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1 Introduction

The well-known “disconnect” in international finance holds that foreign exchange rates show little

empirical relationship to the supposed economic drivers of currency values, such as interest rates

and output (Obstfeld and Rogoff, 2000). The exchange rate disconnect manifests itself in various

empirical puzzles. Chief among them is the forward premium puzzle that establishes that curren-

cies with low interest rates do not appreciate on average, contrary to the canonical interest parity

condition—a foundational block of exchange rate determination. Furthermore, it appears that the

US dollar is particularly special, as it earns a premium over the rest of the major currencies when

measured on historical data (Gourinchas and Rey, 2007). To account for the exchange rate dis-

connect and associated puzzles, the literature has turned to models with currency excess returns

as the potential “missing link”. The source or sources of these excess returns, however, remains

an unsolved mystery.

In this paper, we develop a theory of exchange rate fluctuations arising from the liquidity

demand by financial institutions within an imperfect interbank market. We build on two observa-

tions on the international financial system. First, U.S. dollars are the dominant foreign-currency

source of funding. According to the BIS locational banking statistics, in June 2020, the global

banking and non-bank financial sector had cross-border dollar liabilities of over $14 trillion. Sec-

ond, dollar funding may turn unstable. As documented for example in Acharya et al. (2017), banks

are subject occasionally to large funding uncertainty or interbank market freezing that can leave

them “scrambling for dollars.” Narrative discussions attribute such vicissitudes in the short-term

international money markets to fluctuations in the US dollar exchange rate. A contribution of our

paper is to provide a framework to formally articulate this channel theoretically and to provide

empirical evidence consistent with it.

We build a model in which financial institutions, which we simply refer to as banks, have

a portfolio of assets and liabilities in two currencies. Banks face the risk of sudden outflows of

liabilities. In case a bank ends up short of liquid assets to settle those flows, it needs to find a

counterparty, but there may be times when banks may lose confidence in one another—this is

the source of interbank market frictions. As insurance against these outflows, banks maintain a

buffer of liquid assets—especially dollar liquid assets, in line with the aforementioned observations

above on the international financial system. To the extent that uncertainty and the smoothness

of interbank markets change over time, this increases the relative demand for currencies which

translate into movements in the exchange rate.

The theory uncovers how frictions in the settlement of international deposit transactions emerge

as a liquidity premium earned by the dollar. The liquidity premium generates a time-varying

wedge in the interest parity condition, or “convenience yield,” which plays a pivotal role in the

determination of the exchange rate. Critically, the convenience yield is endogenous and depends on

1



the quantity of outside money and policy rates in two currencies, as well as technology parameters

such as matching efficiency in the interbank market, and the volatility of banking payments in

different currencies. Through this endogenous convenience yield, we link the determination of

nominal dollar exchange rates and the dollar liquidity premium to the reserve position of banks

in different currencies, funding risk, and confidence in the interbank market.

We provide empirical evidence consistent with the theory by relating the banking sector’s

balance sheet data to the foreign currency price of U.S. dollars. According to the theory, the

financial sector increases its demand for dollar liquid assets—US government obligations, including

reserves held at the Federal Reserve for banks in the Federal Reserve system—when funding

becomes more uncertain, and in turn, this translates into an appreciation of the dollar. Our

analysis shows that indeed the dollar liquidity ratio positively correlates with the relative value

of the dollar. Notably, this relationship is robust to controlling for the VIX index, a variable that

captures a broad measure of uncertainty, which has been shown to have significant explanatory

power. The liquidity ratio is, of course, not an exogenous driver of exchange rates—either in our

model or in the real world. However, we show that simulations of a calibrated version of our model

implies a positive association between the change in the liquidity ratio and the value of the dollar

under multiple driving shocks, including uncertainty shocks, monetary policy shocks, and liquidity

demand shocks.

Many recent theories have focused primordially on risk-premia or external financing premia

to explain excess currency returns and exchange rate movements. Risk premium models explain

excess dollar returns as stemming from a greater exposure of currencies other than the dollar

to global pricing factors.1 External financing premium models explain excess dollar returns as

a funding advantage in dollar liabilities in the presence of limits to international arbitrage. We

provide an alternative theory based on a liquidity premium. Our model abstracts, in fact, from

risk premia and limits to international arbitrage to focus squarely on liquidity. At the center of

the model is the idea that funding risk may leave banks scrambling for dollars.

On the surface, the model resembles the seminal monetary exchange rate model of Lucas

(1982).2 In that model, two currencies earn a liquidity premium over bonds because certain

goods must be bought with corresponding currencies. A money demand equation determines

prices in both currencies, and relative prices determine the exchange rate. Our model shares

the segmentation of transactions and the exchange-rate determination of Lucas. However, in our

model, the demand for reserves in either currency stems from the settlement demand by banks.

This distinction is important. First, because our model leads to predictions about the direction

of exchange rates as functions of the ratio of reserves to deposits in different currencies, the size

and volatility of flows in different currencies and the dispersion of interbank rates in different

1See, for example, Lustig, Roussanov, and Verdelhan (2011).
2See also Svensson (1985) and Engel (1992a,b).
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currencies. Second, because the policy implications are markedly different.

Literature Review

The expected excess return on foreign interest earning assets, or the deviation from “uncovered

interest parity (UIP)" is important not just for understanding international pricing of interest-

bearing assets, or the expected depreciation (or appreciation) of the currency, but also for the

level of the exchange rate. This point is brought out clearly by Obstfeld and Rogoff (2003), which

shows how the expected present value of current and future foreign exchange risk premiums affect

the current exchange rate in a simple DSGE model. They refer to this present value as the “level

risk premium.”3

Potentially, a better understanding of the role of ex ante excess returns can help account for

the empirical failure of exchange-rate models (Meese and Rogoff, 1983; Obstfeld and Rogoff, 2000),

and the excess volatility of exchange rates (Frankel and Meese, 1987; Backus and Smith, 1993;

Rogoff, 1996). Much of the literature has been directed toward explaining the expected excess

return as arising from foreign exchange risk. Another branch of the literature has explored limits

to capital mobility and frictions in asset markets. A third branch has looked at deviations from

rational expectations. A line of research closely related to this paper has been the role of the

“convenience yield” in driving exchange rates.

Foreign exchange risk premium. The modeling of failures of uncovered interest parity as

arising from foreign exchange risk has a long history. Early contributions include Solnik (1974),

Roll and Solnik (1977), Kouri (1976), Stulz (1981), and Dumas and Solnik (1995). Much theoretical

work has been devoted toward building models of the risk premium that are consistent with the

Fama (1984) puzzle, which finds a positive correlation between the expected excess return and the

interest rate differential.4 Bansal and Shaliastovich (2013), Colacito (2009), Colacito and Croce

(2011, 2013), Colacito, Croce, Gavazzoni, and Ready (2018b); Colacito, Croce, Ho, and Howard

(2018a), and Lustig and Verdelhan (2007) examine models with recursive preferences. Verdelhan

(2010) presents a model with habit formation to account for the Fama puzzle. Ilut (2012) proposes

ambiguity aversion as a solution to the puzzle. Some recent studies, such as Burnside et al. (2011),

Farhi and Gabaix (2016), and Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2015), model

the risk premium as arising from risks associated with rare events.

Limited Capital Mobility. Other models attribute these uncovered interest parity differentials

to financial premia earned by foreign currency because of limited market participation as in the

3This present value plays a key role in the analysis of Engel and West (2005), Froot and Ramadorai (2005),
and Engel (2016). See Engel (2014)’s survey of exchange rates for an overview of the effect of the risk premium on
exchange rates.

4See Tryon (1979) and Bilson (1981) for earlier empirical studies that find this relationship. Engel (1996, 2014)
surveys empirical and theoretical models.
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segmented markets models of (Alvarez et al., 2009; Itskhoki and Mukhin, 2019) or limited interna-

tional arbitrage (Gabaix and Maggiori, 2015; Amador, Bianchi, Bocola, and Perri, 2019; Itskhoki

and Mukhin, 2019). Models in which order flow matters for exchange rate determination also

require some frictions in the foreign exchange market. See, for example, Evans and Lyons (2002,

2008). Relatedly, Bacchetta and Van Wincoop (2010) posit that slow adjustment of portfolios can

account for the expected excess returns on foreign bonds.

Deviations from Rational Expectations. A simple alternative story for the UIP deviations

is that agents expectations are not fully rational. Empirical studies, such as Frankel and Froot

(1987), Froot and Frankel (1989), and Chinn and Frankel (2019) have used survey measures of

expectations to uncover possible deviations from rational expectations. Models that incorporate

systematically skewed expectations include Gourinchas and Tornell (2004) and Bacchetta and

Van Wincoop (2006).

Convenience Yield. Our model is closely connected to the recent examination of the “conve-

nience yield”—the low return on riskless government liabilities—and exchange rates. We posit

that our model provides one possible channel for the emergence of the convenience yield on U.S.

government bonds. See Engel (2016), Valchev (2020), Jiang, Krishnamurthy, and Lustig (2018,

2020), Engel and Wu (2018), and Kekre and Lenel (2020).

The paper is organized as follows. Section 2 presents the empirical analysis. Section 3 presents

the model. Section 4 presents the calibration of the model and the quantitative results. Section 5

concludes. All proofs are in the appendix.

2 Motivating Facts

We begin with a look at the data relating the banking sector’s balance sheet data to the foreign

currency price of U.S. dollars. Our thesis, at its simplest, is that the financial sector increases its

demand for dollar liquid assets—US government obligations, including reserves held at the Federal

Reserve for banks in the Federal Reserve system—when funding becomes more uncertain. The

global banking system relies heavily on U.S. dollars for funding, much of which is raised through

money market funding for banks located outside of the US.

We examine the behavior of the dollar against the other nine of the so-called G10 currencies,

with special attention given to the euro. The euro area is especially important in our analysis

because it encompasses a large economy with a financial system that relies heavily on short-term

dollar funding. The other currencies are the Australian dollar, Canadian dollar, Japanese yen,

New Zealand dollar, Norwegian krone, Swedish krona, Swiss franc, and the U.K. pound.

4



We look at two sources of data for the US banking system. Detailed data on short-term dollar

funding and on liquid dollar assets is not readily available for the global financial system, so we use

the US data as a proxy for the dollar-denominated elements of the global banking balance sheets.

That is, we presume that foreign banks’ demand for liquid dollar assets responds in a similar way

to banks located in the U.S. (including U.S.-based subsidiaries of foreign banks) when faced with

uncertainty about dollar funding. This approach is also followed by Adrian et al. (2010), a study

that aims to show how the price of risk is related to banks’ balance sheets and the expected change

in the exchange rate (rather than the level of the exchange rate, which is our concern here), and

presents a simple partial-equilibrium model of the banking sector. More precisely, Adrian et al.

(2010) focuses on the state of the balance sheet at time t in forecasting et+1 − et, as they are

concerned with understanding the expected excess return on foreign bonds between t and t + 1.

Our interest is centered on how changes in the balance sheet between t − 1 and t contribute to

changes in the exchange rate between t− 1 and t, that is et − et−1.

We consider two measures of short-term funding to financial intermediaries. The first is used by

Adrian et al. (2010), U.S. dollar financial commercial paper (series DTBSPCKFM from FRED, the

Federal Reserve Economic Data website maintained by the Federal Reserve Bank of St. Louis.)

Another major source of short-term funding to U.S. banks is demand deposits, measured by

DEMDEPSL from FRED. We construct a variable that measures the level of funding and the

response of financial intermediaries to uncertainty about that funding. We look at the ratio of the

sum of reserves held at Federal Reserve banks and government (Treasury and agency) securities

held by commercial banks (the sum of RESBALNS and USGSEC from FRED) to short term

funding (DTBSPCKFM + DEMDEPSL from FRED). This variable is endogenous in our model,

but its movements are a key indicator of how the demand for dollars is affected by the financial

sector’s demand for liquid assets when uncertainty increases. As dollar funding becomes more

volatile for banks, they will increase their ratio of safe dollar assets to liabilities. That in turn will

lead to a global increase in dollar demand, leading to a dollar appreciation.

Figure 1 plots this ratio of liquid government assets holdings to short-term funding of the

financial sector.5 During this period, bank reserve balances rose from around 10 billion dollars in

August, 2008 to nearly 800 billion dollars one year later, and then continued to climb to a peak

of around 2.3 trillion dollars by late 2017 before gradually declining to 1.4 trillion dollars by the

end of 2019. However, the liquidity ratio does not show movement anywhere near that magnitude.

It is true that it rose during the onset of the global financial crisis, but this movement is not

largely driven by the increase in reserves, because demand deposits rose almost proportionately.

Mechanically, a large part of the rise in the overall liquidity ratio is driven by a fall in financial

commercial paper funding, which works to lower the denominator of the ratio.

5The figure also plots an alternative measure described below.
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Figure 1: The ratio of liquid assets to short-term liabilities

In Table 1, we present the parameter estimates of the regression:

∆et = α + β1∆(LiqRat t) + β2(πt − π∗t ) + β3LiqDepRat t−1 + εt (1)

In this regression, ∆(xt) means the “change from t − 1 to t” in the variable xt; et is the log of

the exchange rate expressed as the G10 currency price of a U.S. dollar; LiqRat t is the variable

described above; πt − π∗t is the difference between year-on-year inflation rates in each of the 9

countries and the U.S. All data is monthly.6 The inflation variable is meant to capture the effects

of monetary policy on exchange rates. As much of the empirical literature has found, there is a

negative relationship between the change in a country’s inflation rate and its exchange rate. When

inflation is rising in a country, markets anticipate future monetary tightening, and that leads to a

currency appreciation.

If uncertainty is driving the LiqRat t, then we should also expect a positive relationship between

this variable and et, i.e., β1 positive. During times of high uncertainty, banks hold greater amounts

of liquid dollar assets (reserves and Treasury securities) relative to demand deposits, so LiqRat t is

higher. That increased demand for safe dollar assets leads to a stronger dollar (an increase in et.)

We also include the lagged level of LiqRat t. This is included because the depreciation of the

6An exception is that inflation for Australia and New Zealand are reported only quarterly. We linearly interpolate
the data to get monthly series.
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dollar might depend on lagged as well as current levels of this variable. The regressions we report

would have the identical fit if we included current and lagged levels of this variable, instead of the

change in the variable and the lagged level. We specify the regression as above for two reasons:

First, specifying the regression so that the change in the liquidity variable influences the change

in the exchange rate leads to a more natural interpretation. Second, while the current and lagged

levels of the variable are highly correlated, which leads to multicollinearity and imprecise coefficient

estimates, the change and the lagged level are much less highly correlated.

Table 1 reports the regression findings for the nine exchange rates. The sample period is

February 2001 to July 2020.7 (Data on financial commercial paper starts in January 2001.) With

the exception of Japan, the liquidity ratio variable has the expected sign and is statistically

significant at the 1 percent level for all exchange rates. The relative inflation variable also has the

correct sign for all the currencies and is statistically significant for most countries

It is commonplace to look at short-term interest rate movements to account for the effects of

monetary policy changes on exchange rates. During much of our sample period, interest rates were

near the zero-lower bound, and do not appear to do a good job measuring the monetary policy

stance. In Table 1i, we include it − i∗t , the interest rate in each of the 9 countries relative to the

U.S. as regressors. It is only statistically significant at the 5 percent level for Japan, and none of

the major conclusions are altered by its inclusion.

We highlight that the key regressor, ∆LiqRat t, is not simply a market price. That is, these

regressions “explain” exchange rate movements but are not relying on other market prices to do

the job. It is the balance sheet variables that play the pivotal role.

We argue that uncertainty about funding drives the balance sheet variables, but what if we

were to include a direct measure of uncertainty in the regressions? Many asset-pricing studies

have used VIX to quantify market uncertainty, and VIX has power in explaining the movements

of many asset prices. However, VIX does not directly measure uncertainty about dollar funding

for banks. Indeed, VIX might measure some dimensions of uncertainty, but it might also be

capturing global risk, and global risk might be driving the dollar, as in the model of Farhi and

Gabaix (2016). In Table 2, we have included the change in VIX along with the other variables.

As expected, VIX has positive coefficients in all cases (except Japan) and is statistically

significant. An increase in VIX is associated with an appreciation of the dollar. However, the

introduction of this variable does not reduce the significance of the liquidity ratio variable, for any

of the countries, and for most only has a small effect on the magnitude of the coefficient. This

suggests that the uncertainty that is quantified by the VIX does not include all of the forces that

drive the liquidity ratio and lead to its positive association with dollar appreciation. (Table 2i

also includes the interest rate differential, and as in Table 1i, we see that its inclusion has little

influence on the findings and its effect is mostly small and insignificant.)

7Australia and New Zealand’s sample end in May 2020 because of availability of inflation data.
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It is important to note that the liquidity ratio is not an exogenous driver of exchange rates—

either in our model or in the real world. We will show that a calibrated version of our model

implies a positive association between the change in the liquidity ratio and the value of the dollar

under multiple driving shocks, including uncertainty shocks, monetary policy shocks and liquidity

demand shocks.

We can, however, use instrumental variables to isolate the effects of uncertainty on the liq-

uidity ratio, and its transmission to exchange rates. To that end, Table 3A uses two measures

of uncertainty as instruments for the liquidity ratio: the cross-section standard deviation at each

time period of the inflation rates of the G10 countries, and the cross-section standard deviation

of the rates of depreciation for these currencies. The findings are largely the same as in Table 2.

For most of the countries, the magnitude of the effect of the liquidity ratio on the exchange rate is

increased, and for some (such as Canada), the statistical significance greatly increases. The model

still fits poorly for the Japanese yen, and we now find statistical significance of the liquidity ratio

on the Swiss franc exchange rate.

In Table 3B, we take the alternative tack of including VIX as an instrument for the liquidity

ratio. It is possible for VIX to be a valid instrument that is uncorrelated with the regression error,

even though it is statistically significant when included in the regression separately (as in Tables

2 and 3A) if the other forces that drive the liquidity ratio are uncorrelated with VIX. That is,

Table 3B reports the influence of the liquidity ratio on exchange rates when the liquidity ratio is

driven by VIX and other measures of uncertainty, while any other forces that might influence the

exchange rate are relegated to the regression error. VIX is a valid instrument if it is uncorrelated

with those forces. If one takes such a stance, then the estimates reported in Table 3B reveal a

strong channel of uncertainty on exchange rates working through the liquidity ratio.

We consider next an alternative measure of the liquidity ratio that includes “net financing” of

broker-dealer banks. This is a measure of “funds primary dealers borrow through all fixed-income

security financing transactions,” as described in Adrian and Fleming (2005). We include this as

another source of short-term liabilities, similar to how net repo financing is included as a measure

of short-term liabilities in the liquidity ratio calculated by the IMF (Global Financial Stability

Report, 2018). Figure 1 also plots this alternative measure of the liquidity ratio, which is smaller

than our baseline measure because it includes another class of liabilities of the banking system in

the U.S.

Tables 4, 5, 6A, and 6B are analogous to Tables 1, 2, 3A, and 3B, respectively. The conclu-

sions using this alternative measure are virtually unchanged qualitatively, though of course the

numerical values of the estimated coefficients are different. The liquidity ratio is still highly statis-

tically significant for all currencies, except for Japan, and, in the case of the instrumental variable

regressions, Switzerland.

.
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3 A Model of Banking Liquidity and Exchange Rates

We present a dynamic equilibrium model of global banks that intermediate international financial

flows and are subject to idiosyncratic liquidity shocks. The model has two countries, the EU and

the US, and two currencies. To fix ideas, we think about the euro as the domestic currency and

the dollar as the foreign currency. In each country, there is a continuum of households and a

central bank that sets monetary policy. Production of the single tradable consumption good is

carried out globally by multinationals. We assume the law of one price holds.

3.1 Banks

Timing. Time is discrete and there is an infinite horizon. Every period is divided in two sub-

stages: a lending stage and a balancing stage. In the lending stage, banks make their equity

payout, Divt, and portfolio decisions. In the balancing stage, banks face liquidity shocks and

re-balance their portfolio.

Notation. We use “‘asterisk” to denote the foreign currency (i.e., the “dollar”) variable and

“tilde” to denote a real variable. The vector of aggregate shocks is indexed by X. The exchange

rate is defined as the amount of euros necessary to purchase one dollar—hence, a higher e indicates

an appreciation of the dollar.

Preferences and budget constraint. Payouts are distributed to households that own bank

shares and have linear utility with discount factor β. Banks’ objective is to maximize shareholders’

value and therefore they maximize the net present value of dividends:

∞∑
t=0

βt ·Divt. (2)

Banks enter the lending stage with a portfolio of assets/liabilities and collect/make associated

interest payments. The portfolio of initial assets is given by liquid assets mt, both in euros

and dollars, and corporate loans, bt, denominated in consumption goods. Note that we refer

to liquid assets as “reserves”, for simplicity, but they should be understood as capturing also

government bonds—the important property, as we will see, is that these are assets that can be

used as settlement instruments. On the liability side, banks issue demand deposits, dt, discount

window loans, wt, and net interbank loans, ft (if the bank has borrowed funds, ft is positive, and

vice versa), again in both currencies. Deposits and interbank market loans have market returns

given by id and īf while central banks set the corridor rates for reserves and discount window,

respectively im and iw. A yield it paid in period t is pre-determined in period t − 1. Meanwhile,

Rb is the real return on loans.
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The bank’s budget constraint is given by

P ∗t Divt +
mt+1 − dt+1

et
+ bt+1P

∗
t +m∗t+1 − d∗t+1 ≤ P ∗t btR

b
t +m∗t (1 + im,∗t )− d∗t (1 + id,∗t )

+ f ∗t (1 + if,∗t ) + w∗t (1 + iw,∗t )− mt(1 + imt )− dt(1 + idt ) + ft(1 + ift ) + wt(1 + iwt )

et
. (3)

Withdrawal shocks. In the balancing stage, banks are subject to random withdrawal of de-

posits in either currencies. As in Bianchi and Bigio (2020), withdrawals have zero mean—hence

deposits are reshuffled but preserved within the banking system. In addition, we assume that the

distribution of these shocks is time-varying: As a way to capture the prevalence of the dollar for

international settlements, we focus on an environment where the volatility of dollar deposits is

larger than the euro.

The inflow/outflow of deposits across banks generates, in effect, a transfer of liabilities. We

assume that these transfer of liabilities are settled using reserves of the corresponding currency.

Importantly, reserves must remain positive at the end of the period. We denote by sj the euro

surplus of a bank facing a withdrawal shock ωjt . This surplus is given by the amount of euro

reserves a bank brings from the lending stage minus the withdrawals of deposits:

sjt = mt+1 + ωjtdt+1, (4)

We omit the subscript of bank choices in deposits and reserves, because it is without loss of

generality that all banks make the same choices in the lending stage. If a bank faces a negative

withdrawal shock, lower than ω̃ ≡ −m/d, the bank has a deficit of reserves. Conversely, if the

withdrawal shock is larger than ω̃, the bank has a surplus. Notice that if m = 0, the sign of the

surplus has the same sign as the withdrawal shock. A higher liquidity ratio makes more likely

that the bank will be in surplus.

Similarly, we have the following surplus in dollars

sj,∗t = m∗t+1 + ωj,∗t d∗t+1. (5)

Interbank market. After the withdrawal shocks are realized, there is a distribution of banks

in surplus and deficits in both currencies. We assume that there is an interbank for each currency

in which banks that have a deficit in one currency borrow from banks that have a surplus in the

same currency. These two interbank market behave symmetrically, so it suffices to show only how

one of the markets work.8

8We are assuming in the background an extreme form of segmented interbank markets: penalties in dollars
and euros are independent because dollar surpluses cannot be used to patch Euro deficits and vice versa. This
assumption can be relaxed to some extent but some form of segmentation of asset markets is necessary to obtain
liquidity premia. See the discussion below.
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We model the interbank market as an over-the-counter (OTC) market, in line with institutional

features of this market (see Ashcraft and Duffie, 2007; Afonso and Lagos, 2015). Modeling the

interbank market using search and matching is also natural considering that the interbank market

is a credit market in which banks on different sides of the market—surplus and deficit—must find

a counterpart they trust.

As a result of the search frictions, only a fraction of the surplus (deficit) will be lent (borrowed)

in the interbank market. We assume, in particular, that each bank gives an order to a continuum of

traders to either lend or borrow, as in Atkeson, Eisfeldt, and Weill (2015). A bank with surplus s is

able to lend a fraction Ψ+ to other banks. The remainder fraction is kept in reserves. Conversely,

a bank that has a deficit is able to borrow a fraction Ψ− from other banks, and the remainder

deficit is borrowed at a penalty rate iw. The penalty rate can be thought of as the discount window

rate or as an overdraft-rate charged by correspondent banks that have access to the Fed’s discount

window.

The fractions Ψ+and Ψ− depend on the abundance of reserve deficits relative to surpluses.

Assuming a constant returns to scale matching function, the probabilities depend entirely on

market tightness, defined as

θt ≡ S−t /S
+
t (6)

where S+
t ≡

´ 1

0
max

{
sjt , 0

}
dj and S−t ≡ −

´ 1

0
min

{
sjt , 0

}
dj denote the aggregate surplus and

deficit, respectively. Notice that because m ≥ 0 and E(ω) = 0, we have that in equilibrium θ ≤ 1.

That is, there is a relatively larger mass of banks in surplus than deficit.

The interbank market rate is the outcome of a bargaining problem between banks in deficit

and surplus, as in Bianchi and Bigio (2020). There are N trading rounds, in which banks trade

with each other. If banks are not able to match by the N trading rounds, they deposit the surplus

of reserves at the central bank or borrow from the discount window. Throughout the trading,

the terms of trade at which banks borrow/lend, i.e., the interbank market rate, depend on the

probabilities of finding a match in a future period. We denote by i
f

the average interbank market

rate at which banks trade on average. Ultimately, we can define a real penalty function χ that

captures the benefit of having a real surplus or deficit s̃ upon facing the withdrawal shock as

follows:

χ(θ, s̃;X,X ′) =

χ+(θ;X,X ′)s̃ if s̃ ≥ 0,

χ−(θ;X,X ′)s̃ if s̃ < 0
(7)

where χ+ and χ−are given by

χ−(θ;X,X ′) = Ψ−(θ)[Rf (X,X ′)−Rm(X,X ′)] + (1−Ψ−(θ))[Rw(X,X ′)−Rm(X,X ′)] (8)

χ+(θ;X,X ′) = Ψ+(θ)[Rf (X,X ′)−Rm(X,X ′)] (9)
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Figure 2: Timeline

In these expressions, Ry(X,X ′) ≡ 1+iy(X)
1+π(X,X′)

, denote the realized gross real rate of an asset/liability

y and π(X,X ′) ≡ P (X′)
P (X)

− 1 denotes the inflation rate when the initial state is X and the next

period state is X ′. When it does not lead to confusion, we streamline the argument (X,X ′) in

these expressions. We also denote by R̄y ≡ EX
1+iy(X)

1+π(X,X′)
as the expected real rate—recall that the

nominal rate is pre-determined but the ex-post real return depends on the inflation rate.

Equation (8) reflects that a bank that borrows from the the interbank market or from the

discount window, obtains the interest on reserves—hence the cost of being in deficit is given by

Rf −Rm in the former and Rw−Rm in the latter. By the same token, (9) reflects that the benefit

from lending in the interbank market in case of surplus is Rf −Rm.

Figure 2 present a sketch of the timeline of decisions within each period. We next turn to

describe the bank optimization problem.

Banks’ Problem. The objective of a bank is to choose dividends and portfolios to maximize

2 subject to the budget constraint. Critically, when choosing the portfolio, banks anticipate how

withdrawal shocks may lead to a surplus or deficit of reserves and associated costs and benefits.

We express the bank’s optimization problem in terms of real portfolio holdings {b̃, m̃∗, d̃∗, d̃, m̃}
and the real returns. For example, we define for example m̃t ≡ mt/Pt−1. The problem can be

expressed recursively as follows:

Problem 1. The recursive problem of a bank is

v (n,X) = max
{Div,b̃,m̃∗,d̃∗,d̃,m̃}

Div + βE [v (n′, X ′) |X] (10)

subject to the budget constraint:

Div+b̃+ m̃∗ + m̃ = n+ d̃+ d̃∗, (11)
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where the evolution of bank networth is given by,

n′ = Rb(X,X ′)b̃+Rm(X,X ′)m̃+Rm,∗(X,X ′)m̃∗ −Rd(X,X ′)d̃−R∗,d(X,X ′)d̃∗︸ ︷︷ ︸
Portfolio Returns

+ Eω∗χ∗(θ∗(X), m̃∗ + ω∗d̃∗;X,X ′) + Eωχ(θ(X), m̃+ ω d̃;X,X ′)︸ ︷︷ ︸
Settlement Costs

. (12)

The variable n represents the banks’ net worth at the beginning of the period.9 Because of the

linearity of banks’ payoffs, the value function is linear in net worth. In turn, dividends and the scale

of the portfolio is indeterminate at the individual level. On the other hand, although portfolio

weights are indeterminate at the individual bank level, they are determinate in the aggregate.

Lemma (1) summarizes these results:

Lemma 1. The solution to (10) is v (n,X) = n and the law of motion of bank net-worth satisfies:

n′ =
1

β
(n−Div) + Π∗(X,X ′)

where Π? (X) are the expected intermediation profits: given expected real returns and market tight-

ness {θ, θ∗}, Π? (X) solves

Π? (X) = max
{m̃,d̃∗,d̃,m̃}

(
Rb(X,X ′)−R∗,d(X,X ′)

)
d̃∗ −

(
Rb(X)−R∗,m(X)

)
m̃∗

+
(
Rb(X,X ′)−Rd(X,X ′)

)
d̃−

(
Rb(X,X ′)−Rm(X,X ′)

)
m̃

+ Eω∗χ∗(θ∗(X,X ′), m̃∗ + ω∗d̃∗;X,X ′) + Eωχ(θ(X,X ′), m̃+ ω d̃;X,X ′). (13)

In equilibrium Π∗ (X) = 0 and dividends are indeterminate at the individual bank level. Further-

more, Rb (X) = 1/β.

Proof. In the appendix.

Central to this optimization problem are the liquidity costs, as captured by χ and χ∗. De-

posits in either currency have direct interest costs given by the real returns on deposits, but also

affect indirectly the banks’ settlement needs. Reserves in each currency yield direct real returns,

correspondingly, but have the additional indirect benefit of leading to higher average positions in

the interbank market.

It is important to note that the bank problem is homogeneous of degree one: As a result,

the scale of dollar and euro deposits of each bank is indeterminate for an individual bank. The

9To obtain (12), we use the definition of χ as expressed in (7)-(9) and the real returns. Implicit in the law of
motion for net worth is the convention that a bank that faces a withdrawal covers the associated interest payments
net of the interest on reserves.
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liquidity ratio and the leverage ratio, however, are not. In effect, the kink in the liquidity cost

function creates concavity in the bank objective, generating strictly interior solutions for the

ratios.10 Thus, liquidity risk generates an endogenous bank risk-averse behavior, which will be

critical for the determination of the exchange rate, as will become clear below.

3.2 Non-Financial Sector

This section presents the description of the non-financial block: This block is composed of a

representative household, one in each country. Households supply labor and save in deposits in

both currencies. Firms are multinationals which use labor for production and are subject to

working capital constraints, giving rise to a demand for loans. This block delivers an endogenous

demand schedule for loans, and deposit demands in both currencies.

To keep the model as simple as possible, we purposely make assumptions so that the decisions

for loan demand and deposit supplies are static, in the sense that they do not depend explicitly

on future variables. In particular, we will be able to treat loan demand and deposit supply

as exogenous schedules with only two parameters: an intercept that controls the scale, and an

elasticity that controls how much they respond to changes in interest rates. As we show in the

appendix, we obtain the following schedules

R̄b
t+1 = Θb (Bt)

ε , ε > 0, Θb
t > 0, (14)

R̄∗,dt+1 = Θ∗,d (D∗,st )
−ς∗

, ς > 0, Θ∗,d > 0, (15)

R̄d
t+1 = Θd (Ds

t )
−ς , ς∗ > 0, Θd > 0· (16)

where ε is the semi-elasticity of credit demand and {ς, ς∗} are the semi-elasticity of the deposit

supply with respect to the real return in either currency. These parameters are linked to the pro-

duction structure and preference parameters in the micro-foundations developed in the appendix.

3.3 Government/Central Bank

Both central banks choose the rates for reserves imt and discount window iwt . Central banks in each

country also set the supply of reserves
{
Mt+1,M

∗
t+1

}
.To balance the payments on reserves and the

revenues from discount window loans, we assume that central banks use lump sum taxes/transfers

rebated to households from the same country. Because households have linear utility in the

tradable consumption good, these lump sum taxes only affect the level of consumption, but have

no other implications. Using Wt to denote the discount window loans, we have the following

10This behavior is analogue to the behavior of productive firms with Cobb-Douglas technologies: firms earn
zero-profits, their production scale is indeterminate, but the ratio of production inputs is determined in equilibrium
as a function of relative factor prices.
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budget constraint for the domestic economy,

Mt + Tt +Wt+1 = Mt−1(1 + imt ) +Wt(1 + iwt ).

An identical budget constraint holds for the foreign economy.

Importantly, in both countries Tt adjusts to passively to balance the budget constraint, given

the monetary policy choices.

3.4 Competitive equilibrium

We study recursive competitive equilibria where all variables are indexed by the vector of aggregate

shocks, X. We consider shocks to the nominal interest rates on reserves, the deposit supply, and

the volatility of withdrawals. Without loss of generality, we restrict to a symmetric equilibrium,

in which all banks choose the same portfolios.

Definition 1. Given central bank policies for both countries {M(X), im(X), iw(X),W (X)},
{M∗(X), im,∗(X), iw,∗(X),W ∗(X)} a recursive competitive equilibrium is a pair of price level func-

tions {P (X), P ∗(X)}, exchange rates e(X), real returns for loans, Rb(X), nominal returns for

deposits {id(X), id,∗(X)}, an interbank market rate i
f
(X), market tightness θ(X), bank portfolios

{d(X), d∗(X),m(X),m∗(X), b̃(X)}, interbank and discount window loans {f(X), f ∗(X), w(X), w∗(X)}
and aggregate quantities of loans {B̃(X)} and deposits {D(X), D∗(X)} such that:

(i) Households are on their deposit supply and firms are on their loan demand. That is, equa-

tions (14)-(16) are satisfied given real returns and quantities {B̃(X), D(X), D∗(X)}.

(ii) Banks choose portfolios {d̃(X), d̃∗(X), m̃(X), m̃∗(X), b̃(X)} to maximize expected profits, as

stated in (13)

(iii) The law of one price holds

P (X) = P ∗(X)e(X). (17)

(iii) All market clear:

The deposit markets:

d̃(X) = Ds,(X) and d̃∗(X) = Ds,∗(X). (18)

The reserve markets:

m̃ (X) P (X) = M(X), and m̃∗(X)P ∗(X) = M∗(X). (19)
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The loans market:

b̃(X) = B(X). (20)

The interbank market:

Ψ+(X)S+ = Ψ−(X)S−. (21)

(vi) Market tightness θ(X) is consistent with the portfolios and the distribution of withdrawals

while the matching probabilities {Ψ+(X),Ψ−(X)} and the fed funds rate i
f
(X) are consistent

with market tightness θ.

Combining both equations in (19) and using the law of of one price (17), we arrive at a condition

for the determination of the nominal exchange rate:

e(X) =
P (X)

P ∗ (X)
=

M(X)/m̃ (X)

M∗(X)/m̃∗(X)
. (22)

Condition (22) is a Lucas-style exchange rate determination equation. Given a real demand for

reserves in euro and dollars that emerge from the bank portfolio problem (13), the dollar will be

stronger (i.e., higher e) the larger is the nominal supply of euro reserves relative to dollar reserves.

Similarly, for given nominal supplies of euro and dollar reserves, the dollar will be stronger the

larger is the demand for real dollar reserves.

The novelty here relative to the canonical model is that liquidity factors play a role in the real

demand for currencies, and hence affect the value of the exchange rate. We turn next to analyze

this mechanism.

3.5 Liquidity Premia and Exchange Rates

To understand how liquidity affects exchange rates, it is useful to inspect the bank portfolio

problem (13). Using (7), we write the expected profits of a bank with portfolio (m,m∗, d, d∗) as

follows:

Π∗ (X) =
(
R̄b − R̄∗,d

)
d̃∗ −

(
R̄b − R̄∗,m

)
m̃∗+ (23)(

R̄b − R̄d
)
d̃−

(
R̄b − R̄m

)
m̃+

χ∗,−(θ)

ˆ −m∗/d∗
−1

(m̃∗ + ω∗d̃∗)dΦ∗(ω∗) + χ∗,+(θ)

ˆ ∞
−m∗/d∗

(m̃∗ + ω∗d̃∗)dΦ∗(ω∗)+

χ−(θ)

ˆ −m/d
−1

(m̃+ ωd̃)dΦ(ω) + χ+(θ)

ˆ ∞
−m/d

(m̃+ ωd̃)dΦ(ω).
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The first two lines in (23) are the excess returns on loans relative to deposits and reserves. The

last two lines represent the expected liquidity costs in the two currencies.

The first-order condition with respect to m∗ is

R̄b − R̄m,∗ = (1− Φ∗(−m∗/d∗))χ+,∗(θ∗) + Φ(−m∗/d∗)χ−,∗(θ∗). (24)

At the optimum, banks equate the expected marginal return of investing in loans, which is equal to

R̄b, with the marginal return on investing in reserves. The latter is given by the interest on reserves

R̄m plus a stochastic liquidity value. If the bank ends up in surplus, which occurs with probability

1 − Φ(−m∗/d∗), the marginal value is given by χ+,∗ and if the bank ends up in deficit which

occurs with probability Φ(−m∗/d∗), the marginal value is given by χ−,∗. A useful observation is

that given {χ+,∗, χ−,∗} a higher ratio of reserves to deposits is associated with a smaller R̄b − R̄m

premium. We label this difference as the excess bond premium, EBP ≡ R̄b − R̄m.

We have an analogous condition for m:

R̄b = R̄m + [(1− Φ(−m/d))χ+(θ) + Φ(−m/d)χ−(θ)]. (25)

Combining (24) and (25), we obtain a condition that relates the difference in the real return of

reserves to the difference in excess bond premium:

R̄m − R̄m∗ = [(1− Φ∗(−m∗/d∗))χ+,∗(θ∗) + Φ(−m∗/d∗)χ−,∗(θ∗)] (26)

−[(1− Φ(−m/d))χ+(θ) + Φ(−m/d)χ−(θ)].

We label this difference, the dollar liquidity premium (DLP), DLP ≡ R̄m − R̄∗,m.

Using that 1 + π = (1 + π∗)e2/e1 by the law of one price, we express (26) as:

Et
{

1

1 + πt+1

[
1 + imt − (1 + im,∗t ) · et+1

et

]}
= Eω∗ [χm∗ (s∗; θ∗)]− Eω [χm (s; θ)]︸ ︷︷ ︸ .

dollar liquidity premium (DLP)

(27)

We have then arrived to a liquidity premium adjusted interest parity condition. Absent any liq-

uidity premia, (27) would reduce to a canonical uncovered interest parity (UIP) condition that

simple equates, to a first order, the difference in nominal returns to the expected exchange rate

depreciation. However, whenever the marginal liquidity value of a dollar reserve is larger than

the marginal liquidity value of a euro reserves (i.e.,. when the dollar liquidity premium (DLP) is

positive), and the nominal rates are equal, this implies that the dollar must be expected to depre-

ciate over time. In effect, the dollar reserve delivers a lower expected real return compensating for

the higher liquidity value. Notice also that because banks are owned by risk neutral shareholders,

there is no risk premium in the model. The premia operates entirely through liquidity.11

11Another consequence of the absence of risk premia is that the UIP deviation coincides with the CIP deviations,
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3.6 Effects of shocks and policy interventions

We now provide a theoretical characterization of how the exchange rate and the liquidity premia

vary with shocks to the demand for dollar deposits and the volatility of payments as well as mon-

etary policy shocks. We make two assumptions that simplify the expressions, but do not alter the

essence of the results. In particular, we assume that the supply of deposits are perfectly inelastic

and that shocks are i.i.d.—we discuss how results are modified as we relax the assumptions.

We focus on shocks that affect the dollar interbank market. Note that the same shocks to the

euro interbank market will carry the opposite effect on the exchange rate and the DLP .

Throughout the results, a useful object for the characterization is the liquidity ratio, which

defined in terms of aggregates is given by µ ≡ M/P
D

. A critical object in the characterization is:

DLPθ∗ =
dEω∗ [χm∗ (s∗; θ∗)]

dθ∗
.

=
(
(1− Φ∗(−µ∗)) · χ∗,+θ∗ + Φ∗(−µ∗) · χ∗,−θ∗

)
> 0.

We proceed discussing the effects of various shocks.

Funding and Payment shocks. First, we consider the a positive supply to the amount of

dollar deposits.

Proposition 1 (Deposit scale effects). Consider a shock that increases the real supply for dollar

deposits, D∗. We have the following

1) If the shock is temporary (i.i.d.), then, there is an appreciation of the dollar, a reduction in

the dollar liquidity ratio, and increase in DLP. In particular,

d log e

d logD∗
= −d logP ∗

d logD∗
=
−DLPθ∗ · θ∗µ · µ∗

Rb −DLPθ∗ · θ∗µ · µ∗
∈ [0, 1),

d log µ∗

d logD∗
= −

(
Rb

Rb −DLPµ∗

)
∈ [−1, 0)

and

d (DLP) = R∗,md log e.

2) If the shock is permanent (random walk). Then,

d log e∗

d logD∗
= −d logP ∗

d logD∗
= 1,

assuming a Walrasian market for the forward market in the lending stage. In the data, these objects are, of course,
different. Our focus is on understanding the former.
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and
d log µ∗

d logD∗
= d (DLP) = 0.

Proof. In the appendix.

Proposition 1 establishes that a higher supply of dollar deposits appreciate the dollar. The logic

is simple: a higher amount of real dollar deposits increases the demand for real dollar reserves.

Given a fixed nominal supply, we must have an appreciation of the dollar.

There is an important distinction, however, depending on whether the shock is temporary

or permanent. When the shock is temporary, the exchange rate is expected to revert to the

initial value in the following period. Given nominal rates, this reduces the expected real return of

holding dollar reserves. As a result, the demand for dollar liquidity by banks fall. In equilibrium,

the increase in the scarcity of dollar reserves leads to an increase in the DLP . Overall, we then

have that in response to an increase in the supply of dollar deposits by households, the dollar

appreciates, the dollar liquidity ratio falls and the DLP increases.

When the shock is permanent, the effect on the exchange rate is expected to be permanent.

Absent any expected depreciation effects, the dollar liquidity ratio remains constant. As a result,

there are no permanent effects on the DLP . Important for this result is the assumption of

constant returns to scale in matching technology. As banks scale up proportionally dollar deposits

and reserves, given the same real returns on dollar and euro reserves, the original liquidity ratio

remains consistent with the new equilibrium.12

Next, we consider the effects of a rise in the volatility of dollar deposits.

Proposition 2 (Volatility effects). Consider a shock that increases the size of dollar payment

shocks, δ∗. We have the following

1) If the shock is temporary (i.i.d.), then, the shock appreciates the dollar, lowers the dollar

liquidity ratio:

d log et
d log δ∗t

=
d log µ∗t
d log δ∗t

= −d logP ∗t
d log δ∗t

=
DLPδ∗δ∗

Rb −DLPµ∗ · µ∗
∈ [0,

(1− θ)
(1 + θ)

δ

µ
)

and raises the DLP
d (DLP) = R∗,md log e.

2) If the shock is permanent (random walk). Then,

d log et
d log δ∗t

=
d log µ∗t
d log δ∗t

= −d logP ∗t
d log δ∗t

=
(1− θ)
(1 + θ)

δ

µt

12Given our results about fully temporary and permanent shocks, our conjecture is that in response to persistent
shocks, we would have still have an appreciation of the dollar and an increase in the DLP.
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and d (DLP) = 0.

Proof. In the appendix.

Proposition 2 presents a central result in the paper. In response to a rise in the volatility of

dollar deposits, the dollar appreciates, and there is an increase in the dollar liquidity ratio and

the DLP . Intuitively, when there is larger dollar volatility, banks demand larger real holdings of

dollars. With the nominal supplies given, this must lead to an appreciation of the dollar. Again,

there is a relevant distinction on whether the shock is temporary or permanent. When the shock

is temporary, the expected depreciation of the dollar reduces the expected real return of holding

dollar reserves. Given the nominal rates, this implies that the DLP must be larger in equilibrium

for (27) to hold. When the shock is permanent, the volatility shock appreciates the dollar without

any real effects on the liquidity ratio or the DLP .

The result in Propositions 1 and 2 highlight that episodes of large supply of dollar deposits and

high dollar volatility and go hand in hand with appreciations of the dollar. There is, however, an

important difference in the prediction of these two shocks. While the supply of deposit shock leads

to a reduction in the liquidity ratio, the volatility shock leads to an increase in the liquidity ratio.

Recall from the empirical relationship documented in Section 2, there is a positive relationship

between the dollar liquidity ratio and the appreciation of the dollar. These results suggest that to

reconcile the empirical observations, volatility shocks ought to play an important role in driving

the exchange rate. In section 4, we show that a calibrated version of the model with both types

of shocks is indeed consistent with the empirical results.

Monetary policy effects. We now study how monetary policy affects the exchange rate. We

start by considering the effect of a change in the nominal policy rates.

Proposition 3 (Effects of Changes in Policy Rates). Consider a temporary change in the dollar

interest rate on reserves, i∗,m while holding fixed the spread (i∗,w − i∗,m). We have that the dollar

appreciates, the liquidity ratio increases and the DLP decreases. In particular:

If the shock is temporary (iid), the shock appreciates the dollar and raises the liquidity ratio:

d log e

d log (1 + i∗,m)
=

d log µ

d log (1 + i∗,m)
= − d logP ∗

d log (1 + i∗,m)
=

R∗,m

(Rb −DLPµ∗ · µ∗)
∈ (0, 1].

Furthermore d (DLP) = −Rm (d log (1 + im)− d log e) < 0.

Part 2. If the shock is permanent (random walk), then

d log e

d log (1 + i∗,m)
=

d log µ∗

d log (1 + i∗,m)
= − d logP ∗

d log (1 + i∗,m)
= − 1

DLPµ∗ · µ∗
> 0.

Furthermore dDLP = −Rmd log (1 + im).
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Proof. In the appendix.

Proposition 3 establishes that in response to an increase in the US nominal rate, the dollar

appreciates, the liquidity ratio increases and the liquidity premium falls. The appreciation of

the dollar follows a standard effect: a higher nominal rate leads to a larger demand for dollars,

which in equilibrium requires a dollar appreciation. Absent liquidity premia, the difference in

nominal returns across currencies would be equally offset by the expected depreciation of the

dollar, following today’s appreciation. Given the larger abundance of dollar reserves, however,

there is a decrease in the marginal value of holding dollars and a reduction in the dollar liquidity

premium takes place. Overall, the appreciation of the dollar is lower than the one that would

prevail absent liquidity premia. This result is important because it breaks the tight connection

between interest rate differentials and expected depreciation, at the heart of the forward premium

puzzle, also called the Fama puzzle.

The next policy we study are foreign exchange interventions. We consider purchases of dollar

reserves by the European Central Bank, which are financed by expanding the amount of dollar

reserves. For simplicity, we assume that this operation is reverted in the following period. Any

operating losses or profits are financed with transfers in the following period.

Proposition 4 (FX intervention.). Let M∗∗ be the holdings of dollars reserves by the central bank

of Europe. Let

A =
M∗∗

M∗ +M∗∗ ,

be the ratio of the holdings of foreign reserves to total dollar reserves and let

Mt ≡ et
M∗∗

t

Mt

the ratio of foreign reserves to Euro reserves in Europe. Then, consider an increase in European

holding of dollar reserves financed with euro reserves. We have the following:

d log e

d logM∗∗ = (1−M · A · Γ∗) · Γ−AΓ∗ ≥ 0,

where

Γ∗ ≡ DLPµ∗ · µ∗

Rb −DLPµ∗ · µ∗
< 0, and Γ ≡

−1
2
d[χ++χ−]

dθ
dθ
dµ
µ

Rb − (1−M) 1
2
∂[χ++χ−]

∂θ
∂θ
∂µ
µ
> 0.

measure the sensitivity of dollar and euro prices respectively, to a change in the liquidity ratio.

The change in the liquidity ratio is given by:

d log µ

d logM∗∗ =
Rb · (1−M · A · Γ∗)

Rb − (1−M) 1
2
∂[χ++χ−]

∂θ
∂θ
∂µ
µ
≥ 0.
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And the change in the liquidity premia is given by:

dDLP
d logM∗∗ = RmΓ (1−M · A · Γ∗)−R∗,mAΓ∗ ≥ 0 and

dEBP
d logM∗∗ = −R∗,mAΓ∗ > 0.

Proof. In the appendix

Proposition 4 establishes that a purchase of dollar reserves by the European Central Bank

appreciates the dollar. Moreover, the purchases of dollar reserves increases the euro liquidity ratio

and decreases the dollar liquidity ratio. As a result, we see an increase in the dollar liquidity

premium.

Foreign exchange interventions matter in our framework, a result that contrasts with the classic

irrelevance result of Backus and Kehoe 1989. An active literature has recently studied how in the

presence of limits to international arbitrage, these interventions can have effects on real variables

and nominal exchange rates (see e.g. Gabaix and Maggiori 2015; Amador et al. 2019; Fanelli

and Straub 2020). However, our model provides a different channel by which FX intervention

affects the exchange rate. In fact, banks do not face any leverage constraints and there is perfect

financial arbitrage. The channel by which FX intervention affects allocations operates by altering

the relative abundance of liquid assets in the market. When the domestic central bank purchases

foreign reserves, it increases the relative scarcity of these assets.13 Given the original nominal and

returns, an excess demand for dollars emerges. In equilibrium, the dollar appreciates and restores

market clearing.

Generalization: persistent shocks.

Generalization: elastic funding.

3.7 UIP vs. CIP.

Motivated by findings in Du, Tepper, and Verdelhan (2018), a large literature analyzes both

theoretically and empirically the sources of deviations from covered-interest parity (CIP). A novel

consideration in our model is that our model features assets with different liquidity properties,

leading to potentially a different CIP deviations for different assets. Namely, given a forward

13We do not distinguish here between sterilized and sterilized intervention because as we explained above our
interpretation of reserves is a liquid asset that consolidates government bonds and reserves in the more narrow
sense. However, we note that the appreciation of the dollar would also follow if the ECB were to finance the
purchases of US dollars by selling a portfolio of loan holdings (or directly using taxes), which would be more akin
to a sterilized intervention.
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exchange rates, the extent that nominal-rate differentials vary across assets imply unequivocally

different CIP deviations per asset. So far, we have not allowed for a forward market. We now do

so by considering a perfectly competitive market for forwards in the lending stage.

A forward traded at time t promises to exchange one dollar for a given amount of euros in the

lending stage in the following period. The first-order condition with respect to the quantity of

forwards purchased yields

0 = βEt
[

1

P ∗t+1

(ft,t+1 − et+1)

]
, (28)

Given risk neutrality, a constant foreign price would imply that the forward equals the expected

exchange rate.

The definition of CIP implies that

Et
{

1

1 + πt+1

[
1 + imt − (1 + im,∗t ) · ft+1

et

]}
= CIP (29)

Comparing (27) and (29) delivers that the DLP is captured precisely by the CIP deviation.

One interesting observation made by Du et al. (2018) is that low interest rate countries have had

positive CIP gap since the global financial crisis, (i.e., low interest rate currencies deliver a risk-free

excess return relative to the high interest rate currencies). This pattern contrasts sharply with

the carry trade phenomenon by which low interest rate countries have negative UIP deviation (i.e.

low interest rate countries deliver a low expected return relative to high interest rate currencies).

As we showed earlier, an increase in the nominal interest rate reduces the liquidity premium. Our

model is thus consistent with this observation.14

3.8 Extensions

Alternative Timing.

Exorbitant Privilege.

Exogenous Dollar funding.

Multi-country setup. We can extend the model to any number of currencies, using the same

equilibrium conditions. In particular, I think we can write an extension setting other countries to

14An alternative explanation provided by Amador et al. (2019) is related to limits to international arbitrage
and central bank policies of resisting an appreciation at the zero lower bound. The policy of keeping an exchange
rate temporarily depreciated together with a lower bound on the nominal rate, created excess returns on domestic
currency assets. The excess returns, in turn, generated capital inflows, which had to be offset with central bank
purchases of foreign reserves.
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0, but still price their exchange rates.

Non-Tradable goods and real exchange rates.

Government Bonds.

4 Quantitative Exploration

We now explore a quantitative version of the model. We calibrate the model assuming that

there are two currencies in the world: the US Dollar and the Euro. We treat both currencies

symmetrically, except that only dollar liabilities feature funding shocks, shocks to the slope of the

supply of dollar deposits. In turn, interest rate and payment shocks occur in both countries. To

explain the dollar liquidity premium, the model will call for more volatile payments in dollar. We

replace the {∗} notation for i ∈ {us, eu} to refer to the specific currencies.

Elastic Loan supply. In the model we presented earlier, the loans rate is fixed at 1/β. This

assumption was convenient to produce analytic results and followed because we assumed that

households can inject equity to banks and demand a return of 1/β. In this section, we rule out

that possibility. Hence, the loans rate is no longer fixed, but determined by the real value of

deposits and reserves:

R̄b
t+1 = Θb (Bt)

ε = Θb

(
Dus
t +Deu

t −
(
Mus

t

P us
t

+
M eu

t

P eu
t

))ε
.

This extension is important to link the frictions in the model to the the global supply of credit.

External Calibration. We set the model period to one month. We keep the relative supply of

reserves M∗/M as constant and fix it to obtain the historical average of the Euro/Dollar exchange

rate. The loan demand scale Θb is a normalization constant. The semi-elasticities of the loan

demand and deposit supply schedules are set to ςus = ςeu = −ε = 35, are obtained from the

calibration in Bianchi and Bigio (2020), treating the Euro area and the US as symmetric. Also,

the paramters that capture the efficiency of the interbank market λus = λeu = 3.1 are also obtained

from that paper with a symmetric treatment of the two regions of interest.

Shock process. For the distributions of ω shocks, we assume that these are distributed as two

sided exponentials (formally known as Laplace distributions) with shocks centered at zero. This

distribution is convenient because it allows for a continuum of shocks but renders closed form

solutions for the conditional expectations. Therefore, at each date, there are distributions of
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payment shocks to Dollar and Euros, σit for i ∈ {us, eu}. In addition, we introduce shocks to the

interest on reserves, im,it for i ∈ {us, eu} and to the scale of deposits Θd,i
t for i ∈ {us, eu}. Each

shock is assumed to follow a log AR(1) process of the form:

ln (xt) = (1− ρx) ln (xss) + ρx · ln
(
xust−1

)
+ Σxεxt , x ∈

{
σi, im,i,Θd,i

}
i∈{us,eu} ,

where ρx is the mean-reversion rate x and Σx the volatility. As noted above, we assume that

ΣΘd,eu = 0.

We assume symmetry in the funding properties at steady state, so that σusss = σeuss and Θd,us
ss =

Θd,eu
ss , so we only need to calibrate the steady state values of

{
σusss ,Θ

d,us
ss

}
. We target the values of{

σusss ,Θ
d,us
ss

}
to produce the average excess bond premium {Rus

b −Rus
m } and the average liquidity

ratio of the data.

We estimate

im,iss , ρ
im,i ,Σim,i for i ∈ {us, eu} ,

externally, using data on US and European rates.

We then estimate the following parameters

ρσ
i

,Σσifor i ∈ {us, eu} and
{
ρΘd,us ,ΣΘd,us

}
,

internally, via Bayesian maximum likelihood of the linearized model. For that we use the time

series of: {
ln (µust )− ln

(
µust−1

)
, ln (et)− ln (et−1) , πeut − πust

}
.

The estimated parameter values are given by the following table:

Moment Fit. The model and data moments are reported in Table 6B. The model is successful

at matching the targeted moments and, in addition, delivers untargeted moments that are close

to the counterparts in the data.
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Table 6B: Calibrated Parameters

Parameter Value Description Target

External Calibration

Mus/Meu 1 Relative Supplies of Reserves normalized to match average e

Θb = 100 100 Global loan demand scale normalization

ε -35 Loan Elasticity Bianchi and Bigio (2020)

ςus 35 US Deposit Demand Elasticity Bianchi and Bigio (2020)

ςeu 35 US Deposit Demand Elasticity symmetry

λus λ∗ = 3.1 US interbank market matching efficiency Bianchi and Bigio (2020)

λeu λ = 3.1 EU interbank market matching efficiency Symmetry

Steady-State

Θd,∗ss 40 US Deposit Demand Scale To match the US liquidity ratio average

Θdss 40 EU Deposit Demand Scale symmetry

Process for US policy rate im,∗

E
(
im,ust

)
0.9954 annualize US interest on reserves data

Σ
(
im,ust

)
0.0026 std annual US policy rate data

ρ
(
im,ust

)
0.9793 autocorrelation annual US policy rate data

Process for Euro policy rate im,∗ (AR(1) process)

E
(
im,eut

)
1.0025 average annual US policy rate data

Σ
(
im,eut

)
0.0018 std annual US policy rate data

ρ
(
im,eut

)
0.9889 autocorrelation annual US policy rate data

Table 6B: Shock Estimation

Parameter Prior Posterior 90% Interval Prior Familiy Prior Std. Dev.

Σσus

0.500 0.5029 0.4577 - 0.5471 Inverse Gamma 0.05

Σσeu

0.400 0.2865 0.2436 - 0.3221 Inverse Gamma 0.05

ΣΘd,us

0.100 0.7300 0.0668 - 0.0788 Inverse Gamma 0.05

ρσ
us

0.900 0.9104 0.8957 - 0.9250 Beta 0.01

ρσ
eu

0.980 0.9964 0.9958 - 0.9970 Beta 0.01

ρΘd,us

0.980 0.9828 0.9744 - 0.9916 Beta 0.01
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Table 6B: Model and Data Moments

Statistic Desc. Target Model Simulated mean Simulated (std. error)

Targets

E (LP) Average bond premium 70bps 70.91bps 81.18bps 163.02bps

E (EBP) Average bond premium 100bps 99.94bps 96.76bps 51.42bps

Non-Targeted

std(logµ∗) Std. Dev. $ liquidity ratio 0.422 0.2948 0.2171 0.0694

ρ (logµ) Auto. Corr $ liquidity ratio 0.9961 0.9913 0.9689 0.0191

std(log e) Std. Dev. oflog FX 0.1538 0.2276 0.2119 0.0801

ρ (log e) Autocorrelation log FX 0.9819 0.9958 0.9755 0.0175
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4.1 Volatility, Liquidity Premia, and Exchange Rates

In this section, we present results of a version of the model with a Markov process for the volatility

of dollar withdrawals. Figure 3 shows all endogenous variables as a function of the volatility of the

withdrawal of dollar deposits. In line with the results of Proposition 2, we can see that a higher

volatility appreciates the dollar and generates a positive liquidity premium. In addition, we can

see a rise in the differential rate on deposits. That is, the rate on euro deposits increases relative to

the dollar rate as the rise in volatility makes euro deposits more attractive. Furthermore, there is a

rise in the loan rate because higher volatility increases, in effect, the liquidity frictions and reduces

the demand for loans. Finally, we also see an increase in the dollar liquidity ratio concomitantly

with a reduction in the euro liquidity ratio. The latter occurs because a higher lending rate makes

euro reserves relatively less attractive (in the absence of any shocks to the euro market).

Figure 4 shows the simulations of the economy for a given path of volatility shocks. The red

line denotes the realization of the volatility shock. The overall message, in line with the previous

figure is that episodes of high volatility lead to appreciation of the dollar. Notice that there is

mean reversion in the exchange rate and all other variables. Importantly, the simulations are

consistent with the empirical analysis presented in Section 2. Indeed, we see a positive correlation

between the strength of the dollar and the dollar liquidity ratio,
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Figure 3: Equilibrium solution for a range of values of volatility
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Figure 4: Simulation of the model. Red line is the volatility process
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4.2 Regressions with Simulated Data

In this section, we simulate our model, study the second moments and run the same regressions

as we did with simulated data. Table (6B) shows that the model simulations are consistent with

the date time series. Namely, using a regression with the simulated data, we estimate a positive

coefficient on the liquidity ratio, just like we found in the data. This result is in line with the

co-movement observed in the simulations in Figure 4.

Table 6B: Regression Coefficients with Simmulated Data

Data Euro/Dollar Model Model

∆(LiqRatt) 0.225*** 0.4855*** 0.4352***

(4.525) (0.0446) (0.0421)

∆ (it − i∗t ) -0.033945***

(0.006256)***

πt−1 − π∗t−1 -0.542*** 0.1537*** 0.1019

(-3.718) (0.1272) (0.1211)

LiqRatt−1 0.011** 0.0074 0.0051

(2.425) (0.0137) (0.0122)

constant -0.012*** 0.0115 0.0079

(-3.452) (0.0218) (0.0194)

adj. R2 0.11 0.3587 (0.0480) 0.4324 (0.0464)

t statistics in parentheses. (-3.452)

*** p < 0.01

5 Conclusion

We developed a theory of exchange rate determination as arising from the demand by financial

institutions for liquid dollar assets. Periods of increased funding volatility generate an increase in

the dollar liquidity premium and appreciates the dollar. The effect is empirically validated as we

document that a higher liquidity ratio is associated with a stronger dollar.
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A Expressions for {Ψ+,Ψ−, χ+, χ−}

Here we reproduce formulas derived from Proposition 1 in Bianchi and Bigio (2017). In Bianchi

and Bigio (2017), there is a market structure for interbank trades that delivers these functional

forms. This proposition gives us the formulas for the liquidity yield function and the matching

probabilities as functions of the tightness of the interbank market. The formulas are the following.

Given θ, the market tightness after the interbank-market trading session is over:

θ̄ =


1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1

(1 + (θ−1 − 1) exp (λ))
−1

if θ < 1

.

Trading probabilities are given by

Ψ+ =

1− e−λ if θ ≥ 1

θ
(
1− e−λ

)
if θ < 1

, Ψ− =


(
1− e−λ

)
θ−1 if θ > 1

1− e−λ if θ ≤ 1
. (30)

The parameter λ captures the matching efficiency of the interbank market. A reduced-form

bargaining parameter is obtained as:

φ ≡


θ
θ−1

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ > 1

η if θ = 1

θ(1−θ̄)−θ̄
θ̄(1−θ)

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ < 1

.

where η is a parameter associated with the bargaining power of banks with reserve deficits in each

trade—a Nash bargaining coefficient. Hence, φ is an effective bargaining weight. The average

interbank rate is:

Rf = (1− φ)Rw + φRm

The slopes of the liquidity yield function are given by

χ+ = (Rw −Rm)

(
θ̄

θ

)η (
θηθ̄1−η − θ
θ̄ − 1

)
and χ− = (Rw −Rm)

(
θ̄

θ

)η (
θηθ̄1−η − 1

θ̄ − 1

)
. (31)

These formulas are consistent with:

χ+ = Ψ+
(
Rf −Rm

)
and χ− = Ψ−

(
Rf −Rm

)
+
(
1−Ψ−

)
(Rw −Rm) .
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B Proofs

B.1 Proof of Lemma 1

Proof. Substitute the budget constraint (11) into (12). We obtain:

n′ = Rb(X)n−Rb(X)Div −
(
Rb (X)−Rm(X)

)
m̃−

(
Rb (X)−Rm,∗(X)

)
m̃∗

+
(
Rb (X)−Rd(X)

)
d̃+ (Rb (X)−R∗,d(X))d̃∗

+ Eω∗χ∗(θ∗(X), m̃∗ + ω∗d̃∗) + Eωχ(θ(X), m̃+ ωd̃).

and thus:

n′ = Rb(X)n−Rb(X)Div + Π∗ (X) .

Conjecture that v (n,X) = n. Then, substituting v (n′, X ′) = n′, into (10) we obtain:

v (n,X) = max
{Div,b̃,m̃∗,d̃∗,d̃,m̃}

Div + βE
[
Rb(X)n−Rb(X)Div + Π (X) |X

]
.

Note that if βRb(X) 6= 1,dividends are either∞ or −∞. Thus, in equilibrium, it must be the case

that Rb(X) = 1/β. As a result,

v (b,X) = max
{Div,b̃,m̃∗,d̃∗,d̃,m̃}

Div + βE [1/βb− 1/βDiv + Π∗ (X) |X]

= b+ β max
{b̃,m̃∗,d̃∗,d̃,m̃}

E
[
Π
(
m̃∗, d̃∗, d̃, m̃,X

)]
. (32)

where

Π
(
m̃∗, d̃∗, d̃, m̃,X

)
=

(
Rb (X)−Rd(X)

)
d̃+ (Rb (X)−R∗,d(X))d̃∗

−
(
Rb (X)−Rm(X)

)
m̃−

(
Rb (X)−Rm,∗(X)

)
m̃∗

+ Eω∗χ∗(θ∗(X), m̃∗ + ω∗d̃∗) + Eωχ(θ(X), m̃+ ωd̃).

Next, consider the first order conditions for {m̃∗, d̃∗, d̃, m̃}. We have:

d : Πd

(
m̃∗, d̃∗, d̃, m̃,X

)
= Rb (X)−Rd(X)− Eω [χd̃] = 0.

d∗ : Πd∗

(
m̃∗, d̃∗, d̃, m̃,X

)
= Rb (X)−R∗,d(X)− Eω

[
χ∗
d̃

]
= 0.

m : Πm

(
m̃∗, d̃∗, d̃, m̃,X

)
= Rb (X)−Rm(X)− Eω [χ∗m] = 0.
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m∗ : Πm∗

(
m̃∗, d̃∗, d̃, m̃,X

)
= Rb (X)−R∗,m(X)− Eω [χ∗m̃] = 0.

Thus, in equilibrium, these conditions must hold. Next, observe that Π
(
m̃∗, d̃∗, d̃, m̃,X

)
is ho-

mogeneous of degree 1 in {m̃∗, d̃∗, d̃, m̃}. Hence, by Euler’s Theorem for Homogeneous Functions:

Π∗ (X) = max
{b̃,m̃∗,d̃∗,d̃,m̃}

Π
(
m̃∗, d̃∗, d̃, m̃,X

)
=
[

Πd Πd∗ Πm Πm∗

]
·



d

d∗

m

m∗


= 0.

Hence, we verify that, Π∗ (X) = 0 and as a result, replacing this result in (32), we verify the

conjecture that v (e,X) = e.
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B.2 Preliminary Observations

Liquidity Costs. To produce theoretical results, we derive some observations. First, recall that

the market tightness in both currencies is always lower than one:

θ =
δ − µ
δ + µ

< 1.

For this reason, we have that tightness is increasing in the size of the dispersion shocks:

θδ ≡
∂θ

∂δ
=

1

µ+ δ
− δ − µ

(µ+ δ)

1

(µ+ δ)
=

(1− θ)
(µ+ δ)

¿0. (33)

Also, note that:

θµ ≡
∂θ

∂µ
=
−1

δ + µ
− δ − µ
δ + µ

1

δ + µ
=
−1

δ + µ
(1 + θ) < 0. (34)

Moreover, the penalties are increasing in tightness.

∂χ+

∂δ
=
∂χ+

∂θ

∂θ

∂δ
> 0,

and
∂χ−

∂δ
=
∂χ−

∂θ

∂θ

∂δ
> 0.

Likewise, we have that the tightness is decreasing in the liquidity ratio:

∂θ

∂µ
= − 1 + θ

δ + M/P
D

< 0.

We also know that the penalty rates are increasing in tightness, and hence:

∂χ+

∂µ
=
∂χ+

∂θ

∂θ

∂µ
< 0, and

∂χ−

∂µ
=
∂χ−

∂θ

∂θ

∂µ
< 0.

Differential Form of Money-Market Equilibrium. Consider the equilibrium in the money

demand for Euros,
M

P
= µD,

The differential form of this equations is:

M

P

(
dM

M
− dP

P

)
= dµD + µdD.
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Then, manipulating the equation we obtain:

M

P

(
dM

M
− dP

P

)
= µD

dµ

µ
+ µD

dD

D
.

Using (xxx, first line above,) we obtain:

d logM − d logP = d log µ+ d logD. (35)

Likewise, for dollars we obtain:

d logM∗ − d logP ∗ = d log µ∗ + d logD∗. (36)

Differential Form of Exchange Rate. We have that

e =
P

P ∗

Then,

de =
dP

P ∗
− P

P ∗
· dP

∗

P ∗
.

From here, we have that:

d log e = d logP − d logP ∗. (37)
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B.3 Proof of Proposition 1

In this appendix, we proof the following proposition, together with the one for dollars in the body

of the paper. [Scale Effects] Part 1. Consider a temporary (i.i.d.) shock that increases the

demand for Euro deposits. Then, the shock appreciates the Euro and lowers the liquidity ratio:

d log e

d logD
=

1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ
∈ (−1, 0] and

d log µ

d logD
= −

(
Rb

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

)
∈ (−1, 0].

Hence, d log e
d logµ

> 0. Furthermore d (LP) = −d (EUBP) = Rmd log e.

Part 2. Consider a permanent (random walk) shock that increases the demand for Euro

deposits. Then,
d log e

d logD
= −1 and

d log µ

d logD
= 0,

Hence, d log e
d log µ

= ∞. Furthermore d (LP) = d (EBP) = 0. Along the proofs, we employ the

implicit function theorem. The proposition in the draft just follows by symmetry. First, some

preliminary results.

Consider a small increase in D. Recall that

θ ≡ δ − µ
µ+ δ

=
δ − M/P

D
M/P
D

+ δ
.

Hence,

θD ≡ θµµD = −θµµ
1

D
> 0.

When the loans supply is perfectly elastic, Rb is a constant. In this case, the equilibrium condition

for Euro reserve holdings yields

Rb = (1 + im)
P

E [p (X ′)]
+

1

2
[χ+ + χ−].

The price level appears in the real rate on reserves, on the value of real balances, and the real

penalties {χ+, χ−}.

Temporary Shocks. From the liquidity premium, compute the total differential with respect

to D. We obtain:

(1 + im)
P

E [p (X ′)]

dP

P
+

1

2
[χ+ + χ−]

dP

P
+

(
1

2

d[χ+ + χ−]

dθ
θµ

)
(−µd logP + µDdD) = 0. (38)
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Observe that:

µDdD = −µdD
D

= −µd logD.

and that:
∂µ

∂P
dP = −µd logP.

Hence (
Rb − 1

2

(
χ+
θ + χ−θ

)
θµµ

)
d logP =

1

2

(
χ+
θ + χ−θ

)
θµµ · d logD.

Thus, we obtain that:

−1 ≤ d logP =
1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

d logD ≤ 0

where the sign follows from
{
χ+
θ , χ

−
θ

}
> 0 and θµ < 0.

Next, using (37), we have that:

−1 ≤ d log e =
1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

d logD ≤ 0.

Holding nominal reserve balances and real deposits fixed, we obtain that (35) becomes

d log µ = − (d logD + d logP )

hence:

d log µ = −

(
1 +

1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

)
d logD < 0.

Combining:
d log e

d log µ
=
−1

2

(
χ+
θ + χ−θ

)
θµµ

Rb
> 0.

The differential of the liquidity premium is then:

d (DLP) =
1

2
[χ+ + χ−]d logP − 1

2

(
χ+
θ + χ−θ

)
θµ (µd logP + µd logD)

=
(
Rb −Rm

) 1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

d logD − 1

2

(
χ+
θ + χ−θ

)
θµµ

(
1 +

1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

)
d logD

=
(
Rb −Rm

) 1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ
− 1

2

(
χ+
θ + χ−θ

)
θµµ

(
Rb

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

)
d logD

= −Rm
1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

d logD = Rmd log e∗.
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Re-arranging, we obtain:

d log (DLP) = −
[
DLP
Rm

]−1
dP

P
= −

[
LP
Rm

]−1

d log e.

Likewise, the excess bond premium satisfies:

d (EUBP) = −d (DLP) = Rmd log e,

and re-arranging:

d log (EUBP) =

[
EBP
Rm

]−1
dP

P
= −

[
EBP
Rm

]−1

d log e.

The statement in the body of the paper follows by symmetry. Namely, if we shock dollar loans:

−1 ≤ d logP ∗ =
1
2

(
χ+
θ∗ + χ−θ∗

)
θ∗µ∗µ

∗

Rb −
(
χ+
θ∗ + χ−θ∗

)
θ∗µ∗µ

∗d logD∗ ≤ 0.

In this case, the effect on the exchange rate is:

0 ≤ d log e = −
1
2

(
χ+
θ∗ + χ−θ∗

)
θ∗µ∗µ

∗

Rb −
(
χ+
θ∗ + χ−θ∗

)
θ∗µ∗µ

∗d logD ≤ 1.

Thus, for the dollar

d (DLP) = R∗,md log e ≥ 0,

and likewise the

d (EBP) = d (DLP) = R∗,md log e ≥ 0.

Permanent Shocks. From the liquidity premium, compute the total differential with respect

to D. Because the shock is permanent, expected inflation is zero. Hence, optimality in reserves

yields:
1

2

(
χ+
θ + χ−θ

)
θµ (−µd logP + µd logD) = 0. (39)

Thus,

d logP = −d logD,

and thus,

d log e = −d logD.

We know then that the liquidity ratio must not change in this case,

d log µ = 0,
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and as a result:

d (EBP) = d (DLP) = 0.

Thus, the same is true if the increase is in dollar funding.

From the liquidity premium, compute the total differential with respect to D. Because the

shock is permanent, expected inflation is zero. Hence, optimality in reserves yields:

1

2

(
χ+
θ + χ−θ

)
θµ (−µd logP + µd logD) = 0. (40)

Thus,

d logP = −d logD,

and thus,

d log e = −d logD.

Likewise, for dollars:

d logP = −d logD∗,

but in this case:

d log e = −d logP ∗ = d logD∗.

Hence, in both cases, d log µ = d log µ∗ = 0. Since the liquidity ratio is constant and inflation is

not expected to move, the effects on premia are constant.

B.4 Proof of Proposition 2

[Scale Effects] Part 1. Consider a temporary (i.i.d.) shock that increases the demand for Euro

payment volaititiy. Then, the shock appreciates the Euro and lowers the liquidity ratio:

d log e

d log δ
= −d log µ

d log δ
=

−1
2

[
χ+
θ + χ−θ

]
θδδ

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ
≤ 0.

Hence, d log e
d logµ

= −1. Furthermore d (LP) = −d (EUBP) = Rmd log e.

Part 2. Consider a permanent (random walk) shock that increases the demand for Euro

deposits. Then,
d log e

d log δ
= −d log µ

d log δ
= −(1− θ)

(1 + θ)
· δ
µ
.

Hence, d log e
d log µ

= −1. Furthermore d (LP) = −d (EBP) = Rmd log e. When the loans supply is

perfectly elastic, Rb is a constant. In this case, we have that the liquidity premium is given by:

Rb = (1 + im)
P

E [p (X ′)]
+

1

2
[χ+ + χ−].

55



Recall that the price level level appears in the real rate on reserves, on the value of real balances,

and the real penalties {χ+, χ−}. Note that we already established that θδ > 0.

Temporary Euro Funding Shocks. From the liquidity premium, we have that:

(1 + im)
P

E [p (X ′)]

dP

P
+

1

2
[χ+ + χ−]

dP

P
+

1

2

d[χ+ + χ−]

dθ
θδdδ +

1

2

∂[χ+ + χ−]

∂θ

∂θ

∂µ

dµ

dP
dP = 0. (41)

Holding nominal reserve balances and real deposits fixed, we obtain that

dµ =
M

P 2

dP

D
= −µdP

P
= −µd logP (42)

Thus, re-arranging (41) we obtain:

d log (P ) =
−1

2

[
χ+
θ + χ−θ

]
θδδ

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ

d log δ < 0.

where we used Rb = Rm + 1
2

(χ+ + χ−) and the sign follows from θδ > 0 and θµ < 0. Next, using

(37), we have that:

d log e =
−1

2

[
χ+
θ + χ−θ

]
θδδ

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ

d log δ ≤ 0.

Note that:

θδ =
(1− θ)
(µ+ δ)

<
(1 + θ)

δ + µ
= −θµ,

but µ < δ, hence, we cannot bound the effect on the exchange rate.

Next, we obtain the effect on the liquidity ratio. We know that

d log (µ) = −d log (P ) =
1
2

[
χ+
θ + χ−θ

]
θδδ

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ

d log δ > 0.

Consider next the liquidity premium. We have that

d (DLP) =
1

2
[χ+ + χ−]d logP − 1

2

[
χ+
θ + χ−θ

]
θµµd log (P )− 1

2

[
χ+
θ + χ−θ

]
θδδ

=

[
1
2

[
χ+
θ + χ−θ

]
θµµ

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ

+ 1

]
1

2

[
χ+
θ + χ−θ

]
θδδ

=
1

2
[χ+ + χ−]d logP −Rbd log e.

= −Rmd log e.

Likewise the excess bond premium in euros:
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d (EUBP) = −d (DLP) = Rmd log e.

Temporary Dollar Funding Shocks. The statement in the body of the paper follows by

symmetry. Namely, if we shock dollar loans:

d logP ∗ =
−1

2

[
χ+
θ∗ + χ−θ∗

]
θ∗δ∗δ

∗

Rb − 1
2

[
χ+
θ∗ + χ−θ∗

]
θ∗µ∗µ

∗d log δ∗ ≤ 0.

Since the money supply and deposits are fixed:

d log µ∗ = −d logP ∗ =
1
2

[
χ+
θ∗ + χ−θ∗

]
θ∗δ∗δ

∗

Rb − 1
2

[
χ+
θ∗ + χ−θ∗

]
θ∗µ∗µ

∗d log δ∗ ≥ 0.

In this case, the effect on the exchange rate is:

0 ≤ d log e =
−1

2

[
χ+
θ∗ + χ−θ∗

]
θ∗δ∗δ

∗

Rb − 1
2

[
χ+
θ∗ + χ−θ∗

]
θ∗µ∗µ

∗d log δ∗ ≥ 0.

Thus, for the dollar

d (DLP) = R∗,md log e ≥ 0,

and likewise the

d (EBP) = d (DLP) = R∗,md log e ≥ 0.

Permanent Shocks. From the liquidity premium, compute the total differential with respect

to D. Because the shock is permanent, expected inflation is zero. Hence, optimality in reserves

yields:
1

2

(
χ+
θ + χ−θ

)
(−θµµd logP + θδδd log δ) = 0. = 0. (43)

Thus,

d logP = d log e =
θδδ

θµµ
d log δ =

(1−θ)
(µ+δ)

− (1+θ)
δ+µ

δ

µ
= −(1− θ)

(1 + θ)
· δ
µ
d log δ,

and thus,

d log µ =
(1− θ)
(1 + θ)

δ

µ
· d log δ.

We know then that the liquidity ratio must not change in this case,

d log θ = 0,
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and as a result:

d (EBP) = d (DLP) = 0.

Thus, the same is true if the increase is in dollar funding.

B.5 Proof of Proposition 2 (Interest Rate Pass-Through)

[Scale Effects] Part 1. Consider a temporary (i.i.d.) shock that increases the demand for Euro

payment volaititiy. Then, the shock appreciates the Euro and lowers the liquidity ratio:

−1 ≤ d log e

d log (1 + im)
= −d log µ

d log δ
= − Rm(

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ
) < 0.

Hence, d log e
d logµ

= −1. Furthermore d (LP) = −d (EBP) = Rm
(

1− d log e
d log(1+im)

)
d log (1 + im) .

Part 2. Consider a permanent (random walk) shock that increases the demand for Euro

deposits. Then,
d log e

d log δ
= −d log µ

d log δ
= .

Hence, d log e
d log µ

= −1. Furthermore d (LP) = d (EBP) = Rmd log e. The gist of the proof is similar

to the ones in the previous Propositions.

Temporary shocks to Euro Policy Rate. From the excess bond premium in Euros, we obtain

that:

E [p (X ′)]

P
d (1 + im) + (1 + im)

E [p (X ′)]

P

dP

P
+

1

2
[χ+ + χ−]

dP

P
+
[
χ+
θ + χ−θ

]
θµµ

dP

P
= 0. (44)

Therefore, re-arranging terms we have:

d log (P ) = −
P

E[p(X′)]
d (1 + im)(

Rb − 1
2

[
χ+
θ + χ−θ

]
θµµ
) .

Multiplying and dividing by (1 + im) we obtain:

d log (P ) = − Rm(
Rb − 1

2

[
χ+
θ + χ−θ

]
θµµ
)d log (1 + im) .

We know that:

Rm ≤ Rb and
1

2

[
χ+
θ + χ−θ

]
θµµ≤ 0

Thus,

−1 ≤ d log (P ) = − Rm(
Rb − 1

2

[
χ+
θ + χ−θ

]
θµµ
)d log (1 + im) < 0.
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with equality only under satiation. Next, using:

dµ

dP
= −µdP

P
,

we obtain:
d log (µ)

d log (1 + im)
= − d log (P )

d log (1 + im)
∈ (0, 1].

Now consider the dollar liquidity premium

DLP = Rm −R∗,m.

Then, we have that:

dDLP = Rmd log (1 + im)−Rmd log (P )

= Rm (log (1 + im)− d log (P ))

= Rm

(
1
2

[χ+ + χ−](
Rb − 1

2

[
χ+
θ + χ−θ

]
θµµ
)) d log (1 + im) ∈ [0, Rm).

Hence, we have that:

dDLP
d log (1 + i∗,m)

= −
[
DLP
R∗,m

]−1(
1 +

d log (P )

log (1 + i∗,m)

)
= −

[
DLP
R∗,m

]−1(
1− d log (e)

log (1 + i∗,m)

)
≤ 0,

because d log(P )
log(1+i∗,m)

≥ −1 with strict inequality away from satiation. Thus, we also have that:

dEBP = −dDLP = −Rm

(
1
2

[χ+ + χ−](
Rb − 1

2

[
χ+
θ + χ−θ

]
θµµ
)) d log (1 + im) ∈ (−Rm, 0]

dEBP
d log (1 + im)

= −
[
EBP
Rm

]−1(
1− d log (e)

log (1 + im)

)
≤ 0.

Temporary shocks to Dollar Policy Rate. In this case, by symmetry:

log (P ∗) = − R∗,m(
R∗,b − 1

2

[
χ∗,+θ∗ + χ∗,−θ∗

]
θ∗µ∗µ

∗
)d log (1 + i∗,m) .

Then,

d log (e) = d log (µ∗) = −d log (P ∗) =
R∗,m(

R∗,b − 1
2

[
χ∗,+θ∗ + χ∗,−θ∗

]
θ∗µ∗µ

∗
) ∈ (0, 1]

and equal to 1 under satiation. Furthermore:

dEBP = dDLP = −R∗,m (d log (1 + im)− d log (P ∗)) ∈ [0, Rm)

59



with equality at satiation.

Permanent Effects. Consider now a permanent effect. Then, expected prices respond with

innovation. Thus,

d (1 + im)−
[
χ+
θ + χ−θ

]
θµµd logP = 0.

Thus, clearing the condition yields:

d logP =
d (1 + im)[
χ+
θ + χ−θ

]
θµµ

.

Multiplying and dividing by (1 + im) yields:

d logP =
d log (1 + im)[
χ+
θ + χ−θ

]
θµµ

> 0.

Then, for the liquidity ration and the exchange rate:

d log e = d logP = −d log µ.

Finally,

dEBP = −dDLP = Rmd log (1 + im) .

Likewise, for dollars:

d logP ∗ =
d log (1 + i∗,m)[
χ∗,+θ∗ + χ∗,−θ∗

]
θ∗µ∗µ

∗
> 0.

Then, for the liquidity ration and the exchange rate:

d log e = d log µ∗ = −d logP ∗ < 0.

Finally,

dEBP = dDLP = −Rmd log (1 + im) .

B.6 Proofs of Proposition ?? (Open-Market Operations)

Preliminary Observations. We now consider a purchase of loans with issuances of reserve

assets. In particular, we let the domestic central bank hold private loans in the amount BG
t . The

central banks’ budget constraint in this case is modified to:

Mt + Tt +Wt+1 +
(
1 + ibt

)
· Pt−1B

G
t−1 = Pt ·BG

t +Mt−1(1 + imt ) +Wt(1 + iwt ).
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As in earlier proofs, we avoid time subscripts. Next, we study the effects of a one time increase

in BG while holding the path of transfers the same. We evaluate the role of random purchases of

loans financed with reserves. We obtain:

dM = BGdP + PdBG.

but any operating losses are finance with transfers. Thus, dividing both sides by P , we obtain:

1

P

dM

dBG
=
dP

P

PBG

dBG
+ 1→ M

P

dM

M

1

dBG
=
dP

P

BG

dBG
+ 1

Assuming that a fraction γ central bank’s balance liabilities are financed with loans, we have that

γM = PBG. Then, we obtain:

dM = PBGdP

P
+ PBGdB

G

Bg

Dividing both sides by M
dM

M
=
PBG

M

dP

P
+ PBGdB

G

BG
.

In logarithms, we obtain:

d logMt = γ
(
d logPt + d logBG

)
.

The equation has the interpretation that the increase in the money supply needed to finance the

open-market operation, in nominal terms has to compensate for the increase in the price level.

This is because the operation is defined in real terms.

A temporary Euro open-market operation. From the liquidity premium, we have that:

(1 + im)
P

E [p (X ′)]

dP

P
+

1

2
[χ+ + χ−]

dP

P
+

1

2

(
χ+
θ + χ−θ

)
θµdµ = 0. (45)

Now, observe that:

dµ = µ

(
dM

M
− dP

P

)
. (46)

Collecting terms we obtain:(
Rm +

1

2
[χ+ + χ−]− 1

2

(
χ+
θ + χ−θ

)
θµµ

)
d logP +

1

2

(
χ+
θ + χ−θ

)
θµµd logM = 0.
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Equations (45-46) yields a system of two equations and two unknowns: (Rm + 1
2
[χ+ + χ−]− 1

2

(
χ+
θ + χ−θ

)
θµµ
)

−γ

1
2

(
χ+
θ + χ−θ

)
θµµ

1

 d logP

d logM

 =

 0

γd logBG

 .
Then, we solve for d logM and obtain:

d logM =

[
Rb − 1

2

(
χ+
θ + χ−θ

)
θµ

−1
2

(
χ+
θ + χ−θ

)
θµ

]
d logP.

The relationship is thus positive, but the money supply grows more thane one for one with inflation.

We can now clear the expression for the change in the price level:(
Rb − 1

2

(
χ+
θ + χ−θ

)
θµ

−1
2

(
χ+
θ + χ−θ

)
θµ

− γ

)
d logP = γd logBG.

Since γ ≤ 1, but
(
Rb − 1

2

(
χ+
θ + χ−θ

)
θµ
)
/
(
−1

2

(
χ+
θ + χ−θ

)
θµ
)
≥ 1, we know that the increase in

the price level is less than one for one with the monetary operation.

Hence,
Rb − (1− γ) 1

2

(
χ+
θ + χ−θ

)
θµ

−1
2

(
χ+
θ + χ−θ

)
θµ

d logP = γd logBG.

Thus, the operation is inflationary, as seen from the solution.

d logP

d logBG
=

−1
2

(
χ+
θ + χ−θ

)
θµ

Rb − (1− γ) 1
2

(
χ+
θ + χ−θ

)
θµµ

γ ∈ [0, 1).

From here, we have that the increase in the money supply is:

d logM

d logBG
=

Rb − 1
2

(
χ+
θ + χ−θ

)
θµ

Rb − (1− γ) 1
2

(
χ+
θ + χ−θ

)
θµµ

γ.

which necessarily and increase above 1.

From the liquidity ratio, (46), is given by:

d log µ = d logM − d logP =
γRb

Rb − (1− γ) 1
2

(
χ+
θ + χ−θ

)
θµµ
∈ [γ, 1] .

The exchange rate, follows:

d log e

d logBG
=

d logP

d logBG
=

−1
2

(
χ+
θ + χ−θ

)
θµ

Rb − (1− γ) 1
2

(
χ+
θ + χ−θ

)
θµµ

γ ∈ [0, 1).
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As in previous cases, we obtain:

d log e = d logP

The dollar liquidity premium is:

dDLP = Rmd log e.

Hence,

dDLP
d logBG

= Rm d logP

d logBG
= −γR

m

2

(
χ+
θ + χ−θ

)
θµµ > 0.

and the Euro excess bond premium is given by:

dEUBP = dDLP = −Rmd log e.

A temporary Dollar open-market operation. Now consider a purchase in the US. By sym-

metry, the increase in dollar prices is:

1 >
d logP ∗

d logB∗,G
=

−1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗

R∗,b − (1− γ∗) 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗
γ∗ ≥ 0.

and the increase in the dollar money supply is given by:

d logM∗

d logB∗,G
=

Rb − 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗

R∗,b − (1− γ∗) 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗
γ∗.

and the dollar liquidity ratio is:

d log µ∗

d logB∗,G
=

d logM∗

d logB∗,G
− d logP ∗

d logB∗,G
=

γ∗Rb

Rb − (1− γ∗) 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗
∈ [0, 1].

Now, in the exchange rate in this case follows:

d log e = −d logP ∗.

Finally, the excess-bond premium and the dollar liquidity premium is:

dEBP = dDLP = R∗,md log (e∗) ∈ [0, Rm).

A permanent Euro open-market operation. From the liquidity premium, we have that:
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1

2

(
χ+
θ + χ−θ

)
θµdµ = 0. (47)

Now, observe that:

dµ = µ

(
dM

M
− dP

P

)
. (48)

Combining (47-48) we have that:

d logP = d logM.

We combine this restriction with the open-market operation and obtain: −1

−γ

1

1

 d logP

d logM

 =

 0

γd logBG

 .
Then, we solve for d logM and obtain:

d logM = d logP =
γ

1− γ
d logBG.

Naturally,

d log µ = 0.

The exchange rate, follows:
d log e

d logBG
=

d logP

d logBG
=

γ

1− γ
.

and

dEUBP = dDLP = 0.

A permanent US open-market operation. In this case, we obtain:

d logM∗

d logB∗,G
=

d logP ∗

d logB∗,G
= − d log e

d logB∗,G
= − γ

1− γ
.

In terms of the liquidity ratio, we obtain

d log µ∗

d logB∗,G
= 0.

and

dEUBP = dDLP = 0.
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B.7 Proofs of Proposition 2 (Open-Market Operations)

Preliminary Observations. Next, we derive the effects of a foreign direct intervention. We

now consider a purchase of dollar reserves by the domestic country, with issuances of domestic

reserves. In particular, we let the domestic central bank hold dollar reserves in the amount M∗∗
t .

The central banks’ budget constraint in this case is modified to:

Mt + Tt +Wt+1 + (1 + i∗,mt ) · et ·M∗∗
t−1 = et ·M∗∗

t +Mt−1(1 + imt ) +Wt(1 + iwt ).

Implicit in this budget is the idea that the domestic central bank has access to the interest on

reserves as does any other bank. Next, we study the effects of a one time increase in M∗∗
t while

holding the path of transfers the same.

Thus, the money market condition is now modified to:

M∗
t = M∗∗

t + µ∗tD
∗
t

We evaluate the role of random foreign exchange interventions in this economy, assuming M∗∗
t is

an i.i.d. random variable. We note that:

−D∗dµ∗ = dM∗∗ → d log µ∗ = −Cd logM∗∗,

where A represents the size of dollar holdings by the domestic central bank vis-a-vis the private

holdings:

C =
M∗∗

µ∗tD
∗
t

.

Within the domestic central bank’s balance sheet, we have an equivalent increase between domestic

reserves and domestic foreign reserves. Thus, the following relation hold,

dM = M∗∗de+ edM∗∗ → d logM = F (d log e+ d logM∗∗) .

where

F ≡ M∗∗

M
.

represents the amount of foreign-currency backing of the domestic liabilities. We obtain the

following results.

Temporary Foreign Exchange Intervention. From the euro excess bond premium, we have

that:

RmdP

P
+

1

2
[χ+ + χ−]

dP

P
+

1

2

[
χ+
θ + χ−θ

]
θµ

(
dµ

dM
dM − dµ

dP
dP

)
= 0. (49)
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and using:
dµ

dM
dM =

1

P
dM =

M

P

dM

M
= µd logM.

and
dµ

dP
=
dM
P

1
D

dP
= −µd logP.

Thus, we obtain:[
Rb − 1

2

(
χ+
θ + χ−θ

)
θµµ

]
d logP +

1

2

(
χ+
θ + χ−θ

)
θµµd logM = 0.

If we follow the same steps, from the dollar excess bond premium, we obtain a

Rbd logP ∗ +
1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗d log µ∗ = 0.

The equation above and (xxx) yields a system of two equations and two unknowns:

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

1
2

(
χ+
θ + χ−θ

)
θµµ 0 0

−F 1 F 0

0 0 Rb 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗

0 0 0 1





d logP

d logM

d logP ∗

d log µ∗


=



0

F

0

−C


d logM∗∗.

We use the method of Gaussian elimination. Combining the ultimate, we obtain that:

d log µ∗ = −Cd logM∗∗ < 0.

From the penultimate row, we have that

d logP ∗ =
C
2

1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗

Rb
d logM∗∗ < 0.

Substituting this outcome into the second column, we obtain

 Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ

1
2

(
χ+
θ + χ−θ

)
θµµ

−F 1

 d logP

d logM

 =

 0

F
(

1− C
2

1
2(χ∗,+θ∗ +χ∗,−

θ∗ )θ∗µ∗µ∗
Rb

)
 d logM∗∗.

Inverting the matrix on the right, we have:

 dP
P

dM
M

 =

 1 −1
2

(
χ+
θ + χ−θ

)
θµµ

F Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ


 0

F
(

1− C
2

1
2(χ∗,+θ∗ +χ∗,−

θ∗ )θ∗µ∗µ∗
Rb

)
 d logM∗∗.
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Hence, the solution is:

 dP
P

dM
M

 =

 −1
2

(
χ+
θ + χ−θ

)
θµµ

Rb − 1
2

(
χ+
θ + χ−θ

)
θµµ


Rb − (1−F)

2

(
χ+
θ + χ−θ

)
θµµ
F

(
1− C

2

1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗

Rb

)
dM∗∗

M∗∗ ≥ 0.

Hence, both terms are greater than zero. Thus we have that:

d log e

d logM∗∗ =
d logP

d logM∗∗ −
d logP ∗

d logM∗∗ = ΓF (1− C · Γ∗)− CΓ∗ ≥ 0.

where:

Γ∗ ≡
1
2
d[χ∗,++χ∗,−]

dθ∗
dθ∗

dµ∗
µ∗

Rb
,

is the sensitivity of dollar prices to a change in the liquidity ratio and

Γ ≡
−1

2

(
χ+
θ + χ−θ

)
θµµ

Rb − (1−F) 1
2

(
χ+
θ + χ−θ

)
θµµ

,

the sensitivity of Euro prices.

— STOPPED HERE...

The liquidity ratio follows:

d log µ

d logM∗∗ =
dM

M
− dP

P
=

Rb · (1− Γ∗ · M · A)

Rb − (1−F) 1
2

(
χ+
θ + χ−θ

)
θµµ
≥ 0.

From here we obtain that:

dDLP
d logM∗∗ = RmΓ (1−M · A · Γ∗)−R∗,mAΓ∗ ≥ 0.

and that:
dEBP

d logM∗∗ = −R∗,mAΓ∗ > 0.

Sterilized Intervention.

B.8 Proof of Proposition (Dollar Dominance)

B.8.1 The case with s∗[s∗>0] + s[s<0] > 0.

Consider now the case where dollars can be partially used to settle euro positions. We also let

volatility in payments be the same in both countries, δ = δ∗. The corresponding tightness in Euros

67



is given by:

θ =
1
4

(δD −M)
1
2

(δD +M)− 1
4

(δD −M)
=
δ − µ
δ + µ

.

For the dollar, the tightness is given by:

θ∗ =
1/2 (δD∗ −M∗)

1
4
δD∗ +M∗ + 1

4
(δD∗ +M∗ − e (δD −M))

=
δ − µ∗

δ + µ∗ − 1
2
ν (δ − µ)

.

where ν = D/P/D∗/P ∗. For convenience, we derive the following derivatives:

We obtain the following derivatives:

θµ = −(1 + θ)

δ + µ
and θδ =

(1− θ)
δ + µ

> 0.

and

θ∗µ∗ = − (1 + θ∗)

δ + µ∗ − ν (δ − µ)
, θ∗µ = −θ∗

1
2
ν

δ + µ∗ − ν (δ − µ)
, and θ∗δ =

(1− θ∗)
δ + µ∗ − ν (δ − µ)

> 0.

Also, consider a situation where tightness in both currencies is the same. Then,

δ − µ
δ + µ

=
δ − µ∗

δ + µ∗ − 1
2
ν (δ − µ)

.

If µ = µ∗, we have that θ∗ > θ. Thus, since we know the that the dollar tightness decreases with

µ∗, it must be that µ∗ > µ if θ = θ∗. Then for the symmetric case:

θ∗µ∗ < θµ and θ∗δ¿θδ

Temporary shocks to Payment volatility: Now, consider the effect of an increase in δ, in

both countries, under the assumption that δ = δ∗. The excess bond premium in dollars is,

Rb = (1 + i∗,m) i
P ∗

E [p∗ (X ′)]
+

1

2

(
χ∗,+ + χ∗,−

)
. (50)

The excess bond premium in Euros is,

Rb = (1 + im)
P

E [p (X ′)]
+

1

2
χ+ +

1

4
χ− +

1

4
χ∗,+. (51)

Taking total differentials:
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0 = (1 + i∗,m)
P ∗

E [p∗ (X ′)]

dP ∗

P ∗
+

1

2

(
χ∗,+ + χ∗,−

) dP ∗
P ∗

+
1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
·
(
θ∗µ∗dµ

∗ + θ∗µdµ+ θ∗δ∗dδ
∗) .

Likewise for the Euro:

0 = (1 + im)
P

E [p (X ′)]

dP

P
+

1

2

(
χ+ + χ−

) dP
P

+
1

4

(
χ∗,+θ∗

)
·
(
θ∗µ∗dµ

∗ + θ∗µdµ+ θ∗δ∗dδ
)

+

(
1

2
χ+
θ +

1

4
χ−θ

)
· (θµdµ+ θδdδ) .

We also know that:

dµ = −µd logP and dµ∗ = −µ∗d logP ∗.

Thus, the premia become:

0 =

(
Rb − 1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗
)
d logP ∗

− 1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µµd logP

+
1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
· (θ∗δ∗δd log δ) .

Likewise, we have that:

0 =

(
Rb −

(
1

2
χ+
θ +

1

4
χ−θ

)
θµµ−

1

4

(
χ∗,+θ∗

)
θ∗µµ

)
d logP

− 1

4
χ∗,+θ∗ · θ

∗
µ∗ · µ · d logP ∗

+

(
1

2
χ+
θ +

1

4
χ−θ +

1

4
χ∗,+θ∗

)
· cd log δ.

We stack both equations to obtain:

A

 d logP ∗

d logP

 = C · d log δ.
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where

A =

 (Rb − 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗) −1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µµ

−1
4
χ∗,+θ∗ · θ∗µ∗ · µ

(
Rb −

(
1
2
χ+
θ + 1

4
χ−θ
)
θµµ− 1

4

(
χ∗,+θ∗

)
θ∗µµ
)


and

C =

 1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗δ((

1
2
χ+
θ + 1

4
χ−θ
)
θδ + 1

4
χ∗,+θ∗ θ

∗
δ

)
 .

Note that:

A−1 =

 (Rb −
(

1
2
χ+
θ + 1

4
χ−θ
)
θµµ− 1

4

(
χ∗,+θ∗

)
θ∗µµ
)

1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µµ

1
4
χ∗,+θ∗ · θ∗µ∗ · µ

(
Rb − 1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗)


detA
.

where

detA =

(
Rb − 1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗
)

×
(
Rb −

(
1

2
χ+
θ +

1

4
χ−θ

)
θµµ−

1

4

(
χ∗,+θ∗

)
θ∗µµ

)
−

(
1

4
χ∗,+θ∗ · θ

∗
µ∗ · µ

)
1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µµ.

Next, observe that: d logP ∗

d logP

 =

 (Rb −
(

1
2
χ+
θ + 1

4
χ−θ
)
θµµ− 1

4

(
χ∗,+θ∗

)
θ∗µµ
)

1
2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗δ + 1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µµ

((
1
2
χ+
θ + 1

4
χ−θ
)
θ∗δ + 1

4
χ∗,+θ∗ θ

∗
δ

)
1
4
χ∗,+θ∗ · θ∗µ∗ · µ1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θδ +

(
Rb − 1

2

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗) ((1
2
χ+
θ + 1

4
χ−θ
)
θδ + 1

4
χ∗,+θ∗ θ

∗
δ

)
 δd log δ

detA
.

Subtracting the first row from the second:

d log e

d log δ
=

(
Rb −

(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗µ∗µ

∗)((1

2
χ+
θ +

1

4
χ−θ

)
θ∗δ +

1

4
χ∗,+θ∗ θ

∗
δ

)
−1

2

(
Rb −

(
1

2
χ+
θ +

1

4
χ−θ

)
θµµ−

1

4
χ∗,+θ∗ θ

∗
µµ

)(
χ∗,+θ∗ + χ∗,−θ∗

)
θ∗δ ·

Then, d log e > 0 if and only if:(
1
2
χ+
θ θδ + 1

4
χ−θ θδ + 1

4
χ+
θ θ
∗
δ

)(
Rb −

(
1
2
χ+
θ + 1

4
χ−θ
)
θµµ− 1

4

(
χ+
θ

)
θ∗µµ
) > 1

2

(
χ+
θ + χ−θ

)
θ∗δ

Rb − 1
2

(
χ+
θ + χ−θ

)
θ∗µ∗µ

∗ ..
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Hence, the sign is clearly ambiguous because both terms are positive in absolute value.

Provided we start with a symmetric case where θ = θ∗, we obtain that d log e > 0 if(
1
2
χ+
θ θδ + 1

4
χ−θ θδ + 1

4
χ+
θ θ
∗
δ

)(
Rb −

(
1
2
χ+
θ + 1

4
χ−θ
)
θµµ− 1

4

(
χ+
θ

)
θ∗µµ
) > 1

2

(
χ+
θ + χ−θ

)
θ∗δ

Rb − 1
2

(
χ+
θ + χ−θ

)
θ∗µ∗µ

∗ .

Notice that when θ = θ∗, we have that:

θδ
θ∗δ

=
θµ
θ∗µ∗

=
δ + µ∗ − ν (δ − µ)

δ + µ
and

θ∗µ
θ∗µ∗

=
1

2

θ∗

(1 + θ∗)
ν

We obtain the desired inequality if conditions #1

1

2
χ+
θ θδ +

1

4
χ−θ θδ +

1

4
χ+
θ θ
∗
δ >

1

2

(
χ+
θ + χ−θ

)
θ∗δ

and #2 hold together:

1

2

(
χ+
θ + χ−θ

)
θ∗µ∗µ

∗ <

(
1

2
χ+
θ +

1

4
χ−θ

)
θµµ−

1

4

(
χ+
θ

)
θ∗µµ.

Condition #1 can be re-written to obtain:

θδ
θ∗δ
>

1
4
χ+
θ + 1

2
χ−θ(

1
2
χ+
θ + 1

4
χ−θ
) > 1.

Thus, we need that be sufficiently large:

θδ
θ∗δ

=
δ + µ∗ − ν (δ − µ)

δ + µ
> 1,

hence, ν be sufficiently large.

Condition #2, we obtain that:

1

2

(
χ+
θ + χ−θ

)
<

(
1

2
χ+
θ +

1

4
χ−θ

)
θµµ

θ∗µ∗µ
∗ +

1

4

(
χ+
θ

) θ∗µµ

θ∗µ∗µ
∗ .

Thus, we again need a high value for θµ
θ∗µ

and for
θ∗µ
θ∗
µ∗
. Thus,

θ∗µ
θ∗µ∗

=
1

2
ν

θ∗

(1− θ∗)
.

Thus, in both cases, we need a sufficiently high value for ν.
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B.8.2 The case with s∗[s∗>0] + s[s<0] < 0.

Preliminary Considerations. Consider now the case where dollars can be partially used to

settle euro positions. We also let volatility in payments be the same in both countries, δ = δ∗. In

particular, we let a fraction α of Euros be used for settlements. The corresponding tightness in

Euros and Dollars are given by:

θ = −
1
4

(δD −M) + 1
4

(δD −M − eαM∗)
1
2

(δD +M)
= −1

2
·
(
δ − µ
δ + µ

+
δ − µ− α · µ∗ · ν

δ + µ

)
.

where ν = D∗/P ∗/D/P. For convenience, we derive the following derivatives:

θµ =
1 + θ

δ + µ
> 0, θµ∗ =

1

2
· αν

δ + µ
> 0, and θδ = −1− θ

δ + µ
< 0.

For the dollar, the tightness is given by:

θ = − (δD∗ −M∗)
1
4

(δD∗ +M∗) + 1
4

(δD∗ + (1− α)M∗)
= −2

(
δ − µ∗

δ + µ∗
+

δ − µ∗

δ + (1− α)µ∗

)
.

We obtain the following derivatives:

θ∗µ∗ = 2

(
1

δ + µ∗
+

1

δ + (1− α)µ∗

)
+ 2

(
δ − µ∗

δ + µ∗
1

δ + µ∗
+

δ − µ∗

δ + (1− α)µ∗
(1− α)

δ + (1− α)µ∗

)
> 0,

and

θ∗δ = 2

(
1

δ + µ∗
+

1

δ + (1− α)µ∗

)
+ 2

(
δ − µ∗

δ + µ∗
1

δ + µ∗
+

δ − µ∗

δ + (1− α)µ∗
1

δ + (1− α)µ∗

)
> 0.

Key Equilibrium Conditions: case with dollar surplus less than Euro deficit Now,

consider the effect of an increase in δ, in both countries, under the assumption that δ = δ∗. The

excess bond premium in dollars is,

Rb = (1 + i∗,m)
P ∗

E [p∗ (X ′)]
+

1

4

(
χ∗,+ + χ−

)
+

1

2
χ∗,−. (52)

The excess bond premium in Euros is,

Rb = (1 + im)
P

E [p (X ′)]
+

1

2

(
χ− + χ+

)
. (53)

We compute the total differential for small changes in δ in both excess bond premia. For
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dollars, we obtain:

0 = (1 + i∗,m)
P ∗

E [p∗ (X ′)]

dP ∗

P ∗
+

1

2

(
1

2
χ∗,+ + χ∗,−

)
dP ∗

P ∗

+
1

4
χ−

dP

P
+

1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
·
(
∂θ∗

∂µ∗
dµ∗ +

∂θ∗

∂δ∗
dδ∗
)

+
1

4
χ−θ

∂θ

∂µ∗
dµ∗.

Re-arranging and collecting terms, and substituting (xxx, FX.logdifferential), expressing terms in

their log differential forms, we obtain:

0 =

[
(1 + i∗,m)

P ∗

E [p∗ (X ′)]
+

1

2

(
1

2
χ∗,+ + χ∗,−

)]
d logP ∗

+
1

4
χ−d logP

+
1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
·
(
∂θ∗

∂µ∗
µ∗d log µ∗ +

∂θ∗

∂δ∗
δ∗d log δ∗

)
+

1

4
χ−θ

(
∂θ

∂µ∗
µ∗dµ∗ +

∂θ

∂δ
δd log δ

)
.

Thus, we obtain:

0 =

(
Rb − 1

4
χ−
)
d logP ∗ (54)

+
1

4
χ−d logP

+
1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
· ∂θ

∗

∂µ∗
µ∗d log µ∗ +

1

4
χ−θ ·

∂θ

∂µ∗
µ∗d log µ∗

+

(
1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
∂θ∗

∂δ∗
δ∗ +

1

4
χ−θ

∂θ

∂δ
δ

)
d log δ.

Then, for domestic EBP, we obtain:

0 = (1 + im)
P

E [p (X ′)]

dP

P
+

1

2

(
χ+ + χ−

) dP
P

+
1

2

(
χ+
θ + χ−θ

)
·
(
∂θ

∂µ
dµ+

∂θ

∂µ∗
dµ∗

∂θ

∂δ
dδ

)
.

Re-arranging terms and expressing the differentials in their logistic version, we obtain:

0 = Rbd logP +
1

2

(
χ+
θ + χ−θ

)
·
(
∂θ

∂µ
µd log µ+

∂θ

∂µ∗
µ∗d log µ∗ +

∂θ

∂δ
δd log δ

)
.
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Thus, collecting terms we obtain:

0 = Rbd logP (55)

+
1

2

(
χ+
θ + χ−θ

) ∂θ
∂µ
µd log µ

+
1

2

(
χ+
θ + χ−θ

) ∂θ
∂µ∗

µ∗d log µ∗

+
1

2

(
χ+
θ + χ−θ

) ∂θ
∂δ
δd log δ·

Since deposits and the money supplies are fixed, we have that d logP ∗ = −d log µ∗ and d logP =

−d log µ, we can write (54) and (55) as:

0 =

(
Rb − 1

4

(
χ− + χ−θ ·

∂θ

∂µ∗
µ∗
)
− 1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
· ∂θ

∗

∂µ∗
µ∗
)
d logP ∗ (56)

+
1

4
χ−d logP

+

(
1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
∂θ∗

∂δ∗
δ∗ +

1

4
χ−θ

∂θ

∂δ
δ

)
d log δ.

and

0 =

(
Rb − 1

2

(
χ+
θ + χ−θ

) ∂θ
∂µ
µ

)
d logP (57)

− 1

2

(
χ+
θ + χ−θ

) ∂θ
∂µ∗

µ∗d logP ∗

+
1

2

(
χ+
θ + χ−θ

) ∂θ
∂δ
δd log δ·

We express (57) and (57) in matrix form,

A

 d logP ∗

d logP

 = C · d log δ.

where

A =


(
Rb − 1

4

(
χ− + χ−θ · ∂θ∂µ∗µ

∗
)
− 1

2

(
1
2
χ∗,+θ∗ + χ∗,−θ∗

)
· ∂θ∗
∂µ∗

µ∗
)

1
4
χ−

−1
2

(
χ+
θ + χ−θ

) (
∂θ
∂µ∗

µ∗
) (

Rb − 1
2

(
χ+
θ + χ−θ

)
∂θ
∂µ
µ
)

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and

C = −1

2

 (1
2

(
1
2
χ∗,+θ∗ + χ∗,−θ∗

)
∂θ∗

∂δ∗
δ∗ + 1

4
χ−θ

∂θ
∂δ
δ
)

1
2

(
χ+
θ + χ−θ

)
∂θ
∂δ
δ

 .
Thus,  d logP ∗

d logP

 = A−1C · d log δ.

Note that:

A−1 =


(
Rb − 1

2

(
χ+
θ + χ−θ

)
∂θ
∂µ
µ
)

−1
4
χ−

1
2

(
χ+
θ + χ−θ

) (
∂θ
∂µ∗

µ∗
) (

Rb − 1
4

(
χ− + χ−θ · ∂θ∂µ∗µ

∗
)
− 1

2

(
1
2
χ∗,+θ∗ + χ∗,−θ∗

)
· ∂θ∗
∂µ∗

µ∗
)


detA
.

where

detA =

(
Rb − 1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗

)
· ∂θ

∗

∂µ∗
µ∗ − 1

4

(
χ− + χ−θ ·

∂θ

∂µ∗
µ∗
))

×
(
Rb − 1

2

(
χ+
θ + χ−θ

) ∂θ
∂µ
µ

)
+

1

4
χ−

1

2

(
χ+
θ + χ−θ

) ∂θ
∂µ∗

µ∗.

Then, d logP ∗

d logP

 = −1

2


(
Rb − 1

2

(
χ+
θ + χ−θ

)
∂θ
∂µ
µ
) (
χ+
θ + χ−θ

)
∂θ
∂δ
δ −1

4
χ−
(

1
2
χ∗,+θ∗ + χ∗,−θ∗ + 1

4
χ−θ
)
∂θ∗

∂δ
δ

1
2

(
χ+
θ + χ−θ

)
∂θ
∂µ∗

µ∗
(
χ+
θ + χ−θ

)
∂θ
∂δ
δ

(
Rb − 1

4
χ− − 1

2

(
1
2
χ∗,+θ∗ + χ∗,−θ∗ + 1

4
χ−θ
)
· ∂θ∗
∂µ∗

µ∗
) (

1
2
χ∗,+θ∗ + χ∗,−θ∗ + 1

4
χ−θ
)
∂θ∗

∂δ
δ

 d log δ

detA
.

To obtain the effect on the exchange rate, we note that:

d log e = d logP − d logP ∗

and thus:

d log e =
1

2
Rb
(
χ+
θ + χ−θ

) ∂θ
∂δ
δ−1

2

(
Rb − 1

2

(
1

2
χ∗,+θ∗ + χ∗,−θ∗ +

1

4
χ−θ

)
· ∂θ

∗

∂µ∗
µ∗
)(

1

2
χ∗,+θ∗ + χ∗,−θ∗ +

1

4
χ−θ

)
∂θ∗

∂δ
δ
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and thus:

d log e = Rb

(
1

2

(
χ+
θ + χ−θ

) ∂θ
∂δ
δ −

(
1

4
χ∗,+θ∗ +

1

2
χ∗,−θ∗ +

1

4
χ−θ

)
∂θ∗

∂δ
δ

)
+

1

4

(
1

2
χ∗,+θ∗ + χ∗,−θ∗ +

1

4
χ−θ

)2

· ∂θ
∗

∂µ∗
µ∗
(

1

2
χ∗,+θ∗ + χ∗,−θ∗ +

1

4
χ−θ

)
∂θ∗

∂δ
δ.
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Reduced Θx εx Θb εb

Structural X̄tβ
1/γx 1

γx
− 1 (αAt+1)−( ν+1

α−(ν+1))
(

ν+1
α−(ν+1)

)
Table 6B: Structural to Reduced form Parameters

C Microfoundations for Deposit Supplies and Loan De-

mands

The equivalence table from the structural parameters to the reduced form paratemeters is:

Household Problem. Define the household net worth eh =
(
1 + idt

)
D+

(
1 + iGt

)
G+
(
qt + rht

)
Σ−

T ht , as the right-hand side of its budget constraint, excluding labor income. Then, substitute ch

from the budget constraint and employ the definition eh. We obtain the following value function:

V h
t

(
Gh, D,Σ

)
= max
{cd,cg ,h,G′,D′,Σ′}

Ud
(
cd
)

+ U g (cg)− h1+ν

1 + ν
+ eh +

zth−
(
Ptc

g + Ptc
d +D′ +G′ + qtΣ

′)
Pt

+βV h
t+1 (G′, D′,Σ′)

subject to cd ≤
(
1 + idt

)
D
Pt

and cg ≤ D
Gt
.

Step 1 - deposit and bond-goods demand. The step is to take the first-order conditions for{
cd, cg

}
. Since {G,D} enter symmetrically into the problem, we express the formulas in terms of

x ∈ {d, g}, an index that corresponds to each asset. From the first-order conditions with respect

to D
Pt

and G
Pt

, we obtain that:

cx (X, t) = min

{
(Ux

cx)
−1 (1) , Rx

t ·
X

Pt−1

}
for x ∈ {d, g} . (58)

The expression shows that the deposit- and bond-in-advance constraints bind if the marginal

utility associated with their consumption is less than one. Note that

Ux
cx

(
X̄
)

=
(
X̄
)γx

x−γ
x

for x ∈ {d, g} , (59)

marginal utility is above 1, for X/Pt < X̄. Then, the marginal consumption as a function of real

balances is:

cxX/Pt (X, t) =

Rx
t X/Pt < X̄

0 otherwise
for x ∈ {d, g}

We return to this conditions below to derive the demand for deposits and bonds by the non-

financial sector.
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Step 2 - labor supply. The first-order condition with respect to labor supply yields a labor

supply that only depends on the real wage:

hνt = zt/Pt. (60)

Step 3 - deposit and bond demand. Next, we the derive deposit demand and T-Bill demand.

By taking first-order conditions with respect to D′/Pt and G′/Pt, the real balances of deposits and

bonds.

1 = β
∂V h

t+1

∂ (X ′/Pt)
= β

[
∂Ux

∂cx
· ∂cx

∂ (X ′/Pt)
+
∂Uh

∂ch
· ∂ch

∂ (X ′/Pt)

]
for x ∈ {d, g} .

The first equality follows directly from the first-order condtion and the second uses the envolope

Theorem and the solution for the optimal consumption rule. If we shift the period in (58), by one

period, the first-order condition then becomes:

1

β
=

∂Ux

∂cx
Rx
t X/Pt < X̄

Rx
t otherwise

for x ∈ {d, g} .

Finally, once we employe the definition of marginal utility, we obtain:

1

β
=


(
X̄
)γx

(Rx
tX/Pt)

−γx Rx
t X/Pt < X̄

Rx
t otherwise

for x ∈ {d, g} .

Inverting the condition yields:

X/Pt =

X̄β1/γx (Rx
t )

1
γx
−1 Rx

t < 1/β

[X̄,∞) Rx
t = 1/β

for x ∈ {d, g} .

Thus, we have that

Θx
t = X̄tβ

1/γx and εx =
1

γx
− 1 for x ∈ {d, g} .

Next, we move to the firm’s problem to obtain the demand for loans.

Firm Problem. In the appendix, we allow the firm to save in deposits whatever it doesn’t

spend in wages. From firm’s problem, if we substitute the production function into the objective

we obtain:

Pt+1r
h
t+1 = max

Bdt+1≥0,xt+1,ht≥0
Pt+1At+1h

α
t −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

) (
Bd
t+1 − ztht

)
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subject to ztht ≤ Bd
t+1. Observe that

Pt+1At+1h
α
t −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

) (
Bd
t+1 − ztht

)
= Pt+1At+1h

α
t − ztht −

(
ibt+1 − idt+1

) (
Bd
t+1 + ztht

)
.

Step 4 - loans demand. Since ibt+1 ≥ idt+1, then it is wihout without loss of generality, that the

working capital constraint is binding, ztht = Bd
t+1. Thus, the objective is

Pt+1At+1h
α
t −

(
1 + ibt+1

)
ztht.

The first-order condition in ht yields

Pt+1αAt+1h
α
t =

(
1 + ibt+1

)
ztht.

Dividing both sides by Pt, we obtain

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

) zt
Pt
ht.

Next, we use the labor supply function (60), to obtain the labor demand as a function of the loans

rate:

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

)
hν+1
t → Rb

t =
αAt+1h

α
t

hν+1
t

. (61)

Once we have the wage bill, and the fact that the working capital constraint is biding,

Bd
t+1

Pt
= ht

ztht
Pt

= hν+1
t → ht =

(
Bd
t+1

Pt

) 1
ν+1

. (62)

Thus, we can combine (61) and (62) to obtain the demand for loans:

Rb
t = αAt+1

(
Bd
t+1

Pt

)−1(
Bd
t+1

Pt

) α
ν+1

→
Bd
t+1

Pt
= Θt

(
Rb
t+1

)εb
(63)

Thus, the coefficients of the loans demand are

Θb
t = (αAt+1)−ε

b

and εb =

(
ν + 1

α− (ν + 1)

)
.

Step 5 - deposit and bond demand. We replace the loans demand (63) into (62), to obtain the
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labor market equilibrium:

ht =

(
1

αAt+1

) 1
α−(ν+1) (

Rb
t+1

) 1
α−(ν+1) .

We replace (62) into the production function to obtain:

yt+1 = At+1

(
1

αAt+1

) α
α−(ν+1) (

Rb
t+1

) α
α−(ν+1) → yt+1 =

(
1

α

) α
α−(ν+1)

A
(ν+1)
ν+1−α
t+1

(
Rb
t+1

) α
α−(ν+1) ·

The profit of the firm is given by:

rht+1 = yt+1 −Rb
t+1Bt+1 → rht+1 = A

(ν+1)
ν+1−α
t+1

(
α−

α
α−(ν+1) − α−

ν+1
α−(ν+1)

)
·
(
Rb
t+1

) α
α−(ν+1) .

The asset price qt then is determine as:

qt =
∑
s≥1

βsrhs .

With this, we conclude that output, hours and the firm price are decreasing in current (and future)

loans rate.

Note that throghout the proof we use the labor market clearing condition. Then, clearing

in the loans and deposit markets, by Walras’s law, implies clearing in the goods market. Once

we compute equilibria taking the schedules as exogenous in the bank’s problem, it is possible to

obtain output and household consumption from the equilibrium rate.
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D Computational Algorithms

D.1 Algorithm to solve for transitions

We can consider the previous section as a steady-state version of the model, if prices are fixed in

both currencies, then policy rates are actual real rates. In this section we consider what happens

one period before the steady state, we call that period t = 0. Assume that the nominal policy

rates are given:

(1 + i∗,a) for a ∈ {m,w} ,

for the US and for the EU:

(1 + ia) for a ∈ {m,w} ·

The real rates now satisfy:

R∗,a =
(1 + i∗,a)

(1 + π∗)
for a ∈ {m,w} ,

for the US and for the EU:

Ra =
(1 + ia)

(1 + π)
· (1 + Ω) for a ∈ {m,w} ·

Where now we have that:

(1 + π∗) =
pss
p0

and

(1 + Ω) =
ess
e0

.

The values {pss, ess} are solved from the steady state solution.

Algorithm for T-1 of Economy with Deposit Segmentation Step 1. Conjecture {Rm
0 , R

∗,m
0 , Rw

0 , R
∗,w
0 } .

Solve for the liquidity ratios in Dollars and Euro
{
µ, µ∗, Rd, R∗,d

}
using:

Rd +
1

2
ω
(
χ+ (µ)− χ− (µ)

)
= R∗,d +

1

2
ω∗
(
χ∗,+ (µ∗)− χ∗,− (µ∗)

)
Rm +

1

2

(
χ+ (µ) + χ− (µ)

)
= R∗,m +

1

2

(
χ∗,+ (µ∗) + χ∗,− (µ∗)

)

Θb ((υ (1− µ) + (1− µ∗)) d∗)ε = R∗,d +
1

2
ω∗
(
χ+ (µ)− χ− (µ)

)
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Rm = R∗,d +
1

2
ω
(
χ+ (µ)− χ− (µ)

)
− 1

2

(
χ+ (µ) + χ− (µ)

)
.

Step 2. Given the solutions to
{
Rd, R∗,d

}
, solve {d∗, υ} using:

d =

[
Rd

Θd

]1/ς

υ =

[
Rd

Θd

]1/ς [
R∗,d

Θ∗,d

]−1/ς∗

.

Step 3. Solve for prices and the exchange rate using the solutions:

µυd∗ =
M

pss

µ∗d∗ =
e

pss
M∗

p∗ss = e−1pss.

Step 4. Update values for real policy rates:

R∗,a =
(1 + i∗,a)

(1 + π∗)
for a ∈ {m,w} ,

for the US and for the EU:

Ra =
(1 + ia)

(1 + π)
· (1 + Ω) for a ∈ {m,w} ·

Where now we have that:

(1 + π∗) =
pss
p0

and

(1 + Ω) =
ess
e0

.

D.2 Algorithm to obtain a Global Solution

The algorithm to obtain the global solution to the model follows the algorithm to produce tran-

sitions. First, we define s ∈ S = {1, 2, 3, . . . , N s} to be a finite set of states. We let s follow a

Markov process with transition matrix Q. Thus, s′ ∼ Q (s) . The state now affects the param-
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eters of the model. That is, at each period,
{
δ, λ, i∗,m, im, i∗,w, iw,M,M∗,Θd,Θ∗,d,Θ∗,m

}
are all,

potentially, functions of the state s.

The algorithm proceeds as follows. We define a “greed” parameter ∆greedand a tolerance

parameters εtol, and construct a grid for S. We conjecture a price-level functions p(0) (s) , p∗(0) (s)

which produces a price levels in both currencies as a function of the state. As an initial guess, we

propose to use p(0) (s) = p∗ss, and p∗(0) (s) = p∗ss setting the exchange rate to its steady state level

in all periods. We proceed by iterations, setting a tolerance count tol to tol > 2 · εtol.

Outerloop 1: Iteration of price functions. We iterate price functions until they converge.

Let n be the n − th step of a given iteration. Given a p(n) (s) , p∗(n) (s), we produce a new

price level functions p(n+1) (s) , p∗(n+1) (s) if tol > εtol.

Innerloop 1: Solve for real policy rates. For each s in the grid for S, we solve for

{Rm (s) , R∗,m (s) , Rw (s) , R∗,w (s)} .

Let j be the j − th step of a given iteration. Conjecture values{
Rm

(0) (s) , R∗,m(0) (s) , Rw
(0) (s) , R∗,w(0) (s)

}
—we propose {Rm

ss, R
∗,m
ss , R

w
ss, R

∗,w
ss } as an initial guess. We then update{

Rm
(j) (s) , R∗,m(j) (s) , Rw

(j) (s) , R∗,w(j) (s)
}

until we obtain convergence:

2.a Given this guess, we solve for the liquidity ratios in Dollars and Euro
{
µ, µ∗, Rd, R∗,d

}
as a

function of the state using:

Rd +
1

2
ω
(
χ+ (µ)− χ− (µ)

)
= R∗,d +

1

2
ω∗
(
χ∗,+ (µ∗)− χ∗,− (µ∗)

)
Rm +

1

2

(
χ+ (µ) + χ− (µ)

)
= R∗,m +

1

2

(
χ∗,+ (µ∗) + χ∗,− (µ∗)

)

Θb ((υ (1− µ) + (1− µ∗)) d∗)ε = R∗,d +
1

2
ω∗
(
χ+ (µ)− χ− (µ)

)

Rm = R∗,d +
1

2
ω
(
χ+ (µ)− χ− (µ)

)
− 1

2

(
χ+ (µ) + χ− (µ)

)
.
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2.b Given the solutions to
{
Rd (s) , R∗,d (s)

}
, solve {d∗, υ} using:

d =

[
Rd

Θd

]1/ς

υ =

[
Rd

Θd

]1/ς [
R∗,d

Θ∗,d

]−1/ς∗

.

2.c Given {d∗ (s) , υ (s)} we solve for prices {p, p∗, e} using:

µυd∗ = M
p
µ∗d∗ = e

p
M∗ p∗ = e−1p.

2.d Finally, we update the real policy rates. For that we construct the expected inflation in each

currency:

E [π∗] =

∑
s′∈S Q (s′|s) p∗(n) (s)

p∗ (s)

and

E [π] =

∑
s′∈S Q (s′|s) p(n) (s)

p (s)
.

We then update the policy rates by:

R∗,a(j+1) =
(1 + i∗,a)

(1 + π∗)
for a ∈ {m,w}

and

Ra
(j+1) =

(1 + ia)

(1 + π)
for a ∈ {m,w} .

2.e Repeat steps 2.a-2.d, unless {
Rm

(j) (s) , R∗,m(j) (s) , Rw
(j) (s) , R∗,w(j) (s)

}
is close to {

Rm
(j+1) (s) , R∗,m(j+1) (s) , Rw

(j+1) (s) , R∗,w(j+1) (s)
}
.

If the real policy rates have converged, update prices according to

p∗(n+1) (s) = ∆greedp∗ +
(
1−∆greed

)
p∗(n) (s)

and

p(n+1) (s) = ∆greedp+
(
1−∆greed

)
p∗(n) (s)

and proceed back to the outerloop.
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