Education Gradients in Mortality Trends by Race and Gender

Adam A. Leive (UVA) and Christopher J. Ruhm (UVA & NBER)

February 2021
Motivation

- Interest in social disparities & health for many years
 - Positive relationship between education & health (“SES gradient”)
 - Changes in group-specific mortality rates as indicators of social progress

- Reversals in progress reducing mortality rates
 - U.S. life expectancy, 2014-2017 \(\downarrow \) from 78.9 to 78.6
 - 1st 3-year decline in a century

- “Deaths of Despair” (Case & Deaton 2015, 2017, 2020)
 - Focus on 45-54 or 50-54 non-Hispanic whites (“Whites”)
 - Mortality \(\uparrow \) concentrated among non-college educated
 - Taken as evidence of economic/social breakdown in society
Empirical Challenge: Negative Selection

• Most research measures education in discrete categories: < high school, high school, some college, college+

• Disparities could reflect rising educational attainment over time (Preston and Elo 1995, Dowd & Hamoudi 2014; Bound et al. 2015)
 - Less educated groups become more negatively selected
 - Some people who failed to complete high school in previous cohort now graduate high school
 - “Will Rogers Phenomenon”: all groups have lower quality

• Recent efforts to adjust for changes in education levels over time
 - Different methods, data, time periods, and results
This Project

- Estimate Δ’s in mortality trends by education quartile
 - Construct quartiles by sex, race, 5-year age group (25-64 year olds)
 - Combine administrative + survey data from 2001-2018

- Race & gender patterns for specific causes of death
Patterns of absolute mortality rate Δ’s often taken to indicate size of health shocks to different groups

Not true if initial differences in stock of health capital

Equal size Δ in health capital
 - larger mortality Δ for less educated
 - but possibly smaller absolute Δ

Examine logs and levels of mortality rates
Death Rates

\[
mort_{arit} = \frac{deaths_{arit}}{pop_{arit}}
\]

- age group \(a \)
- race/ethnicity \(r \)
- education quartile \(i \)
- year \(t \)

- calculate rates for 5-year age groups, from 25-64
- stratified by sex
Data

- Deaths: CDC *Multiple Cause of Death Files (MCOD)*
 - Available 1999-2018

- Population: *Surveillance Epidemiology & End Results (SEER)* database
 - Age, sex & race-specific populations

- Educational Share: *American Community Survey (ACS)*
 - Starts in 2001

- Analysis Period: 2001-2018
Complicating Factors

- Education on death certificates switches from continuous to categorical
- Education-Specific Populations
 - SEER Population \times ACS Education Share
 - ACS education switches from categorical to continuous
- A single year of education may span quartiles
Causes of Death

- Total mortality
- Specific causes
 - 10 highest causes for each age subgroup (cardiovascular disease, cancer etc.) plus
 - non-drug accidental deaths
 - non-intentional drug deaths
 - suicide
 - residual category
- “Major” vs. “Minor” causes
Total Mortality trends by race: males

- Age-standardized trends: 25-64 year olds
- Larger declines (but higher levels) for Blacks than whites
Total Mortality trends by race: females

- Lower overall rates but similar trends to males
Regression Specification

\[\text{mort}_{ari} = \sum_{a \in A} \sum_{r \in R} \sum_{i=1}^{4} \beta_{ari} [\text{age}_a \times \text{race}_r \times Q_i] + \sum_{r \in R} \pi_r [\text{trend} \times \text{race}_r] \]

\[+ \sum_{r \in R} \sum_{i \neq 4} \pi_{ri} [\text{trend} \times \text{race}_r \times Q_i] + \epsilon_{ari} \]

- \(Q_i \): education quartile (\(Q_4 \) reference group)
- \(\text{age}_a \): 5-year age group
- \(\text{race}_r \): race/ethnicity \(\text{trend} \): year
- \(\beta_{ari} \): group fixed-effect
- \(\pi_r \): race-specific trend for reference quartile (\(Q_4 \))
- \(\pi_{ri} \): race-specific trend difference vs. \(Q_4 \)
• monotonic trends for whites only
Quartile-specific total mortality trends: females

• similar to males
Quartile-specific log mortality trends: males

- 4th quartile does best
- Little difference for Q1 - Q3
Quartile-specific log mortality trends: females

- more monotonic in education than for males
Cardiovascular mortality: males

- no education pattern for whites
- biggest ↓ for less educated Blacks (possibly Hispanic & other)
Major causes: males

- drugs monotonic; biggest ↑
- CVD, cancer, sometimes HIV; biggest ↓, especially Q1/Q2 Blacks
All major causes: males

(a) Major causes
Minor causes: males

- minor causes: trend coefficient <0.8 (absolute value)
- liver disease a minor cause for most groups
- residual fairly important for less educated whites
Cardiovascular mortality: females

- very different for Black females vs males
- no general education gradient
Major causes: females

- drugs monotonic; biggest ↑
- females: cancer ↓ for Q3/4 whites; Q2-Q4 Blacks; CVD for Q3/4 Blacks
- few clear education patterns
All major causes: females

(a) Major causes

![Graph showing mortality rates for different causes across various populations.](image-url)
• similar to males
Log mortality rates: males

- Largest % increases (decreases) for drugs (HIV)
- Sometimes more favorable ∆ for Q4
• Largest % increases (decreases) for drugs (HIV)
• More monotonic in education
Review of Key Results

- Drug Deaths: most important source of mortality ↑
 - particularly for whites

- Cardiovascular disease, cancer, HIV most important for mortality ↓

- Other mortality trends also important
 - Q1/2 white females: limited CVD/cancer ↓
 - Blacks: exceptional HIV, CVD, cancer ↓
 - Q1/Q2 males; Q2/Q4 females
 - smaller drug ↑ for Blacks than whites

- Hispanic/other nonwhite trends have small magnitude
 - hard to evaluate
What We Have Learned

Unidimensional explanations unlikely to explain mortality trends
Must explain tremendous heterogeneity in Δ's by sex, race & age

- Total mortality Δ's mix effects of different causes
- Mortality ↑ dominated by drugs
- Liver disease a “minor” cause (e.g. larger effect of respiratory)
- Mortality ↓ by Cancer, CVD, sometimes HIV
- Large differences by sex, race & education

Need to focus on specific causes of death
THANK YOU
Complicating Factors

Education on death certificates often categorical

- After 2002: some states report categories
 - ≤8th grade, 9-12 no diploma, high school grad, some college, bachelor’s degree, master’s degree, doctorate/professional degree
 - Calculate single years of education (where provided) for broader categories (e.g. ≤8, 9-11 grade)
 - Regress these % on trend, age, sex, race/ethnicity (& interactions)
 - Predict probability of single years of education for categories
Complicating Factors (cont.)

Education-Specific Populations

- \textit{SEER Population} \times \textit{ACS Education Share}
- After 2007: ACS reports single education years: 1-12
- Before 2008: 0-4, 5-6, 7-8 grades combined, split based on 2008-2017 distribution
- H.S. grad = 12
- College: No Degree/ Associates Degree = 14
- College Degree = 16
- Beyond College = 17