Regulating Untaxable Externalities: Are Vehicle Air Pollution Standards Effective and Efficient?

> Mark Jacobsen James Sallee Joseph Shapiro Arthur van Benthem

> > October 2021

Overview

Overview

• Vehicle air pollution important

- Annual US environmental/health costs: \$72 billion, 37,000 deaths
- Annual global deaths: 250,000

• Textbook solution infeasible

- Pigouvian tax requires observing pollution
- Real-time monitoring infeasible, announced testing problematic

• Alternative: exhaust standards

- Maximum standard for every vehicle; fleet-wide average
- Separate from fuel economy (CAFE) standards
- Important in U.S., EU, Japan, China, India, Brazil, ...

• Research questions:

- Trends in vehicle pollution?
- Causal effect of exhaust standards?
- Cost-effective?
- Gains from counterfactual policies?

Approach and Main Results

Trends: 1957-2020

- 65 million vehicle emission tests
- 99% decrease in "local" pollutants since 1960s
- CO₂: < 50% decrease

2 Causes: regressions

- · Variation across model years, vehicle classes, regions, pollutants
- Exhaust standards caused 50-100% of the long-term decline

Stylized facts

- > 75% of emissions from old ('unregulated') vehicles
- Existing property taxes/registration fees higher on cleaner vehicles

Analytical and quantitative models

- Result: if production emissions are "small," should tax used vehicles
- Reforming registration fees increases welfare \approx \$300 billion
- Distributional consequences important

What is New Here

Organization Organization Organ

- Policy papers describe them (Kahn 1996, Fullerton and West 2010)
- Much Clean Air Act research studies industry (Greenstone 2002; Walker 2013)

2 Analyze vehicle property taxes

• Existing studies analyze real estate property taxes (Poterba and Sinai 2008; Cabral and Hoxby 2015)

Solution Equilibrium model of vehicles with endogenous pollution control

- Existing work focuses on fuel economy (Goldberg 1998; Goulder et al. 2012)
- Resemblance to spatial models? (Ahlfeldt et al. 2015; Balboni 2019)

Unique setting: one regulation mostly explains pollution time series

 Industry: less clear if pollution trends due to trade, regulation, productivity (Levinson 2009; Shapiro & Walker 2018)

Outline

Background

- Data
- Trends
- Causes
- Stylized facts
- Models
- Conclusions

Policy Background: Timeline

• US timeline

- Tier 0 (1968-1993)
- Tier 1 (1994-1998)
- NLEV (1999-2003)
- Tier 2 (2004-2016)
- Tier 3 (2017-2025)
- We provide separate estimates for each "Tier"

• Requirements vary by standard

- Maximum rate per vehicle: Tier 0, Tier 1
- Fleet averages: NLEV, Tier 2, Tier 3

Policy Background

Technology

- Centerpiece: catalytic converters
- Mechanism: rhodium, platinum, palladium
- Complementary technologies: fuel injection, oxygen controls, etc.

Outline

Background

Data

- Trends
- Causes
- Stylized facts
- Models
- Conclusions

Data

- New vehicle emissions tests (N \approx 20,000)
 - Determine compliance with Clean Air Act
- Inspection and maintenance / smog check (N \approx 12 million)
 - Shorter version of new vehicle test
- **Remote sensing** (N \approx 50 million)
 - Impervious to manufacturer "defeat devices"
- In-use vehicle tests (N \approx 10,000)
 - Determine recalls
- Synopsis
 - · Longest-lasting high-quality data on pollution for any country/sector

Data

Outline

- Background
- Data

• Trends

- Causes
- Stylized facts
- Models
- Conclusions

Trends: Carbon Monoxide

Trends: Hydrocarbons

Trends: Nitrogen Oxides

Trends: Carbon Dioxide

Outline

- Background
- Data
- Trends

Causes

- Stylized facts
- Models
- Conclusions

Effects of Standards on Emissions: 1982-2010 Graphs

Tier 1 Event Study Graphs: Carbon Monoxide

Effects of Standards on Emissions: 1990s (Tier 1) Table

. ...

F#

Table 3—Effects of Tier 1 Exhaust Standards on Used Vehicle Emissions								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Panel A. All Pollutants								
Exhaust standard	0.93***	0.52***	0.47***	0.49***	0.35***	0.55***	1.14***	
	(0.10)	(0.11)	(0.11)	(0.11)	(0.11)	(0.09)	(0.09)	
N	28,560,842	28,560,842	28,560,842	28,560,842	6,827,280	36,996,512	28,621,296	
Panel B. Carbon monoxide (CO)								
Exhaust standard	1.60***	0.71***	0.70***	0.51**	0.94***	0.76***	0.77***	
Exhaust standard		••••						
N	(0.14)	(0.09)	(0.12)	(0.24)	(0.11)	(0.07)	(0.11)	
N	7,112,400	7,112,400	7,112,400	7,112,400	1,695,559	9,220,310	7,155,324	
Panel C. Hydrocarbons (HC)								
Exhaust standard	1.61***	1.57***	1.63***	1.55**	1.93***	1.08***	1.41***	
	(0.13)	(0.24)	(0.28)	(0.66)	(0.25)	(0.17)	(0.23)	
Ν	7,141,284	7,141,284	7,141,284	7,141,284	1,707,181	9,249,168	7,155,324	
Pollutant fixed effects	х	х	х	х	х	х	х	
Model yr. fixed effects	_	X	X	X	X	X	X	
Age fixed effects	х	X	X	X	X	X	X	
Light duty truck FE	x	X	X	X	X	X	X	
Odometer	х	х	х	х	х	х	х	
CAFE standards	_	_	х	_	_	_	_	
Smog check stds.	_	_	х	_	_	_	_	
Gasoline cost per mile	_	_	х	_	—	_	_	
Ethanol share	_	_	х	_	—	_	_	
Sulfur content	_	_	х	_	_	_	_	
Model yr.*truck trend	_	_	_	х	_	_	_	
Ages 4-6	_	_	_	_	х	_	_	
Model yrs. 1982-2000	_	_	_	_	—	х	_	
Levels	_	_	_	—	—	—	Х	

Tier 2: New Vehicle Tests Predict Used Vehicle Emissions

2000s (Tier 2) Regression Table

Table 4—Assessr	nent of Tie	er 2 Exhau	st Standar	ds: Do Nev	v Predict U	sed Vehicl	e Emission	s?
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A. Carbon monoxide (CO)								
New vehicle emissions	0.61***	0.64***	0.67***	0.64***	0.63***	0.71***	0.19***	0.57***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.05)	(0.01)	(0.06)
N	143,168	143,168	143,168	143,168	19,363	143,168	3,392,901	3,392,901
		Panel	B Hydroc	arbons (H	~)			
New vehicle emissions	0.79***	0.62***	0.50***	0.61***	0.40***	0.81***	0.36***	1.38***
New Vehicle emissions	(0.03)	(0.03)	(0.03)	(0.03)	(0.05)	(0.08)	(0.01)	(0.07)
Ν	143,168	143,168	143,168	143,168	19,363	143,168	3,392,901	3,392,901
	140,100	140,100	140,100	140,100	10,000	140,100	0,002,001	0,002,001
		Panel (C. Nitroger	oxides (N	0 <u>,)</u>			
New vehicle emissions	0.68***	0.37***	0.37***	0.36***	0.35***	1.04***	0.21***	1.42***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.08)	(0.01)	(0.10)
N	143,168	143,168	143,168	143,168	19,363	143,168	3,392,901	3,392,901
				dioxide (C				
New vehicle emissions	0.95***	0.87***	0.85***	0.87***	0.83***	0.76***	0.78***	0.72***
	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
N	143,168	143,168	143,168	143,168	19,363	143,168	3,392,901	3,392,901
Age, model year FE	_	x	x	x	х	х	_	_
Light duty truck FE	_	x	x	x	x	x	_	_
Odometer	_	x	x	X	X ·	x	_	_
CAFE standards	_	_	х	_	_	_	_	_
Smog check standards	_	_	х	_	_	_	_	_
Gasoline cost per mile	_	_	х	_	_	_	_	_
Ethanol share	_	_	х	_	_	_	_	_
Sulfur content	_	_	х	-	_	_	-	-
Model year * truck type tr	_	_	_	х	_	_	-	-
Ages 4-6	_	_	_	-	х	_	-	-
Levels	_	_	_	_	_	х	_	х
Include abbreviated tests	_	_	_	_	_	_	Х	Х

Outline

- Background
- Data
- Trends
- Causes

• Stylized facts

- Models
- Conclusions

Emissions increase with vehicle age

• Controls for odometer and VIN fixed effects

Older Vehicles Account for Most Pollution

Dirtier Vehicles Face Lower Registration Fees

Outline

- Background
- Data
- Trends
- Causes
- Stylized facts
- Models
- Conclusions

Analytical Model

Goals

- Algebraic results, few functional forms
- Focus on registration fees

Consumers

- Buy new or used vehicles and outside good, repair or scrap used vehicles
- Demand: differ in preference for new cars
- Supply: repair new vehicle if new vehicle price exceeds repair cost

• Firms

• Supply new vehicles at price p

Analytical Model

Equilibrium

- Firms choose new vehicle prices to maximize profits
- Consumers choose new/used vehicle purchase, repair/scrap to max utility
- Vehicle markets clear

Proposition

• If production emissions are sufficiently low, optimal ownership fees for used vehicles exceed fees for new vehicles.

Quantitative Model: Consumers

• Representative agent:

$$\max_{v,x} U(v,x) = (\alpha_v v^{\rho_u} + \alpha_x x^{\rho_u})^{\frac{1}{\rho_u}}$$
(1)
s.t. $e_v v + e_x x \le M$ (2)

Operating cost:

 $e_{csam} = r_{csam} + \tau_{csam} + \sigma_{csam}$

Notation

- Vehicles v, outside good x, substitution elasticity ρ_u , prices e_v , e_x , income M
- Vehicle rental price r, registration fees τ , operating costs σ
- Vehicle class *c*, size *s*, age *a*, manufacturer *m*

Quantitative Model: Vehicle Manufacturers

• Firms:

$$\max_{p_{cs},\phi_{cs},f_{cs}}\sum_{c,s}\left[\left(p_{cs}-c_{cs}(\phi_{cs},f_{cs})\right)*q_{cs}(\mathbf{p},\mathbf{f})\right]$$
(3)

s.t.
$$\phi_{cs} \leq \overline{\phi}_{cs}$$
 (4)

$$\frac{\sum_{s} q_{cs}}{\sum_{s} (q_{cs}/f_{cs})} \ge \overline{f}_{c} \tag{5}$$

Notes

- Compete Bertrand to maximize profits subject to exhaust, fuel economy standards
- Price p, quantity q, marginal cost c, emission rate ϕ , fuel economy f
- Fleet $c \in (\text{passenger car, light duty truck})$ and vehicle size $s \in (\text{small, large})$

Quantitative Model: Competitive Vehicle Renters

• Timing within period

- Inherit used vehicles; rental, driving, and pollution; scrap, repair, and new vehicle purchases
- Rental price dynamics

$$\mathbb{E}[r_{csam,t+1}] = r_{csam,t}$$

Scrap

$$y_{at} \equiv \frac{q_{a-1,t-1} - q_{at}}{q_{a-1,t-1}} = b_a (p_{at})^{\gamma}$$
(6)

Repair cost shock H_a

$$\tilde{h}_{a} \equiv \mathbb{E}(H_{a}|h_{a} < p_{a}) = \frac{b_{a}^{-1/\gamma}\gamma - b_{a}\gamma p_{a}^{1+\gamma}}{(1+\gamma)(1-b_{a}p_{a}^{\gamma})}$$
(7)

• Vehicle asset values (=prices)

$$p_{A} = r_{A}$$

$$p_{a} = r_{a} + (1 - y_{a+1}) \left(\frac{p_{a+1} - \tilde{h}_{a+1}}{1 + \delta} \right)$$
(8)

Quantitative Model: Equilibrium

- **Competitive equilibrium**: Prices and pollution $(p_{csam}, \phi_{cs}, f_{cs})$ so
 - Representative agent maximizes utility (1) s.t. budget constraint (2)
 - Vehicle manufacturers maximize profits (3) s.t. pollution standards (4), (5)
 - Vehicle renters choose scrap (6), repair (7) to maximize profits
 - Vehicle rental values follow (8)
 - New and used vehicle markets clear
- Social Welfare: combines
 - Consumer surplus (equivalent variation)
 - Producer surplus (manufacturer profits)
 - Environmental externalities

Quantitative model: Calibration

Data/parameter sources

- Vehicle p, q: from industry publications (Wards, NADA)
- Pollution emissions: microdata used for regressions
- Fuel economy, scrap: industry publications (Polk)
- Engineering cost of pollution abatement: industry/regulators (EPA, NRC)
- Demand, scrap elasticities (Jacobsen & van Benthem 2015)

Quantitative Model: Annual Externality

Quantitative Model: Counterfactual Policies

Environmental tax

- Tax each vehicle type at period-specific damages
- Vehicle type = age×type×size×manufacturer

2 New vehicle tax

• Tax new vehicles based on expected lifetime externality

Int tax

• All vehicle types face same (flat) annual ownership tax

Standards

• Further tighten emission standards

Quantitative Model: Results

	Change in surplus (1)	Change in damages (2)	Change in welfare (3)	Change in tax revenues (4)
Simulated policy:				
Age-type used-vehicle tax	-182	-510	328	1163
New-vehicle tax	-34	5	-39	324
Flattened registration fees	-17	-115	98	0
10% tailpipe improvement	-11	-35	24	0

Conclusions

Summary

- Trend: 99% reduction
- Cause: exhaust standards
- Pattern: most pollution from old, unregulated vehicles
- Analytical model: registration fees should be higher on used cars
- Quantitative model: welfare gains, distributional consequences from reforming registration fees

Broader comments

- Gasoline \rightarrow electric
- Equity: dirtier cars in low-income communities, communities of color

Effects of Tier 2 standards

 Ratio of used-to-new emissions is disproportionately high for Volkswagen (remote sensing data)

Return to Tier 2 results