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Introduction

1. Does the fact that firms have common investors lead to less competitive outcomes?

πf +
∑
g 6=f

κfg · πg κfg ≥ 0

• Managers maximize shareholder value , investors own portfolios including

competitors → relaxes horizontal competition.

• Overlapping positions lead to intermediate case between own profit maximization

and joint profit maximization

• Growing (and controversial) literature:

• We wrote a paper in AEJ:Micro (BCS Forthcoming) describing how ownership data

maps into κfg and how the distribution looks for the broader economy.

• Early lit has focused on price-concentration: Airlines Azar Schmalz Tecu (2018).

• Anton, Ederer, Gine, Schmalz (2021) posit a plausible “quiet life” mechanism.

• Alternatives: Boller and Scott Morton (2020): Index inclusion event study; Newham

et. al Pharma Entry.
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Introduction

2. Classic IO Q: How do we discern conduct (monopoly, PC, oligopoly, etc.) from

observational data on (P,Q)?

• History of identification: Bresnahan (1982), Lau (1982), Berry and Haile (2014)

• Long history on testing conduct assumptions: Bresnahan (1987), Genesove and

Mullin (1998), Nevo (1998/2001), Villas Boas (2007), Bonnet and Dubois (2010).

• Concerns:

• If we could observe MC this would be pretty easy. (but mostly we cannot).

• Many tests amount to joint test of conduct assumption (oligopoly, monopoly, perfect

competition) and functional form of MC (linear, exponential, log-linear).

• Different IV, weighting matrices, functional form assumptions may select different

conduct assumptions.
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This Paper

• Take the nonparametric identification argument in Berry Haile (2014) and try to

turn it into the most powerful (and general) semiparametric test.

• Use the testing framework of Rivers and Vuong (2002) (a LR type test) where:

• Duarte, Magnolfi, Sullivan (2020) provide compelling evidence this is preferable to

alternatives (e.g. Cox tests, Wald tests, etc.).

• Null: Both models fit the data equally well. But both may be misspecified.

• A major focus is choosing good instruments that contain most of the information
in the conditional moment restriction E[ωjt |zt ] = 0

• What is the goal of IV? parallels to Chamberlain (1987). Choose A(zt) to maximize

power (instead of efficiency).

• Answer: Cheat and exploit model. Good IV predict the markup differences.
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Setup and Assumptions

Assume we know demand D(zt) and define an additive markup ηj(·) as:

mcjt ≡ pjt − ηj(st ,pt ,D(zt))

mcjt = hs(xjt ,wjt) + ωjt

→ pjt − ηjt = hs(xjt ,wjt) + ωjt where E[ωjt |zt ] = 0

Assumptions

• Analogous to BH2014 ηj(·) is fully specified given demand.

• e.g.: ηt(pt , st ,D(zt)) ≡ Ωt(pt)
−1st(pt)

• ηmjt where m superscripts markup assumption (Cournot, Bertrand, Monopoly, PC)

• ωjt is additively separable and existence of CMR E[ωjt |zt ] = 0

• Prior work typically assumes hs(·) linear or exponential (logmcjt)

• ηjt is endogenous (depends on ωt) → put on LHS (like AR test).

Goal: Choose the overidentifying restriction: A(zt). 5



Testing Framework

Goal: non-nested model selection using Rivers Vuong (2002):

• Estimation uses unconditional moments E[ωjt |zt ] = 0→ E[ω′jt A(zt)] = 0

√
n

σ
·
(
QW (η1)− QW (η2)

) d→ N(0, 1)

• Idea: Both conditions can be violated QW (ηm) > 0.

• Prefer markup choice ηm that leads to smaller violations (in GMM distance).

• Calculating σ̂ is often complicated → bootstrap.

• Duarte, Magnolfi, Sullivan (2020) show RV outperforms Cox-type tests in simulation.
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Theoretical Result (more in paper)

Proposition 1a: Standard GMM assumptions, fix W and h(x ,w)

QW (η1)− QW (η2)
p→ −E[Z ′ ω1]′W E[Z ′∆η1,2]− E[Z ′ ω2]′W E[Z ′∆η1,2]

• E[Z ′ ω1] and E[Z ′ ω2] are violation of moments (like we’d expect).

• E[Z ′∆η1,2] covariance of instruments with markup difference: “first stage”.

Proposition 1b: Under correct markup E[Z ′ ω1]
a.s.→ 0

QW (η1)− QW (η2)
p→ −E[Z ′∆η1,2]W E[Z ′∆η1,2]

• Now just about correlation between instruments and ∆η1,2.

• When correlation is weak, models become indistinguishable.

Therefore we choose A(zt) = E[∆ηjt |zt ].
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Procedure

Given demand and two markups η1jt and η2jt (e.g. perfect comp and monopoly):

1. Estimate ω̂m
jt as residual from (no IV necessary):

pjt − ηmjt = hs(xjt ,wjt) + ωm
jt

2. Estimate ∆̂η1,2jt = ĝ(zt) as fitted value from (again no IV):

∆η1,2jt = g(zt) + ζjt

3. Compute the (scalar) moment violation: Q̃(ηm) =
(

1
N

∑
j,t ĝ(zt) · ω̂m

jt

)2

4. Compare T =
√
n

σ
(Q̃(η1)− Q̃(η2)) to critical values of normal after estimating σ̂ using

bootstrap following Rivers and Vuong.

All regressions via random forest. (Note: different η1, η2 → different A(zt)).
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Advantages

• Fully flexible hs(xjt ,wjt) (Don’t specify linear, log, etc.)

• Fully flexible ∆η1,2jt = g(zt) + ζjt (zt is very high dimensional).

• Random Forest is really good at complicated nonlinear forms.

• No weighting matrix W

• Theoretical analogue to optimal IV for “internalization parameter” [See paper].

• Easy to implement (fast enough to bootsrap).
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Demand Estimation

• Discrete choice demand system based on BLP (1995), Nevo (2000/1) using Kilts Data:

• Market: Chain-DMA-week (sampled 2/13 weeks per quarter)

• Estimate market size from milk and egg purchases.

• Correlated random coefficients on pjt and the constant.

• 946 product FE and 1970 chain-dma-week FE.

• Demographics:

• Chain-DMA-year specific demographics (income and children).

• micro-moments matching income and children to price, characteristics (in PCA

space), and outside good shares for 10 π parameters.

• Instruments:

• Own ingredient costs and chain specific demographic variables.

• Quadratic Gandhi-Houde differentiation instruments

• Calculate feasible approximation to optimal instruments (18): E
[
∂ξjt

∂θ
|zt

]
.

• Estimation in PyBLP (Conlon and Gortmaker 2020).
10



Why RTE Cereal?
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C4 ' 85% domestic, public firms and good ownership variation. 11



Markups in dollars (Q4 2016)
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Counterfactual Mergers

Firm GM-KEL Monopoly κCO

General Mills 4.69 9.42 3.97

Kellogg’s 5.13 9.30 5.34

Quaker Oats -0.37 14.87 7.75

Post -0.15 12.76 7.06

Price Index 3.32 10.25 5.42

NB: Computed using marginal costs as predicted by own-profit maximization.
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Main Results: Assuming Linearity

Others’ Costs Demographics BLP Inst. Dmd. Opt. Inst.

Own Profit Max vs. Panel 1: A(zt) = zt , linear hs(·); W = (Z ′Z )−1

Common Ownership -2.4732 -0.0079 -1.2333 -4.9099

Common Ownership (MA) -2.5918 0.0070 -1.2105 -4.9215

Common Ownership (Lag) -2.5208 0.0075 -1.2125 -4.9351

Perfect Competition 0.8611 -2.3033 -3.1652 -10.9229

Monopolist -2.4166 -0.8783 -3.5162 -6.0048

Own Profit Max vs. Panel 2: A(zt) = E[∆η12|zt ], linear hs(·) and g(·)
Common Ownership -1.2859 -0.2126 -0.8317 -5.2361

Common Ownership (MA) -1.3993 -0.2071 -0.8340 -5.3019

Common Ownership (Lag) -1.3506 -0.2093 -0.8367 -5.3271

Perfect Competition 1.1732 -0.8843 -1.4708 -10.7559

Monopolist -1.4038 -0.3243 -1.0613 -5.3183

Z-scores are reported. Bootstrap clustered by: Retailer-DMA-year

Predicting E[∆ηjt |zt ] is equivalent to a different choice of W .
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Main Results: Our (Semiparametric) Test

Others’ Costs Demographics BLP Inst. Dmd. Opt. Inst.

Own Profit Max vs. Panel 3: A(zt) = E[∆η12|zt ], random forest hs(·) and g(·)
Common Ownership -4.8893 -5.4460 -5.4412 -5.9585

Common Ownership (MA) -5.4345 -6.1348 -5.8757 -6.4357

Common Ownership (Lag) -5.1770 -5.9221 -5.7041 -6.2255

Perfect Competition -7.7749 -8.7051 -8.9758 -10.0654

Monopolist -5.2711 -6.7789 -5.9158 -6.5933

Z-scores are reported. Bootstrap clustered by: Retailer-DMA-year

• Own-profit maximization wins by a landslide

• Choice of instruments doesn’t matter

• We capture the nonlinearity in hs(·), g(·).

• hs(xjt ,wjt) contains dummies for products and time periods, and own ingredient

prices (e.g. corn for Corn Flakes), and product characteristics.
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Internalization Parameters (Wald Approach)

Let κ represent the weight a firm places on competitors and τ the internalization of

those weights.

arg max
pj : j∈Jf

∑
j∈Jf

(pj −mcj) · sj(p) +
∑
g 6=f

τ · κfg
∑
j∈Jg

(pk −mck) · sk(p)

Now,

• τ = 0 implies own-profit maximization

• τ = 1 implies common ownership pricing

• τ in between is..? Agency?

We test τ ∈ (0.1, . . . , 0.9) against own-profit maximization.
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Internalization Parameter Testing Results
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Conclusion

Our testing procedure has advantages over previous approaches:

• Amounts to two prediction exercises.

• We use the model itself to form A(zt).

• Flexible functional forms for hs(·), g(·) actually matter.

• No issues with weighting matrices.

• Nothing specific to common ownership.

• Anything that delivers a value for ηjt is testable subject to relevance E[z ′t∆ηjt ].

No evidence of common ownership effects on prices in RTE Cereal.
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