(4)	(5)	(6)
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)
Parent	1.772***	1.898***	1.675***	1.186***	1.098***	1.089***
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)
Female*Parent	-0.912**	-1.090***	-1.293***	-0.847***	-0.795**	-0.924***
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Birth year FE	Yes	No	Yes	Yes	No	Yes
Age FE	No	Yes	No	No	Yes	No
Field FE	Yes	Yes	Yes	Yes	Yes	Yes
Disciplines	STEM	STEM	STEM	All	All	All
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.606	4.579
***	denotes significan	ce at the 1-percent	level, ** at the 5-per	cent level, and * at t	he 10-percent level	

TABLE 2 - PRODUCTIVITY Measured by Patents

Robust to including older scientists (up to age 80)

			Pâ	tents		
	(1)	(2)	(3)	(4)	(5)	(6)
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)
Parent	1.772***	1.898***	1.675***	1.186***	1.098***	1.089***
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)
Female*Parent	-0.912**	-1.090***	-1.293***	-0.847***	-0.795**	-0.924***
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Birth year FE	Yes	No	Yes	Yes	No	Yes
Age FE	No	Yes	No	No	Yes	No
Field FE	Yes	Yes	Yes	Yes	Yes	Yes
Disciplines	STEM	STEM	STEM	All	All	All
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.606	4.579
***	denotes significar	nce at the 1-percent le	evel, ** at the 5-per	cent level, and * at the	he 10-percent level	

TABLE 2 – PRODUCTIVITY MEASURED BY PATENTS

Differences are smaller in other disciplines (biological and social sciences) Women patent 52% less (-2.4/4.6), compared with 67% less in physical sciences

		TABLE 2 – PRODU	OCTIVITY MEASURED B			
			Paten	ts		
	(1)	(2)	(3)	(4)	(5)	(6)
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)
Parent	1.772***	1.898***	1.675***	1.186***	1.098***	1.089***
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)
Female*Parent	-0.912**	-1.090***	-1.293***	-0.847***	-0.795**	-0.924***
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Birth year FE	Yes	No	Yes	Yes	No	Yes
Age FE	No	Yes	No	No	Yes	No
Field FE	Yes	Yes	Yes	Yes	Yes	Yes
Disciplines	STEM	STEM	STEM	All	All	All
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.606	4.579
***	denotes significar	nce at the 1-percent le	evel, ** at the 5-percer	nt level, and * at	the 10-percent level	

Estimates for parenting are nearly identical: Mothers patent 71% less compared with fathers (77% for STEM) Mothers patent 7% more than women without children (9% for STEM)

TABLE 2 – PRODUCTIVITY MEASURED BY PATENTS							
	Patents						
	(1)	(2)	(3)	(4)	(5)	(6)	
Female	-5.870***	-5.627***	-5.245***	-2.432***	-2.503***	-2.189***	
	(0.173)	(0.174)	(0.156)	(0.067)	(0.067)	(0.061)	
Parent	1.772***	1.898***	1.675***	1.186***	1.098***	1.089***	
	(0.135)	(0.138)	(0.125)	(0.068)	(0.068)	(0.063)	
Female*Parent	-0.912**	-1.090***	-1.293***	-0.847***	-0.795**	-0.924***	
	(0.389)	(0.391)	(0.366)	(0.125)	(0.125)	(0.116)	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
Birth year FE	Yes	No	Yes	Yes	No	Yes	
Age FE	No	Yes	No	No	Yes	No	
Field FE	Yes	Yes	Yes	Yes	Yes	Yes	
Disciplines	STEM	STEM	STEM	All	All	All	
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80	
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524	
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.606	4.579	
*** denotes significance at the 1-percent level, ** at the 5-percent level, and * at the 10-percent level							

The first child carries the largest productivity penalty for mothers

(consistent with Danish registry data on earnings today, Klevens, Landais, Soogard 2019)

TABLE A2	– Effects of Having	More Children on th	HE PRODUCTIVITY OF MA	le and Female Scie	NTISTS		
	Patents per 100 scientists per year						
	(1)	(2)	(3)	(4)	(5)		
Female	-5.870***	-5.628***	-5.245***	-4.108***	-3.730***		
	(0.173)	(0.174)	(0.156)	(0.068)	(0.061)		
1 Child	1.669***	1.822***	1.558***	1.624***	1.494***		
	(0.185)	(0.186)	(0.171)	(0.098)	(0.090)		
2 Children	1.838***	1.950***	1.717***	1.687***	1.565***		
	(0.160)	(0.165)	(0.149)	(0.082)	(0.076)		
3+ Children	1.781***	1.886***	1.712***	1.496***	1.410***		
	(0.168)	(0.166)	(0.157)	(0.085)	(0.079)		
Female*1 Child	-2.284***	-2.589***	-2.664***	-1.724***	-1.758***		
	(0.374)	(0.386)	(0.347)	(0.132)	(0.122)		
Female*2 Children	0.535	0.490	0.127	-1.26/***	-1.319***		
	(0.763)	(0.761)	(0.730)	(0.232)	(0.218)		
Female*3+ Children	-1.316***	-1.582***	-1.539***	-1.902***	-2.027***		
	(0.331)	(0.349)	(0.306)	(0.107)	(0.010)		
Year FE	Yes	Yes	Yes	Yes	Yes		
Birth Year FE	Yes	No	Yes	Yes	Yes		
Age FE	No	Yes	No	No	No		
Field FE	Yes	Yes	Yes	No	No		
Disciplines	Physical sciences	Physical sciences	Physical sciences	All	All		
Scientists' age	18-65	18-65	18-80	18-65	18-80		
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,591,524		
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.579		

For men, productivity increases with each child

_	Patents per 100 scientists per year					
	(1)	(2)	(3)	(4)	(5)	
Female	-5.870***	-5.628***	-5.245***	-4.108***	-3.730***	
	(0.173)	(0.174)	(0.156)	(0.068)	(0.061)	
1 Child	1.669***	1.822***	1.558***	1.624***	1.494***	
	(0.185)	(0.186)	(0.171)	(0.098)	(0.090)	
2 Children	1.838***	1.950***	1.717***	1.687***	1.565***	
	(0.160)	(0.165)	(0.149)	(0.082)	(0.076)	
3+ Children	1.781***	1.886***	1.712***	1.496***	1.410***	
	(0.168)	(0.166)	(0.157)	(0.085)	(0.079)	
Female*1 Child	-2.284***	-2.589***	-2.664***	-1.724***	-1.758***	
	(0.374)	(0.386)	(0.347)	(0.132)	(0.122)	
Female*2 Children	0.535	0.490	0.127	-1.267***	-1.319***	
	(0.763)	(0.761)	(0.730)	(0.232)	(0.218)	
Female*3+ Children	-1.316***	-1.582***	-1.539***	-1.902***	-2.027***	
	(0.331)	(0.349)	(0.306)	(0.107)	(0.010)	
Year FE	Yes	Yes	Yes	Yes	Yes	
Birth Year FE	Yes	No	Yes	Yes	Yes	
Age FE	No	Yes	No	No	No	
Field FE	Yes	Yes	Yes	No	No	
Disciplines	Physical sciences	Physical sciences	Physical sciences	All	All	
Scientists' age	18-65	18-65	18-80	18-65	18-80	
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,591,524	
Pre-baby boom mean	8.811	8.811	8.752	4.606	4.579	

Women in Science

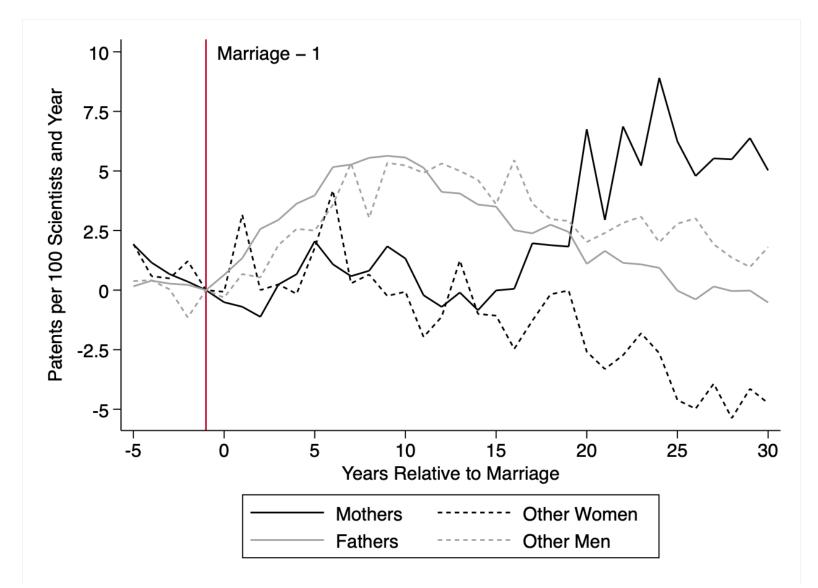
- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

Event study to investigate impact of marriage (first child)

- Goal: Understand impact of children on scientific output
 - Ideal experiment would randomize fertility
- Event study of marriage (first child)
 - Parents typically had first child quickly after marriage (Weiss 2020)
 - While choice to have children is not exogenous, event of marriage (first child) generates sharp change in productivity
 - Arguably orthogonal to unobserved determinants of productivity that evolve more smoothly over time
 - Trace out long-run trajectory of productivity after marriage

Differential changes in productivity after marriage

Estimate differential changes in productivity after marriage for mothers, fathers, women without kids, and men without kids


$$y_{is}^d = \beta_s^d EventTime_i + \delta_t + \alpha_a + \mu_f + \epsilon_{it}$$

- y_{is}^d patents by scientists *i* in demographic *d* and year *s* after marriage
- δ_t year fixed effects
- α_a age fixed effects
- μ_f field fixed effects

Marriage -1 is excluded period

Mothers' productivity increases dramatically 15 years after year of marriage

Figure 3: Event Study Estimates of Changes in Patenting After Marriage

Why are mothers more productive late in life and marriage?

- 15 years into the marriage, even the younger kids require less work
- In 2019 mothers spent
 - 2.75 h/day caring for children under age 6
 - 1.17 h/day when youngest child 6-12 (BLS 2020)

Average hours per day spent caring for and helping household children as their main activity, 2019 annual averages (from BLS 2020)

Activity	Parents, youngest child 6-12 years	Fathers, youngest child 6-12 years	Mothers, youngest child 6-12 years	Parents, child under age 6	Fathers, child under age 6	Mothers, child under age 6
Total, caring for and helping household children	0.93	0.65	1.17	2.14	1.42	2.75
Physical care for household children	0.24	0.12	0.33	0.91	0.51	1.25
Reading to and with household children	0.03	0.02	0.04	0.08	0.06	0.10
Playing with household children, not sports	0.11	0.12	0.11	0.64	0.56	0.71
Activities related to household children's education	0.11	0.09	0.14	0.12	0.05	0.17

Or pent-up research potential?

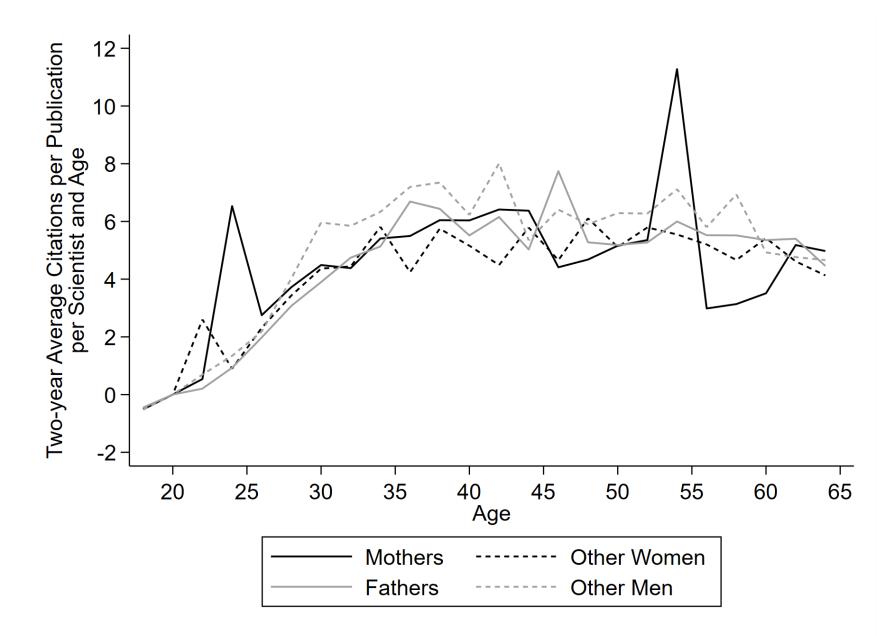
- Are mothers more productive because they have "time" to think about research while they work?
- Not as likely
- Labor markets penalize interruptions in employment, esp. at the beginning of a person's career
 - E.g., large and persistent effects on employment and wages when workers suffer unemployment early stages in their careers (Oreoupoulous, von Wachter, Heicz 2012, Jarosch 2015)
- Skills atrophy
 - McDowell (1982) documents differences among fields in costs of interrupted careers and finds higher decay rates for physics and chemistry than in other fields (like History and English)
 - Skill obsolescence among older workers increases with the pace of technological change (MacDonald and Weisbach 2004, "hasbeen" model)

Women in Science

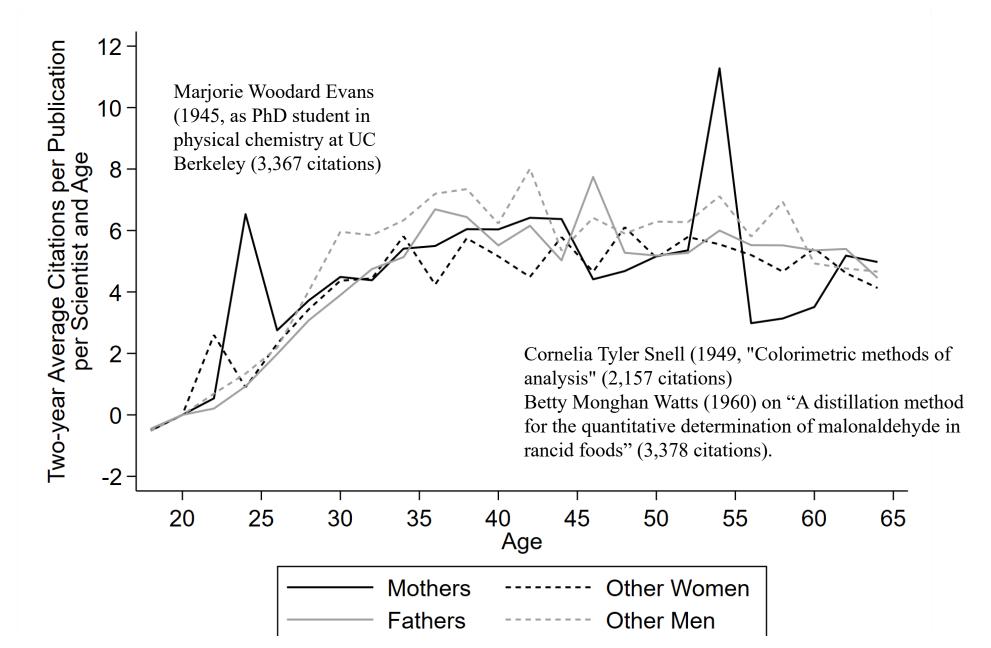
- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions


Differential changes in productivity across the life cycle

Estimate OLS separately for demographic groups *d*: mothers, fathers, women w/o kids, men w/o kids


$$y_{ia}^{d} = \beta_{a}^{d} A g e_{i} + \delta_{t} + \pi_{b} + \mu_{f} + \epsilon_{it}$$

- y_{ia}^d publications by scientists *i* of demographic *d* at age *a*
- δ_t year fixed effects
- π_b birth year fixed effects
- μ_f field fixed effects
 - 20 is excluded age group


Mothers' publications decline after median age of marriage and recover after age 35

Publications by mothers are of similar quality (measured by citations) to those of other scientists

Publications by mothers are of similar quality (measured by citations) to those of other scientists

Differences in publishing productivity across demographic groups

Estimate OLS

$$y_{it} = \beta_1 Parent_i + \beta_2 Female_i + \beta_3 Female * Parent_i + \delta_t + \pi_b + \mu_f + \epsilon_{it}$$

- y_{ia}^d publications per 100 scientists *i* in year *t*
- δ_t year fixed effects
- π_b birth year fixed effects
- μ_f field fixed effects

Women publish 75% less compared with men (-8.4/11.2) Mothers publish 85% less compared with fathers (-8.4-1.1/11.2) Mothers publish roughly the same as other women (1.0-1.1/11.2)

			Publicati	ons (1-6)			Citations (7-8)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Female	-8.355***	-8.646***	-8.176***	-9.959***	-9.945***	-9.613***	-9.077***	-9.072***
	(0.258)	(0.256)	(0.235)	(0.197)	(0.196)	(0.181)	(2.215)	(2.318)
Parent	1.028***	0.491***	1.160***	0.829***	-0.609***	0.977***	14.091***	14.411***
	(0.138)	(0.133)	(0.131)	(0.114)	(0.111)	(0.107)	(4.234)	(4.196)
Female*Parent	-1.108**	-0.811*	-0.982**	-0.353	-0.321	-0.442	-9.248***	-10.742***
	(0.474)	(0.470)	(0.454)	(0.411)	(0.410)	(0.387)	(3.354)	(3.879)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Birth year FE	Yes	No	Yes	Yes	No	Yes	Yes	No
Age FE	No	Yes	No	No	Yes	No	No	Yes
Field FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Disciplines	STEM	STEM	STEM	All	All	All	STEM	STEM
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80	18-65	18-65
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524	1,204,592	1,204,592
Pre-baby boom mean	11.189	11.189	11.208	15.832	15.832	15.862	21.275	21.275
*:	** denotes signif	ficance at the 1	-percent level,	** at the 5-per	cent level, and	* at the 10-perc	ent level	

TABLE 3 – PRODUCTIVITY MEASURED BY PUBLICATIONS AND CITATIONS

Women receive 43% fewer citations than men (-9.1/21.3) Mothers receive 86% fever citations than fathers (-9.1-9.2/21.3) Mothers receive 23% more citations than other women (14.1-9.2/21.3)

	TABLE 3 – PRODUCTIVITY MEASURED BY PUBLICATIONS AND CITATIONS											
			Publicati	ons (1-6)		_	Citations (7-8)					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Female	-8.355***	-8.646***	-8.176***	-9.959***	-9.945***	-9.613***	-9.077***	-9.072***				
	(0.258)	(0.256)	(0.235)	(0.197)	(0.196)	(0.181)	(2.215)	(2.318)				
Parent	1.028***	0.491***	1.160***	0.829***	-0.609***	0.977***	14.091***	14.411***				
	(0.138)	(0.133)	(0.131)	(0.114)	(0.111)	(0.107)	(4.234)	(4.196)				
Female*Parent	-1.108**	-0.811*	-0.982**	-0.353	-0.321	-0.442	-9.248***	-10.742***				
	(0.474)	(0.470)	(0.454)	(0.411)	(0.410)	(0.387)	(3.354)	(3.879)				
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Birth year FE	Yes	No	Yes	Yes	No	Yes	Yes	No				
Age FE	No	Yes	No	No	Yes	No	No	Yes				
Field FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Disciplines	STEM	STEM	STEM	All	All	All	STEM	STEM				
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80	18-65	18-65				
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524	1,204,592	1,204,592				
Pre-baby boom mean	11.189	11.189	11.208	15.832	15.832	15.862	21.275	21.275				
**	** denotes signi	ificance at the 1	-percent level,	** at the 5-per	cent level, and ²	* at the 10-per	cent level					

Mothers in STEM publish roughly same as other women, but patent slightly (8%) more than other women

- Patents more likely in industry, publications in academia
- Selection
 - Mothers may be less able to accommodate long hours of laboratory work required in industry
 - Only the most productive mothers survive and patent in STEM
- Productivity
 - Motherhood may reduce publishing productivity of mothers in academia more than in science, if mothers are less likely to get tenure
- We examine both channels below

Gender differences in other disciplines are smaller than in STEM

Women publish 63% less (-10.0/15.8), compared with 75% less in STEM Mothers publish 66% less compared with fathers (-10.0-0.4/15.8), 85% less in STEM Mothers patent 3% more than other women (0.8-0.4/15.8), 1% in STEM

			Publicati	ons (1-6)			Citations (7-8)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Female	-8.355***	-8.646***	-8.176***	-9.959***	-9.945***	-9.613***	-9.077***	-9.072***	
	(0.258)	(0.256)	(0.235)	(0.197)	(0.196)	(0.181)	(2.215)	(2.318)	
Parent	1.028***	0.491***	1.160***	0.829***	-0.609***	0.977***	14.091***	14.411***	
	(0.138)	(0.133)	(0.131)	(0.114)	(0.111)	(0.107)	(4.234)	(4.196)	
Female*Parent	-1.108**	-0.811*	-0.982**	-0.353	-0.321	-0.442	-9.248***	-10.742***	
	(0.474)	(0.470)	(0.454)	(0.411)	(0.410)	(0.387)	(3.354)	(3.879)	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Birth year FE	Yes	No	Yes	Yes	No	Yes	Yes	No	
Age FE	No	Yes	No	No	Yes	No	No	Yes	
Field FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Disciplines	STEM	STEM	STEM	All	All	All	STEM	STEM	
Scientists' age	18-65	18-65	18-80	18-65	18-65	18-80	18-65	18-65	
N (scientists x years)	1,204,592	1,204,592	1,298,053	2,391,179	2,391,179	2,591,524	1,204,592	1,204,592	
Pre-baby boom mean	11.189	11.189	11.208	15.832	15.832	15.862	21.275	21.275	
**	* denotes sign	ificance at the 1	-percent level,	** at the 5-per	cent level, and	* at the 10-perc	ent level		

Women in Science

- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

Mothers who were academic scientists were 21% less likely to achieve tenure than fathers, 19% less likely than other women

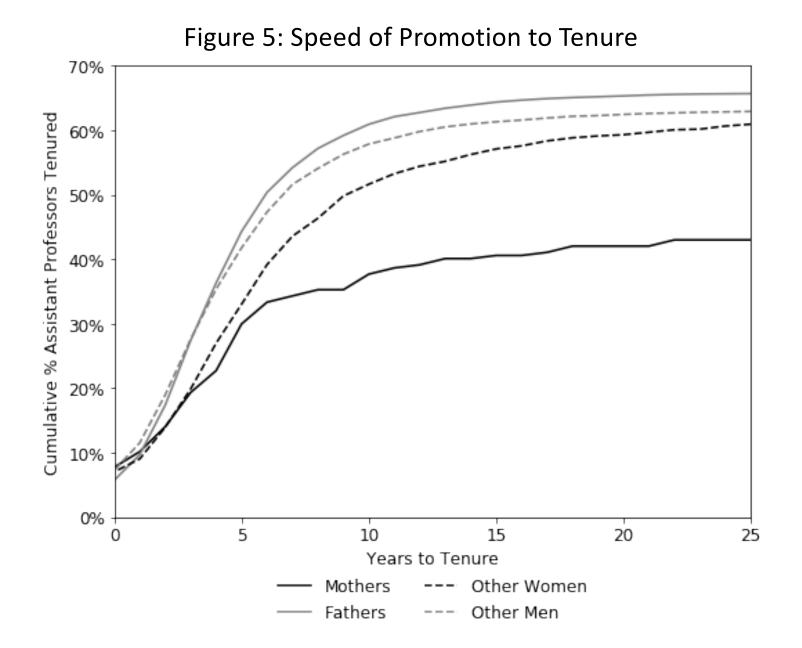

TABLE 4 – SUMMAR	RY STATISTICS ON P	ARTICIPATION A	ND CAREER PROGRE	ESSIONS FOR ACAE	DEMIC SCIENTISTS		
	All women	All women All men		men	Μ	Men	
	All wollieli	All Illell	with children	w/o children	with children	w/o children	
Ν	4,032	66,198	892	3,140	48,987	17,211	
Academic / all scientists	87.7%	74.6%	84.5%	88.6%	73.8%	77.1%	
PhD / academic scientists	84.1%	77.5%	83.2%	84.4%	76.6%	79.8%	
Tenure track / academic scientists	42.7%	45.5%	35.9%	44.6%	45.4%	45.9%	
Tenured / academic scientists	41.7%	47.7%	26.8%	45.7%	47.8%	47.2%	

TABLE 4 – SUMMARY STATISTICS ON PARTICIPATION AND CAREER PROGRESSIONS FOR ACADEMIC SCIENTISTS

27% of mothers promoted to tenure

- 19% less than 46% of women w/o kids
- 21% less than 48% of fathers

Differences in timing of productivity had important implications for promotions

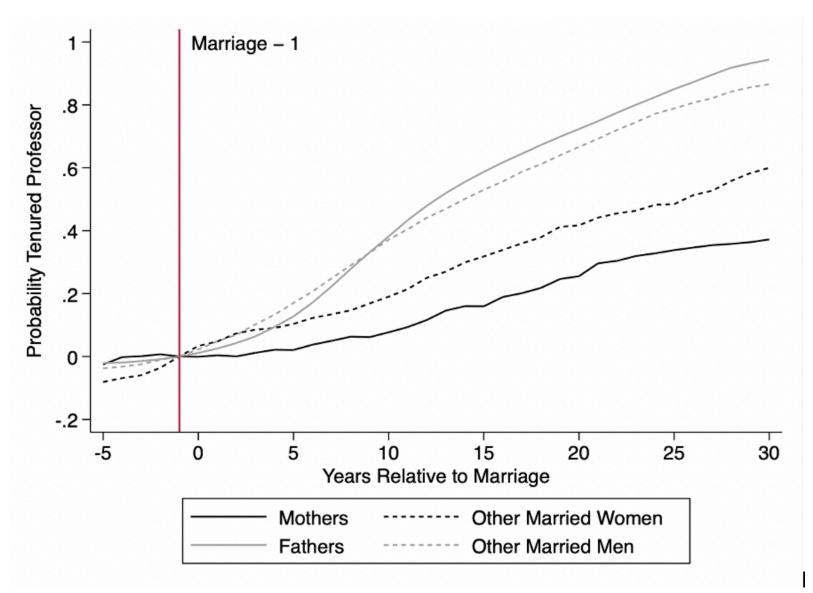
Event study estimates for tenure after marriage

Estimate differential changes in probability of tenure after marriage for mothers, fathers, women without kids, and men without kids

$$y_{is}^{d} = \beta_{y}^{d} EventTime_{i} + \delta_{t} + \alpha_{a} + \epsilon_{it}$$

 y_{is}^d indicator for tenured job held by scientist *i* in demographic *d* and year *s* after marriage

- δ_t year fixed effects
- α_a age fixed effects

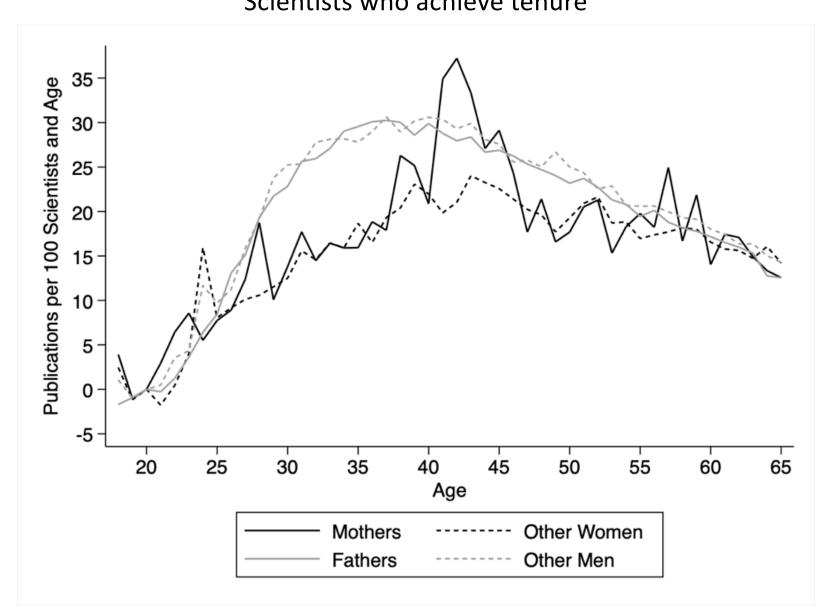

marriage -1 is excluded period

For mothers, the probability of getting tenure declines with each year of marriage

Event Study Estimates of Tenure After Marriage

Event Study Estimates of Holding a Tenured Job After Marriage

Women in Science

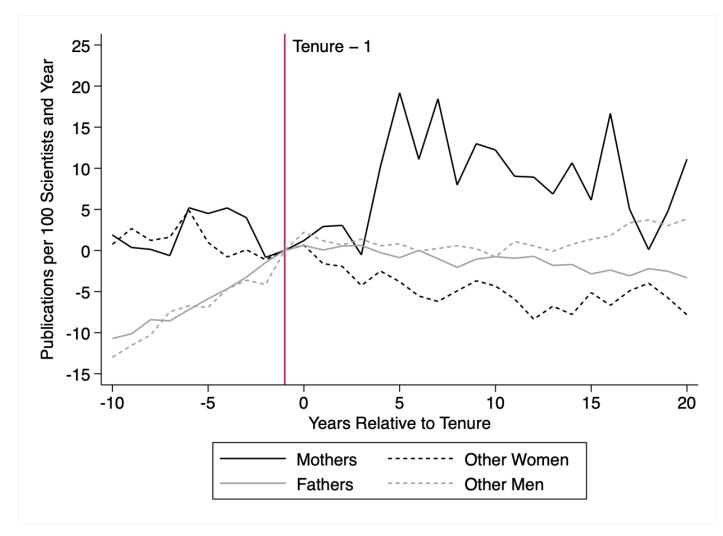

- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

Mothers who do not get tenure sustain high productivity into mid 50s

Figure A2, Panel A: Age-Varying Estimates of Productivity Measured by Publications

Mothers who achieve tenure experience a large boost in productivity after 40 Figure A2, Panel B: Age-Varying Estimates of Productivity Measured by Publications. Scientists who achieve tenure

Differential changes in productivity after tenure


Estimate differential changes in productivity after tenure for mothers, fathers, women without kids, and men without kids

$$y_{is}^d = \beta_s^d EventTime_i + \delta_t + \alpha_a + \mu_f + \epsilon_{it}$$

- y_{is}^d publications by scientists *i* in demographic *d* and year *y* after tenure
- δ_t year fixed effects
- α_a age fixed effects
- μ_f field fixed effects

tenure -1 is excluded period

Figure 7: Event Study Estimates of Changes in Publishing Productivity Relative to the Year of Tenure

Women in Science

- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

Selection

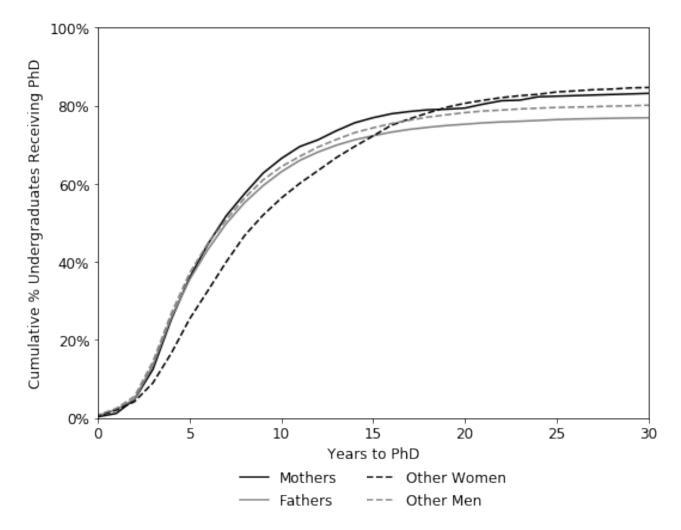
- Examine selection into:
 - getting a PhD
 - becoming an assistant professor
 - marriage
 - parenting
 - fields
 - survival in science

Female scientists may be more or less likely to have PhDs

- Women who expect to spend less time in labor market, have weak incentive to invest in education valued by labor market
 - Women may be less likely to get PhD
- But, the presence of labor-market discrimination, women may have to be more qualified to get the same jobs
 - Women may be more likely to get PhD
 - Women who have PhDs may be more likely to survive in science

Formal and informal barriers made it difficult for women to earn PhDs

- Example, Joan Steitz, "Queen of RNA"
 - Interaction of the ribosome and messenger RNA, via complementary base pairing
 - Discovery of small nuclear ribonuclearproteins (snRNPs) whose function is essential to RNA transcription
 - Diagnosis and treatment of lupus
- At Harvard in the 1960s turned down by professor she asked to be her advisor: "but you are a woman, and you'll get married, and you'll have kids, and what good will a PhD have done?"
- Married classmate Tom Steitz, 1 child
 - 2009 Nobel Prize in Chemistry (w Venkatraman Ramakrishnan and Ada Yonath) "for studies of the structure and function of the ribosome"

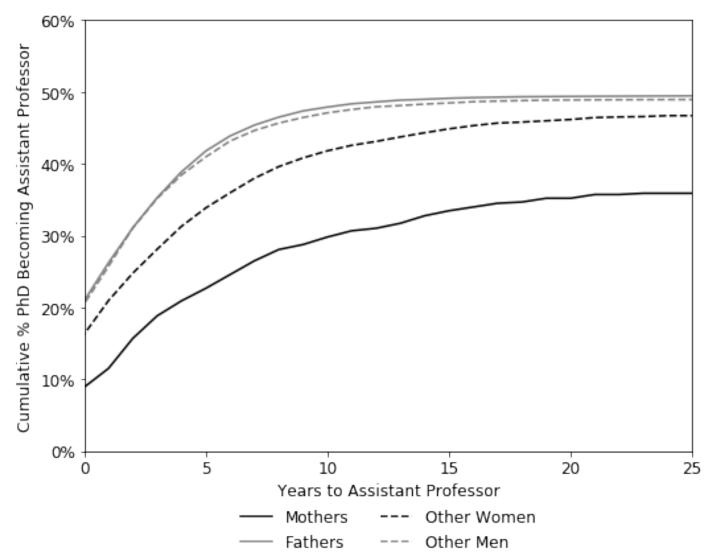

Female academic scientists were *more* likely to have PhD

	A 11	A 11 m on	Woi	men	Men	
	All women	All men	with children	w/o children	with children	w/o children
N	4,032	66,198	892	3,140	48,987	17,211
Academic / all scientists	87.7%	74.6%	84.5%	88.6%	73.8%	77.1%
PhD / academic scientists	84.1%	77.5%	83.2%	84.4%	76.6%	79.8%
Tenure track / academic scientists	42.7%	45.5%	35.9%	44.6%	45.4%	45.9%
Tenured / academic scientists	41.7%	47.7%	26.8%	45.7%	47.8%	47.2%

TABLE 4 – SUMMARY STATISTICS ON PARTICIPATION AND CAREER PROGRESSIONS FOR ACADEMIC SCIENTISTS

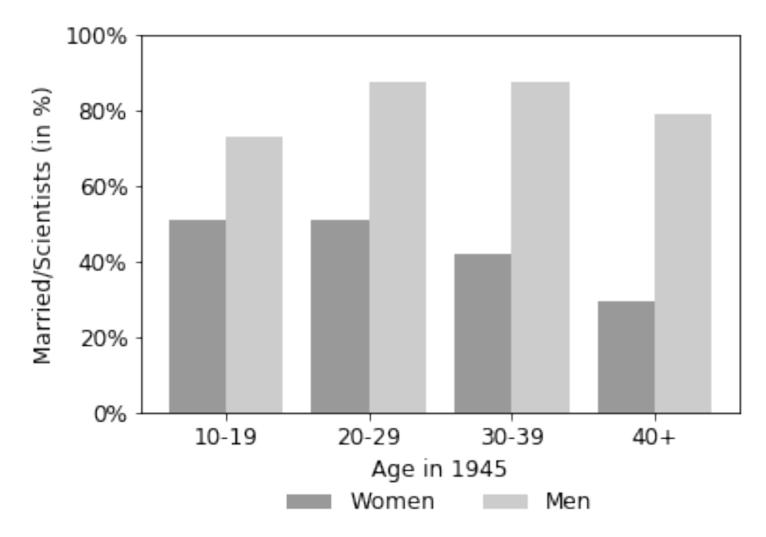
84% of female academic scientists had PhD 78% of male academic scientists had PhD Women in science in 1956 were more likely to have PhD. 85 in 100 female scientists have PhD, 78 male scientists

Years from Undergraduate to PhD


Mothers were less likely to become assistant professors 36% of mothers became assistant professors compared with 45% of fathers and 45% of women w/o kids

			de entiteen i kooki		Enne DelEnnibib	
	All women	women All men Women		men	Men	
	All wollieli	All Illeli	with children	w/o children	with children	w/o children
Ν	4,032	66,198	892	3,140	48,987	17,211
Academic / all scientists	87.7%	74.6%	84.5%	88.6%	73.8%	77.1%
PhD / academic scientists	84.1%	77.5%	83.2%	84.4%	76.6%	79.8%
Tenure track / academic scientists	42.7%	45.5%	35.9%	44.6%	45.4%	45.9%
Tenured / academic scientists	41.7%	47.7%	26.8%	45.7%	47.8%	47.2%

TABLE 4 – SUMMARY STATISTICS ON PARTICIPATION AND CAREER PROGRESSIONS FOR ACADEMIC SCIENTISTS


Mothers took 4.4 years to get first tenure track job compared with 1.3 for fathers and 2.8 for other women

Years from PhD to Assistant Professor

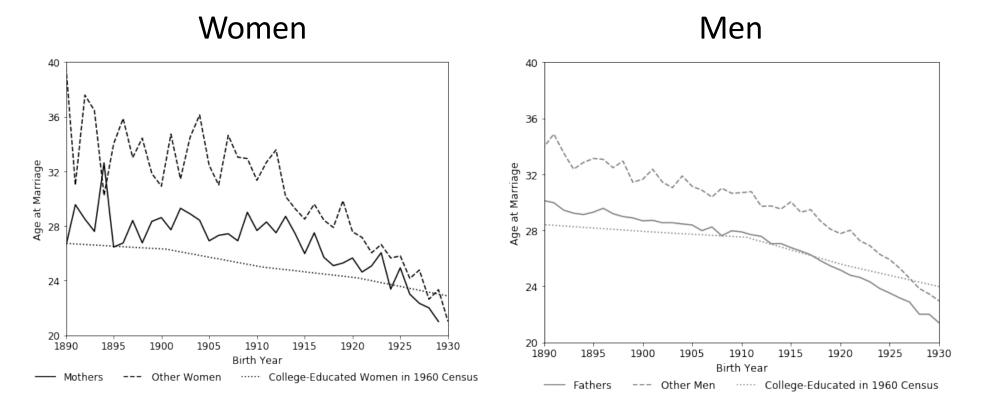

Female scientists were less than half as likely to marry 40% of female scientists married, compared with 80% of men

Figure A6, Panel A: Share of Married Scientists

Female scientists married much later than other college-educated women. Male and female scientists married at median age of 27

Mean Age at Marriage by Birth Year

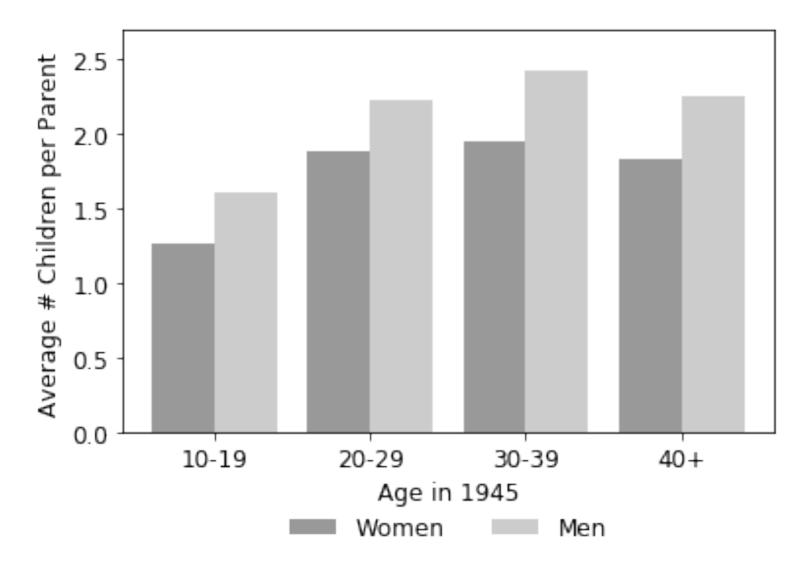

22% of female scientists had children, compared with 74% of men

Figure A6, Panel B: Share of Parents

Mothers had 1.9 children compared with 2.3 for fathers

Figure A6, Panel D: Number of Children per Parent

Mothers were positively selected Mothers produce 2.5x as many patents compared with other married women by age 27 5.3x more compared with single women

	All women	A 11 man		Women			Men			
	All wollen All	All men	Parents	Other married	Single	Parents	Other married	Single		
Patents:										
By age 27	0.013	0.119	0.032	0.013	0.006	0.125	0.093	0.106		
	(0.249)	(0.944)	(0.504)	(0.148)	(0.076)	(0.985)	(0.738)	(0.884)		
Lifetime	0.51	3.58	0.65	0.52	0.45	3.82	3.23	2.32		
	(3.58)	(11.74)	(5.80)	(2.81)	(2.62)	(12.43)	(10.55)	(7.35)		
Publications:										
By age 27	0.24	0.45	0.31	0.22	0.22	0.44	0.47	0.43		
	(1.41)	(2.06)	(2.12)	(0.81)	(1.21)	(2.11)	(1.92)	(1.90)		
Lifetime	5.14	7.14	5.39	4.82	5.14	7.23	6.84	6.94		
	(10.38)	(15.96)	(11.67)	(8.48)	(10.40)	(16.36)	(14.38)	(15.14)		

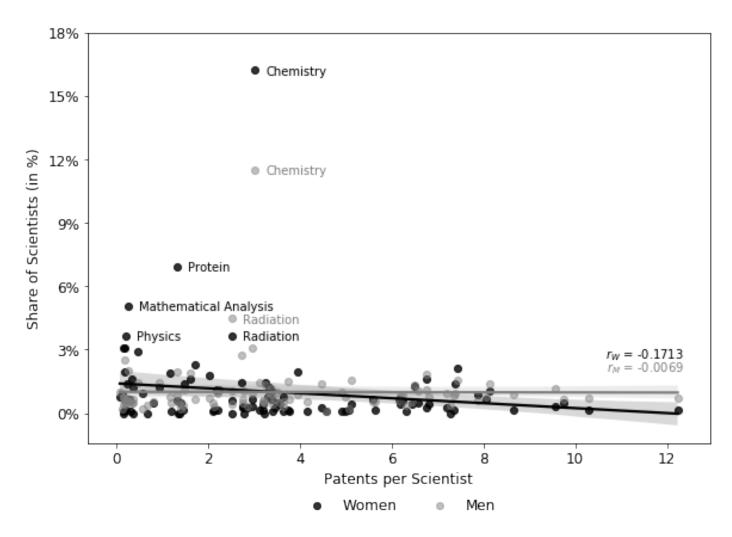
TABLE A4 – INVENTION AND PUBLISHING BY PARENTS, AND OTHER MARRIED AND SINGLE SCIENTISTS

Mothers were positively selected

Mothers publish 1.4x as much by age 27 compared with other women

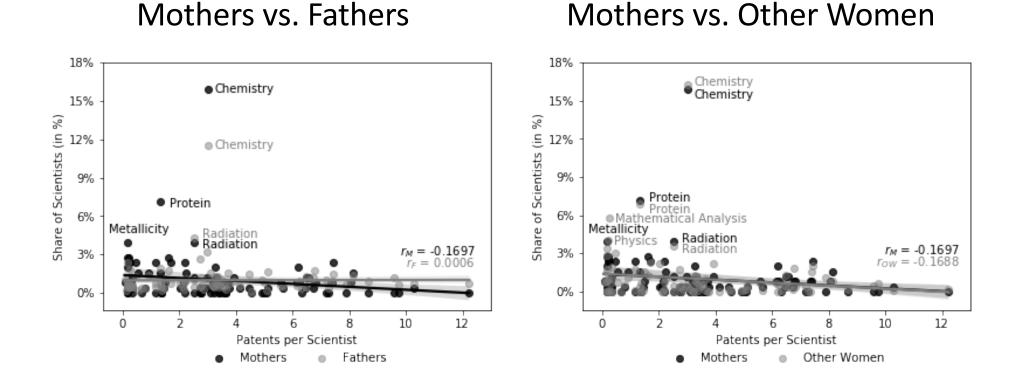
	All woman	All men		Women			Men	
	All women	i women An men	Parents	Other married	Single	Parents	Other married	Single
Patents:								
By age 27	0.013	0.119	0.032	0.013	0.006	0.125	0.093	0.106
	(0.249)	(0.944)	(0.504)	(0.148)	(0.076)	(0.985)	(0.738)	(0.884)
Lifetime	0.51	3.58	0.65	0.52	0.45	3.82	3.23	2.32
	(3.58)	(11.74)	(5.80)	(2.81)	(2.62)	(12.43)	(10.55)	(7.35)
Publications:								
By age 27	0.24	0.45	0.31	0.22	0.22	0.44	0.47	0.43
	(1.41)	(2.06)	(2.12)	(0.81)	(1.21)	(2.11)	(1.92)	(1.90)
Lifetime	5.14	7.14	5.39	4.82	5.14	7.23	6.84	6.94
	(10.38)	(15.96)	(11.67)	(8.48)	(10.40)	(16.36)	(14.38)	(15.14)

TABLE A4 – INVENTION AND PUBLISHING BY PARENTS, AND OTHER MARRIED AND SINGLE SCIENTISTS


Fathers are less positively selected than mothers

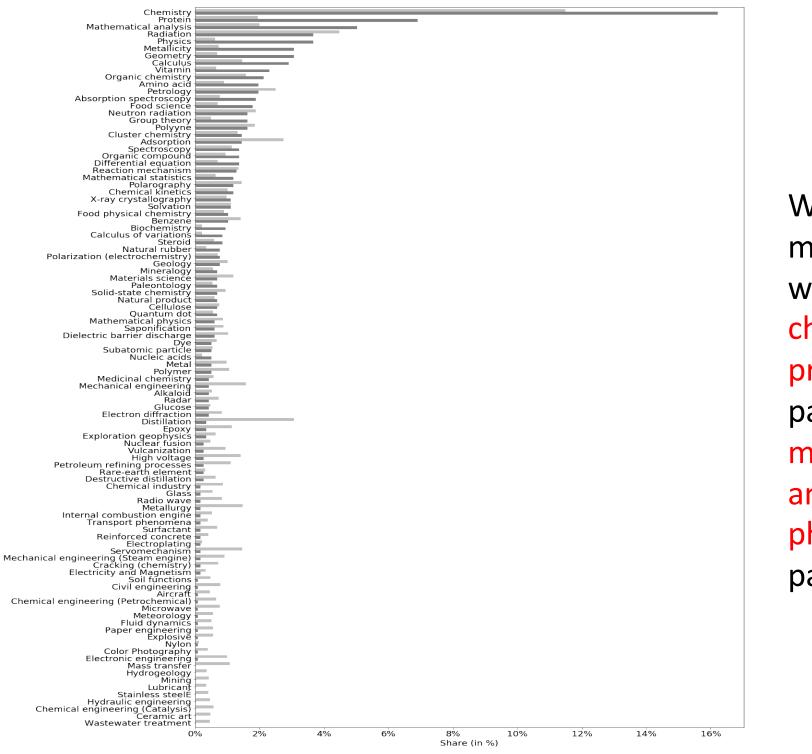
	All women	A 11 man		Women			Men		
	All women	All men	Parents	Other married	Single	Parents	Other married	Single	
Patents:									
By age 27	0.013	0.119	0.032	0.013	0.006	0.125	0.093	0.106	
	(0.249)	(0.944)	(0.504)	(0.148)	(0.076)	(0.985)	(0.738)	(0.884)	
Lifetime	0.51	3.58	0.65	0.52	0.45	3.82	3.23	2.32	
	(3.58)	(11.74)	(5.80)	(2.81)	(2.62)	(12.43)	(10.55)	(7.35)	
Publications:									
By age 27	0.24	0.45	0.31	0.22	0.22	0.44	0.47	0.43	
	(1.41)	(2.06)	(2.12)	(0.81)	(1.21)	(2.11)	(1.92)	(1.90)	
Lifetime	5.14	7.14	5.39	4.82	5.14	7.23	6.84	6.94	
	(10.38)	(15.96)	(11.67)	(8.48)	(10.40)	(16.36)	(14.38)	(15.14)	

TABLE A4 – INVENTION AND PUBLISHING BY PARENTS, AND OTHER MARRIED AND SINGLE SCIENTISTS


Do women select into fields that are less patent-intensive?

Female scientists are just slightly less likely to work in patent-intensive fields Selection into fields cannot explain low patenting rates for female scientists.


Parenting had no noticeable effect on selection into fields


Mothers are slightly less likely to work in fields with many patents than fathers. No significant differences between mothers and other women

Selection into research fields

- Women may select into fields that are less competitive (e.g., Niedele and Vesterlund 2007) or more family-friendly (e.g. Goldin 2004, Goldin and Katz 2016)
- Trying to explain the underrepresentation of women Kevles, Daniel J (1971) writes
 - ...professionally oriented women still aspired to the more "womanly" professions. Classes in high-school chemistry, which could open the door to careers in such fields as home economics, nutrition, or nursing, enrolled almost as many girls as boys; in physics courses, boys outnumbered girls three to one

Women

Men

Women more likely to work in chemistry and protein (more patents) mathematical analysis and physics (fewer patents)

Selection into survival Who survived to enter the MoS (1956)?

• We have digitized faculty directories of Columbia University for 1943-45

CORNELIA LEE CAREY, 1929 Associate Professor of Botany in Barnard College B.S., Columbia, 1919; A.M., 1921; Ph.D., 1923. [From July 1, 1944.] [Assistant Professor of Botany in Barnard College, to June 30, 1944.]

• And-matched faculty with academic scientists in MoS (1956)

CAREY, PROF. CORNELIA L(EE), Quissett Harbor, Falmouth, Mass. BOT-ANY. Montclair, N.J., Jan. 15, 91. B.S., Columbia, 19, A.M., 21, Ph.D. (bot), 23. Asst, BARNARD COL, COLUMBIA, 18-21; lectr, 22-23, instr, 23-29, asst. prof. BOT, 29-44, assoc. prof. 44-50, chmn. dept, 39-50; RETIRED. A.A; Bot. Soc; Soc. Plant Physiol; Soc. Bact; Torrey Bot. Club. Colloidal adsorption; soil and marine bacteriology.

- Were women less likely to survive?
- Were mothers or women in cohorts of baby boom mothers less likely to survive? Matching faculty directories with census of 1940 to add information on birth years and children

Female faculty half as likely to survive compared with men Just 10% of female academic scientists from 1943-45 survived to enter MoS 1956, compared with 20% of men

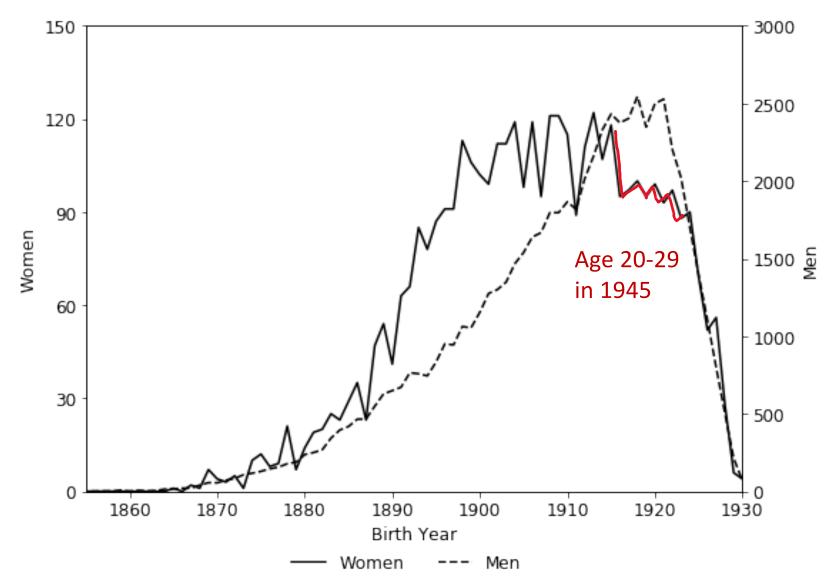
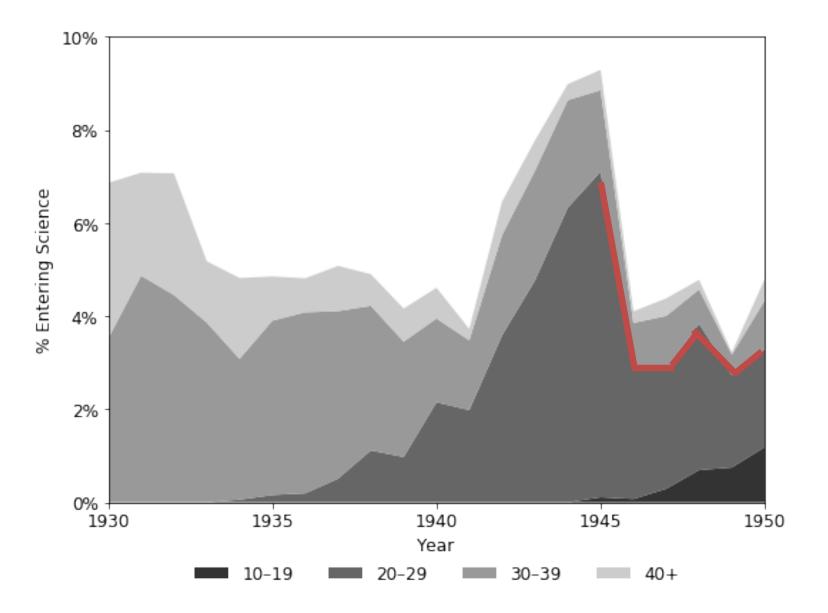

	A 11	A 11	A 11	Wo	men	М	en
	All	All women	All men	with children	w/o children	with children	w/o children
Surviving faculty:							
Ν	872	79	793	20	59	584	209
Columbia	385	46	339	11	35	255	84
Stanford	166	7	159	3	4	123	36
UC Berkeley	240	16	224	5	11	158	66
UCLA	95	12	83	1	11	57	26
Demographics:							
Age in 1956	56.1	56.7	56.0	53.7	57.7	55.4	58.0
-	(11.79)	(9.96)	(11.95)	(11.45)	(9.23)	(11.69)	(12.46)
Share married (in %)	77.9	43.0	81.3	90.0	27.1	91.6	52.6
Age at marriage	29.4	29.2	29.5	26.0	32.8	28.8	32.8
	(6.61)	(8.60)	(6.50)	(4.51)	(10.67)	(5.80)	(8.42)
Share parents (in %)	69.3	25.3	73.6	100	0	100	0
N children	1.63	0.49	1.74	1.95	0	2.36	0
	(1.38)	(0.95)	(1.37)	(0.83)		(1.03)	

TABLE 5 - SURVIVAL IN ACADEMIC SCIENCE

Women in Science


- Historical background
- Data
 - Biographies of American scientists in 1956
 - Matched with patents and publications
- Productivity differences across demographic groups
 - Differences in inventive output across the life cycle
 - Differences in inventive output across demographic groups
 - Event studies of inventive output after marriage
- Effects on publications and tenure
 - Differences in publishing across the life cycle and across demographic groups
 - Event study estimates of the effects of children on tenure
 - Changes in publications before and after tenure
- Selection
- Aggregate effects on participation
 - A lost generation of baby boom mothers
- Conclusions

Participation by women declined by 16% from 110/year for women born 1900-15 to 92.3 for women born 1916-25

Lost generation of baby boom mothers (b. 1916-25) Share women among entrants into US science declined by 40% from 7% in 1940-45 to 4.3% per year in 1946-50

Conclusions

- Children reduced productivity of mothers but not fathers
 - Gender differences are stronger in STEM than in biological and social sciences
- Mothers have different time pattern of productivity than other scientists
 - Mothers became more productive after age 35
 - After marriage, mothers' productivity declined and recovered 15 years later
- Important implications for promotions
 - Mothers 21% less likely to get tenure compared with fathers
 - 19% less than other women
- Selection into marriage, parenting, and "survival" in science
 - Mothers were no less productive than other women
 - But female scientists married late and had fewer children
 - Women (mothers) were less likely to survive in science
- Dramatic decline in entry by women in their 20s in 1945
 - Disparate burden of parenting created a lost generation of female scientists among mothers of the baby boom

 Please send comments to pmoser@stern.nyu.edu and scottjmk@wharton.penn.edu

• Thank you!