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Abstract

Ba�ery storage o�ers a potentially valuable complement to renewable energy. Recogniz-
ing this, policymakers have recently incentivized and mandated storage as a means to inte-
grate renewable energy and meet climate goals. �is paper evaluates the equilibrium value
and adoption trajectory of utility-scale ba�eries using California data, focusing on the im-
pact of falling ba�ery capital costs, complementarities with renewable energy, and market
power. We add three key modeling features relative to the literature: (1) a modeling of equi-
librium e�ects from large-scale ba�eries that includes ramping constraints, (2) a frontier
high-frequency forecasting model of load and prices, and (3) linked competitive dynamic
equilibrium models of ba�ery adoption and operations. We �nd that: (1) the value of bat-
tery storage increased sharply between 2016-19 as solar generation increased, (2) ba�ery
investment exhibits decreasing returns-to-scale—the per-unit value of ba�eries drops signif-
icantly with total installed ba�ery capacity, (3) ba�ery operations increase California’s 2018
expected discounted social surplus from the electricity market by $3.8 billion or $2.42 per
MWh of solar energy generated, and (4) California would require a 35% subsidy on ba�eries
to meet its 2024 storage mandate of 1.3 GW of power capacity.
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1 Introduction

Growth in renewable electricity generation has been dramatic over the past 10 years, in the U.S.
and worldwide. By displacing generation from fossil fuels, renewables reduce greenhouse gas
emissions. However, almost all recent growth in renewables comes from sources such as solar
photovoltaics (PV) that are intermi�ent: a solar farm cannot generate electricity a�er the sun
sets, or when a cloud passes overhead. Absent the ability to store electricity, integrating these
intermi�ent sources into the electricity grid requires the capability both to produce electricity at
times with low expected renewable production and to adjust production suddenly when renew-
able production fails. Intermi�ency adds to the social costs of renewables through the costs of
building, maintaining, and operating additional fossil fuel generators (Bushnell and Novan, 2018;
Gowrisankaran et al., 2016; Joskow, 2011). Ba�ery storage is a potentially important complement
to intermi�ent renewable energy: it can lower the social costs of renewables by storing energy
when renewable production peaks and releasing it when it plummets.

We illustrate these points with data from California, a leader in adding solar generation ca-
pacity.1 Figure 1a displays average electricity demand and Figure 1b displays average solar gen-
eration, over the hours of the day and separately for 2015 and 2019. Solar generation increased
dramatically over this period, but this generation typically occurs in the middle of the day and
not in the evening, when demand is highest. Figure 1c displays net load, which is the di�erence
between total demand and renewable generation, and hence the electricity that is supplied by
dispatchable generators.2 Net load in 2019 plummets in the middle of the day but rises again in
the early evening to a similar level as in 2015, resulting in a curve with two humps. �e double-
humped pa�ern raises the social costs of renewables for two reasons. First, it implies that solar
PVs are not producing in the evening when net load, and hence marginal costs, are highest. Sec-
ond, it increases the ramping costs that generators bear every time they turn on or o� (Cullen,
2010; Mansur, 2008; Reguant, 2014).

Utility-scale ba�eries in California can lower the social costs of solar generation by storing
energy starting at noon—when the sun is shining—and releasing it from 6PM on. Ba�eries can
help both in using solar to replace fossil fuel generation when marginal costs are highest and
in lowering ramping costs. However, the equilibrium value of large-scale ba�eries is limited
because each additional ba�ery, acting as an arbitrageur, will raise prices at noon and lower
prices in the evening, thereby �a�ening the humps and lowering the marginal value of storage.

In conjunction with these trends that a�ect the revenues from storage, the capital costs of
lithium-ion ba�ery cells have dropped 85% from 2010 to 2018 with projections of 50% further
cost drops over the next 10 years (Cole and Frazier, 2019; Goldie-Scot, 2019). Not coincidentally,
the 2019 Nobel Prize in Chemistry was awarded for the development of lithium-ion ba�eries.
Despite these dramatic cost decreases, the central impediment to utility-scale ba�ery storage

1California has a mandate that 60% of generation must be from renewable sources by 2030 and 100% by 2060.
2Unlike intermi�ent generators like wind and solar PV power plants, dispatchable generators can be dispatched

on demand at the request of power grid operator. Examples dispatchable generators include natural gas or hydro-
electric power plants.
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Figure 1: Electricity Demand and Solar Generation by Year in California

(a) Electricity Demand (Load) (b) Solar Generation

(c) Net Load - “�e Duck Curve”

Notes: Panel (a) shows the mean and 25th and 75th percentiles of electricity demand, by year and hour of day.
Panel (b) shows the mean and 25th and 75th percentiles of solar generation by year and hour of day. Panel (c)
shows the mean and 25th and 75th percentiles of net load, by year and hour of day. Figures calculated by authors
from CAISO data.

remains its high capital costs. For this reason, the private market is unlikely to install ba�eries
in the immediate future in the absence of mandates or subsidies.

Recognizing the complementarity between renewable energy and ba�eries and also these
high capital costs, states have paired renewable energy mandates with ba�ery storage require-
ments. In 2013, California passed a requirement for utilities to procure 1.3 GW of storage power
capacity by 2024, with the speci�c justi�cation that ba�eries can help optimally integrate renew-
able energy resources. 3 Other states—notably AZ, MA, NJ, NY, and OR—have also implemented
ba�ery procurement requirements as a complement to their renewable energy standards.4

�is paper has two main goals related to understanding the economics of ba�ery storage.
First, we seek to evaluate the equilibrium value and adoption trajectory of utility-scale ba�eries.

3�e legislation stated that “additional energy storage systems can optimize the use of the signi�cant additional
amounts of variable, intermi�ent, and o�peak electrical generation from wind and solar energy…”

4�e Federal Energy Regulatory Commission (FERC) Order 841 requires all electricity markets to remove bar-
riers that would inhibit participation of storage resources in wholesale energy markets.
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Speci�cally, we examine how falling ba�ery capital costs, complementarities with renewable
energy, and market power a�ect wholesale electricity prices, the equilibrium adoption of ba�ery
capacity, and the value of ba�eries given adoption. Second, we seek to understand the role of
renewable energy mandates and ba�ery subsidy policies in a�ecting values and adoption levels.
In particular, we quantify the level of subsidies necessary to meet ba�ery mandates and also how
much a ba�ery market lowers the costs of meeting renewable energy mandates.

Our study develops a new theoretical and estimation framework that we use to address the
above research questions. Our framework contributes three main modeling innovations to the
economics and engineering literature on electricity storage, that we believe are crucial for ob-
taining credible answers. First, we develop a dynamic competitive equilibrium ba�ery opera-
tions model that allows us to evaluate how much large-scale ba�ery operations would a�ect the
wholesale electricity generation price, and through that, limit the marginal value of additional
ba�ery capacity. Second, to solve this equilibrium operations model across di�erent counterfac-
tual ba�ery capacity levels, we develop a high-frequency time-series model of net load and the
electricity generation supply curve. Our model allows for the updating of the structural cost pa-
rameters over time, which is critical to credibly explaining the relationship between generation
and prices in electricity markets. Moreover, our supply curve incorporates ramping constraints,
where increases in past generation reduce current marginal costs. Our supply curve estimates
are used as an input in our computationally-intensive operations model, implying that both iden-
ti�cation and parsimony of the state space are important. Finally, we link our operations model
with a ba�ery adoption model. �e operations model allows us to understand the value of oper-
ating a ba�ery as solar penetration levels and installed ba�ery capacity increases. �ese values
then microfound revenues for our adoption model. �e adoption model in turn allows us to un-
derstand the social surplus created by having a utility-scale ba�ery market, and how subsidies
would a�ect adoption and social surplus.

Our framework proceeds by developing and solving competitive dynamic equilibrium models
of ba�ery capacity adoption and ba�ery operations. Our capacity adoption model speci�es an
in�nite mass of identical potential ba�ery operators. Each potential ba�ery operator can adopt
at one point in time and they make the decision of whether to adopt in each period a�er forming
rational expectations regarding future capital adoption costs and equilibrium adoption levels.
�e gross value of adoption at any point point in time is a function of the ba�ery’s ability to
arbitrage prices, which depends on the aggregate ba�ery capacity and solar generation. We
estimate these values from our operations model.

In our operations model, each ba�ery operator in each �ve-minute interval of the month
observes the current net load and real-time market price, and then decides what percent of its
capacity to charge or discharge, up to its technological constraints. To make dynamically optimal
decisions, the ba�ery operator must forecast the future price distributions, which are impacted
by market-level ba�ery operations decisions. Given that current ba�ery adoption is very low,
the equilibrium impact of ba�eries is not directly observable from market data. However, having
estimated electricity generation supply curves, we can derive these equilibrium e�ects as the
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counterfactual of our competitive, dynamic model under optimizing behavior. Our operations
model incorporates a number of features that we believe are important in this context: predictable
within-day �uctuations in net load; a non-linear marginal cost (or supply) curve of electricity
that evolves over time and includes ramping constraints; serial correlation of the shocks to net
load and marginal cost curve of electricity due to the dynamics created by weather, transmission
congestion, and generator outages; a restriction that ba�ery charge/discharge policies must be
based on data that would have been available in real-time to a market participant; a loss in energy
from charging and discharging the ba�ery; and the depreciation of ba�eries from operation,
particularly with deep cycles. We estimate the electricity demand process and marginal cost
curves using data from the California Independent System Operator (CAISO)—which covers 80%
of California’s electricity demand—from 2015-19. �is se�ing allows us to assess empirically the
complementarity between solar generation and the value of storage. We estimate current and
future ba�ery capital costs from data compiled by the National Renewable Energy Laboratory
(NREL).

Our results depend crucially on four main identifying assumptions. First, we assume that our
market price data allow us to recover the supply curve of electricity for each �ve-minute inter-
val in our sample. Estimating the supply curve parameters is challenging because we need to
decompose price changes into movements along the supply curve and shi�s in the supply curve
over time. Second, we assume that the net load process and electricity generation supply curves
that we identify from the data are structural and hence will continue to hold in the presence of
utility-scale ba�eries. �is assumption implicitly rules out the possibility that fossil fuel gener-
ators will retire due to large-scale ba�ery storage. We leverage this assumption to evaluate the
marginal value of ba�ery operations at counterfactual aggregate ba�ery capacity levels. We let
the supply curve be a function of net load and lagged generation (to allow for ramping costs), and
allow for serial correlation and heteroskedasticity of the residuals on net load and the electricity
supply curve. �is rich dependence on observables adds to the plausibility of this assumption.
�ird, we identify the impact of counterfactual solar adoption with the assumption that the re-
lation between ba�ery storage and solar generation that holds in our data will continue to hold
in the future when there is more solar penetration than exists in the data. Finally, to be able to
use our data to evaluate the welfare e�ects of ba�ery operations, we assume that the electricity
generation supply curves that we estimate represent the marginal costs of production.

Relation to literature. Our study builds on several literatures. First, our work relates to
an engineering and economics literature that investigates the value of storage in wholesale elec-
tricity markets. Early engineering papers in this literature modeled the storage decision using
a �nite-horizon framework and assumed that the storage device operator had perfect foresight
about future prices or relied on historical prices when making discharge and charge decisions
(Sioshansi et al., 2009; Sioshansi and others, 2011; Walawalkar et al., 2007). More recent engineer-
ing studies relax the perfect foresight assumption and model storage decisions given uncertainty
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about future prices (Mohsenian-Rad, 2015; Mokrian and Stephen, 2006; Xi et al., 2014).5 Our
operations model uses substantial inputs from the engineering literature and extends this liter-
ature by considering the equilibrium e�ects of large-scale storage and the impact of monopoly
or competitive storage markets. A recent economics working paper, Kirkpatrick (2018), empiri-
cally estimates the e�ect of recent utility-scale ba�eries installations on electricity market prices
and transmission line congestion in California. Finally, a contemporaneous economics working
paper to ours, Karaduman (2019), also seeks to understand the value of energy storage in an equi-
librium se�ing. Our equilibrium model is complementary to Karaduman (2019), with di�erent
approaches to modeling demand and marginal costs which allow for dynamics and equilibrium
e�ects of large ba�ery capacity. Our use of California data, which provides large variation in
solar generation, allows us to evaluate directly the impact of solar energy on ba�ery values.

Second, we contribute to an economics literature that explores market impacts of new en-
ergy technologies. Bushnell and Novan (2018), Craig et al. (2018), Cullen (2013), Novan (2015)
Wolak (2018), and Woo et al. (2016) measure the environmental and market e�ects of renewable
energy generation. Burr (2014), Reddix (2015), Feger et al. (2017), Langer and Lemoine (2018),
and De Groote and Verboven (2019), evaluate the impact of solar subsidies on adoption. We add
to this literature with a dynamic model of investment and subsidies in ba�ery capacity. While
previous work developed dynamic models of investment in a renewable energy, we are the �rst
paper to develop a dynamic model of investment in ba�ery storage. Unlike solar adoption, bat-
tery charge and discharge decisions are themselves a di�cult, dynamic problem and thus, our
adoption model integrates a dynamic operations model.

�ird, our work also relates to the literature investigating the time series properties and fore-
casting of electricity load and real-time prices. In particular, our model for the evolution of prices
is motivated by the speci�c time series features of electricity prices experienced both systemat-
ically across most electricity markets (e.g., see Weron (2014) for a comprehensive review) and
also for the California CAISO market in particular (Kni�el and Roberts, 2005).6 While no close
substitute exists for our model of load and electricity prices, it borrows and combines elements
of the model of electricity load and supply used by Kanamura and Ōhashi (2007), together with
features of the structural time series approach taken by Pirrong (2012) for other commodities.
Given our empirical se�ing, however, our model in relation to the last two mentioned is at a
much higher frequency, accommodates a much richer set of seasonal pa�erns and dynamic ef-
fects, while maintaining a parsimonious set-up that can be estimated in near real-time–both of
which are vital for it to serve as the input for dynamic optimization framework.

Finally, our work relates to a literature on the computation of high-frequency dynamic models

5Other related work has considered the e�ects of storage on emissions (Carson and Novan, 2013; Hi�inger and
Azevedo, 2015; Holladay and LaRiviere, 2018), the value of storage in ancillary service markets (Berrada et al., 2016;
Cheng and Powell, 2016; Kazemi et al., 2017), and the role of storage in integrating intermi�ent renewable power
plants (Black and Strbac, 2007; Garcia-Gonzalez et al., 2008; Paatero and Lund, 2005).

6Some of the features of wholesale electricity prices including the skewness and volatility are closely connected
to the need to constantly balance demand and supply of electricity, and the inability to hold negative inventories
(Deaton and Laroque, 1992).
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of electricity supply. Following (Cullen and Reynolds, 2017), we simplify the computation burden
by solving the social planner single agent dynamic problem, which yields equivalent decisions
to the competitive dynamic equilibrium problem. Our computational techniques were developed
concurrently with Reynolds (2019).

Findings. We �nd that the gross social value (not accounting for capital costs) of a small
(1000 MWh) utility-scale competitive ba�ery investment would be about $180 per kWh in 2019,
where renewable energy holds a 30% share of generation. �is contrasts with the reported ba�ery
capital costs from NREL of about $355 per kWh in 2019. �us, ba�ery capacity is not yet at a
break-even point. Because of the reduction in ba�ery costs, ba�ery capital costs are expected
to reach $180 per kWh by the late 2030s. �us, a small competitive ba�ery market would not
be economically viable in the very near future if California’s solar generation were to remain
constant.

We �nd a strong complementarity between the gross social value of utility-scale ba�eries
and renewable energy generation. In particular, if renewable energy share were to equal 44%
of generation, the 2019 gross social value of ba�eries would be $355 per kWh. Combining the
mandated increase in renewable energy share in California with the expected decrease in ba�ery
costs, the small utility-scale ba�ery installation will be expected to break even by the late 2020s.
Due to its role as an arbitrageur, the per-unit value of ba�ery capacity declines signi�cantly
in the installed capacity: 1,000 MWh of ba�eries would add a social value of $180 per kWh
while 15,000 MWh of ba�eries would add a social value of $120 per kWh, both per kWh in 2019.
Correspondingly, we �nd that the 1,000 MWh of ba�eries would lower evening prices by average
of $10 while the �gure is $15 for the 15,000 MWh ba�ery �eet.

Despite the fact that we are not too far from reaching a break-even point, ba�ery adoption
will likely be slow for several years in the absence of a ba�ery mandate or subsidy. �e reason for
this is that, given that ba�ery costs are declining, there is an option value of waiting for further
technological change instead of adopting at the break-even point. In order to reach California’s
mandate of 5,200 MWh by 2024,7 a competitive ba�ery market would require a 35% up-front
subsidy. Without a ba�ery mandate, we would expect to see virtually no installed capacity by
2024 and would have to wait until 2032 to see this level of installed capacity.

Overall, allowing a competitive ba�ery market in 2018 would increase discounted social wel-
fare in California by $3.8 billion, which amounts to $2.42 per discounted MWh of solar energy that
will be produced in California under their renewable energy mandate. In contrast, a monopoly
ba�ery market would install at approximately double the rate of a competitive ba�ery market
but would less in discounted social surplus.

�e remainder of our paper is structured as follows. Section 2 discusses our institutional
features and data. Section 3 discusses our model and estimation. Section 5 presents our results
and counterfactuals, and Section 6 concludes.

7California’s original mandate speci�es 1,300 MW of ba�ery power. Using a ba�eries with four-hour storage
duration, this translates to 5,200 MWh of energy storage.
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2 Data and Institutional Setting

Worldwide investment in utility-scale ba�eries is expected to expand rapidly in the coming
decade. �e trajectory of ba�ery investment over time will hinge on both ba�eries’ expected
costs and the expected value (i.e., bene�ts) of deploying ba�ery resources over time. �us, we
employ two primary data sets to estimate and compute our model ba�ery investment. First, we
use data on future projections of utility-scale ba�ery costs. Second, we use historical electricity
market data to estimate the value of deploying ba�ery storage and how that value changes over
time as more renewable power plants come online. In the following subsections, we describe our
primary data sources and discuss relevant institutional details.

Capital Cost of Battery Storage

Some energy storage technologies such as pumped hydroelectric storage have been established
for decades, but the majority of recent utility storage installations use ba�ery technologies. More
speci�cally, lithium-ion based ba�eries now dominate the US market—accounting for over 90%
of ba�ery storage capacity (EIA, 2020). Nearly all lithium-ion ba�ery resources were installed
a�er 2014. �is recent deployment of ba�eries has been driven by a surge in private R&D e�orts
and government policies that encourage or mandate ba�ery investment.

Although the stock of utility-scale ba�eries is growing quickly, the overall ba�ery �eet re-
mains relatively small. As of 2018, there was only 0.9 GW of aggregate ba�ery power capacity in
the US (1.2 GWh of energy capacity), a power capacity similar to that of a typical combined-cycle
natural gas power plant (EIA, 2020). Due to the lack of historical data on utility-scale ba�ery cap-
ital costs, we use forward-looking projections of ba�ery capital cost from the literature to model
the evolution of future ba�ery costs. In particular, we use data from the National Renewable En-
ergy Laboratory (Cole and Frazier, 2019) that compiles cost projections from over 25 publications
that consider utility-scale storage costs.

Cole and Frazier (2019) compile data on utility-scale lithium-ion ba�eries cost projections
published between 2016 and 2018. �e exact cost of a ba�ery installation will depend on the
ba�ery’s speci�cations such as round-trip e�ciency and duration. A ba�ery’s round-trip e�-
ciency measures the percentage of stored energy that is available for later usage, a more e�cient
ba�ery typically entails higher costs.8 �e ba�ery’s duration indicates the amount of time the
ba�ery is able to discharge at its rated power capacity. For example, a 2-hour duration ba�ery
could discharge at full power capacity for 2 hours. Although ba�ery systems can be developed
with a range of speci�cations, we follow Cole and Frazier (2019) and focus on the most common
type of ba�ery system currently being added in US markets—ba�eries with 4-hour duration and
85% round-trip e�ciency.9

8Round-trip e�ciency is always below 100% because some energy is lost during the charge-discharge cycle.
9According to EIA and the DOE Storage Database, the majority of the ba�eries have a 4-hour storage duration

and have round-trip e�ciency between 75 and 95%. Ba�eries with shorter duration (less than 2 hours) are relatively
be�er suited for ancillary service applications, whereas ba�eries with longer duration (e.g., 4-hour) are relatively
be�er suited for energy arbitrage applications.
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Figure 2: Utility-Scale Ba�ery Capital Cost Projections

Notes: Figure constructed by the authors using data from Cole and Frazier
(2019). Each transparent line represents a future cost projection from a single
publication. �e dashed line plots the mean cost projection . �e �gure re�ects
all cost projections related to grid ba�ery applications (not electric cars).

Figure 2 demonstrates variation in cost projections for ba�ery storage over time in $/kWh.10

Each point in the �gure represents a normalized cost projection for a particular year from a single
publication, and the dashed line plots the mean projection for each year.11 �ese data allow us
to quantify expectations and uncertainty about future capital cost of storage. In Section 3 we
discuss our ba�ery capacity adoption model in more detail and explain how we pair these cost
projection data with our model.

�eWholesale Electricity Market

In addition to ba�ery capital costs, another key input to the ba�ery storage investment problem
is information about the present discounted value of owning a ba�ery system. To evaluate the
value of a ba�ery system, we develop a model of ba�ery operations. We then combine our model
of ba�ery operations with electricity market data to solve for the optimal sequence of charge-
discharge decision and the associated value of storage operations.

�e source of data for our operations model is the California Independent System Opera-
tor (CAISO).12 �e CAISO, a non-pro�t independent system operator (ISO), dispatches over 200
million megawa�-hours of electricity to 30 million consumers each year. California deregulated
its electricity sector in 1998, and consequently designated the CAISO to manage the state’s new

10$/kWh costs can be converted to $/kW costs simply by multiplying by the duration (e.g., a $500/kWh, 4-hour
ba�ery would have a power capacity cost of $2000/kW)

11NREL normalizes the cost projections so that each publications’ projection starts at the same baseline cost of
$380 in 2018. We only use cost projections related to grid ba�ery applications (not electric cars).

12We obtain the data used for the analysis from the CAISO Open Access Same-time Information System (OASIS)
portal. OASIS provides real-time data related to the ISO transmission system and its markets, such as system demand
forecasts, transmission outage and capacity status, market prices, and market result data.
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wholesale electricity market. �e CAISO is connected to the Western Interconnection and also
regularly imports and exports power to other utilities and power producers across the western
US. At each instant, the CAISO balances supply and demand to ensure electricity is delivered to
consumers reliably and cost-e�ciently. To that end, CAISO runs two distinct market processes:
a day-ahead market (DAM) and a real-time market (RTM).

In the day before power is delivered, the system operator conducts 24 energy auctions, one
auction for each hour of the day. For each of the 24 energy auctions in the day-ahead market,
market participants submit bids to either buy or sell energy and CAISO then computes produc-
tion quantities and prices to clear each of the hourly auctions. CAISO also uses the day-ahead
market to secure energy reserves, these reserves are held ready and available for the ISO to use if
needed, and can be called upon to quickly increase or decrease output if there are any unexpected
changes in electric supply or demand at the last minute. At the close of the day-ahead market,
each power producer is scheduled hourly for a quantity of production (possibly zero), and a ca-
pacity allocated for reserves.13 CAISO allocates production and reserves to meet demand at the
lowest cost, subject to reliability and other physical constraints of the system. On the day of en-
ergy delivery, CAISO utilizes the real-time market to re-adjust generator production schedules
in response to unplanned outages or deviations from the expected day-ahead demand schedule.
Market participants can submit real-time market bids until 75 minutes before the delivery hour.
During the delivery hour, the system operator continuously updates the demand forecast and
dispatches the lowest-cost generators every �ve minutes.14 Any unanticipated supply-demand
imbalance that occurs within the last 5 minutes before electricity is delivered must be met using
reserve generators.

California’s grid is currently undertaking a dramatic transition away from fossil-fueled power
sources towards renewable resources. �e renewable energy transition is, in turn, disrupting
market outcomes in CAISO’s wholesale markets. �e most notable disruption, is the growth
of solar PV. As of 2015, California already hosted the largest capacity of solar PV panels in the
US, and state lawmakers voted to boost renewable energy further by mandating that 60% of
electricity come from renewable sources by the year 2030, and 100% by 2060. �e top panel
of Figure 3 shows that during the sample period of our study, January 2015 - December 2019,
utility scale solar more than doubled from under 40 GWh/day to over 80 GWh/day. At the same
time, average demand (load) for electricity remained relatively stable, falling by 7.5%. Average
wind power production increased slightly from 28 GWh/day to 36 GWh/day. Figure 3 shows
that prices for natural gas, the predominant fossil fuel generation source in CAISO, hovered
around $3/MMBtu for much of the sample period. Modest reductions in demand coupled with
increasing solar PV investment led to a 13% generation share for solar by 2019. In fact, during
some a�ernoons in 2019, solar PV accounted for over half of the energy supply. While this

13Market participants that do not wish to directly participate in the day-ahead market can also submit self-
scheduled hourly production plans to the ISO for planning purposes.

14Generators can only submit on bid curve to the entire trading hour but the market price can change every �ve
minutes due to demand shocks, transmission congestion, or supply outages.
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Figure 3: CAISO Electricity Market Trends

Notes: Each graphic plots the monthly average of a single variable over the sample period. �e solar generation
measure does not include distributed generation. �e reported market prices are for the CAISO South Zone
Trading Hub (SP 15). All data collected from CAISO.

unprecedented expansion of solar production has reduced California’s carbon footprint, it also
introduced new challenges in managing the electric grid. �e “duck curve” in Figure 1c illustrates
that as solar PV output continues to climb during daytime hours, other power plants must make
larger and faster adjustments each evening when the sun sets. For example, on January 1st 2019,
fossil fuel generators had to ramp up output by 15,000 megawa�s over a three hour period. In
the two bo�om right panels of Figure 3, we see that as solar generation increased, mean prices
in the real-time market have also trended upwards by nearly 20%. Real-time prices have also
become more volatile, with the standard deviation of real-time prices increasing through most
of the sample period.15

Figure 4a demonstrates how market price dynamics have changed as more solar PV has come
online in California. In particular, each line shows the mean real-time market price at each
�ve interval of the day for a given sample year. �roughout the sample, real-time prices were
relatively low during the middle of the day when solar PV generation hits its daily peak. On
the other hand, as total solar generation has risen each year, real-time prices have increased
signi�cantly in the evening hours when solar PV generation falls and fossil-fuel plants are called
on to quickly ramp up. Table 5 in the appendix shows that for the 6 pm hour, prices rose by

15All prices are for the California South Hub Trading Zone (SP15).
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Figure 4: Real Time Market Prices and Demand Forecasts

(a) Real Time Market Prices Pa�erns (b) Day-Ahead and Real-Time Demand Forecasts

Notes: Panel a shows the average real-time market price (South Hub - SP-15) for each 5-minute interval of the day
separately for the years of 2015 and 2019. Panel b plots CAISO’s mean load forecast in the day-ahead market and
the mean load forecast 5-minutes ahead of operation. In the day-ahead of operation, CAISO publishes a forecast
for each hour. CAISO publishes a forecast at the 5-minute frequency on the day of operation.

16% between 2015 and 2019. Bushnell and Novan (2018) and show that wholesale price increases
in the morning and evening can be explained by an increase in generation from �exible, high
marginal cost natural gas turbines during those hours.16

Over the sample period, prices within each hour of the day have also become more sporadic.
For instance, mean prices at 5:05 pm barely changed between 2015 and 2019, but prices at 5:55 pm
increased by more than 50%. More generally, systematic di�erences between beginning-of-hour
prices and end-of-hour prices have become more pronounced. �e increased within-hour price
variation was also driven by the new production pro�le imposed by the “duck curve”. �e right
side of Figure 4 provides intuition about why the “duck curve” could increase within-hour price
variation. In particular, Figure 4b shows the average day-ahead forecast of net load (demand
minus solar & wind) as well as the �ve-minute ahead net-load forecast across the day. In the
day-ahead market, forecasts are made hourly and CAISO schedules power plants in hour-long
blocks to meet the anticipated demand. However, if the next day arrives and net load exceeds
the day-ahead forecast value, new generators can be called upon in the real-time market to meet
unplanned demand increments or unexpected reductions in solar output. We see in Figure 4b
that during the evening ramp up period, the day-ahead forecast is systematically too low at the
beginning of each hour and too high at the end of each hour. As a result, during early evening
hours generators must reduce output relative to the day-ahead schedule at the beginning of each
hour, and they must increase output relative to the day-ahead schedule at the end of each hour.
�ese adjustments lead to larger within-hour price spreads that we observe in Figure 4a. �is
systematic imbalance in the real-time market has become further exacerbated over time as solar
PV’s generation share has expanded and faster fossil plant ramp ups are needed each evening.

Higher and more volatile market prices in California are a signal of the strains of operating a
grid with signi�cant presence of intermi�ent renewables. �ese challenges will persist as Cali-

16Early evening prices have risen because there is only a limited amount of plants that are physically capable of
ramping up production in very short time frames, furthermore, ramping power plants quickly can impose start-up
costs and additional maintenance costs.
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fornia and other grids work to reach ambitious renewable energy targets. A key policy question
is to understand how to achieve renewable energy targets while avoiding extreme price increases
for rate-payers and maintaining a reliable grid that is not prone to regular blackouts. One po-
tential solution is to utilize ba�ery storage to help smooth out adjustment costs and mitigate the
risks of price spikes and blackouts.

Battery Operations in the Electricity Market

Realizing the challenges imposed by renewable energy requirements, policymakers have passed
new legislation aimed to increase electricity storage investment. In early 2018, the Federal Energy
Regulatory Commission (FERC) issued Order 841, which requires independent system operators
to remove any existing barriers that would inhibit participation of storage resources in whole-
sale markets. In addition, the California Public Utility Commission mandated that the state’s
investor-owned utilities must procure 1,300 megawa�s (power capacity) of storage by 2020, with
installations required to be operational no later than the end of 2024. Following the announce-
ment of the mandate, California’s utilities have rapidly increased investment in storage. By 2019,
utilities had enough ba�ery storage to discharge up to 126 MW at a given instant.17

�e CAISO has made e�orts to integrate these new storage technologies into their wholesale
markets and ensure compliance with FERC Order 841. CAISO allows ba�eries to participate in
both ancillary service and energy markets as non-generator resources (NGRs).18 CAISO allows
ba�eries to submit either demand bids or supply bids in both day-ahead and real-time energy
auctions. A ba�ery can submit a set of prices and associated quantities at which the ba�ery
is willing to discharge energy, with the possibility of submi�ing negative quantities to indicate
ba�ery would like to charge. Ba�eries also provide the ISO with information about the device’s
physical constraints such as energy capacity (how much energy the ba�ery can hold in stock),
and power capacity (how much the device can charge/discharge at any moment). Under a simple
bidding strategy, a ba�ery could submit a single price at which they would be willing to discharge
(sell energy), and a lower price at which they would charge (buy energy). Apart from the energy
market, ba�eries also have the option to supply reserve capacity (ancillary services).

We model a ba�ery operating in the real-time energy market. By doing so, we allow storage
to respond to price signals both within and across hours. Within-hour adjustments are likely
to be an important source of value for storage resources on a grid with high renewable energy
penetration. �e main data input for our ba�ery operations model is a multi-year time series
of real-time prices. In our analysis, we use prices from the CAISO South Zone Trading Hub
(SP15) because it currently contains the largest share of utility scale ba�ery installations within
CAISO.19

17126 MW was the maximum aggregate output by ba�eries reported by CAISO between May 2018 and December
2019.

18An NGR is a resource that a can both inject and withdraw energy from the grid and change back and forth
quickly between withdrawal and injection without bearing a start-up cost.

19�e trading hub prices are calculated by CAISO as a load-weighted average of all the locational marginal prices
in the region.
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A limitation of our approach is that we do not allow our ba�ery to provide reserve services.
Our choice not to model reserve operations warrants some discussion considering that in 2019,
more than 75% of ba�ery capacity in CAISO was scheduled to provide reserve services not energy
(see Figure 11 in the Appendix). Although many of the earliest ba�ery operators are providing
reserve services, it unlikely that reserve services will be the primary ba�ery storage application
in the long-run. Sackler (2019) emphasized this point as follows:

“Ba�ery storage investors, however, should be wary of building investment cases pri-
marily based upon future ancillary service market value expectations. …while fre-
quency regulation has historically been one of the most lucrative ancillary services mar-
kets (and exemplifying a service that [ba�eries] can outcompete traditional providers
in), most ISOs only require 100-400 MW of the product in any given hour.”

To support this point, Figure 10 in the Appendix shows that CAISO procured less than 800
MW of average hourly regulation reserves20 in all but �ve months of our �ve-year sample. Fur-
thermore, demand for regulation services in CAISO did not grow substantially over time. For this
reason, we focus our analysis on ba�ery operations in the energy market to understand long-run
market impacts of large storage investments.

3 Model

Our dynamic equilibrium model of ba�ery storage includes two components. �e �rst compo-
nent, the capacity adoption model, solves agents’ decisions of whether to make a capital invest-
ment in storage capacity in a given year. �e second component, the operations model, solves
agents’ short-run dynamic decisions regarding when to charge and discharge their storage sys-
tems. More speci�cally, we allow agents with storage capacity to choose charge and discharge
quantities at every �ve-minute interval throughout each year. We use the outputs from the oper-
ations model to microfound the payo�s for the capacity adoption model. �is section �rst outlines
the capacity adoption model and then the operations model. In the following section, we discuss
the implementation and estimation of the model including our time series model of electricity
supply.

3.1 Capacity adoption model

Our capacity adoption model considers an in�nite mass of ex-ante identical potential ba�ery
operators, or agents for short. Each agent i has the ability to install a unit capacity of storage
technology, k = 1, at one point in time. �e unit capacity is su�ciently small that each agent
takes electricity market prices as given.

20�is calculation includes both regulation up and regulation down services, which are the two most lucrative
reserve products o�ered by CAISO.
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Agents face an in�nite horizon dynamic problem with uncertainty and discount the future
with factor β. Each year, agents that have not yet adopted storage observe the current state and
decide whether to adopt storage, or wait and preserve the option to adopt storage in the future.
Adopters bear a �xed cost of obtaining storage but can then use the storage to earn future �ow
pro�ts, by acting as arbitrageurs in the energy market. Each agent has room for exactly one
storage system and cannot replace the system once installed. Hence, agents solve an optimal
stopping problem of when to invest.

Agent Decision Problem

We now discuss the decision process at each year y. At this point, agents that have not previously
adopted make a binary decision of whether or not to invest in storage capacity. Agents that
adopt must pay a �xed cost, cy, that is the cost net of any subsidy available at year y. At year
y, agents observe cy but do not know future adoption costs. We assume that these costs evolve
stochastically, declining over time in expectation due to technological advances. It is common
knowledge that agents have rational expectations over future adoption costs and hence form
accurate distributions over future trajectories. Accordingly, a bene�t of waiting to invest is that
capital costs are likely to be lower in the future. As above, adoption costs depend on subsidies
that the government o�ers for ba�ery investments in year y. We consider subsidy paths that
evolve deterministically and are known to market participants.

Besides costs, agents must also forecast the expected current and future revenues from their
system. �e annual per-unit revenues depend on both the aggregate capacity of storage present
in the market and the year. Aggregate storage capacity ma�ers because, with additional capac-
ity, storage owners will arbitrage away more of the intertemporal price di�erentials, reducing
the per-unit payo� of storage. �e year ma�ers both because the expansion of renewable en-
ergy generation over time will likely increase the value of storage by increasing intertemporal
price �uctuations and also because the year may a�ect available subsidies. We model renew-
able energy market share as evolving exogenously and deterministically over time. We motivate
this modeling choice by the policy environment in California, where the state has speci�ed a
renewable portfolio standard that rises before reaching a 60% renewable requirement by 2030.
Consequently we capture the impact of renewable energy share on the storage payo� through
the calendar year, y.21

De�ne K to be the aggregate capacity present in the market at the start of a period. �e
aggregate state space can then be wri�en as (c, y,K). �e individual state includes the aggregate
state plus the agent’s ba�ery capacity k, which starts out at k = 1 upon installation. De�ne
K∗(c, y,K) to be the equilibrium aggregate storage capacity following adoption at state (c, y,K);
K∗ includes the existing capacity K plus the capacity from the new adopters. Given the rational

21We assume the renewable generation share follows the state RPS schedule—and interpolate the share for years
without a target—until reaching 60% in 2030. A�er 2030, we assume that renewable generation share stays constant
at 60%. We also assume that this increase is divided between solar and wind proportionally according to the relative
increase in capacity that we observe between the two technologies during our sample.
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expectations assumption, agents can accurately predict K∗(c, y,K) conditional on the state.
Owners of storage capacity buy and sell energy to maximize expected discounted pro�ts

in every small time interval of each year. De�ne the expected revenues per unit of capacity
from storage at year y to be π (y,K∗). We approximate π (y,K∗) as a log-linear function of
the solar generation share and equilibrium ba�ery capacity K∗. For a series of values of y and
K∗, we microfound π (y,K∗) with our operations model that we discuss in Section 3.2. Namely,
using the implied storage values from the operations model, we regress the equilibrium revenues
across months and K∗ on the above characteristics and controls, and use the ��ed values in the
capacity adoption model.22 We allow for capacity investments to depreciate over time from usage
at a rate δ (K∗).23 �us, a ba�ery owner that installs a ba�ery system at state (c, y,K) will have
δ(K∗(c, y,K)) of capacity at year y + 1.

We now formally exposit the agent’s decision problem as a Bellman equation:

V (k, c, y,K) =

1{k = 0}

[
max

{ Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (K∗) , c′, y + 1, δ (K∗)K∗

)
dG(c′|c, y),

Value from waiting︷ ︸︸ ︷
β

∫
V
(

0, c′, y + 1, δ (K∗)K∗
)
dG(c′|c, y)

}]
(1)

+1{k > 0}

[
π(y,K∗)k + β

∫
V
(
δ (K∗) k, c′, y + 1, δ (K∗)K∗

)
dG(c′|c, y)︸ ︷︷ ︸

Value if invested before t

]
,

where dG(c′|c, y) is the integral over the conditional density of the next period’s costs net of
subsidies given the year and current period’s costs, and where K∗ abbreviates K∗(c, y,K).

In (1), an agent that has not already adopted can invest (the second line) or wait (the third
line). �ese agents face an important trade-o� in their capacity investment problem. On the one
hand, agents that do not invest maintain the option to invest in future years when capital costs
will likely be lower (though subsidies may also have expired). On the other hand, agents that
wait and do not invest forgo π(y,K∗). Finally, agents that invested before y (the fourth line) face
no further choices but see their capacity depreciate over time.

Equilibrium of Model

A market equilibrium consists of values of K∗(c, y,K) for all values of the aggregate state such
that no potential adopters want to deviate from their strategy given this equilibrium capacity
level. �e equilibrium condition speci�es that potential entrants must be indi�erent between

22�is type of approximation is consistent with a long literature in industrial organization and macroeconomics
(e.g. Gowrisankaran and Rysman, 2012; Hendel and Nevo, 2006).

23Implicitly, δ (K∗) and π (y,K∗) incorporate the fact that agents will modulate usage of their ba�ery to lower
depreciation, and that usage may be lower with a higher K . We discuss this point further in Section 3.2.
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adopting and not adopting for all states with positive investment:

Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (K∗(c, y,K)) , c′, y + 1, K∗(c, y,K)δ (K∗(c, y,K)) dG(c′|c, y) (2)

= β

∫
V
(

0, c′, y + 1, K∗(c, y,K)δ (K∗(c, y,K))
)
dG(c′|c, y)︸ ︷︷ ︸

Value from waiting

, ∀c, y,K s.t. K∗(c, y,K) > K.

In addition, in equilibrium, for all states with zero investment, K∗(c, y,K) = K , the value from
adopting (the le� side of (2)) must be less than or equal to the value from waiting (the right side
of 2).

Finally, we discuss computation of this model. We compute the social planner’s problem,
which will generate the same state-contingent adoption rates as the competitive dynamic equi-
librium but is easier to compute since it does not require that an equilibrium condition analogous
to (2) must be satis�ed (Hopenhayn, 1992; Ljungqvist and Sargent, 2012; Lucas and Presco�, 1971;
Presco� and Mehra, 1980). For each aggregate state (c, y,K), the planner chooses a non-negative
quantity of capacity to add. �e planner Bellman equation can be wri�en:

V(c, y,K) = max
K∗≥K

{
K∗π (y,K∗)− c (K∗ −K) + β

∫
V
(
c′, y + 1, δ (K∗)K∗

)
dG(c′|c, y)

}
, (3)

where K∗ again abbreviates K∗(c, y,K). Comparing (3) to (1), the planner’s faces incentives
on its last unit of investment that are equivalent to the those of the agents in the competitive
equilibrium.

We compute the planner solution by discretizing both c and K . We choose a range for these
values that is su�ciently broad to avoid constraining the solution and a discrete grid that is
su�ciently �ne to approximate the optimal solution well.

3.2 Operations Model

Our capacity adoption model uses π(y,K∗) as an input, for a range of values of y and K∗. Since
our data contain essentially no variation in ba�ery capacity, we calculate π(y,K∗) by solving π
for di�erent values ofK∗ as counterfactuals from a dynamic competitive equilibrium operations
model. Furthermore, we allow the operations model values to vary for each month of our sample
to �exibly accommodate the changes in the value of storage arising from (exogenous) �uctuations
in renewable penetration seasonally and year to year.

We now describe the modeling that we use to perform this calculation. Within each month,
we model each day as homogeneous, for computational tractability,24 and K∗ as �xed. Ba�ery

24We assume the days within the month are the same only in our estimation of the optimal policies. When we
estimate the value of storage, we apply our policies to the actual time series of net load, and market prices that we
observe over our sample. On this dimension, we are likely understating the value of storage to the extent that there
is some additional gains that could be obtained by more �nely tuning our policy functions.
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operators, or agents, buy and sell energy in the real-time electricity market in every �ve-minute
time interval with the goal of maximizing their expected discounted pro�ts from being arbi-
trageurs. We model agents as solving an in�nite-horizon dynamic problem, where the ex-ante
equivalent days are repeated in perpetuity. We believe that this is a reasonable approximation
because we focus on ba�ery technology with relatively short storage duration—ba�eries that
can completely �ll or empty within a few hours—so expectations about prices several days in the
future will have relatively li�le in�uence on charging decisions today.

Each agent’s charge decision at each time interval is a function of its charge level, current
market characteristics, as well as the market characteristics last period. Since each agent controls
a small capacity of storage, it takes real-time electricity prices as given. Although each agent acts
as a price-taker, we allow the aggregate ba�ery charge quantity to impact equilibrium market
prices.

We operationalize this by estimating a marginal cost curve of electricity produced by fossil
fuel by generators. Any ba�ery charging will increase the quantity of electricity produced by
dispatchable generators and thereby increase marginal costs and prices, while discharging will
do the opposite. Analogously to the adoption model, each agent forms rational expectations
about the evolution of net load and of aggregate quantity supplied by storage owners, which
allows it to form rational expectations about the equilibrium price distribution in future periods.

Storage Technology

Our modeling approach captures three critical properties about ba�ery storage technology. First,
a ba�ery’s power capacity F determines what fraction of the ba�ery can be charged or dis-
charged in each �ve-minute interval and therefore how quickly the ba�ery can transition from
full to empty and vice versa. We model ba�ery technology that can fully discharge within a
four-hour period. We focus on four-hour duration ba�eries because they are the most common
ba�ery speci�cation currently operating in the CAISO market. For these ba�eries, F = 1

4×12
.

Second, we model the round-trip e�ciency of the ba�ery, υ, which determines the percentage
of energy that is lost during a charge/discharge cycle from a given level of energy to a higher
level and back to the original level. We focus on a round-trip e�ciency of

√
υ = 0.85 because

the storage capital costs projections from NREL are based on lithium-ion ba�eries with these
parameters.

Finally, we model capacity fading, which occurs when the amount of energy a ba�ery can
hold decreases with repeated use. Lithium-ion ba�eries, as well as most other ba�eries, will
exhibit capacity fading. �e extent of capacity fading depends on the number of round-trip
cycles the ba�ery has made, the calendar age of the ba�ery, and the characteristics of each cycle.25

Capacity fading is likely to play an economically important role in a storage operator’s decisions.
Speci�cally, a storage operator may not want to engage in arbitrage if the expected di�erence

25For instance, deeper cycling (such as going from 0% to 100% and back to 0% one time) can cause more capacity
degradation than shallow cycling (such as going from 40% to 60% and back to 40% �ve times).
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in prices across the charge/discharge periods is not substantially large to justify the additional
capacity fading that the ba�ery will endure to complete a cycle.

We model capacity fading using the capacity degradation model of Xu et al. (2016). �is
model takes each a series of charge/discharge decisions over a time interval, calculates cycle ends
and the characteristics of each cycle, and returns a value for how much capacity degradation
would occur over this time interval. �e appendix provides details on our application of this
model. It would be computationally di�cult to model agent’s optimization over the amount of
capacity fading in the operations model. Instead, as we detail in Section 4, we develop a heuristic
optimization process to account for capacity depreciation in our model. Our heuristic decreases
the agent’s perceived round-trip e�ciency υ to account for capacity fading. In so doing, we
account for capacity fading in the agent’s charge decision, though using a functional form that
is an approximation to the true functional form as represented by Xu et al. (2016).

Agent Decision Problem

At each �ve-minute time interval s, each agent seeks to maximize the sum of expected discounted
pro�ts, making charge/discharge decisions over the interval.26 We let S denote the number of
time intervals within a day and D the number of days within a year. �e per-period discount
factor is then β

1
SD .

�e agent bases its dynamic operations decisions on a state that is composed of two compo-
nents. First, the state includes the fraction of the ba�ery’s capacity that it has stored as energy.
Denote the ba�ery’s fraction of charge as f ∈ [0, 1]. Second, the state includes the current market
price Pu and the agent’s perceived distribution of future market prices at time interval u, which
we denote Gu(Pu+1, Pu+2, . . .). Because of our perfect competition assumption, the agent only
cares about market prices and not the actions of other ba�ery operators, though other agents’
actions will a�ect prices in equilibrium.

We can express the operations Bellman equation as:

W (f, Pu, G
u(Pu+1, Pu+2, . . .)) = max

q

{
Pu × (1{q > 0}qυ + 1{q < 0}q/υ) +

+β
1

SD

∫
W (f − q, Pu+1, G

u+1(Pu+2, Pu+3, . . .))d(Gu+1|Gu)
}
, (4)

s.t. − Fυ ≤ q ≤ F/υ and 0 ≤ f − q ≤ 1,

where q is the fraction of the ba�ery’s capacity that it discharges.27 Equation (4) states that the
agent maximizes its total current pro�ts from charging, which are equal to price times quan-
tity supplied (the �rst line), plus the expected future value of the position next period, where

26CAISO has both a ��een-minute ahead market (cleared 4 times per hour) and a �ve-minute ahead market
(cleared 12 times per hour). We focus on the �ve-minute ahead market.

27For simplicity, equation (4) de�nes Gu+1 to be a function of Gu only, rather than other information available
at time u.
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the agent’s energy held next period is f − q (the second line). �is maximization is subject to
the ba�ery’s power capacity of F and the constraint that it cannot be less than empty or more
than full (the third line). �e quantity supplied in the �rst line re�ects that some energy is lost
through charging and discharging. We assume that these energy losses occur symmetrically
across charging and discharging.28

Equilibrium of Model

We focus on a symmetric equilibrium, where all ba�ery operators start each period with the
same fraction already charged and then choose the same charge/discharge fraction each period.
De�ne Q(q) to be the quantity of electricity supplied to the grid by ba�ery operators at a period
where this (common) discharge fraction is given by q:

Q(q) = K∗ ×
(
1{q > 0}qυ + 1{q < 0}q/υ

)
.

To model equilibrium, we need to consider howQ(q) a�ects equilibrium prices and in turn a�ects
charge/discharge decisions. We do this by developing a time series model of electricity demand
and supply.

Our model of demand is relatively straightforward, but justi�ed by the features of the electric-
ity markets. We model the (net) demand for electricity, or net load—the electricity demanded by
�nal users net of the amount produced by intermi�ent renewable sources—as an autoregressive
process whose mean depends on the time of day. In the absence of storage, and because electric-
ity supplied must always meet electricity demanded for technologicial reasons, net load is the
amount of electricity that needs to be supplied by dispatchable generators (which are all gener-
ators except intermi�ent renewable sources). In a world with a �eet of ba�eries, the amount of
electricity that needs to be supplied by dispatchable generators, Zt, at any time interval is then
net load, Xt, minus Q(q), or Zt ≡ Xt − Qt(q). It is helpful to note now, that without ba�eries
(Qt(q) ≡ 0), and the amount of electricity that needs to be supplied by dispatchable generators
is exactly net load, Zt = Xt.

We assume the price of electricity is a function of the amount supplied by dispatchable gen-
erators, the time of day, and an additional shock, εP . �is additional shock represents other
factors that determine the price of electricity conditional on the amount of electricity supplied,
factors like weather, generator outages, and transmission congestion. By our perfect competition
assumption, wholesale electricity price at interval of day s is equal to marginal cost, yielding:

P (s, Zt, ε
P , Zt−1) = MC(s, Zt, ε

P , Zt−1) (5)

whereMC(s, Zt, ε
P , Zt−1) is the marginal cost function, Zt is the amount of electricity supplied

by dispatchable generators in time period t, while Zt−1 is the amount of electricity supplied by

28If we instead assumed that energy was only lost while charging, the last term of the �rst line of Equation 4
would be 1{q > 0}q + 1{q < 0}q/

√
υ).
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dispatchable generators in time period t−1. By including the amount of electricity supplied last
period, we are able to accommodate the possibility of ramping/adjustment costs on the part of
electricity generators.

Additionally, we assume that net load can be modeled as the sum of two components: (i) its
expected value in any interval of day, Xs, and (ii) a deviation or shock from this expected value
εL, or Xt = XL

s + εL. We assume both of the error terms εP and εL are observable to agents at
the start of each short interval and have a distribution dε(·, ·), which governs the likelihood of
future values–which we assume is also known to the agents.

De�ne fa ∈ [0, 1] to be the fraction of aggregate storage capacity that agents are holding
at the start of any period. Any agent can determine the future equilibrium charge/discharge
decisions and hence the future price distribution G(·) from fa, the interval of day s, the amount
of electricity supplied by dispatchable generators last period Zt−1, and the additional shocks εP

and εL. Since fa is the same as f by the symmetry assumption, these �ve elements indicate the
state for an agent at any time interval.

De�ning q∗(fa, s, εP , εL, Zt−1) to be the equilibrium quantity discharged at that state, we can
rewrite the Bellman equation imposing the equilibrium conditions as:

W (fa, s, εP , εL, Zt−1) =

max
q

{
P (s,XL

s −Q(q∗(fa, s, εP , εL, Zt−1)) + εL, εP , Zt−1)× (1{q > 0}qυ + 1{q < 0}q/υ) +

+β
1

SD

∫
W (f − q, s+ 1− 1{s = S}S, εP ′, εL′, Zt)dε(εP ′, εL′|εP , εL)

}
, (6)

s.t. − Fυ ≤ q ≤ F/υ and 0 ≤ f − q ≤ 1.

In a competitive dynamic equilibrium, q∗(fa, s, εL, εP , Zt−1) must be the value of q that maxi-
mizes (6) for every state (fa, s, εL, εP , Zt−1).

Analogously to our approach for solving the equilibrium in the investment stage, we recast
the ba�ery operations problem as a social planner’s problem. We rewrite the problem as the
single-agent planner’s problem whose allocation is then equivalent to the competitive equilib-
rium problem. �e objective of the social planner is to maximize welfare. Electricity demand
is perfectly inelastic in the short-run, therefore the planner will meet demand by choosing the
state-contingent ba�ery discharge fraction q∗(fa, s, εP , εL, Zt−1) that minimizes the total ex-
pected discounted cost of electricity production. Let TC(q, s, εP , εL, Zt−1) denote the total cost
of production for any state. It is the integral of marginal cost from zero to net load plus aggregate
ba�ery output:

TC(q, s, εP , εL, Zt−1) =

∫ XL
s −Q(q)+εL

0

P (s, ζ, εP , Zt−1)dζ. (7)

where we can integrate the price function because of our perfect competition assumption that
prices will be equal to marginal cost. Although TC(·) includes an unknown constant, we nor-
malize the constant to zero because the optimal solution to the planner’s problem is invariant to
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the value of the constant.
We then write the social planner’s Bellman equation as:

W(fa, s, εP , εL, Zt−1) = max
q

{
− TC(q, s, εP , εL, Zt−1) +

+β
1

SD

∫
W(fa − q, s+ 1− 1{s = S}S, εP ′, εL′, Zt)dG(εP ′, εL′|εP , εL)

}
, (8)

s.t. − Fυ ≤ q ≤ F/υ and 0 ≤ fa + q ≤ 1.

For a similar model to ours, Cullen and Reynolds (2017) prove that a solution to the planner’s
problem exists, that the solution and associated state-contingent prices are equivalent to all com-
petitive equilibria, and that a competitive equilibrium exists.

We also use the same framework to compute the optimal operation and the associated value
of a monopolist storage operator relative to a competitive ba�ery market. �e monopolist’s
operation problem is also a single agent problem so computation is similar to the competitive
problem, the only di�erence is that the �ow payo� for a monopolist is equal to P (s,XL

s −Q(q)+

εL, εP , Zt−1)×Q(q) instead of−TC(q, s, εP , εL, Zt−1). In words, the monopolist values its total
revenues as opposed to (the negative of) total cost.

4 Estimation and Implementation

To implement the operations model, we begin by developing a time series model that captures
how net load (demand - solar - wind) and the marginal cost curve (supply) evolve. We construct
our time series model to achieve several objectives. First, the model should produce credible
and well-calibrated forecasts of how both net load and the marginal cost curve evolves at the
5-minute frequency over the day. Such a model enables us to forecast the future evolution of
equilibrium prices in the data and also allows us to calculate counterfactual equilibrium prices
a�er a large ba�ery �eet enters the market. Second, the model forecasts should be feasible from
the informational perspective of an actual ba�ery operating in the real time market. �ird, the
model should be able to accommodate the presence of adjustment costs that in�uence which
generator sets the marginal price at each point in time. Lastly, the set of variables that enter our
time series model must remain parsimonious enough so that the Bellman equation (Equation 8)
remains computationally feasible.

4.1 Time Series Model of Electricity Net Load and Marginal Cost

Given the objectives and constraints outlined above, our model includes the following state vari-
ables: (1) time-period-of-day (at the 5-minute frequency), (2) a price residual that in�uences net
load conditional on the other state variables (which jointly determine the current value of net
load), (3) a price residual that in�uences prices conditional on the other state variables, and (4)
lagged output from dispatchable generators. �is model speci�cation results in very high di-
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mensional state space. Consequently, it is not computationally feasible to add additional state
variables such as outdoor air temperature or information about the full set of active generators
at each moment in time.29

We also leverage an important institutional detail of the California electricity market in that
it has both a day-ahead market in addition to the real-time (spot) market. For planning and
to ensure reliability the day-ahead market serves as the primary scheduling market. While the
real-time market serves as the market to se�le any last minute adjustments that are required due
to unforeseen circumstances. Importantly, each day the system operator produces a projection
of net load and prices for each hour of the day in the day-ahead market, which are publicly
available to market participants and would be information a potential ba�ery operator could
utilize to choose its charge/discharge decisions for the upcoming day. A key feature of our time
series model is that we employ information from both the day-ahead market and the real-time
market. In particular, we use forecasts of (hourly) net load and prices from the day-ahead market
in conjunction with the realized values of net load and prices (at the 5-minute frequency) in
the real-time market. By leveraging the informational content from both markets, our model
remains feasible to implement in real-time from the perspective of a market participant. In other
words, our model could be estimated and employed by an actual ba�ery operator to inform bids
in the real-time market. Moreover, the information from both markets allow us to construct a
�exible model of the marginal cost curve that can vary over time due to seasonal �uctuations in
hydroelectric availability, unexpected generator outages, and changes in other market conditions
(e.g., the natural gas price).

Modeling Net Load

We now brie�y describe the time series model of net load (demand). �e process for net load
(XL

t ) at any �ve-minute period, t, is given by the following equation:

XL
t = E0

[
XL
t

]
+
[
XL
t − E0

[
XL
t

]]
= τLs(t) + εLt (9)

where E0[·] is the expectation taken at time “zero”, or more speci�cally the net load forecast
published by the system operator in the day-ahead market, and τLs(t) captures the interval-of-day
speci�c expectation of net load. �is formulation for the process maps directly to the framework
provided in the previous section with XL

s ≡ τLs(t).
To capture the serial correlation in the deviations of the realizations of net load from what is

anticipated in the day-ahead market we model the εLt as an AR(1) process given by:

29Despite the system operator (CAISO) having information on the current set of generators that are currently
available, it is unlikely that an individual ba�ery operator would have access to this information. �us, the restricted
nature of dimensions of our state space is likely to be more consistent with the information set of a ba�ery operator
in this market.

22



εLt = ρLεLt−1 + ηLt , ηLt ∼ N(0, σ2
L) (10)

where ηLt is a mean zero serially uncorrelated shock with variance σ2
L, and ρL governs the per-

sistence of deviations of net load from their forecasted value in the day-ahead market.
A couple of features of the net load model are worth emphasizing. First, the process for

net load does not depend on price. �us, we are assuming the demand (or, net load; which
includes generation from solar and wind) for electricity is perfectly price inelastic. While in
many other markets and in other segments of this market (e.g., retail) this assumption is false,
for the wholesale electricity markets this assumption is justi�ed because end-consumers do not
face wholesale price changes, and the generation from renewables is also insensitive to price.

Second, the model of net load �exibly controls for (predictable) systematic �uctuations within
the day at the 5-minute frequency (through τs(t)). Additionally, it can accommodate virtually any
lower frequency pa�erns of seasonal �uctuations that might be present in net load–to the extent
that they are predicted by market participants. �is is important, as it is well documented, that
the (net) demand for electricity is a�ected by many seasonal factors including weekday e�ects,
and holidays, to seasonal �uctuations in weather, to longer run trends in the penetration of
renewable generation. �e last of these, of course, is exactly the variation we hope to leverage
to estimate the complementarity between solar generation and ba�eries.

�ird, it also captures the serial correlation that is likely to arise in any interim periods (i.e.,
several adjacent �ve minute periods) over a forecast horizon (i.e., made a day before). �ese
deviations are likely to arise from the short term deviations in weather pa�erns. In making its
projection of future prices, the ba�ery operator will combine the future trajectory of the pre-
dictable component of net load, as well as the current net load deviation from what was projected
for that period, in forming expectations over the future net load trajectory.

Finally, the model also leads to an error term for net load (εLt ) that could be interpreted as
“structural”–or, invariant to the (counterfactual) presence of a large �eet of ba�eries. More spe-
cially, it is reasonable to assume that the market participants forecast of the �nal demand for
electricity (and, generation from renewables), and ultimately how re�ective that forecast was in
what ultimately happened is unlikely to be a�ected by whether or not ba�eries were operating
in the market.

Under this formulation of the net load process, we require a full set of interval-of-day fore-
casts (τLs ) to compute the optimal policy functions (for each month), and the parameters govern-
ing the serial correlation of the deviations from these forecasts (ρL, σ2

L). For the former, we use a
temporally disaggregated version of the day-ahead forecasts for net load from the the �rst day of
the month.30 For the parameters governing the serial correlation of the net load deviations, we

30A notable issue with the day-ahead market forecasts of net load and prices is that they are constructed only
at the hourly frequency, while the real-time market (and our operations model) is formulated at the �ve minute
frequency. We use the Kalman �lter/smoother approach outlined Proie�i (2006) to temporally disaggregate the
day-ahead forecasts of net load to create a �ve minute frequency version. For more details, see On-line Appendix.
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estimate an AR(1) model using OLS of the deviations of net load from the day-ahead forecasts
(also temporally disaggregated) over the year 2015, and hold these parameters �xed over the re-
maining part of our sample (2016–2019) which is used to compute the value of ba�eries.31 In both
cases, the approach ensures that the model would be feasible to estimate given the information
set of a market participant (i.e., only data from the past is used).

Modeling the Marginal Cost Curve

Next, we describe the time series model of the electricity marginal cost curve. Importantly, it is
not su�cient for our model to accurately forecast the historical time series of real-time electricity
prices. �e model must also credibly predict the prices that would occur in a counterfactual
environment with a large �eet of ba�eries reshu�ing the amount of electricity generated at
each point in the day, while still using only the data that would be available to a ba�ery operator
in real time.

We assume that the real-time market prices, Pt, in period t on day d are determined by the
following marginal cost curve for electricity:

Pt = MCt = δd + θd[

Available
Generation

Capacity at t
↓

Kt − Zt]−ψd

Kt = eε
P
t καd

d Z
1−αd
t−1 (11)

recall thatZt is the quantity produced by dispatchable generators in period t, Zt−1 is the quantity
produced by dispatchable generators in period t−1, and εPt is a mean zero error term. �e supply
curve is governed by �ve day-speci�c parameters: δd, θd, κd, αd, ψd.

We adapt the functional form for supply from a previous literature on commodity storage
(Pirrong, 2012). �is functional form has several appealing properties for our application. Im-
portantly, the supply function is monotonically increasing in the Zt, which is critical for solving
the operations model.32 Additionally, the marginal cost function is parsimonious, yet �exible
enough to capture the highly-convex (hockey-stick) shape of the electricity marginal cost curve.
�e supply function achieves convexity though the Kt term, which represents the generation
capacity that is available to produce at time t.33 As Zt approaches the capacity constraint Kt,
marginal cost increases rapidly, which allows the function to capture high price spikes that oc-
cur frequently in the real-time market. Figure 5a illustrates an example of the marginal cost curve
during a summer a�ernoon in 2016 when net load was approaching the constraint on available

31We also tried estimating the ρL, σ2
L parameters separately for each sample year and found that these parameters

are relatively constant over time.
32�e supply curve will always be increasing in Zt as long as ψ > 0 and θ > 0. In contrast, a cubic functional

form could capture highly convex costs but may not be monotonic.
33Available capacity includes generators that are currently online or those that can quickly become operational

without any lead time to start up (e.g., a gas peaker plant).
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generating capacity.
We specify the available generation capacity Kt to be a function of generation last period

Zt−1, a mean-zero idiosyncratic shock εPt , parameter κd, and parameter αd. �e inclusion of Zt−1

inKt allows for the possibility of adjustment constraints. Some generating units, such as nuclear
plants or combined-cycle gas plants, require an extended period of time to transition from a non-
operational state. For this reason, dispatchable generation last period can in�uence the available
capacity in the current period. �e κd parameter measures the amount of generation capacity
that is available at all times throughout the day such as a gas peaker plants that can quickly
turn on. �e α parameter governs the relative importance of Zt−1 versus κd in determining the
total generation capacity at time t. For α = 1, marginal cost is static and does not depend on
dispatchable generation output in previous periods. On the other hand, if α ∈ (0, 1), then an
increase in generation last period will reduce marginal cost in the current period.

Figure 5b shows an example of how a shi� in Zt−1 can a�ect marginal cost; we see that when
net load is approaching the available capacity constraint, a shi� in Zt−1 can lead to a substantial
price increase. Finally, available capacity Kt also depends on a time-varying term εPt which
represents random shocks to available generation capacity such as unplanned generator outages
or a transmission congestion event, especially those that are likely to be unanticipated at very
high frequencies (e.g., at the 5 minute frequency).

�e interpretation of the remaining parameters of this supply curve are also transparent. �e
δ parameter controls the intercept of the marginal cost curve, and is permi�ed to be negative.
�e supply curve parameters θ and ψ govern the slope of the supply curve.

Notably, we allow the supply curve parameters to vary day to day (hence, the d subscripts). In
e�ect, these parameters–and possible movements in them–represent the agglomeration of shi�s
in natural gas prices, changes in the availability of low cost generation coming from nuclear
power plants and hydroelectric sources, as well as temporary generator outages and changes
in electricity imports and exports from neighboring states. We avoid adding additional time-
varying market characteristics (e.g., fuel prices) directly into the model because doing so would
render the dynamic operations model computationally infeasible. However, by allowing the sup-
ply curve parameters to vary day-to-day, we still capture a substantial share of cost heterogeneity
due to changing market conditions.

�ere are a few implicit assumptions embedded in our marginal cost formulation that warrant
further discussion. First, the inclusion of Zt−1 allows for some degree of dynamic adjustment
costs, however, our speci�cation is unlikely to capture the full suite of adjustment costs present
in the market. Our cost function will account for an increase in cost that arises when the system
operator calls on a high-cost generator to produce because a low-cost generator needs more time
to ramp up. However, our cost function may not incorporate a �xed cost that a non-marginal
generator pays to start up or shut down in a given period. Second, the error term εPt enters
marginal cost in a non-linear fashion and contributes to the available capacity Kt. We treat this
shock as “structural”, that is, we assume εPt is invariant to counterfactual changes in ba�ery
operations. To defend this assumption, we appeal to the fact that the model captures the non-
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Figure 5: Time-Varying Marginal Cost Curve

(a) Price Rises at Capacity Constraint (b) Generation Output at t− 1 shi�s MC

(c) Equilibrium Before Price Spike Event (d) Equilibrium During Price Spike Event

Notes: Figure 5a shows the market equilibrium and the implied generation capacity available for a single �ve-
minute interval. Figure 5b shows how (20%) changes in last period’s dispatchable generation shi� the marginal
cost curve. Figures 5c and 5d show how both the net load and the marginal cost curve shi�s during a period when
price increased rapidly over a 20-minute span. Net load is measured as the the energy delivered in MWh over the
�ve-minute period.

Figure 6: Marginal Cost Curve From Day-Ahead Market

Notes: �is �gure displays the sca�er plot of the day-ahead market prices and net load for each hour for a day
in June 2016. Additionally, the marginal cost curves estimated for that day’s data with adjustment costs (blue
line) and without adjustment costs (orange line) are also displayed. �e reported market prices are for the CAISO
South Zone Trading Hub (SP 15). All data collected from CAISO.
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linear relationship between prices and net load in this market, in addition to a large degree of
marginal cost heterogeneity over time, and at least partially captures the (known) adjustment
costs the face generators.

We recover the structural error εPt as the shock to available capacityKt required to rationalize
the real-time price observed at time t, conditional on current net load, lagged net load, and that
day’s supply curve parameters. In particular, at each point in time we can invert the supply curve
equation to recover the structural error term using observed data on price and net load:

eε
P
t =

[
Zt +

[
Pt−δd
θd

]−1/ψ
]

καd
d Z

1−αd
t−1

. (12)

Figures 5c and 5d illustrate how our model rationalizes a rapid change in price that occurs
in the real-time market, while �gure 6 illustrates the �t of the supply curve and the role of
accommodating adjustment costs. At 3:20 PM on June 6, 2016 the real time market price was
just under $50/MWh, then at 3:40 PM price nearly tripled to $140/MWh. We can see in the
�gures that our model rationalizes this price change through both an increases in net load and
an inward shi� of the supply curve. In particular, we can perfectly rationalize this price change
via a negative shock to the price residual εPt , which we interpret as an unexpected shock to
available generation capacity. Due to the high-frequency (5-minute) nature of our application,
we allow for the possibility of serial correlation in εPt . In particular, we assume this process is a
�rst order auto-regressive process given by the following equation:

εPt = ρP εPt−1 + σPt η
P
t

where ρP controls the degree of persistence of the price deviations from the supply curve, and ηPt
is a mean zero serially uncorrelated shock with unit variance, and σPt accomodates for possible
heteroskedasticity that might exist for di�erent hours of the day (e.g., the evening high ramp up
hours of the day).

�is formulation of the real-time market prices maps directly to the framework provided in
the previous section with a total cost function given by the following equation:

TC(q, s, εPt , ε
L
t , Zt−1) = δdZt(q, s, ε

P
t , ε

L
t )−

θd

[
eε

P
t καd

d Z
1−αd
t−1 − Zt(q, s, εPt , εLt )

]1−ψd

1− ψd

+
θd

[
eε

P
t καd

d Z
1−αd
t−1

]1−ψd

1− ψd
(13)

where the �nal term in constructed to normalize shut-down costs to equal zero, a normalization

27



that we maintain throughout, as the overall level of total cost is not identi�ed.
Having derived a parametric form for the total cost function, we still need to estimate the

the supply curve parameters δd, θd, κd, αd, ψd, as well as estimate the parameters governing the
serial correlation of the price shocks (ρP , σPt ). Our approach to estimation is motivated by three
goals: (1) the supply parameters should be credibly identi�ed o� variation in net load, (2) esti-
mation should be feasible in a real-time forecasting environment,34 and (3) estimation should be
computationally feasible considering our multi-year dataset.

Towards those ends, we estimate the (daily) time series of δd, θd, κd, αd, ψd by non-linear least
squares separately for each day using the day-ahead market prices on the day-ahead forecast of
net load (and, lag of net load). More speci�cally, we �nd the set of supply curve parameters that
minimize the implied sum of squared residuals, or:

min
δd,θd,κd,αd,ψd

∑
t∈D(d)

[
P̃t −

(
δd + θd

[
καd
d Z̃

1−αd
t−1 − Z̃t

]−ψd

)]2

where P̃t is the day-ahead market price in period t, Z̃t is the day-ahead forecast of net load for
time period t, and D(d) comprises all the time periods belonging to day d. Given the already
described hourly frequency of the day-ahead market in the California electricity market, these
(daily) non-linear least squares regressions constitute hourly frequency time series regressions
(with 24 observations each).35 Conditional on the full time series of supply curve parameters,
we can use the inversion given by equation (12) on the real-time market prices and the realized
value of net load to recover the supply shock, εPt .

�is approach achieves each of our three objectives. First, the variation in net load that is
used to estimate the supply curve parameters primarily comes from plausibly exogenous within-
day variation in the demand of electricity as well as weather conditions that determine gener-
ation from solar and wind. �erefore, our identifying assumption is that within-day variation
in solar generation and electricity demand is uncorrelated with the supply-side factors that will
contribute to idiosyncratic deviations in the market clearing price.

Second, because the supply curve parameters are estimated using the day-ahead market
prices and the day-ahead forecast of net load, these supply curve parameters are available to
all market participants when they have to make their decisions for the real-time market. �is
feature of the estimation approach is critical, as it ensures that our estimate of the value of stor-
age uses a model of the evolution of prices that would have been feasible in real-time. Finally,
this approach towards estimation is computationally cheap enough to be implemented even in
our high frequency and multiple year se�ing. In estimating the optimal policy, we use the supply

34�e estimates should only use historical data that would have been available and feasible to implement by an
actual market participant.

35For this reason, the lagged value of net load in the non-linear least squares step constitutes the lag of net load
last hour.
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curve parameters estimated from the �rst day of that month.36 In our assessments of the value
of storage, we use the full time series of estimates of δd, θd, κd, αd, ψd, and the implied structural
shocks from those estimates, εPt .

�e remaining parameters required to estimate the ba�ery’s charge/discharge policy are pa-
rameters governing the serial correlation and possible heteroskedasticity of the price residual
(ρP , σPt ). Here as well, it is critical that the parameters that are used to estimate the optimal
policy functions could have been estimated (forecasted) in real-time.

For the parameters governing serial correlation and possible heteroskedasticity of the price
residual (ρP , σPt ), we estimate an AR(1) model using OLS of the estimated structural shocks, εPt ,
implied by the structural supply curve parameters estimated from from the day-ahead market
prices and forecasts of net load. To capture the possibility of heteroskedasticity, separate esti-
mates of the variation of the resulting residuals from the above mentioned OLS regression are
estimated for the late a�ernoon hours (5pm-9pm) and remaining hours, respectively.37 To ensure
feasibility of the policies being applied to market outcomes from 2016–2019, we estimate these
parameters using only 2015 data.

4.2 Computation of the Operations Model

With parameter estimates for the net load and the marginal cost curve in hand, we can now solve
the operations model. We discretize the problem in order to be able to compute it. In our base
computation, we discretize εP , εL, Zt−1, and the charge state fa into 10 dimensions each. As was
described above, our model for prices is a function of the 5-minute interval of a day, implying that
S = 288. Also, our sample consists of 48 months and we allow the operations policies to vary by
month and across 5 candidate values of ba�ery capacity K∗ ranging from 1,000 to 25,000 MWh.
�ese dimensions result in an overall size of the state space that is 10×10×10×10×288×48 =

69, 120, 000 states. We solve the optimization independently for each month-K∗ pair which
results in 240 dynamic problems with 288, 000 states each.

Probably the most common computational method for single agent dynamic problems is Bell-
man recursion, which involves recursing (8) until approximate convergence. Many single agent
problems with this order of magnitude of states are computable using Bellman recursion. How-
ever, Bellman recursion is a contraction mapping with modulus of the discount factor. An im-
portant complication in our model is that we are modeling the decision process at the 5 minute
interval. Under a conventional annual discount factor of β = 0.95, β 1

DI ≈ 0.99999951. �us,
while a Bellman recursion in our model would be a contraction mapping, the modulus would be

36�is approach still ensures that the policy estimated for each month uses only information that would have
been available to the ba�ery operators at that current period. To the extent that trends in demand and supply
conditions lead to extensive movements in the supply curve parameters (δd, θd, κd, αd, ψd), it is possible that our
policy function is sub-optimal as it is estimated o� a “stale” estimate of the supply curve. In this regard, one can
view our estimates of the value of storage as a conservative estimate that could be increased to the extent that the
ba�ery operator could re-estimate its policy function at a �ner frequency than once a month.

37Due to the kurtosis exhibited in the real-time market prices, both variance estimates are constructed using the
median absolute deviation and scaling it by 1.4826.
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very close to 1, making computational time infeasibly long.
A popular alternative to Bellman recursion, is policy function iteration. In our context, this

method implements the following recursive algorithm. First, it de�nes an initial policy function
vector, ~P 0, which is a value of c for every state. �is function implies a vector of static payo�s
for each state, ~π0. Together with the (exogenously determined) transitions for s and εP , εL, the
policy function de�nes an initial transition matrix as Q0. A typical element, qij of transition
matrix Q0 indicates the probability of going to state j from state i. Using this notation, we can
express the vector of values for every state as:

~W0 = β
1

DSQ′0 ~W0 + ~π0 ⇒ ~W0 = (I − β
1

DSQ′0)−1~π0. (14)

�us, (14) provides a solution to ~W0. Policy iteration then proceeds by solving ~P1 as the opti-
mal policies given ~W0, then solving ~π1, Q1, and ~W1 analogously, and then repeating this entire
process until approximate convergence. A central problem with policy iteration in our context
is that a matrix inverse with as many states as we have is computationally infeasible, due to
computational time, storage space, and numerical precision.

We develop a variant of policy iteration that exploits the fact that our transition matrix is
sparse, since s advances deterministically, and that the state space repeats every S periods. In
particular, we modify the step that solves for ~W in (14) and instead solve for ~W by performing
policy iteration S (instead of 1) periods ahead.

Speci�cally, de�ne ~Ws to be the subvector of ~W for all states at interval s. De�ne also Qs

to be the submatrix of transitions from interval s to the following interval (either s + 1 or 1).
Finally, de�ne

~Π1 = ~π1 + β
1

DSQ′1~π2 + . . .+ β
S−1
DS Q′S−1 · · ·Q′1~πS

�en,
~W1 = ~Π1 + β

1
DQ′I · · ·Q′1 ~W1 ⇒ ~W1 = (I − β

1
DQ′I · · ·Q′1)−1Π1. (15)

Equation (15) allows us to express ~W1 with a matrix inverse that is of dimension 10,000 in our
baseline se�ing. Using ~W1, we then solve ~WS, ~WS−1, . . . ,~~W2 quickly, with one-step backward
recursion �is results in a computational process where the computation time is linear in the
number of intervals.

4.3 Evaluating Storage Value and Capacity Fading Using Policies

In principle, we could use the value functions implied by the optimal policies ~W to measure the
expected gross value of ba�eries at varying levels of K?, and to measure how the gross value of
ba�eries evolved across months. A concern with this approach, however, is that our discretiza-
tion of the price process, as well as the supply curve estimates used to estimate the policies are
at best approximations–and, lack capturing the volatility of demand and supply conditions that
occur even within the month for this market. Recall, that we only solve the Bellman equation

30



conditional on the estimated supply curve parameters on the the �rst day of each month. An-
other concern with this approach would be that it would fail to account for the amount of ba�ery
capacity that e�ectively “fades” away through use.

We overcome both of these issues through a set of heuristics. To ensure that we capture
the role of the volatility in demand and supply conditions in the market we compute the gross
value of ba�eries from the observed time series of prices and net load as opposed to the Bellman
equations assessment of the expected value. More explicitly, we continually update (at the daily
frequency) the supply curve parameters (δd, θd, κd, αd, ψd) throughout our estimation sample.
By continually updating the supply curve parameters, we be�er capture the likely equilibrium
e�ects on price that would have occurred with a signi�cant ba�ery presence.38 �e full time
series of the supply curve parameters together with the day-ahead forecasts of net load and the
day-ahead market prices lead to full time series of implied net load (ε̂Lt ) and price residuals (ε̂Pt ).
�us, to compute the gross value of ba�eries we apply our estimated policy functions to the full
time series of price and net load residuals, as well as the continually updated time series of the
supply curve. �is approach is computationally less demanding, as we do not re-compute what
the optimal policy decision for every updated value of the supply curve parameters. We view
this approach as conservative its assessment of the gross value of ba�eries to the extent the a
more �nely updated policy function could achieve higher values.

In order to account for capacity fading we leverage data from the year (2015) prior to our
sample period (2016–2019) as training sample. Using the pre-period training data, we solve the
model using a sparse grid of di�erent candidate round-trip e�ciency levels

√
υ. �e idea is that a

ba�ery operator may be able to improve their payo� by acting as if the ba�ery has a lower-than-
actual round-trip e�ciency. A ba�ery with lower round-trip e�ciency will be more reluctant
to arbitrage prices unless the payo� is su�ciently high. Ba�eries that arbitrage less will also
endure less capacity fading and thus could potentially earn a higher payo�, a�er considering the
costs of capacity fading.

A�er solving for optimal policies for each of the candidate round-trip e�ciency values, we
simulate the evolution of the state-of-charge, f , using the actual demand and price data from the
training data set for each of the candidate policies (i.e., for each candidate round-trip e�ciency).
We then feed the simulate series into a capacity degradation model. �e capacity degradation
model is based o� a rain�ow cylce counting algorithm developed by Xu et al. (2016), which we
explain in more detail in the appendix.

�e above procedure provides two important outputs that we use for the operations model.
First, it provides an estimate of how much capacity degradation will occur on average in each
month. We use this value to adjust the discount factor β in equation 4 to account for degradation
over time due to standard operations. Second, we compare realize payo�s from storage for each
of the candidate round-trip e�ciency values a�er accounting for capacity degradation and �nd
the round-trip e�ciency value that leads to the highest payo�. We then use the best perform-

38Table 6 provides summary statistics of the daily supply curve parameters over varying sub-samples of our
analysis sample.
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ing round-trip e�ciency value as
√
υ when we solve the model on the full data sample.39 �e

outcome of this procedure is that we account for capacity degradation without adding a state
variable to the operator problem. Our approach is both computational feasible and also ensures
that we do not overstate the value of storage by ignoring capacity fading. �e approach also
allow storage operations to acknowledge the costs of capacity fading using a “rule-of-thumb”
when making dispatch decisions.

4.4 Linking the Operations Model and the Adoption Model

Having outlined the approach towards estimating and computing the operations model, we now
brie�y summarize the steps we take to utilize our operation model results as inputs into the
ba�ery adoption model.

Using our approach to account for capacity fading we simulate the policy functions on the
realized sequence of supply curve parameters, price residuals, and load residuals. We simulate
separate policies for di�erent candidate values K∗ and across each sample month. �at is, we
solve for how di�erent capacity ba�ery �eets would be dispatched and the corresponding equi-
librium e�ects on prices for each month. �erefore, we can also calculate the discounted sum
of electricity cost reductions—the value of storage—for each candidate K∗ across our sample
months.

Estimating the storage value for varying sized ba�ery �eets is critical to determining optimal
adoption in storage capacity. Recall that the capacity adoption decision depends on two factors:
(1) c the capital cost of storage, and (2) π(y,K∗), the expected revenues per unit of capacity.
�us, we use the simulated ba�ery operations to determine π(y,K∗).

Solving the storage operations problem for each value of K∗ informs how per-unit expected
revenues π change as more storage capacity is added to the grid. Consequently, we rely on
our ba�ery operations model to identify how changes in K∗ a�ect changes in π. In contrast,
we utilize variation in renewable energy capacity over time to estimate how changes in y af-
fect expected revenues, π. Recall that expected ba�ery revenue can change over time, y, due
to changes in renewable energy generation capacity. �e enormous expansion of intermi�ent
renewable generation over sample, namely, solar PV, has led to unprecedented changes in the
dispatch pa�erns of fossil fuel generators and therefore the marginal cost of electricity. �us, by
solving the operations model for each month, we can evaluate how expected revenues, π change
over time as the renewable portfolio standard has ramped up.

Due to the computational burden of the solving the operations model, it isn’t feasible to solve
the operations model for all possible ba�ery capacity levelsK∗. Instead, we solve the operations
model for each month of our 48-month sample and across a grid of �ve candidate values of
K∗ ranging from 1000 MWh to 25,000 MWh. �us, we evaluate the per-unit value of storage,
π(y,K∗) at 5 × 48 = 240 points. We then obtain an approximation π(y,K∗) by estimating the

39We also allow the optimal round-trip e�ciency value to depend on the capacity of the ba�ery �eet. �erefore
we repeat this procedure separately for each level of aggregate capacity of the ba�ery �eet.
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following regression:

πmk = γ0 + γ1log(K∗mk) + γ2RenewableSharemk + γ3Xmk + νt + εmk (16)

�e outcome of variable, πmk, is the present value of ba�ery capacity (per unit) in month m
with aggregate ba�ery capacity k.40 �e key explanatory variables are the natural log of aggre-
gate ba�ery capacity and the proportion of total electricity generation that came from renewable
energy sources in month t. �e same set of candidate of ba�ery capacity values are used to solve
the model in every distinct month of the sample, so log(K∗mk) will not be correlated with any
omi�ed variables that may a�ect per-unit storage value. On the other hand, the renewable gen-
eration share �uctuates seasonally and is increasing systematically over time. As a consequence,
the renewable share variable could be correlated with other factors that are changing over time
that are also correlated with the value of storage. To address these endogeneity concerns, we in-
clude month-of-year �xed e�ects, νm, in the regression to control for seasonal factors that could
be correlated with renewable generation. We also control for the average price of natural gas in
month m, the average electricity load (demand) in month m, and the amount of hydroelectric
resources available in month m.

Evolution of Battery Capital Costs

�e operations model provides the information needed to calculate the bene�t of a storage in-
vestment, thus, the �nal input we require to solve the adoption model is a speci�cation for the
evolution of ba�ery capital costs. We specify that the dynamic process for the cost of the storage
technology, cy, is given by the following unit root with dri� process:

cy = cy−1e
τeξy , ξy ∼ N(0, σ2

c ) (17)

with c2018 as the (initial) cost assessment of ba�ery technology in the year 2018, and with τ and
σc governing the size of the dri� and future uncertainty involving the level of costs. To the extent
that τ < 0, the costs of storage will generally trend down over time. �e uncertainty involved
around the size of these future declines in costs is captured by the process ξy. We assume that ξy
are i.i.d. across time.

�e motivation for these modeling choices are encapsulated in the cost projections collated
by the National Renewable Energy Laboratory (NREL) plo�ed in Figure 2. �ese future cost as-
sessments display several pa�erns critical to our modeling choices including: (i) a non-linear
trajectory, (ii) a downward trend in costs, (iii) uncertainty at future horizons, (iv) positive skew-
ness in the distribution of future costs, and (v) a general increase in the uncertainty of the cost
assessments throughout the over 30 years of the projection.

Each of these pa�erns guide the modeling approach for the dynamic process of costs. �e (al-
most) certain downward trend in costs motivates the dri� term in our model, the non-linear tra-

40More concretely, πmk is the lifetime value of a 1 MWh ba�ery operating in a scenario where month m grid
conditions occur in perpetuity.
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jectory motivates the exponential formulation. Additionally, the increasing level of uncertainty
in the forecast uncertainty motivates the unit-root (in logarithms) formulation of the model, and
the positive skewness in the cost assessments motivates the log-normal distribution for the shock
process.

Given our cost model, we have two parameters to estimate: the magnitude of the downward
dri� (τ ), and the size of the shock process governing the level of cost uncertainty (σc). Impor-
tantly, we do not observe actual realizations of the ba�ery capital cost process, but we do observe
the set of projected cost realizations from Cole and Frazier (2019). �erefore, we treat each cost
projection (i.e., each line in Figure 2) as a realization of the cost process to estimate the param-
eters of the capital cost model. In particular, we use a method of moments approach to recover
τ and σc using the normalized cost projection data reported in Cole and Frazier (2019). We de-
rive the moment conditions for estimation in the Appendix. Table 1 shows that τ̂ = −0.044 and
σ̂c = 0.064. Following Cole and Frazier (2019) we also assume the the initial condition for capital
costs in 2018 is c2018 = $380/kWh.

Table 1: Capital Cost Parameters

Estimate SE
τ -0.044 ( 0.001)
σc 0.064 ( 0.003)

5 Results

Having discussed our modeling approach, we now turn to highlighting the key results from both
the operations and adoption models. We begin by discussing several �ndings from our operations
model. In particular, we discuss temporal pa�erns in equilibrium ba�ery output and how these
ba�ery outputs a�ect equilibrium market prices. We then report our estimated value of ba�ery
operations and show how the value of ba�eries changes with the share of renewable generation
and the total amount of ba�ery capacity in the market. Finally, we review our set of results
pertaining to ba�ery adoption over time. Namely, we show ba�ery adoption trajectories under
several counterfactual policy and competitive environments.

5.1 Operations Model Results

Figure 7a illustrates the mean simulated ba�ery discharge quantity for each hour of the day
between January 2016 and December 2019. Each line in the �gure shows ba�ery output for a
speci�c aggregate ba�ery �eet capacity K . Ba�eries discharge the most during the hours that
net load is the highest—6-8 am in the morning as well as the evening peak hours of 5-8 pm. We
also see that as aggregate ba�ery capacity grows, aggregate ba�eries discharge increases in the
evening, while aggregate charging increases during the day. In Figure 7c, we see how the bat-
teries’ storage inventory (i.e., state-of-charge) evolves throughout the day. On average, ba�eries
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remain between 60-80% charged throughout the day, and mean state-of-charge increases with
aggregate capacity. Ba�eries remain relatively full in order to have su�cient inventory in case
of an unexpected price spike event such as a generator outage.

As the �eet expands, Figure 7b shows that ba�eries operations exert a strong e�ect on equilib-
rium prices. Figure 7d zooms in on the evening hours, we see that during the 6-7 pm hours—the
hours with the highest average net load—a relatively small 1,000 MWh ba�ery �eet would re-
duces average prices by over $10 per MWh. Figure 7b also illustrates that ba�eries’ charging
during the middle day have a relatively small a�ect on prices because marginal cost is relatively
low and �at during those hours. Figure 7b also illustrates that the �rst few units of ba�ery
investment would have the largest impact on equilibrium price, whereas incremental storage in-
vestment has a smaller impact on prices. �e �rst ba�eries that enter the market will reduce the
occurrence of extreme pricing events by discharging during periods when net load approaches
the available generation capacity. By doing so, the ba�eries will reduce prices and also move to
the equilibrium to �a�er regions of the marginal cost curve, thus reducing the marginal impact
of subsequent ba�ery entry on prices. Table 3 emphasizes this result, we �nd that the �rst 1,000
MWh of storage capacity would reduce load-weighted average price by almost 10% from $33.67
per MWh to $30.62 per MWh, on the other hand, the next 14,000 MWh would only reduce mean
price by 3% to $28.91 per MWh.

Welfare and Distributional E�ects of Storage Operations

We next turn to investigating the distributional consequences of storage operations in the elec-
tricity market. We have already seen that storage operations would have substantial impacts
on equilibrium prices. Consequently, storage will impact total welfare and may have important
distributional e�ects. Recall that we assume that demand is perfectly inelastic and is held �xed
under counterfactual changes in storage operations. �erefore, a change in welfare is equal to
the change in the total cost of electricity generation. �e �rst column of Table 2 shows the
mean e�ect on ba�ery operations of welfare in thousands of dollars per hour. We �nd that a
1,000 MWh storage �eet would increase welfare (reduce the total costs) by $1,190 per hour on
average. A larger �eet with 15,000 MWh would further reduce costs by $10,910 per hour. �e
other columns of Table 2 report how ba�ery operations would a�ect the economic rents earned
by di�erent types of market participants. Column 2 indicates that ba�eries would signi�cantly
reduce the total price (price×load) that load serving entities need to pay to meet demand. In par-
ticular, a 15,000 MWh ba�ery �eet would reduce mean hourly expenditures for utilities by over
$140,000 per hour. Relatedly, ba�eries would substantially reduce the the revenues of both dis-
patchable generators and intermi�ent generators. More speci�cally, hourly revenue would fall
by $125,000 for dispatchable generators (price× net load) and $16,000 for solar and wind genera-
tors. Perhaps surprisingly, intermi�ent renewable generators are harmed by ba�ery operations
because ba�eries–by reducing ramping constraints–reduce prices during the early a�ernoon (2-
4pm) when many solar plants are producing.
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Figure 7: Ba�ery Output and Equilibrium Prices E�ects

(a) Mean Hourly Ba�ery Output Across Day (b) Mean Hourly Equilibrium Prices

(c) Mean State-of-Charge (d) Peak Equilibrium Prices (5-min. Freq.)

Notes: Each line plots the mean counterfactual outcome across 2016-2019.

Table 2: Mean Hourly Welfare and Revenues Across Aggregate Ba�ery Capacity Levels

K Welfare $ to Serve Load Dispatchable Gen. Rev. Solar+Wind Rev. Ba�ery Rev.
0 0.00 885.22 769.07 116.10 0.00
1000 1.19 796.28 691.45 104.79 1.14
5000 5.03 765.29 663.75 101.51 4.32
10000 8.08 754.78 654.07 100.68 5.92
15000 10.91 744.82 644.43 100.36 6.98
Notes: All variables are hourly means in thousands of dollars. Welfare is the change in the mean hourly total cost

of generation relative to the case where ba�ery capacity (K=0). “$ to Serve Load” equals the the equilibrium price
times the the total load in that hour (i.e., the cost to load serving entities). “Dispatchable Gen. Rev.”, “Solar + Wind
Rev.”, “Ba�ery Rev.” are the mean hourly revenue for dispatchable generators, renewable generators, and ba�ery
operators respectively.
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Monopoly Battery Operation

(In Progress)

Table 3: Equilibrium Prices and Aggregate Ba�ery Capacity

K Price (All hours) Price (6-9 AM) Price (10 AM - 3 PM) Price (4-8 PM)
0 33.67 30.58 23.42 50.18
1000 30.62 28.63 21.87 40.86
5000 29.58 27.94 21.60 37.96
10000 29.22 27.71 21.58 36.96
15000 28.91 27.59 21.83 35.95
Notes: Prices reported are in $/MWh and are the load-weighted mean across all �ve minute intervals in our main

sample covering 2016-2019.

Measuring Solar and Storage Complementary

We next use the outputs from the operations model to calculate the discounted social value of
ba�ery storage. In reporting our results, we �rst discuss how the value of storage estimated over
the 2015–2019 period relates to the share of generation coming from intermi�ent renewables—a
set of results that speak directly to the complementarity of storage and solar generation.

Figure 8 provides an illustrative visualization of some key associations. First, Figure 8a plots
the per-unit discounted present value of ba�eries for each month in our four-year sample, as-
suming a small ba�ery �eet with capacity of 1,000 MWh. In calculating the ba�ery value for
each month, we assume that ba�ery will operate in perpetuity and the market conditions that
occurred in that month repeat forever. �e orange line plots a simple linear �t of the relationship
between storage value and the share of electricity generated with solar PV. �e dashed-grey line
shows estimated break-even capital cost for a 1 kWh of storage in 2019 from Cole and Frazier
(2019). In this panel, the strong positive association between the prevalence of solar generation
and the value of storage is clear. Additionally, by comparing the current assessment of the capital
costs to the relationship between solar generation share and the value of storage–it is evident a
modest increases in the share of solar would be associated with increases in the social value of
storage that would cover current assessments of capital costs.

Figure 8b contrasts the average per-unit value of storage for a smaller ba�ery �eet (1,000
MWh) and a larger ba�ery �eet (15,000 MWh). �e per-unit value of storage falls by 20-50% with
15,000 MWh of capacity, compared the per-unit value with 1,000 MWh capacity. �is pa�ern
highlights the decrease in returns-to-scale from storage investment. As more ba�eries enter the
market, ba�ery operations will eventually reduce prices in peak periods. By mitigating price
�uctuations, ba�eries reduce the total cost of electricity generation but also reduces the value of
subsequent ba�ery investment. Figure 8b shows that this relationship is particularly pronounced
at higher levels of renewable energy penetration.

In the lower panel, Figure demonstrates how ba�ery depreciation (i.e., capacity fading) in�u-
ences storage value. Depreciation from cycling reduces the implied value of a storage investment
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Figure 8: Value of Ba�ery Investment

(a) Renewable Energy and Ba�ery Value (b) Aggregate Ba�ery Capacity and Ba�ery Value

(c) Ba�ery Depreciation and Ba�ery Value (d) Ba�ery Value - Uncertainty vs. Perfect Foresight

Notes: Each point in the sca�er plots (a-b) represents the implied value of storage for a single month during the
sample (2016-2019). �e solid lines in (a-b) plot the linear trend for each group.

by between 25% to 50% depending on the level of renewable energy generation. In particular, we
�nd that ba�eries tend to cycle more as renewable generation increases and therefore depreci-
ation will also increase. Due to the economically important a�ects of ba�ery depreciation, we
account for depreciation when calculating the payo� of a storage investment in our adoption
model.

Finally, Figure 8d compares the value of storage under uncertainty about load and the elec-
tricity supply (the base case) relative to a scenario where ba�ery operators could perfectly predict
future realizations of load and the supply curve. We see that a ba�ery operators could provide be-
tween 50% to 100% higher value under perfect information. �is result underscores the volatility
and unpredictable nature of real-time market prices. Importantly, our results that allow for un-
certainty should be interpreted as a lower bound for storage value that could be further improved
through be�er forecasting.

38



Linking the Operation Results to the Adoption Model

To provide a more systematic evaluation of the relationship between renewable energy pene-
tration and per-unit storage value, as well as storage �eet size and per-unit storage value, we
estimate regression Equation 16. Recall, that this regression equation forms the bridge between
our results from the operations model to our model of ba�ery capacity adoption. �e depen-
dent variable for these regressions is the present discounted value per MWh of storage capacity
accounting for capacity fading from operations.

We report the regression results in Table 4. Our preferred speci�cation (3) include controls
for the mean load for the month, the mean natural gas price over the month, and the Sacramento
Valley hydroelectric water year index (WYI) associated with that month. We show the results
both with and without month-of-year �xed e�ects.

Table 4: Per-Unit Value of Storage as a Function of Storage Capacity and Renewable Penetration

(1) (2) (3)

Log(K) -28.761∗∗∗ -28.761∗∗∗ -28.761∗∗∗
(7.445) (6.911) (5.484)

Renewable Share [0,100] 2.956∗∗ 5.825∗∗∗ 8.567∗∗
(1.483) (1.692) (3.583)

Month of Year FE N N Y
Load, NG Price, Hydro Controls N Y Y

Observations 192 192 192

Notes: �e dependent variable is the present discounted social value per kWh of
storage capacity a�er accounting for capacity fading from operations. Each obser-
vation represents a single month of the sample for a single storage capacity (K).
Speci�cations with controls include the mean load for the month, the mean natural
gas price over the month, and the Sacramento Valley hydroelectric water year index
(WYI) associated with that month.

Consistent with 8, the regression results paint a clear picture of a close connection between
the growth in solar generation and the value of storage. By leveraging the extended time series
variation during a stretch of considerable growth in solar generation, we estimate that each
percentage point increase in renewable energy market share corresponds $8.56 per kWH increase
in the value of a storage investment in a competitive storage market. �e results also show that
each 1% in ba�ery capacity decreases the per-unit value of storage by $28.76 per KWh.

5.2 Battery Adoption Results

We next turn to discussing the results from our ba�ery adoption model. We �rst use our adoption
model to solve for the equilibrium adoption path under a competitive ba�ery market and under
a monopoly ba�ery market. Recall that the agents’ adoption decisions depend on the future
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Figure 9: Ba�ery Adoption Paths

(a) Adoption without Subsidies (b) Myopic vs. Forward-Looking Adoption

(c) Renewable Mandates and Ba�ery Adoption (d) Ba�ery Adoption by 2024 with Subsidies

Notes: Figure (a) �gure plots the competitive equilibrium adoption. �e other �gures plot ba�ery capacity adop-
tion under di�erent counterfactuals.

trajectory of ba�ery costs and the future path of ba�ery values. �erefore, the adoption choice
is a function of our estimates of the cost process (Equation 17) and predictions of future ba�ery
values from regression equation 16. In particular, we use regression equation 16 to predict the
value of a ba�ery investment as function of the renewable generation share and the amount of
ba�ery capacity in the market in each year. We take the level of renewable generation in each
future year as exogenously determined by California’s renewable portfolio standard (RPS). �e
California RPS requires an incrementally higher share of renewable generation each year before
reaching 60% in 2030.41 To predict future ba�ery value for adoption model, we also assume
that ba�eries have rational expectations about the path of ba�ery investment by other market
participants.

Figure 9a depicts the mean ba�ery capacity over time without any subsidies or mandates.42

We see that for the competitive ba�ery market, ba�ery capacity reaches about 40,000 MWh by

41We assume that renewable share remains at 60% in the years following 2030.
42�e exact adoption path will depend on the realizations of the cost process, we therefore report the mean

capacity level for each year implied by by taking the average outcome across many simulated realizations of the
cost process.
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2040, with almost all investment coming a�er 2030. �ere are two important reason why ba�ery
adoption is essentially non-existent before 2030. First, the value of a storage investment will be
higher in the future as more renewable generation is added to the grid. Second, ba�ery investors
obtain a large option value in delaying investment until costs are lower in the future.

Figure 9b shows the di�erence in the competitive adoption path between the cases of forward-
looking agents and myopic agents. Myopic agents adopt storage as soon as the current value of
storage exceeds the capital cost, while myopic agents consider the potential bene�t of waiting
longer to invest a�er further capital cost declines. We see that myopic agents invest heavily
in storage between the years of 2025 and 2030, reaching over 20,000 MWh by 2030. �e large
di�erences between the myopic and forward-looking investment paths demonstrates the strong
option value of delaying investment due to future expectations regarding the rapidly falling cap-
ital cost of storage.

We next consider how the competitive adoption path would change in response to changes in
renewable energy policy—the California RPS. Figure 9c shows the competitive market’s invest-
ment in ba�ery capacity for a 30% RPS by 2030, a 40% RPS by 2030, a 50% RPS by 2030, and a 60%
RPS by 2030 (the current policy). �e result indicate that almost no storage investment would
occur under an RPS below 40%. With the more aggressive renewable energy mandates, stor-
age investment greatly increases. �e 50% RPS would result in 15,000 MWh of expected storage
capacity by 2040, and the 60% RPS would result in 40,000 MWh. �ese results suggest that bat-
tery storage investments are not likely to be economically viable unless intermi�ent renewable
penetration is relatively high.

In Figure 9d, we investigate how government subsidies for ba�ery storage can steer the bat-
tery adoption path for both the competitive and monopoly cases. We �nd that moderate subsidies
can speed the rate of adoption. In particular, we �nd that with a 35% subsidy for ba�eries, Cal-
ifornia could achieve 5,200 GWh (1300 GW) of ba�eries by 2024— the amount required under
California’s AB 2514 ba�ery mandate.

Finally, we use the adoption model to evaluate the present discounted value of ba�eries in-
vestment in the California. Our welfare analysis indicates that storage investments will be a
highly valuable tool for California to meet its ambitious renewable energy goals. In particular,
we �nd the total expected discounted surplus from the ba�ery market is $3.6 billion billion as
of 2018. To put in other terms, the presence of ba�ery storage increases the average value of
renewable generation by $2.42/MWh.43

43In present value terms, the California is expected to generate 1.5 billion MWh from renewable energy sources.
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6 Conclusion

A signi�cant challenge to meeting the world’s growing demand for energy is that utilities can-
not typically store electricity for later use.44 As the majority of renewable generation come from
intermi�ent resources, the interest and potential role for ba�ery storage technology has grown
substantially. �is paper develops a dynamic, competitive equilibrium model of ba�ery adop-
tion and operations. �e model includes a number of key features that we believe are critical
for understanding the ba�ery adoption capacity and value created by ba�eries under di�erent
policies. �is includes modeling the equilibrium e�ects of large-scale ba�ery adoption smooth-
ing out price peaks and valleys, ramping costs, depreciation from ba�ery use, and uncertainty as
faced by agents in the market. We evaluate the predictions of our model using data on the Cali-
fornia electricity market. We develop frontier time-series forecasting algorithm to model future
marginal cost curves for electricity.

Our results indicate that complementarity between solar and ba�ery technology is econom-
ically large. We are also currently not very far from a point where a small amount of ba�ery
storage could break even. Utility-scale ba�ery storage would contribute signi�cantly to the so-
cial welfare of the California electricity market, adding $2.42 per discounted MWh of renew-
able energy generated, as of 2018, of $3.8 billion in total. In the absence of ba�ery subsidies or
mandates, we would likely see large-scale ba�ery adoption by about 2030, spurred by declining
capital costs and increasing renewable energy penetration. Installation subsidies of 35% would
be necessary to meet California’s ba�ery storage mandate by 2024. If the ba�ery storage were
owned by a monopolist rather than a competitive market, more adoption would occur earlier but
the adoption would create less social surplus.

44�e Energy Information Administration (EIA) projects world energy consumption will increase by an average
of 1.4% per year through 2040 (Conti et al., 2016). As of 2011, less than 3% of all delivered electricity used storage
(Dunn et al., 2011).
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Appendix

A Capital Cost Estimation

As shown in Section 4 , capital costs evolve according to the following process:

cy = cy−1e
τeξy , ξt ∼ N(0, σ2

c ) (18)

Taking the natural log of each side of the equation and subtracting yields:

log(cy)− log(cy−1) = τ + ξy (19)

We can then rewrite costs in terms of the initial cost c0 in the year 2018.

log(cy)− log(c0) = τ · y +

y∑
1

ξy (20)

Finally, we use Equation 20 to derive the following moment conditions:

First Moment

E[log(cy)− log(c0)] = τ · y (21)

Second Moment

V ar[log(cy)− log(c0)] = V ar[yτ +

y∑
1

ξy]

V ar[log(cy)− log(C0)] = V ar[yτ ] + V ar[

y∑
1

ξy]

V ar[log(cy)− log(c0)|y] = y · V ar[ξy]

SD[log(cy)− log(c0)|y] =
√
y · SD[ξy]

SD[log(cy)− log(c0)|y] =
√
y · σ (22)

We �nd the parameters τ and σc that solve the two moment conditions by estimating two uni-
variate regressions. For the �rst regression the dependent variable is log(cy) − log(c0) and the
dependent variable is y. For the second regression, the dependent variable is the standard devia-
tion of all the cost realizations (log(cy)− log(c0) conditional on y, and the independent variable
is √y. In the second regression, we only have one observation for each year, so we weight the
regression by the number of cost projections that were made for that year. Figure 2 shows that
years that are further in the future tend to have fewer cost projections.

Without loss of generality we also normalize the initial capital cost to c0 = 1 before estimat-
ing the model. �erefore, 1− cy represents the percentage reduction in costs at year t relative to

47



2018. We then re-scale the cost process before solving the investment problem so that c̃t = 380∗ct
consistent with Cole and Frazier (2019) that assume capital costs in 2018 are $380/kWh.

B Modeling Battery Capacity Degradation

We model capacity degradation using the model from Xu et al. (2016). In the model, the degra-
dation rate of a ba�ery cells depends on the following factors: (1) temperature, (2) depth-of-
discharge, (3) state-of-charge, (4) calendar time, (5) number of cycles. Ba�ery degradation is
therefore a nonlinear process with respect time and stress cycles. For our application, we as-
sume that the ba�ery is operated at 25 C (77 F) throughout the year.

Let the K denote the ba�eries capacity this period and let K ′ denote the ba�eries capacity
next period. Furthermore, let gd be a function that determines degradation between the current
period and next period.

K ′ = Ke−gd (23)

Ba�ery degradation, gd, consists of calendar degradation, gt, and cycle degradation, gc. De�ne N
as the total amount of cycles that the ba�ery undertakes, and let ni be a variable that indicates
if cycle i was a full cycle (ni = 1) or a half cycle (ni = 0.5):

gd = gt +
N∑
i

nigc (24)

Calendar degradation refers to degradation that occurs over time regardless of how much the
ba�ery is charged or discharged. Calendar degradation is a function of time as well as the bat-
tery’s mean state-of-charge. Ba�ery capacity will degrade more if the ba�ery is le� idle at full
state-of-charge relative to if the ba�ery is le� idle at 50% SOC. More concretely, calendar degra-
dation is a function of time elapsed in seconds, t(s), as well as mean state-of-charge during the
time elapsed, σ̄

gt = 0.000000000414 ∗ t(s) ∗ e1.04(σ̄−0.5) (25)

�e second component of the degradation function is the portion a�ributed to cycling activity,
the capacity reduction due to cycling depends on the mean state-of-charge during cycle i , σi, as
well as the depth of discharge of the cycle, δi. A larger depth of discharge causes more capacity
degradation. Cycling from 0% to 100% once is more damaging than cycling from 25-75% twice.

fc = e1.04(σi−0.5) ∗ (140000δ−0.501
i − 123000)−1 (26)

By substituting equations 2,3,4 into Equation 1, we see that capacity (next period) is a function
of t(s), N , σ̄, ni, δi, and σi.

We perform the following algorithm to simulate ba�ery degradation:
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1. First solve for the optimal policy, using annual discount factor of β = 0.95

2. Use the optimal policy from (1) to simulate the charge/discharge actions using the realized
stream of price residuals εP , load residuals εL, and supply curve parameters across all time
periods in month m.

• For a 1 month simulation t(s) = 60 ∗ 60 ∗ 24 ∗ 30 = 2592000

• Record the ba�eries’ state-of-charge for each time interval (5 min) of the simulation

3. Use the simulated path of state-of-charge levels to calculate the mean state-of-charge over
the simulation period σ̄

4. Feed the simulated path of charge levels into a rain�ow cycle counting algorithm.

• See h�ps://www.mathworks.com/matlabcentral/�leexchange/3026-rain�ow-counting-
algorithm

• �is rain�ow counting algorithm will return N , σ̄, ni, δi, σi. In words, it will count
the number of cycles (half and full), and determine the mean state of charge for each
cycle and the depth-of-discharge for each cycle.

5. Calculate the total degradation rate e−gd and for each month-long simulation. �en calcu-
late the lifetime value of the ba�ery by dividing the sum of the �ow pro�ts by the sum of
the monthly discount rate and the capacity degradation rate:

Storage Value =
Sum of Simulated Flow Pro�ts During Month Simulation

(1− e−gd) + (1− 0.95) 1
12

(27)

* Note that this formulation technically assumes that both power and energy capacity are
being reduced. �e engineering literature says that only energy capacity should degrade, so this
calculation should provide an upper bound on the value of storage.

C Tables & Figures
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Table 5: Summary Statistics

Daytime 10 AM - 3 PM
2015 2016 2017 2018 2019 Total

Real-Time Price ($/MWh) 25.57 24.45 23.49 27.20 25.54 25.25
(67.06) (80.68) (69.44) (61.27) (54.62) (67.20)

Day-Ahead Price ($/MWh) 27.80 22.47 24.14 32.13 23.75 26.06
(8.848) (11.10) (15.73) (32.32) (14.67) (18.82)

Ba�ery Discharge (MW) . . . -2.908 -5.038 -4.146
(.) (.) (.) (25.65) (35.34) (31.66)

Solar Generation (MW) 4373.3 5634.9 7264.2 7802.7 8219.6 6658.4
(1033.5) (1480.1) (1949.3) (1939.2) (2406.1) (2323.1)

Imports (MW) 6659.8 6246.6 5182.9 4742.0 3295.4 5314.3
(1106.2) (1266.2) (1494.9) (1811.8) (2068.9) (1934.4)

Hydro Generation (MW) 1306.1 2324.4 3272.6 2114.7 2886.3 2357.6
(568.3) (843.3) (932.1) (569.6) (809.8) (1018.5)

Net Load (MW) 22442.0 19760.4 17745.0 16452.8 14698.5 18220.6
(4840.2) (4440.3) (5368.5) (5223.0) (5152.0) (5686.9)

Evening Peak 4 PM - 8 PM
2015 2016 2017 2018 2019 Total

Real-Time Price ($/MWh) 44.14 42.59 54.51 58.90 51.58 50.34
(95.11) (100.4) (135.3) (129.1) (105.9) (114.5)

Day-Ahead Price ($/MWh) 41.63 40.03 56.13 67.30 52.38 51.49
(9.889) (13.47) (46.49) (70.53) (27.94) (41.70)

Ba�ery Discharge (MW) . . . 9.239 3.436 5.866
(.) (.) (.) (27.98) (34.18) (31.86)

Solar Generation (MW) 1070.7 1442.9 1882.7 2078.6 2229.8 1740.8
(1475.2) (1997.0) (2679.7) (2896.0) (3149.8) (2551.7)

Imports (MW) 7838.8 8296.1 7981.6 8126.7 6969.8 7882.9
(1290.2) (1406.6) (1583.5) (2079.5) (2444.5) (1831.1)

Hydro Generation (MW) 2190.5 3422.3 4222.8 3128.0 3930.9 3353.6
(724.2) (948.9) (898.3) (714.6) (807.9) (1089.5)

Net Load (MW) 27659.4 26383.9 25983.7 25285.4 24180.3 25898.8
(4796.5) (4823.0) (5666.0) (5477.4) (5782.1) (5449.0)
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Figure 10: Regulation Service �antity Procured in CAISO

Note: �e �gure plots the mean hourly quantity of regulation services procured by CAISO each month. Regulation
quantity is calcualted the sum of “regulation up” and “regulation down” quantities in the day-ahead market.

Figure 11: Storage Applications in the Day-Ahead Market
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Table 6: Summary Statistics of Daily Marginal Cost Curve Parameters

Parameter 2015 2016 2017 2018 2019 2016-19
δ
Mean -47.160 -59.863 -38.812 -26.875 -30.305 -38.978
Std. 56.789 75.965 58.459 45.561 49.610 59.922

θ
Mean 64.299 90.093 56.125 35.629 42.349 56.072
Std. 94.598 130.004 98.374 74.279 82.789 100.817

κ
Mean 2.575 3.088 2.563 2.108 2.326 2.522
Std. 2.015 2.851 2.468 2.040 2.347 2.468

α
Mean 0.722 0.850 0.816 0.815 0.796 0.819
Std. 0.238 0.114 0.137 0.137 0.133 0.132

ψ
Mean 0.431 0.277 0.341 0.325 0.315 0.314
Std. 0.305 0.163 0.240 0.237 0.221 0.218

Notes: �is table summarizes the means and standard deviations of the daily marginal cost curve parameters over
distinct parts of our analysis sample.

D Brief Discussion of Kalman Filter/Smoother

In section 4.1, we described our steps for estimation of the time series model of electricity de-
mand and marginal costs. Importantly, our estimation procedure used information on prices
and quantities that are both set (forecasted) in the day-ahead market, as well as the prices and
quantities that are ultimately realized in the real-time market at each �ve minute interval.

One complication that arises with using the day-ahead market is that the California system
operator (CAISO) sets the day-ahead market only at the hourly frequency, reporting prices and
forecasts for net load that are constant over the 12 �ve minute intervals over the hour. As our
operations model is based on the �ve minute frequency, our estimation procedure must be able to
accommodate the mixed-frequency nature of the quantities and prices set in both the day-ahead
and real-time markets.

We overcome this hurdle by incorporating the Kalman �lter/smoother in an e�ort to tem-
porally disaggregate (e.g., or interpolate) the forecasts of netload to yield a forecast at the �ve
minute frequency.

Speci�cally, assume that the a seriesFt is observed only every h periods, and what is observed
is the average of the interim h periods of the latent process ft, or Ft =

∑h−1
j=0 ft−j . �e objective

is to take a series Ft and construct an estimate of the latent process ft such that the implied
values for Ft match what’s observed. Casting the problem in a state space model and using the
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Kalman �lter/smoother to estimate the latent process is well documented in the literature (e.g.,
Proie�i (2006)).

Casting the process as a state space model can be done as follows:

Ft = Ztft

ft = ft−1 + ηt

where Zt is a time varying selection matrix designed to handle the possibly missing observations
during the interim periods before the temporally aggregated version, (Ft) is observed, and ηt is a
serially independent error term that contributes to the time series variation in the latent process
of interest ft.

Using techniques outlined in Durbin and Koopman (2012); Harvey (1989) to build the appro-
priate augmentation to the state space system matrices consistent with the net load forecast set
in the day-ahead market representing an average of CAISO’s implicit forecast for net load over
each �ve minute period that hour, we apply the Kalman �lter/smoother recursions to recover an
estimate of the latent ft for each day in our sample. �ese estimates can then be used as the de-
terministic portion of net load, XL

s , where deviations from these forecasted values are captured
by εLt .
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