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Abstract

This paper presents preliminary estimates of how electricity consumption has changed in the
European Union since the spread of COVID-19, as a proxy for short-term changes in economic
activity. I collect hourly data by country from European Network of Transmission System
Operators for Electricity (ENTSO-E) from 2016-present, and match it with automated weather
stations to adjust for heating and cooling demand. As of the week ending 4 April, 2020, power
consumption is down roughly 10%, with large differences across countries reflecting the timing
and stringency of lockdown policies.

∗I am grateful to Francesco Decarolis, Tommaso Monacelli, and Justin Wolfers for helpful conversations. Iván

Higuera-Mendieta provided excellent research assistance under unusual circumstances. Ari Anisfeld, Chinmay Lohani,

and H.I. Park also pitched in on short notice. This research is funded by the Political Economics Initiative at the

Becker Friedman Institute at the University of Chicago. All errors remain my own. e-mail: scicala@gmail.com

https://home.uchicago.edu/~scicala/papers/real_time_EU/real_time_EU.pdf


1 Introduction

Governments around the world have taken measures to reduce in-person interactions to reduce the

speed of transmission of coronavirus disease 2019 (COVID-19). Mass quarantines and shutdowns

are likely to have significant economic costs and require a substantial policy response to provide

assistance to individuals who are unable to work while at home. Such a response naturally requires

an understanding of the magnitude of the economic downturn.

While policies to reduce transmission have been instituted suddenly, standard economic indica-

tors to measure their impact are collected over longer time horizons. This creates a costly window

of uncertainty in which individuals are exposed to the full economic costs of shutdowns, but policy-

makers are unable to measure these costs and respond accordingly.

Researchers have turned to a variety of high-frequency measures to fill this informational void by

proxy. These include restaurant reservation databases, web searches, cellular phone locations, traffic,

and many others. The challenge in interpreting such measures is in figuring out how they translate

into the target statistics of interest–GDP and employment, for example. However the problem of

low-quality economic statistics is not new—the salient issue has typically been one of data reliability

rather than temporal delay.

In settings with low data quality, Henderson et al. (2012) show that night lights work well as

a proxy for economic activity. It is intuitive that energy consumption follows economic activity

closely because it is both widely-used throughout the economy and difficult to substitute away

from (at least in the short-run). Night lights, electricity consumption, and other indicators of real

economic activity have also been employed to detect manipulation of national accounts (Lyu et

al. (2018); Chen et al. (2019)) following a similar logic. In concurrent work Cicala (2020) shows

that grid-scale electricity consumption closely tracked economic activity during the 2008 financial

crisis and subsequent recession in the United States: from peak to trough GDP fell 4.3%, while

weather-adjusted electricity consumption fell about 5%.

In this paper I present early estimates of changes in electricity consumption during the COVID-

19 pandemic in the European Union. These data are reported hourly, and I adjust each country’s

consumption for the variables that typically explain upwards of 90% of variation: hour of day, day

of week, week of year, and temperature. In the work week ending 3 April, 2020, consumption was

down roughly 10%, with significant differences across countries, reflecting the disparate impacts and

policy responses to COVID-19.

It is important to distinguish the potential value of electricity consumption as a proxy for eco-

nomic growth in the short-run versus the longer-run. Over time consumption responds to the price

of consuming electricity services and technological innovations affect demand (among other drivers).

Changes in productivity and the ability to substitute toward other inputs over time is likely to make

electricity a less useful proxy over longer time horizons. Such dynamics are unlikely to be important

drivers of consumption changes over the time horizon in which economic information is unavailable.

The paper is structured as follows: In the next section I describe the data, the third section

describes the methods I use to adjust for confounding factors, the fourth section presents the results,

and the fifth section concludes.
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2 Data

Electricity consumption is observed at the country-hour from 2016-present (with Germany report-

ing four zones separately). These data are collected from the European Network of Transmission

System Operators for Electricity (ENTSO-E) using the pyISO module from WattTime. Electricity

consumption is reported as “system load.” This is a measure of the amount of power drawn from

the bulk transmission system, and includes the total of residential, commercial, and industrial con-

sumption (not separated by customer class). Industrial plants that self-generate are only observed

insofar as they draw additional power from the grid beyond their own production.

Temperature data is collected hourly from the U.S. National Weather Service’s Automated Sur-

face Observing Systems (ASOS), a network of automated weather stations that are typically located

at airports. These stations are geolocated to the EU’s Nomenclature of territorial units for statistics

(NUTS)-level 3 codes, and the population of the stations’ local territory is used to weight temper-

ature readings up to the corresponding country or transmission zone. Data on major holidays over

the sample period were collected from online resources.

Figure 1 shows the extent to which electricity consumption is both highly variable and predictable.

Panel (a) plots total system load by day in 2019. In contrast to the United States, where air

conditioning is widely adopted, the EU has a “winter peaking” grid, in which electric power is used

to heat many homes during the colder months. The more high-frequency cyclical pattern follows

days of the week: consumption falls nearly 20% on the weekends. Holidays also stand out, reflecting

time away from work at the start and end of the year, Christian holidays in late April and May, as

well as summer vacations in August. Panel (b) shows how electricity consumption follows the course

of the day (in Universal Coordinated Time). There is a baseload level of consumption when most

people are asleep, and load subsequently rises following the work day (with a lull in the afternoon).
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Figure 1: E.U. Electricity Consumption in 2019

(A) Total Daily Load

(B) Mean Load by Hour of Day

Source: ENTSO-E.
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3 Methods

I conduct my analysis at the country/zone (i)-by-hour (t) level. I run regressions of the form

Log(Loadit) = τid + Ωi + Ψi + ηi + Γi + σiheatingit + κicoolingit + uit

The covariates are a set of dummies for day of week (Ωi), hour of day (Ψi), holidays (ηi), week

of year (Γi), as well as season/hour-specific coefficients for heating and cooling degrees.1 The target

of interest is a set of dummy variables, τid, that indicate specific dates of interest–typically daily

dummies for the final year (or months) of the sample. Having adjusted for temperature fluctuations,

these dummies measure by how much load on date d differed from prior years within the same week

of the year, day of week, hour of day and temperature. Note that this set of dummies cannot span

the entire sample period without making the week of year dummies collinear. I therefore employ

a rolling window of analysis: I estimate daily means τid for year y by pooling data for years y − 3

through y, making the daily fixed effects an interaction between day of year and an indicator for the

final year of the sample.2 When presenting weekly results instead of daily, the τiw are indicators for

week of sample rather than date, and carry a similar interpretation–the mean reduction in that load

relative to the same week in prior years, all else equal. To ease interpretation I normalize coefficients

relative to a baseline period before salient events. Without any normalization these coefficients

measure the change relative to prior years–the normalization saves from needing to do an additional

subtraction before calculating the statistic of interest. One can renormalize the results to taste.

These regressions are run separately by country/zone, so the i subscripts indicate that coefficients

are specific to each area. The error term uit is likely to be serially correlated, so standard errors are

clustered at the country/zone-month. In these preliminary results I have estimated each country

separately, then calculate the EU-wide average using mean load in 2019 as weights.

4 Results

Figure 2 presents the main results by calendar date for the European Union. The coefficients are

normalized so that the mean of the estimates between 1 February and 21 February, 2020 is zero.

The first regional quarantines in Northern Italy began with the closure of that window. It shows a

sharp break in the second week of March as large-scale shutdowns and quarantines took effect, with

most recent days indicating a roughly 10% decline in electricity consumption relative to baseline.

The data reveal an important pattern of declines over the course of the week: Because electricity

consumption (and economic activity) are already low on weekends, there is less room to fall. This

creates an illusion of ‘smaller drops’ on the weekend. This is effectively because power consumption

is falling quite a lot during the work week, but there are fewer shops and factories to close on

weekends beyond those that normally close on weekends already. The declines are therefore smaller

on weekends.

Table 1 present the results by country, averaging over the entire week ending 4 April, 2020.3

The decline in electricity consumption is widespread, but also heterogeneous. There are enormous

1A heating-degree in hour t is defined as the number of degrees the ambient temperature is below 18oC: max{18−
temperatureit, 0}. It is defined analogously for cooling degrees when the ambient temperature exceeds 18oC.

2I have also conducted the analysis using data from years y − 3 to y − 1, and calculating out of sample residuals
for year y (of which I then average by date). The results are broadly similar: the distinction between them is whether
data from year y contributes to the estimation of the heating and cooling coefficients, σi and κi. The main advantage
of using dummies instead of predicting out of sample is the standard inference on the daily means.

3A few countries that report to ENSO-E are missing from the table due to data quality issues.
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declines in the countries known to have been particularly hard-hit, with Italy down nearly 25%

and Spain down 15%. A broad swath of the EU has fallen closer to the overall average, including

France, Belgium, the U.K., and parts of Germany. Nordic countries have not registered declines,

with Norway, Sweden, and Denmark all operating close to historical levels.

Figure 3 presents the daily picture for Italy, which has been especially hard-hit by the virus, and

has implemented extraordinary measures to reduce the speed of transmission. As with the EU-wide

figure, there is less room to fall on weekends–but weekday reductions have been down by over a

quarter since the third week of March. The differences in shutdown timing is visible in the daily

plots of individual countries, as shown for the UK in Figure 4. The UK announced lockdowns on

23 March, 2020. Their consumption profile was reasonably flat prior to that date, and has fallen

precipitously since.
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Figure 2: Changes in EU Electricity Consumption: 1 February - 6 April, 2020
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Note: Coefficients are normalized to be mean zero between 1 February and 21 February, 2020. The
EU total is calculated by weighting country/zone-specific estimates in proportion to mean load in
2019.

Figure 3: Changes in Italian Electricity Consumption: 1 February - 6 April, 2020
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Note: Coefficients are normalized to be mean zero between 1 February and 21 February, 2020. The
EU total is calculated by weighting country/zone-specific estimates in proportion to mean load in
2019.
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Table 1: Percent Change in Adjusted Electricity Consumption: Week Ending 4 April
2020

Country Percent Change
Austria -6.6

( 1.2)
Belgium -10.2

( .88)
Bulgaria 2.9

( 1.7)
Czech Republic -7.9

( 1.7)
Germany (50Hz) -1.3

( 3.4)
Germany (Amprion) -8.0

( 1)
Germany (TenneT GER) -0.3

( 2.8)
Germany (TransnetBW) -10.1

( 1.9)
Denmark -0.6

( 1.5)
Estonia -3.2

( 1.3)
Spain -14.9

( 1.6)
France -8.0

( 1.3)
Croatia -5.5

( 2.8)
Hungary -9.3

( 2)
Italy -23.1

( 2)
Latvia -2.1

( .82)
Norway 2.4

( 1.3)
Poland -7.4

( 2)
Portugal -7.7

( 1.7)
Romania -9.5

( 1.7)
Sweden 3.2

( .66)
Slovakia -9.6

( 1.6)
United Kingdom -7.0

( 2.4)

Note: Percent changes are calculated relative to the two-week baseline period from 2 February,
2020 to 15 February, 2020. Standard errors in parentheses are clustered at the
country/zone-month. Estimates are from separate regressions.
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Figure 4: Changes in U.K. Electricity Consumption: 1 February - 6 April, 2020
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Note: Coefficients are normalized to be mean zero between 1 February and 21 February, 2020. The
EU total is calculated by weighting country/zone-specific estimates in proportion to mean load in
2019.
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5 Conclusion

Electricity consumption in Europe is down roughly 10% since various shutdown policies have been

implemented to slow the transmission of COVID-19. The drop in power consumption broadly reflects

the timing and stringency of lockdowns.

How should one interpret these results in the context of the wider economy? Preliminary work

on the historical record indicates an approximately 1-for-1 short-term relationship with standard

economic indicators (Cicala (2020)), which would suggest a dire situation if it were to persist for an

extended period of time. On the other hand, the nature of disease transmission-slowing shutdowns

is not quite the same as other types of economic shocks. Dingel and Neiman (2020) have recently

calculated that roughly one third of U.S. jobs can prospectively be done from home. If work from

home requires the same energy profile as in a centralized office, then changes in system-level con-

sumption would continue to accurately reflect changes in economic activity. If the same amount of

work can be accomplished at home with less energy consumption, then the fall in employment or

GDP may not be as large. Similarly, differences between home and work in whether they use gas

or electricity for heating and cooling would cause the indices to diverge. These considerations may

suggest modest adjustments, but the overall picture is one of a sudden and large decline in economic

activity in Europe.
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